1,758 research outputs found

    DFAs and PFAs with Long Shortest Synchronizing Word Length

    Full text link
    It was conjectured by \v{C}ern\'y in 1964, that a synchronizing DFA on nn states always has a shortest synchronizing word of length at most (n1)2(n-1)^2, and he gave a sequence of DFAs for which this bound is reached. Until now a full analysis of all DFAs reaching this bound was only given for n4n \leq 4, and with bounds on the number of symbols for n10n \leq 10. Here we give the full analysis for n6n \leq 6, without bounds on the number of symbols. For PFAs the bound is much higher. For n6n \leq 6 we do a similar analysis as for DFAs and find the maximal shortest synchronizing word lengths, exceeding (n1)2(n-1)^2 for n=4,5,6n =4,5,6. For arbitrary n we give a construction of a PFA on three symbols with exponential shortest synchronizing word length, giving significantly better bounds than earlier exponential constructions. We give a transformation of this PFA to a PFA on two symbols keeping exponential shortest synchronizing word length, yielding a better bound than applying a similar known transformation.Comment: 16 pages, 2 figures source code adde

    Synchronizing non-deterministic finite automata

    Get PDF
    In this paper, we show that every D3-directing CNFA can be mapped uniquely to a DFA with the same synchronizing word length. This implies that \v{C}ern\'y's conjecture generalizes to CNFAs and that the general upper bound for the length of a shortest D3-directing word is equal to the Pin-Frankl bound for DFAs. As a second consequence, for several classes of CNFAs sharper bounds are established. Finally, our results allow us to detect all critical CNFAs on at most 6 states. It turns out that only very few critical CNFAs exist.Comment: 21 page

    Resting state MEG oscillations show long-range temporal correlations of phase synchrony that break down during finger movement

    Get PDF
    The capacity of the human brain to interpret and respond to multiple temporal scales in its surroundings suggests that its internal interactions must also be able to operate over a broad temporal range. In this paper, we utilize a recently introduced method for characterizing the rate of change of the phase difference between MEG signals and use it to study the temporal structure of the phase interactions between MEG recordings from the left and right motor cortices during rest and during a finger-tapping task. We use the Hilbert transform to estimate moment-to-moment fluctuations of the phase difference between signals. After confirming the presence of scale-invariance we estimate the Hurst exponent using detrended fluctuation analysis (DFA). An exponent of >0.5 is indicative of long-range temporal correlations (LRTCs) in the signal. We find that LRTCs are present in the α/μ and β frequency bands of resting state MEG data. We demonstrate that finger movement disrupts LRTCs correlations, producing a phase relationship with a structure similar to that of Gaussian white noise. The results are validated by applying the same analysis to data with Gaussian white noise phase difference, recordings from an empty scanner and phase-shuffled time series. We interpret the findings through comparison of the results with those we obtained from an earlier study during which we adopted this method to characterize phase relationships within a Kuramoto model of oscillators in its sub-critical, critical, and super-critical synchronization states. We find that the resting state MEG from left and right motor cortices shows moment-to-moment fluctuations of phase difference with a similar temporal structure to that of a system of Kuramoto oscillators just prior to its critical level of coupling, and that finger tapping moves the system away from this pre-critical state toward a more random state

    Markers of criticality in phase synchronization

    Get PDF
    The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating rapid task-dependent shifts toward and away from synchronous states that abolish LRTCs

    Persistent fluctuations in stride intervals under fractal auditory stimulation

    Get PDF
    Copyright @ 2014 Marmelat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.Commission of the European Community and the Netherlands Organisation for Scientific Research
    corecore