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This paper investigates the drive-response finite-time anti-synchronization for memristive bidirectional 
associative memory neural networks (MBAMNNs). Firstly, a class of MBAMNNs with mixed probabilis- 
tic time-varying delays and stochastic perturbations is first formulated and analyzed in this paper. Sec- 
ondly, an nonlinear control law is constructed and utilized to guarantee drive-response finite-time anti- 
synchronization of the neural networks. Thirdly, by employing some inequality technique and construct- 
ing an appropriate Lyapunov function, some anti-synchronization criteria are derived. Finally, a number 
simulation is provided to demonstrate the effectiveness of the proposed mechanism.

1. Introduction

In the past decades, a large amount of attention has been 
devoted to the bidirectional associative memory neural net- 
works (BAMNNs) owing to their potential applications from sig- 
nal processing, pattern recognition, associative memory, and so on 
[1-5]. Nowadays, with the increasing amount of data [6,7] and 
complex neural networks (NNs) [8,9], scientists conceive that we 
can get a new type of BAMNNs named MBAMNNs, which the 
self-feedback connection weights are implemented by memristors 
[10-16] rather than resistances. From the system theoretic point of 
view, MBAMNNs can be treated as a class of state-depend nonlin- 
ear system [17], and it is a challenging topic. With the research 
and development of memristor, plenty of researchers from vari- 
ous fields show skyscraping enthusiasm to this kind of memristive 
neural networks (MNNs) [18-22]. The MBAMNNs have remarkable 
properties such as satisfactory convergence rate, computer imple- 
mentation, a large number of equilibrium points, and so on [23]. 
Therefore, this type of model can better emulate the human brain 
than the traditional neural networks.

Synchronization, which means the dynamical signals of chaotic 
coupled system achieve an identical behavior with time moving. In 
reality, it is significant to consider the synchronization of its differ- 
ent potential applications including biological systems, intelligent 
control, secure communication, and image protection. As a typical 
collective behavior, the stability and synchronization of MNNs have 
been widely discussed, including lag synchronization [24], expo- 
nential synchronization, anti-synchronization [25-28], finite time 
synchronization [29,30], and so on. Recently, chaotic synchroniza- 
tion of MBAMNNs has gained much attention due to its successful 
applications in various areas [31-34].

However, in addition to this result, there are few results on 
the anti-synchronization for MBAMNNs. Additionally, among these 
synchronization works of MBAMNNs, most are asymptotic, im- 
plying the stability or synchronization of chaotic systems can be 
accomplished only when time towards to infinity. But from the 
point of practical, owing to the life span of human and machine 
[35], it is more pressing to achieve synchronization within the 
finite time, that is, finite time synchronization [37-40]. Besides, 
finite-time synchronization can illustrates the faster synchronous 
rate after a finite time-interval named setting time. Therefore, it 
is more practical and valuable to investigate the finite-time anti- 
synchronization control of the MBAMNNs.

In the process of studying MBAMNNs, it is detected that the de
lays frequently appears owing to the limited transfer speed and the



information processing. Actually, in the electronic implementation 
of analog NNs, time delay frequently occurring in the response and 
communication of neurons. And the time delay can lead to a series 
of questions, to a certain extent, affected the instability and oscil- 
lation to the NNs [41-44]. In the view of this, it is rewarding and 
reasonable to study the delayed NNs [45-49]. Nevertheless, time 
delays often occurring in a random way in the view of probabilis- 
tic reasons. This often occurs in real systems where the probability 
to taking vary large values of delay is very small [50].

Under these situations, probabilistic measurement delays would 
be regarded as a Bernoulli distributed white sequence [51] to de- 
pict more property of the real systems. Furthermore, it should 
not be neglected that in a real nervous system, there is a typi- 
cal time delay named leakage delay which has tendency to impact 
on the dynamical behavior of NNs [52-54]. From the above discus- 
sions, it is significant and necessary to investigate some reason- 
able and practical systems for MBAMNNs. The actual communica- 
tion between NNs is inevitably disturbed by a stochastic perturba- 
tion. The stochastic perturbation mainly comes from various un- 
certainties which probably results in package losses or influences 
the signal transmission. Hence, it is important to discuss the ef- 
fect of probabilistic delays and stochastic perturbations. It should 
be mentioned that, the finite-time anti-synchronization results for 
stochastic MBAMNNs with probabilistic time-varying delays has 
not been studied yet, this motivates our present study.

