699 research outputs found

    Realization Limits of Impulse-Radio UWB Indoor Localization Systems

    Get PDF
    In this work, the realization limits of an impulse-based Ultra-Wideband (UWB) localization system for indoor applications have been thoroughly investigated and verified by measurements. The analysis spans from the position calculation algorithms, through hardware realization and modeling, up to the localization experiments conducted in realistic scenarios. The main focus was put on identification and characterization of limiting factors as well as developing methods to overcome them

    Timing Acquisition Performance Metrics of Tc-DTR UWB Receivers over Frequency-Selective Fading Channels with Narrow-Band Interference: Performance Analysis and Optimization

    No full text
    International audienceThe successful deployment of Impulse Radio (IR) Ultra Wide Band (UWB) wireless communication systems requie that they coexist and contend with a variety of interfering signals co–located over the same transmission band. In fact, if on the one hand the large transmission bandwidth of IR–UWB signals allows them to resolve multipath components and exploit multipath diversity, on the other hand it yields some new coexistence challenges for both unlicensed commercial and military communication systems, which are required to be robust to unintentional and intentional jammers, respectively. In particular, the design and analysis of low–complexity receiver schemes with good synchronization capabilities and high robustness to Narrow–Band Interference (NBI) is acknowledged as an important issue in IR–UWB research. Motivated by this consideration, in [1] we have recently proposed a low–complexity receiver design, the so–called Chip–Time Differential Transmitted–Reference (Tc–DTR) scheme, and have shown that it is more robust to NBI than other non–coherent receiver schemes available in the literature. In this paper, we aim at generalizing the results in [1] and at developing the enabling analytical tools for the analysis and design of timing acquisition algorithms for non–coherent receivers over frequency–selective fading channels with NBI. Furthermore, we move from the proposed analytical framework to tackle the optimization problem of devising optimal signature codes to reduce the impact of NBI on the performance of the Tc–DTR synchronizer. Analytical frameworks and findings are substantiated via Monte Carlo simulations

