159 research outputs found

    Projective synchronization analysis for BAM neural networks with time-varying delay via novel control

    Get PDF
    In this paper, the projective synchronization of BAM neural networks with time-varying delays is studied. Firstly, a type of novel adaptive controller is introduced for the considered neural networks, which can achieve projective synchronization. Then, based on the adaptive controller, some novel and useful conditions are obtained to ensure the projective synchronization of considered neural networks. To our knowledge, different from other forms of synchronization, projective synchronization is more suitable to clearly represent the nonlinear systems’ fragile nature. Besides, we solve the projective synchronization problem between two different chaotic BAM neural networks, while most of the existing works only concerned with the projective synchronization chaotic systems with the same topologies. Compared with the controllers in previous papers, the designed controllers in this paper do not require any activation functions during the application process. Finally, an example is provided to show the effectiveness of the theoretical results

    Weighted Sum Synchronization of Memristive Coupled Neural Networks

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China (No. 61971185) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 18K010). Publisher Copyright: © 2020 Elsevier B.V.It is well known that weighted sum of node states plays an essential role in function implementation of neural networks. Therefore, this paper proposes a new weighted sum synchronization model for memristive neural networks. Unlike the existing synchronization models of memristive neural networks which control each network node to reach synchronization, the proposed model treats the networks as dynamic entireties by weighted sum of node states and makes the entireties instead of each node reach expected synchronization. In this paper, weighted sum complete synchronization and quasi-synchronization are both investigated by designing feedback controller and aperiodically intermittent controller, respectively. Meanwhile, a flexible control scheme is designed for the proposed model by utilizing some switching parameters and can improve anti-interference ability of control system. By applying Lyapunov method and some differential inequalities, some effective criteria are derived to ensure the synchronizations of memristive neural networks. Moreover, the error level of the quasi-synchronization is given. Finally, numerical simulation examples are used to certify the effectiveness of the derived results.Peer reviewe

    Event-based state estimation for a class of complex networks with time-varying delays: A comparison principle approach

    Get PDF
    The paper is concerned with the state estimation problem for a class of time-delayed complex networks with event-triggering communication protocol. A novel event generator function, which is dependent not only on the measurement output but also on a predefined positive constant, is proposed with hope to reduce the communication burden. A new concept of exponentially ultimate boundedness is provided to quantify the estimation performance. By means of the comparison principle, some sufficient conditions are obtained to guarantee that the estimation error is exponentially ultimately bounded, and then the estimator gains are obtained in terms of the solution of certain matrix inequalities. Furthermore, a rigorous proof is proposed to show that the designed triggering condition is free of the Zeno behavior. Finally, a numerical example is given to illustrate the effectiveness of the proposed event-based estimator

    Finite time Synchronization of Inertial Memristive Neural Networks with Time Varying Delay

    Get PDF
    Finite time synchronization control of inertial memristor-based neural networks with varying delay is considered. In view of drive and response concept, the sufficient conditions to ensure finite time synchronization issue of inertial memristive neural networks is given. Based on Lyapunov finite time asymptotic theory, a kind of feedback controllers is designed for inertial memristorbased neural networks to realize the finite time synchronization. Based on Lyapunov stability theory, close loop error system can be proved finite time and fixed time stable. Finally, illustrative example is given to illustrate the effectiveness of theoretical results

    Passivity and synchronization of coupled complex-valued memristive neural networks

    Get PDF
    The coupled complex-valued memristive neural networks (CCVMNNs) are investigated in this study. First, we analyze the passivity of the proposed network model by designing an appropriate controller and using certain inequalities as well as Lyapunov functional method, and provide a passivity condition for the considered CCVMNNs. In addition, a criterion for guaranteeing synchronization of this kind of network is established. Finally, the effectiveness and correctness of the acquired theoretical results are verified by a numerical example

    Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations

    Get PDF
    This article, we explore the asymptotic stability and asymptotic synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous neuron activation functions (FCGNNDDs). First, under the framework of Filippov theory and differ- ential inclusion theoretical analysis, the global existence of Filippov solution for FCGNNDDs is studied by means of the given growth condition. Second, by virtue of suitable Lyapunov functional, Young inequality and comparison theorem for fractional order delayed linear system, some global asymptotic stability conditions for such system is derived by limiting discontinuous neuron activations. Third, the global asymptotic synchronization condition for FCGNNDDs is obtained based on the pinning control. At last, two numerical simula- tions are given to verify the theoretical findings.N/

    Finite-time anti-synchronization of multi-weighted coupled neural networks with and without coupling delays

    Get PDF
    The multi-weighted coupled neural networks (MWCNNs) models with and without coupling delays are investigated in this paper. Firstly, the finite-time anti-synchronization of MWCNNs with fixed topology and switching topology is analyzed respectively by utilizing Lyapunov functional approach as well as some inequality techniques, and several anti-synchronization criteria are put forward for the considered networks. Furthermore, when the parameter uncertainties appear in MWCNNs, some conditions for ensuring robust finite-time anti-synchronization are obtained. Similarly, we also consider the finite-time anti-synchronization and robust finite-time anti-synchronization for MWCNNs with coupling delays under fixed and switched topologies respectively. Lastly, two numerical examples with simulations are provided to confirm the effectiveness of these derived results

    Finite-time Anti-synchronization of Memristive Stochastic BAM Neural Networks with Probabilistic Time-varying Delays

    Get PDF
    This paper investigates the drive-response finite-time anti-synchronization for memristive bidirectional associative memory neural networks (MBAMNNs). Firstly, a class of MBAMNNs with mixed probabilistic time-varying delays and stochastic perturbations is first formulated and analyzed in this paper. Secondly, an nonlinear control law is constructed and utilized to guarantee drive-response finite-time anti-synchronization of the neural networks. Thirdly, by employing some inequality technique and constructing an appropriate Lyapunov function, some anti-synchronization criteria are derived. Finally, a number simulation is provided to demonstrate the effectiveness of the proposed mechanism
    • …
    corecore