Motivated by the aforementioned concerns, the aim of this pa- 
per is to investigate the finite-time anti-synchronization results for 
stochastic MBAMNNs with probabilistic time-varying delays. With 
the aid of the set-valued map, memristor mathematical model, dif- 
ferential inclusion, linear feedback controller, adaptive linear feed- 
back controller, and the definition of anti- synchronization, two 
new sufficient criteria are derived to guarantee the finite-time 
anti-synchronization of MMAMNNs with mixed probabilistic time- 
varying delay. The main contributions of this paper can be sum- 
marized as follows.
1. We focus on the study of MBAMNNs models with stochastic 

perturbation and various time-varying delays, which including 
non-delay, discrete time-varying delays and a constant delay in 
the leakage term. Many other MBAMNNs models with delays 
are the special cases of our considered model.

2. We first attempt to address the finite-time anti-synchronization 
control problem for a class of proposed MBAMNNs models. By 
utilizing sign function and the definition of finite-time stabil
ity, a suitable nonlinear state feedback controller is designed. 
We consider and analysis the complex randomness of the time- 
varying delays rather than treat them as the same stability. 
Some main results are derived by utilizing the Lyapunov func
tion, finite-time stability theorem, stochastic analysis theory 
and Wirtinger-type inequality.

3. Finally, we provided the numerical examples to illustrated the 
effectiveness and rationality of the proposed conclusions.
The rest of this paper is organized as follows. Some definitions, 

lemmas and assumptions about the proposed model are presented 
in Section 2. In Section 3 derives some sufficient conditions of fi- 
nite time anti-synchronization based our considered MBAMNNs. 
Numerical simulations are demonstrated to verify the effectiveness 
of the obtained results in Section 4. Finally, the conclusion is given 
in Section 5.

Notations. For r>0, C([-r. 0], Rn) denotes the Banach space of 
all continuous functions mapping [—r. 0] into Rn with q-norm or 
oo-norm by the following forms, respectively. Rn denotes the n- 
dimensional Euclidean space. The superscript T represents matrix 
or vector transposition. We define the norm of the vector as ||x!|| 
indicates the 2-norm of a vector xf, i.e., ||x,|| = (J2?=i x?)J. co[a, b] 
denotes the convex hull (closure) of [a, b}.

2. Model description and preliminaries

Based on the physical properties of memristor, a class of 
stochastic MBAMNNs with time-varying delays is described as 
follows

m
x,(t) = -a,X;(t - r) + 52bji(Xi(f))/j(yj(f)) 

j=i
m

+ _ - t(O)). (1)
j=i

where x,(t) and yj(t) denote the voltages of capacitor Ci and
Cj at time f, for f>0 and i = l,2...... n and j = l,2......m.
aj > 0 and dj > 0 represent the self-feedback connection weight. 
Jj(yj(t)) and gi(.xiW) are the feedback functions. r(t) and o(t) 
are the time-varying delays which satisfied 0 <r(t)<r2 and 
0<o(t)<o2. bj^x^t)), Cji(Xi(t -r(t))), qij(yj(t)) and Pij(yj(t- 
cr(t))) represent memristor-based weights, and bji(xi(t')') = —W x 

sginji, CjjiXjtt - r(t))) = x sginy,-, qyty/t)) = x sginy, 

Pij(yj(t x sginy,

then W(2)ji, W(3),j and W(4),j denote the memductance
of memristors Rfiy,-, kf2yi, ^(3)y and respectively. In addi
tion, presents the memristor between the feedback function 
7j(yj(t)) and y/(t)» presents the memristor between the feed- 
back function fj(yj(t - r(t))) and yj(t - r(t)), R^y presents the 
memristor between the feedback function g,(x,(t)) and x,(t), R,4!y 
presents the memristor between the feedback function gj(x,(t - 
cr(t))) and x,(t-cr(t)).

According to the feature of memristor and the current-voltage 
characteristic, Fig. 1 can illustrates the simplification current char- 
acteristic of a memristor. And we apply the state-dependent pa- 
rameters of the system (1) are satisfy the following conditions



Remark 1. According to the discussions above, the inner connec- 
tion matrixes b^t)), qjjtyW) , Cjf(x,(t - r(t))). Pyty/t - a(t))) 
of system (1) and bjj(Xj(t)), qjj(yj(t)), Cjj(Xj(t - r(t))), PyTy/t- 
cr(t))) of system (2) are all with the change of the memristance. 
Therefore, the proposed MBAMNNs are considered as the time- 
varying systems which depend on the state switching. When the 
inner connection matrixes are all constants, systems (1) and (2) be- 
come a general class of BAMNNs.

In this paper, the time-varying delays r(t) and cr(t) in system 
(1) are bounded with 0 <t(t)<r2 and 0<cr(t)<er2. In practice, 
there exist constants r, and o', with 0<t, <t2 and 0<o', <cr2. 
Furthermore, the probability distribution of r(t) and o(t) taking 
values in [0, r,[, (r,, t2], [0, o,] and (o^, cr2] with certain proba- 
bility, respectively.