    Ultra-wideband indoor communications using optical technology

    Get PDF
    La communication ultra large bande (UWB) a attiré une énorme quantité de recherches ces dernières années, surtout après la présentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de très hauts débits de faible puissance tout en éliminant les interférences avec les systèmes existants à bande étroite. La faible puissance, cependant, limite la portée de propagation des radios UWB à quelques mètres pour la transmission sans fil à l’intérieur d’une pièce. En outre, des signaux UWB reçu sont étendus dans le temps en raison de la propagation par trajet multiple qui résulte en beaucoup d’interférence inter-symbole (ISI) à haut débit. Le monocycle Gaussien, l’impulsion la plus commune dans UWB, a une mauvaise couverture sous le masque de la FCC. Dans cette thèse, nous démontrons des transmet- teurs qui sont capables de générer des impulsions UWB avec une efficacité de puissance élevée. Une impulsion efficace résulte dans un rapport de signal à bruit (SNR) supérieur au récepteur en utilisant plus de la puissance disponible sous le masque spectral de la FCC. On produit les impulsions dans le domaine optique et utilise la fibre optique pour les transporter sur plusieurs kilomètres pour la distribution dans un réseau optique pas- sif. La fibre optique est très fiable pour le transport des signaux radio avec une faible consommation de puissance. On utilise les éléments simples comme un modulateur Mach-Zehnder ou un résonateur en anneau pour générer des impulsions, ce qui permet l’intégration dans le silicium. Compatible avec la technologie CMOS, la photonique sur silicium a un potentiel énorme pour abaisser le coût et l’encombrement des systèmes optiques. La photodétection convertit les impulsions optiques en impulsions électriques avant la transmission sur l’antenne du côté de l’utilisateur. La réponse fréquentielle de l’antenne déforme la forme d’onde de l’impulsion UWB. Nous proposons une technique d’optimisation non-linéaire qui prend en compte la distorsion d’antenne pour trouver des impulsions qui maximisent la puissance transmise, en respectant le masque spectral de la FCC. Nous travaillons avec trois antennes et concevons une impulsion unique pour chacune d’entre elle. L’amélioration de l’énergie des impulsions UWB améliore directement la SNR au récepteur. Les résultats de simulation montrent que les impulsions optimisées améliorent considérablement le taux d’erreur (BER) par rapport au monocycle Gaussien sous propagation par trajet multiple. Notre autre contribution est l’évaluation d’un filtre adapté pour recevoir efficacement des impulsions UWB. Le filtre adapté est synthétisé et fabriqué en technologie microstrip, en collaboration avec l’Université McGill comme un dispositif de bande interdite électromagnétique. La réponse fréquentielle du filtre adapté montre une ex- cellente concordance avec le spectre ciblé de l’impulsion UWB. Les mesures de BER confirment la performance supérieure du filtre adapté par rapport à un récepteur à conversion directe. Le canal UWB est très riche en trajet multiple conduisant à l’ISI à haut débit. Notre dernière contribution est l’étude de performance des récepteurs en simulant un système avec des conditions de canaux réalistes. Les résultats de la simulation montrent que la performance d’un tel système se dégrade de façon significative pour les hauts débits. Afin de compenser la forte ISI dans les taux de transfert de données en Gb/s, nous étudions l’algorithme de Viterbi (VA) avec un nombre limité d’états et un égaliseur DFE (decision feedback equalizer). Nous examinons le nombre d’états requis dans le VA, et le nombre de coefficients du filtre dans le DFE pour une transmission fiable de UWB en Gb/s dans les canaux en ligne de vue. L’évaluation par simulation de BER confirme que l’égalisation améliore considérablement les performances par rapport à la détection de symbole. La DFE a une meilleure performance par rapport à la VA en utilisant une complexité comparable. La DFE peut couvrir une plus grande mémoire de canal avec un niveau de complexité relativement réduit.Ultra-wideband (UWB) communication has attracted an enormous amount of research in recent years, especially after the introduction of the US Federal Communications Commission (FCC) spectral mask. Ultra-short pulses allow for very high bit-rates while low power eliminates interference with existing narrowband systems. Low power, however, limits the propagation range of UWB radios to a few meters for indoors wireless transmission. Furthermore, received UWB signals are spread in time because of multipath propagation which results in high intersymbol interference at high data rates. Gaussian monocycle, the most commonly employed UWB pulse, has poor coverage under the FCC mask. In this thesis we demonstrate transmitters capable of generating UWB pulses with high power efficiency at Gb/s bit-rates. An efficient pulse results in higher signal-to-noise ratio (SNR) at the receiver by utilizing most of the available power under the FCC spectral mask. We generate the pulses in the optical domain and use optical fiber to transport the pulses over several kilometers for distribution in a passive optical network. Optical fiber is very reliable for transporting radio signals with low power consumption. We use simple elements such as a Mach Zehnder modulator or a ring resonator for pulse shaping, allowing for integration in silicon. Being compatible with CMOS technology, silicon photonics has huge potential for lowering the cost and bulkiness of optical systems. Photodetection converts the pulses to the electrical domain before antenna transmission at the user side. The frequency response of UWB antennas distorts the UWB waveforms. We pro- pose a nonlinear optimization technique which takes into account antenna distortion to find pulses that maximize the transmitted power, while respecting the FCC spectral mask. We consider three antennas and design a unique pulse for each. The energy improvement in UWB pulses directly improves the receiver SNR. Simulation results show that optimized pulses have a significant bit error rate (BER) performance improvement compared to the Gaussian monocycle under multipath propagation. Our other contribution is evaluating a matched filter to receive efficiently designed UWB pulses. The matched filter is synthesized and fabricated in microstrip technology in collaboration with McGill University as an electromagnetic bandgap device. The frequency response of the matched filter shows close agreement with the target UWB pulse spectrum. BER measurements confirm superior performance of the matched filter compared to a direct conversion receiver. The UWB channel is very rich in multipath leading to ISI at high bit rates. Our last contribution is investigating the performance of receivers by simulating a system employing realistic channel conditions. Simulation results show that the performance of such system degrades significantly for high data rates. To compensate the severe ISI at gigabit rates, we investigate the Viterbi algorithm (VA) with a limited number of states and the decision feedback equalizer (DFE). We examine the required number of states in the VA, and the number of taps in the DFE for reliable Gb/s UWB trans- mission for line-of-sight channels. Non-line-of-sight channels were also investigated at lower speeds. BER simulations confirm that equalization considerably improves the performance compared to symbol detection. The DFE results in better performance compared to the VA when using comparable complexity as the DFE can cover greater channel memory with a relatively low complexity level