The information of probability distribution of r(f) and or(t) are 
defined as
P{r(t) e [0, r, ]} =<$o, P{r(t) e (r,, r2]} = 1 - <50,
P{cr(t) e [0, tri]} = p0, P{cr(t) e (cti,ct2]} = 1 - p0,



m
+ E £/«(*’ “ T2(t)))dft)j(t),

J=1

r ndyj(f) e ~djyj(f-cr) + ^co[q,'j(yj(t))]gj(Xj(r))
L i=l

n
+ p(0 J2co[p,j(yj(r -o-(r)))]gi(x,(t - <7, (t))) 

i=l

+ (1 - P(C) J2co[pij(yj(r - cr(t)))lgi(x,(t - ff2(t))) + Uj(t)ldt 
1=1 J

n

+ 52 Aj(r- e,(f), e,(t - c, (t)))d«Oi(t)
1=1
n

+ 52 Aj(t- e,(t), e,(t - or2(t)))dMi(t), 
i=l

where

_bji, |x,(t) |< S7j, 
bji(Xi(t)) = ' co[bp, bp], I x,(t) 1= roy 

bji, | x,(t) |> toy

_bji, [x,(t)|<roy 
bji(Xi(O) = - co[bj,, bp], | x,(t) |= ray 

bp, |x,(t) |> S7j,

_Cp, |x,(t-T(t)) |< tuy
Cp(x,(t-T(t))) = |co[Cp,Cp], |X;(t-T(t)) |= HTj,

Cji, |x,(t-T(t)) |> my

_cp, | Xi(t-T(t)) |< ray
Cp(x,(t-T(t))) = lco[cp,cp], |x,(t-r(t)) |=roy

Cp, [x,(t-T(t)) |> toy

Jo, |yj(OI<^p 
<jy(yj(t)) = c°l<jy- q,jL I yj(t) 1= #y 

<?y, |y;(f)l>tfj>

Qij, \yj(t)\<$j,
= c°[ftT <?y 1, I M) 1= Vp

_py, ly/Cf-o^t)) |< tfp
Pij(yj(t-a(t)))= co[p..,py], | y7(t -<x(t)) |= tfp

Pij, |yj(t-CT(t)) ]> tfp

_Py, |yj(t-or(t)) |< tfp
P,j(yj(t-aa)))= Jco[p..,py], I y/t - <r(t)) |= tfy

Pij, |yj(t-CT(t)) |> ??j,

and

bp = maxjbp, bp), bp = minfbp, bp},

cp = maxfcp, cp}, Cp = minfcp, cp},

Py = max{qy, qy}, q.. = minfqy, qy},

Pij = maxlpy, Py}, p.. = min(py, Py}.

Let eft) and ej(t) denote the error variables, where e,(t) = 
x,(t) -t-Xj(t) and ej(t) = yj(t) + yj(t). From the Definitions 1 to 2, 
we obtain the error systems as follows

de;(t) e [ - a.-ejCt - r)

+ E + co[bp(xi(t))]/,-(yj(t))l
j=i L J

m
+ s(t) 22 co[cp(x,(t - r(t)))]fj(yj(t - r, (t))) 

j=i L

+ co[cp(x,(t - r(t)))]/j(yj(t - r, (t)))] 

m
+ (1 -S(t)) 22 co[cp(x,(t - r(t)))]fj(yj(t - r2(t))) 

j=i L

+ co[cp(x,(t - r(t)))]fj(yj(t - r2(t)))] +u,(t)jdt 

m
+ Pji(F ej(t), ej(t - Ti(t)))dcoj(t) 

j=i
m

+ ^2/3ji(t,ej(t),ej(t-T2(t)))da)j(t), (5)
j=i

dej(t) e ^-djej(t-CT)

+ E rc°[qy(yj(t))]gi(Xi(t)) +co[qy(yJ(t))]g,(xi(t))j 
1=1 L J

+ p(t) E rc°[py(yj(f - <7(t)))]g,(xf(t - a, (t)))
1=1 L

+ co[py(yj(t -CT(t)))]gi(x,'(t -CT, (t)))]

+ (1 - p(t)) 22 [co[py(yj(t - <7(t)))]g,(x,(t - CT2(t))) 
1=1 L

+ co[py (yj(t - CT(t)))]gj(x,'(t - ff2(t)))] + Uj(t)]dt 

+ E^J^’ e'(t - CT| (O))d«i(t)
i=l

n
+ ej(t), e,(t - a2(t)))da>i(t). (6)

i=l
Throughout this paper, we have the following Assumptions and 

Definitions.

Definition 1 [37]. Suppose Best11. Then d^F(d') is called as a set
valued map defined on B, if for each point d of B, there exists a 
corresponding nonempty set F(d)c9tn. A set-valued map F with 
nonempty values is considered to be upper-semicontinuous at doeB, 
if for any open set N containing F(d0), there exists a neighborhood 
K of d0 such that F(/<) c N. Fid) is said to have a closed image if for 
each deB, Fid) is closed.

Definition 2 [27]. For the system x(t) = /(x), xcR", with discon
tinuous right-hand sides, a set-valued map is defined as

F(t,x) = Q Q co[/(B(x, <5) \N)[,
8>0 fj,(N)=0

where co[F] is the closure of the convex hull of set E, B(x, S) = [y : 
|[y - x|| < <5} and pfN) is Lebesgue measure of set N. A solution in 
Filippov’s sense of Cauchy problem for this system with initial con
dition x(0) = x0 is an absolutely continuous function x(t), which 
satisfies x(0) = x0 and differential inclusion x(t)cF(t, x).

Definition 3 [38]. The trivial solution of system (1) or 
(2) is called stochastically finite-time stable, if there ex
ist constants f, > 0 and t2 > 0, f, and t2 depend on the



value of state variables e,(0) = (e} (0), e2(0)...... en(0))T and
ej(0) = (e1(0),e2(0)...... em(0))T, such that the following inequal-
ity holds:

n m
£E||ei(t)||2 = 0, £E||ej(t)||2 = 0.
i=l j=l
and
E||ej(t)||2 = 0, E || e7-(t) ||_ = 0.

under any initial condition.
= (</>,(s),02(s),...,</>n(s))T,

y(s) = (n(S), y2(s),..., y„(s))T e C([-v, 0], ffi"),

which denotes the Banach space of all continuous functions map
ping [-v, 0] into Rn and v = max{r, r2}.
^(s) = (<£>1 (s), <£>2(s)....... <pm(s))T,

^(s) = (lAl (s), ^(s), • • •, lAm(s))T 6 C([-g-, 0], Rm).

which denotes the Banach space of all continuous functions map
ping [—g, 0] into Rm and g = max{or.or2}.

Definition 4 [29]. Systems (1) and (2) are said to be stochastically 
finite-time stable for suitable feedback controller Uj(t) and uft), 
there are exist constants Tx > 0 and Ty > 0 such that

lim | |e,-(t) 11 =0,/ = 1,2....... n, lim | |ej(t)|| = 0, j = 1,2,... ,m.
t~^TX t—>Ty

And ||e,(t)|| =0 for t>Tx, ]|ej(t)|| =0 for t>Ty, where Tx and 
Ty are functions about the initial state vector values e,(t) = y/(t) 
for t e [—v, 0] and ej(t) = for f e [-g, 0]. The functions Tx
and Ty are named the setting-time functions and their values are 
called the setting times.

Assumption 1 [16]. There exist constants Ri >0 and R2>0, such 
that

Trace[oT(t, x(t),x(t - £(t)))a(t, x(t), x(t - % (t)))[
< xT(t)R,x(t) + xT(t - §(t))R2x(t - £(t)).

For the stochastic system [38]:
dy(t) = g(t,y(t))dt +a(t,y(t))da)(t), (7)
where co(t) is the Brownian motion and it is truely E«(t) = 0. 
is the operator designed as following:
££V{t, y) = Vt (t, y) + Vyg(t, y)

1 T (8) 
+ -Trace[crT(t, y(t))VwCT (t, y (f)) ],

where

- Jj(Xj(t))),
but it should be mentioned that this assumption has been proved 
unreasonable in [36]. During the proof of Theorems 1 and 2 in the 
present paper, by making full use of Assumption 3 and activation 
functions, we put the knotty terms together to design the suitable 
error systems then get the inequalities Eqs. (10) and (11), success- 
fully avoiding the assumption problem.

Assumption 3 [38]. The activation functions = 1.2...... m)
and g,(-)(i = 1.2...... n) are odd, bounded and globally Lipschitz
continuous in R, namely, there exist constants Lx, Lx, Ly and Ly for 
all S].s2 e R, Si /s2 such that

that the constants Lx, Lx, Ly and Ly can be positive numbers, nega
tive numbers or zero.

Remark 3. According to Assumptions 2 and 3, the activations func- 
tions Jj(t) and g,(t) are odd functions. Then for e,(t) 0 and ej(t) 0,
we get Fj(ej(t)) and G,(e,(t)) possess the following properties [25]:

Lxe/t) <Fj(ej(t)) <Lxej(t),
Iye,(t) < G,(e,(t)) <Lye^t).

and
Fj(O) = fj(yj(t)) + /j(-yj(t)), C,(0) = gi(Xj(t)) +gi(-Xi(t)).
Therefore, the error systems admits zero solutions e,(t) = 0 and

ej(t) = O.

Lemma 1 [24]. Give any real matrices X, Z, P of appropriate dimen- 
sions and scalars e0 > 0, P> 0, the following inequality holds:

XTZ + ZTX < e0XTPX + «=0 1ZTPZ 1Z.