    Noise-based Transmit Reference Modulation:A Feasibility Analysis

    Get PDF
    Wireless sensor networks (WSNs) receive huge research interest for a multitude of applications, ranging from remote monitoring applications, such as monitoring of potential forest fires, floods and air pollution, to domestic and industrial monitoring of temperature, humidity, vibration, stress, etc. In the former set of applications, a large number of nodes can be involved which are usually deployed in remote or inaccessible environments. Due to logistic and cost reasons, battery replacement is undesired. Energy-efficient radios are needed, with a power-demand so little that batteries can last the lifetime of the node or that the energy can be harvested from the environment. Coherent direct-sequence spread spectrum (DSSS) based radios are widely employed in monitoring applications, due to their overall resilience to channel impairments and robustness against interference. However, a DSSS rake receiver has stringent requirements on precise synchronization and accurate channel knowledge. To obviate the complexity of a coherent DSSS receiver, particularly for low data rate sensor networks, a DSSS scheme that has fast synchronization and possibly low power consumption, is much desired. In this regard, this thesis studies a noncoherent DSSS scheme called transmit reference (TR), which promises a simple receiver architecture and fast synchronization. In traditional TR, the modulated information signal is sent along an unmodulated reference signal, with a small time offset between them. In this thesis, we present and investigate a variant of TR, called noise-based frequency offset modulation (N-FOM), which uses pure noise as the spreading signal and a small frequency offset (instead of a time offset) to separate the information and reference signals. The detection is based on correlation of the received signal with a frequency-shifted version of itself, which collects the transmitted energy without compromising the receiver simplicity. Analytical expressions on performance metrics, supplemented by simulation results, improve understanding of the underlying mechanisms and provide insights into utility of N-FOM in low-power WSNs. In point-to-point line-of-sight (LOS) communication, it was observed that the communication scheme has a minimal utility. The energy-detector type of receiver mixes all in-band signals, which magnifies the overall noise. Particularly, the self-mixing of the transmitted signal also elevates the noise level, which increases with a further increase in the received signal energy. Therefore, for a fixed set of system parameters, the performance attains an asymptote with increasing transmission power. The phenomenon also establishes a non-monotonic relation between performance and the spreading factor. It was observed that a higher spreading factor in N-FOM is beneficial only in a high-SNR regime. After developing an understanding of the performance degrading mechanisms, few design considerations are listed. It is found that a suitable choice of the receiver front-end filter can maximize the SNR. However, the optimal filter depends on received signal and noise levels. A practically feasible – albeit suboptimal – filter is presented which gives close to the optimal performance. Next, timing synchronization is considered. The implications of synchronization errors are analyzed, and a synchronization strategy is devised. The proposed synchronization strategy has little overhead and can be easily implemented for symbol-level synchronization. The N-FOM LOS link model is extended to assess the performance degradation due to interference. Performance metrics are derived which quantify the effects of multiple-user interference, as well as that from external interferers, such as WiFi. Since the correlation operation mixes all in-band signals, the total interfering entities are quadratically increased. The research shows the vulnerability of N-FOM to interference, which makes it optimistic to operate in a crowded shared spectrum (such as the ISM 2.4\,GHz band). We also observe an upper limit on the number of mutually interfering links in a multiple access (MA) network, that can be established with an acceptable quality. The scheme is further investigated for its resilience against impairments introduced by a dense multipath environment. It is observed that despite the noise enhancement, the N-FOM system performs reasonably well in a non-line-of-sight (NLOS) communication. The detection mechanism exploits the multipath channel diversity and leads to an improved performance in a rich scattering environment. An analytical expression for outage probability is also derived. The results indicate that a healthy N-FOM link with very low outage probability can be established at a nominal value of the received bit SNR. It is also found that the choice of the frequency offset is central to the system design. Due to multiple practical implications associated with this parameter, the maximum data rate and the number of usable frequency offsets are limited, particularly in a MA NLOS communication scenario. The analysis evolves into a rule-of-thumb criterion for the data rate and the frequency offset. It is deduced that, due to its limited capability to coexist in a shared spectrum, N-FOM is not a replacement for coherent DSSS systems. The scheme is mainly suited to a low data rate network with low overall traffic, operating in an interference-free rich scattering environment. Such a niche of sensor applications could benefit from N-FOM where the design goal requires a simple detection mechanism and immunity to multipath fading