In particular, if X and Z are vectors, XTZ < j(XTX +ZTZ).

Lemma 2 [38]. If there is a continuous, positive definite function V(t) 
satisfied following differential inequality:

V(t) +aV‘>(t) < 0. Vt>t0, V(t0) > 0,

where a > 0, 0 < i] < 1 are two constants. Then, for any provided t0, 
V(t) satisfies the following differential inequality:

V’-’Jit) <V'^(t0)-a(1 -rj)(t-t0), t0<t<ti, 

and

V(t) = 0, Vt>ti, 

with D defined by

Lemma 3 [40]. Let xi,x2...... x„ e Rn are any vectors and 0<q<2
is a real number satisfying:

/ \ 9/211*1 II" + l|x2 II" + • • • + ||X„ II" > (||X, II2 + ||x2 II2 + • • • + ||x„ II2) .

Remark 4. Comparing with the exciting literatures for researching 
the finite synchronization of MBAMNNs [40], the considered sys
tems contained not only non-delay, discrete time-varying delays 
but also distributed delays and leakage delays. Therefore, the ob
tained results are much practical and reasonable.

3. Main results

In this section, the finite-time anti-synchronization of 
MBAMNNs with probabilistic time-varying delays and stochas
tic perturbations are investigated.



Theorem 1. Under Assumptions 1-3, the error system (5) of the 
stochastic MBAMNNs with probabilistic time-varying will globally sta
ble in finite time via the following controllers

Uj(t) = -t]xei(t) - /<xsign(e,(t))|e,(t)|“,
Uj(t) = -Pye/t) - kysign(ej(t))|ej(t)|“,

if there exists the gain constants )/x, py and kx, ky such that

Eti [lad - E™ i IbjdE - E>i ICjilL - R, - R3 

■ +2r)xJ-EuiE"=1|bijlL>0, (10)

|c7i- |U<50 + ^R2 < 0, 
l|cji|ExO-5o) + ^4<0.

and
E?=i [|d;l - E"=i \Qij\Ly - E"=i IPylEy - A - P3 

• +2/7yJ-EuiE"=ilqji|Ey>0, (11)

IPylEyPo + np2 < 0,
. |Pij|Iy(l - Po) + iP4 < 0.

where R], R2, R3, R4 and P,, P2, P3, P4 are all positive constants de
termined in the later. Then, the synchronization time is estimated by

= V^(0) = |e,(0)||1-a 
x kx(l-a) kx(l-a)’

V^(0) ||eJ(0)||1-“
y ky(L - a) ky(l - a)

Proof. Construct the following Lyapunov function 
n m

V(f, e,(t), e/t)) = ZZ ei (t)e,(t) + ZZ eJ(t)e7(t). 
i=i 1=1

Let
n m

VKt) = '£eT(t)ei(t),V2(t) = ^ej(t)ej(t).
i=l 1=1

Then
V(f.ei(t),eJ(t))=V1(t) + V2(t).

E{£V(t,ei(t),ej(t))} = E{rV, (t)} + E{£V2(t)}.

And

E{£V1(t)} = 2£ei(t)ei(t),
'Z1 (12)

E{£V2(t)} = 2£eJ(t)eJ(t).
1=1

Under the Assumption 2, the error systems be obtained as

deft) e r-aiei(t-r) + ^r[bji,bji](/j(yj(t))-|-/j(yj(t)))"|
1=1

+ <5(0 ZZ [[cii.Cji](/j(yi(t - rj(t)))+fj(yj(t - n(t))))l
l=i L J

m
+ (1 - 5(t)) [Cj,-, cji](fj(yj(t - r2(t)))

1=1 L
+ /l(yi(f-T2(t))))] + u,(t)]dt 

m
+ ^2Pji(.t.efit),ejU - t(t)))dtoj(t)

l=i
m

+ ^^((t.e/tl.e/t-TjltDldw/t), (13)
l=i

defit) e T - djejfi [[q,r Q,i 1 (&(^i(t)) + g,'(Xi(O))l
L i=l L J

+ P (t) ZZ [ I Pij ■ Pij 1 (gi (Xi (f - (t) ) ) + gi (Xi (t - CTl (t) ) ) ) 1
i=l L J

+ (1 - P (t) ) ZZ pPy. Pil 1 (gi (x, (t - cr2 (t)) ) 
f=l L

+ gi(x,(t-or2(t))))l +Uj(t)ldt 

n
+ ZZ I6'! (f ’ ei (f ). ei (t - O’(t) ) )d<Wf (t)

i=l
n

+ Pijd, eiU). etlt -cr2(t)'))da)i(t'). (14)
i=l

Then we get

dej(t) < p(t)ZZrciI[/i(yi(t-T1(t)))+/i(yi(t-T1(t)))]l
L i=i L J

m T- - 1
-ajefit — r) + ZZ 1“

J=i
m

+ (1 -5(t))ZZ cii[/j(yj(t-T2(t))) 
l=i L

+ /l(yi(t-T2(t)))]] + U,(t)]dt 

m
+ ZZ eJ(t “ r(t)))doii(t)

1=1
m

+ ^J^ji(t,ej(t),ej(t -r2(t)))da>j(t). (15)
l=i

And

r m _
defit) < - Ojefit - r) + ZZ bjiFj(ej(t))

L l=i

m
+ 5(t)ZZciiFi(eJ(t-r1(t))) 

l=i
m

+ (1 - S(t))^2cjiFj(ej(t - r2(t))) + ufit) dt 
l=i J

m
+ ZZ PjiV' el(t)’ eJ(t “ r(t)))d«i(t)

1=1
m

+ ej(t), ej(t - r2(t)))da>j(t), (16)
i=i

where Fj(ej(t)) = fjiyfitf) + fjlyjU)), Fj(ej(t- Tj(t))) = 
fj(yj(t - ti (0)) + fjlyfit - t! (t))), Fjlejit - r2(t))) = fj(yj(t - 
r2(t))) + fj(yj(t -r2(t))).

Then we have

r 1 n r m -
Elrvnt)} = 2 JZei(t)| - Oiefit - Tl + J2bfiFiei^ +

i=l J=1
m m

+ &o'^cjiFjej(t - t, (t)) + (1 - Sol^CjiFjejfi - r2(t))
1=1 l=i J

+ ZZTrace[pJ(t’J/(t).y(t-Ti(t)))lOji(t.y(t),
1=1 L



y(t - Ti(t)))l +^TracerpT.(t,y(t),y(t-T2(t)))
J j=i L

Pj.(t,y(t),y(t-r2(t)))]- (17)

According to the Assumption J and controller (9), we get
. n n m

El£V,(t)| < -2 J2|aj|ei(t)ei(t-T) + 2^^2|bji|e,(t)FJ(eJ(t))
1=1 1=1 j=l

n m n
+ 2 J25o|Cjj|ei(t)Fj(ej(t-T1(t))) - 2^2;?xe?(t) 

i=l j=l i=l

n m
+ 2EE(l-So)|cji|e,(t)FJ.(eJ.(t-r2(t))) 

i=i j=i
n m

-2^2kxei(t)sign(ej(t))|ei(t)|“ + y2ej(f)Riej(t)
i=i j=i

m m
+ EeJ(t “ Ti(t))R2e,(t - n(t)) + 52e}(t)R3ej(t) 

j=i j=i
m

+ ^eJj(t-r2(tDR4ej(t-r2(ty). (18)
j'=i

Based on the Assumption 3 and Lemma 1, we conclude

2^2 |a,|e/(t)e,(t - r) < E hl[e?(O+ e?(t - r)],
1=1 1=1 

n m n m
2 EE IfydefOOWO < 212121bjf|Iyef(t)ej-(t) (19)

i=l j=l i=l j=l
n m

i=1 j=l

n m
2S0 EE |cji|e,(t)FjeJ(t-T1(t))

■=i j=i 
n m

<2S0 EE |Cji|Iyei(t)eJ(t-T1(t))
i=i j=i 

n m
- S° E E |cji|Iy[e-(t) +ej(t - 7j (f))],

i=i j=i
n m

2(1 -WEEfoMW - T2(f))
1=1 j=l 

n m
< 2(1 - So) E E |cjf|Lyef(t)ej(t - r2(t))

i=l j=l 
n m

< (i - So) E E (t)+— ^(t))]’
i=i j=i

By Eqs. (18) and (19), we have

eJ/W)} < - |z[w-ew
m m n l

- £icjiir, -r, -r3+2,lx - EE M* k<f)
J=1 J i=l j=l J

n n r m
- E- T) + E I E |CjiMo + R2 |el(f - r,(t»