    Detection of PPM-UWB random signals

    Get PDF
    This paper focuses on the symbol detection problem of random pulse-position modulation (PPM) ultrawideband (UWB) signals in the absence of interframe interference. Particular attention is devoted to severely time-varying channels where optimal detectors are proposed for both uncorrelated and correlated scattering scenarios. This is done by assuming the received waveforms to be unknown parameters. In UWB communication systems, the assumption of unknown random waveforms is consistent with the fact that the received waveform has very little resemblance with the original transmitted pulse. In order to circumvent this limitation, a conditional approach is presented herein by compressing the likelihood ratio test with the information regarding the second-order moments of the end-to-end channel response. Both full-rank and rank-one detectors are derived. For the reduced complexity rank-one detector, an iterative procedure is presented that maximizes the J-divergence between the hypotheses to be tested. Finally, simulation results are provided to compare the performance of the proposed detectors in different propagation environments.Peer Reviewe

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    Ultrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden müssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen Fällen der naheliegende Ansatz, ein kohärenter Empfänger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohärenter Empfänger zum Einsatz. Inkohärente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgünstige und robuste Implementierungen möglich sind. Dies trifft vor allem in Anwendungsfällen wie den von drahtlosen Sensornetzen zu, wo preiswerte Geräte mit langer Batterielaufzeit nötigsind. Dies verringert den für die Kanalschätzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenüber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunächst ein inkohärenter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohärenter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hängt von dem Produkt aus der Länge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohärentes Combining zu reduzieren und somit die Leistungseffizienz des Empfängers zu steigern, werden verbesserte Combining-Methoden für Mehrwegeempfang vorgeschlagen. Ein analoger Empfänger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird für UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dünn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel für die Code-Auswahl vorgestellt, welche die Stabilität des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohärentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohärenter Demodulation. Im Vergleich zum Analogempfänger besitzt ein Digitalempfänger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohärent und beschränkt das inkohärente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewährleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohärenten Combining-Verlust, sonder zeigt auch eine stärkere Resistenz gegenüber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfällt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in Abhängigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur Unterdrückung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohärente Empfänger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohärentem Combining-Verlust und Stabilität gegenüber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept für UWB-Systeme erarbeitet: wahlweise kohärente oder inkohärente Empfänger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengünstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung für hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die Funktionalität des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). Zusätzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollständig ausnutzen, was sich in verbesserten Schätzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming

    Integrated Sensing and Communications: Recent Advances and Ten Open Challenges

    Full text link
    It is anticipated that integrated sensing and communications (ISAC) would be one of the key enablers of next-generation wireless networks (such as beyond 5G (B5G) and 6G) for supporting a variety of emerging applications. In this paper, we provide a comprehensive review of the recent advances in ISAC systems, with a particular focus on their foundations, system design, networking aspects and ISAC applications. Furthermore, we discuss the corresponding open questions of the above that emerged in each issue. Hence, we commence with the information theory of sensing and communications (S&\&C), followed by the information-theoretic limits of ISAC systems by shedding light on the fundamental performance metrics. Next, we discuss their clock synchronization and phase offset problems, the associated Pareto-optimal signaling strategies, as well as the associated super-resolution ISAC system design. Moreover, we envision that ISAC ushers in a paradigm shift for the future cellular networks relying on network sensing, transforming the classic cellular architecture, cross-layer resource management methods, and transmission protocols. In ISAC applications, we further highlight the security and privacy issues of wireless sensing. Finally, we close by studying the recent advances in a representative ISAC use case, namely the multi-object multi-task (MOMT) recognition problem using wireless signals.Comment: 26 pages, 22 figures, resubmitted to IEEE Journal. Appreciation for the outstanding contributions of coauthors in the paper
    • …
    corecore