i=l i=l L j=l

+ E [ E |Cji|ix(1 - So) + R4]el(t - t2(0)
1=1 J=1

-2E^ei(t)sign(ei(t))|e,(t)|“. (20)
1=1

Due to
n n
E fcxe,(t)sign(eI(t))|ei(t)|“ = E^|e,(t)|"+1,
1=1 i=l

From Lemma 3, We get

(iXorT’ = (El^wi2)’.
x 1=1 x i=l

Hence
n n «+i n «+i
Eiei(f)i“+1 = (Ei^wi2) = (Ee2(t>) •
i=l x i'=l x i=l

Then we conclude

ElwoUrjEpafl-ElbjilE*
1 J I i=l L j=l

m m n- e icjifx - r, - r3+2>,x - E E k(f)
j=1 i=l j=m J

- E iQiiehf - t)+EIE i^-Mo+r2 ejo - Ti(t))
i=l i=l j=l

+ El ElcJ>'l£x(1 -So)+R4|el(f-r2(t))-2kx(Eef(t)) • (21)
i=l L j=l x i=l

By Theorem 1 and Lemma 3, we get 
n «+i

E{£Vi(t)J <e) -2/<x(Eei(f)) 2 } =-21<xE{vi2J1(t)J. (22) 
x 1=1

With the similar process of £\\ (t), we also get 
m g+i

E{£V2(t)J <Ej-2ky(Ee?(f)) 2 ) = -2M{'zE(0). (23)
3=1

Therefore, according to Definitions 3 and 4, the finite-time anti
synchronization for system (5) can be achieved via the controller 
(9) with 0 < a < 1, and the finite times are given as:

= V^(0) = ||e,(O)|l' " 
x ki(l-a) ki(L-a)’

V^(0) l|eJ(O)||1-“
y kj(l - a) kj(L - a)

The proof is completed. □

Remark 5. The systems (3) and (4) contain the case of S(t)=l, 
(So = 1). S(t) = O, (So = 0) and p(t) = l, (p0 = l). PW = 0, (p0 = 
0). Thus, some previous study on BAMNNs can be treated as a spe
cial case of this paper.

Corollary 1. Suppose Assumption 3 is satisfied, then the error systems 
(13) and (14) without leakage delay are exponentially stable in the 
mean square via the controller (9), if there exists the gain constants 
//,, t/j and kj, kj such that

E"=i [l°il - E>1 IM* - E>t ICjillx - R, - R3 + 2t?x]

-EEEj"=1IEK>0. (25)
kjilESo + < o,

l|cJi|Ix(l-S0) + iR4<0.



and
Em [|djl - E?=i \Qij\T-y - EL, Ifljliy - A - ft + 2py]

. -EfeiEjE, IgjilEy > o, (26)
IPijlftPO + ijft < 0,

. IPijlftO -Po) + ^P4 <0.

where Rj, R2, R3, R4 and Pj, P2, P3, P4 are all positive constants de
termined in the later. Then, the synchronization times are estimated 
by

= vV(0) = lie,-(0) II1- 
kx(l-a) kx(l-a)’
V^(O) ||eJ(O)||1-a

y ky(l - a) ky(l - a)

Proof. Let the leakage time delay r = 0 and a = 0 in Theorem 1. 
The proof can be followed, thus it is omitted here. □

Remark 6. At present, the research on finite-time stability of 
the MBAMNNs with time-varying delays and stochastic perturba
tions is very few. There are numerous models about stability of 
MBAMNNs within finite-time are special cases of our proposed 
model. Here we give Theorem 2 about the special case.

Throughout this paper, we consider system (4) without stochas
tic perturbations as the drive system and corresponding response 
system is as follows

m
dXj(t) e -aiXitr-Tj + ^rolhjjCxAtiJl/jtpjCt))

L J=1

m
+ a(t)52co[cji(xi(t - r(t)))]/j(yj(t - r,(t))) 

j=i
m

+ (1 - S(t)) J2co[Cj,(x,(r - r(t)))]/j(yj(t - r2(t))) + u((t) dr,
J=1 J

r n
dyj(t) e -djyj(t-CT) + ^co[qy(yj(r))]g,(Xi(t))

L 1=1

n
+ p(r)^co[pjj(yj(t-cr(t)))]gi(xi(r-(T, (t))) 

i=l

+ (1 - P(t)) ^co[pij(yj(r - <T(t)))]g,(x,(r - 0-2 (f))) + Uj(r)ldr.
1=1 J

(28)

Under this case, the error systems (13) and (14) reduce to

r m _
de,(t) < -a,e,(t-r) +^bjjF/e/t))

L t=i

m
+ 5(t)^Cj,Fj(ej(t- n(t))) 

j=i
m

+ (1 - 5(t)) £Cp-F/e/t - f2(t))) + u,(t) dt, (29) 
>1 J

and
r .n A

de/t) < -dJej(t-CT) + J2q,jGj(ei(t))
L i=l

n
+ p(t) ^PyGiCe.-Ct - er, (t))) 

i=l

+ (1 - p^^p^G^t - cr2(f))) + (t)ldt. (30) 

M J

Thus, we have the following theorem.

Theorem 2. Under Assumptions 1-3, the error systems (29) and 
(30) of the MBAMNNs with probabilistic time-varying will be glob
ally stable in finite time via the controller (9), if there exists the gain 
constants qx, qy and kx, ky such that

EL, [|a,l - E>, Nft - E>, IftHE + 2/?x]

'-ELiE"=,IM*_>o, (31)
|Cji|Ix50 <0, |Cj,|Fx(l -So) < 0,

and

EjLt [Idjl - EL, iQylly - ELi IPy \Ly + 2rd

-EMEMlqpl£y>o, (32)
|Pij|IyP0<0, |Py|Fy(l -Po) < 0.

Then, the synchronization time is estimated by

= V^(0) = ||e,(0)||1-a 
x kx(T-a) kx(l-a)’

= vV(0) = l|eJ(0)||1-“
y kypi-a) ky(-l-a)’ 1 J

Proof. Construct the following Lyapunov function

n m
v(t,ej(t),ej(t)) = +

,=1 j=i

Let

n m
V1(t) = '£e?(t),V2(t) = '£e](t).

i=i j=t

Then V(t,ef(t),eJ(t)) = V,(t)+V2(t).

E{£V(t, e, (t), e/t))} = E{£V, (t)} +E{£V2(t)}.

By means of Assumptions 2 and 3 and Lemma 1, we get the following 
inequality And

I 1 " r m -EfrVKt)! = 222— a,e,(t - r)+ '^bjiFjej(t)+ ut(t)
i=l M

m
+ So'^cjiFjej(t-r} (t)) 

j=i
m

+ (l-S0)£cJiFJeJ(t-r2(t)) . (34)
>1 J

Combine with the Assumption 1 and controller (9), we get

r -* n n m
e|zVi(t)| < -2£ |a,|ei(t)e,(t - t) + 2££|bj!|e,(t)FJ(eJ(t))

i=l i=l j=l
n m

+ 2 212 5° |cji |e,(t)Fj (ej (t - tj (t)))
M M 

n m
+ 2 E E^ “ 5o)|cj/|e,(t)FJ(eJ(t - r2(t») 

i=, 1=1

- 2 ^pxe-(t) - 2 22 kxef(t)sign(el(t))|e,(t)|“, 
i=l i=l

(35)



stable in the mean square via the controllers (9), if there exists the 
gain constants qx, qy and kx, ky such that

EL [l«fI - E>i ILL - E7=i ILL + 2/?x]

‘-E_LE"=iILL_>0, (41)
|cji|Ix50<0, |Cj,|Ix(l -So) < 0, 

and

E™ 1 [|djl - EL \Qij\L - EL IP,7L + 2t?y]

' “ELEjL IL'L^0’ (42)
|Pfj|LyPO < 0, |Pij|Iy(l - Po) < 0.

Then, the synchronization time is estimated by

= V^(0) = ||e,-(0)||1-“ 
kx(l-a) kx(l-a)’
V^(0) |[eJ(0)|[1-“

y ky(L - a) ky(L - a)

Proof. Let the leakage time delay r = 0 and a = 0 in Theorem 2. The 
proof is omitted here. □

Remark 7. Due to the condition of the time-varying delays τ(t), 
o(t), Theorem 2 provides a special case of Theorem 1. It should be 
mentioned that no complex numerical calculation such as comput- 
ing redundance algebraic criterions [58] or solving linear matrix in- 
equality (LMIs) [59,60] is needed in the anti-synchronization con- 
ditions. Thus, our anti-synchronization consequences have a wider 
adaptive capability and more successful application.

Remark 8. There is no extra demand on activation functions but 
requesting they are bounded and the time-varying delays are prob
abilistic. Furthermore, overall consideration of our obtained results 
with finite time anti-synchronization, it can be expected to have a 
powerful potential application in areas such as secret communica
tion, image encryption, digital processing, and so on.

4. Numerical simulation

To show the effectiveness of the obtained results, several 
numerical simulations are presented as follows. There exist 
^.(r) e co[bj,(x,(r))], Cjj(t) ecolCjjlXjlt-Tlt)))], q,j(t) e colq./y/t))], 
Pij(t) e co[pjjlyj(t - cr(t)))[, so the drive system be considered as 
follows

2
x,(t) = -a,x,(t - r) + Z2bJi(t)/j(yj(0) 

j'=i
2

+l E - ti co))
>1

2
+ (1 -Sof^Jcjiftfgjfyjft - r2(t))), 

j=i
2

yj(t) = -djyjCt -o) +
1=1

2
+ P0 Z2 PijOgiWt - CTi (t)))

1=1
2

+ (1 - Po)£Pij(t)gi(Xi(t-o2(t))). (44)
i=l



And the response system is defined as 

r 2
dxi(t) = - a,Xi(t - r) + ^^(O/jCPjCO)

L j=i

2
+<50 ^(OgjCy/t - n (0))

j=i

2 “1
+ (1 - S0)'^Cji(t)gj(yj(t - r2(t))) + ut(t) dt 

j=i J

2
+ IZ Ai(t- ej(0, e/t - ri(t)))dfWj(t) 

j=i 
2

+ ej(t),ej(t-r2(t)))d<yj(t), (45;
j=i

r 2
dyj(t) = - djyj(t - a) + ^qij(t)fi(,Xi(t))

L i=l
2

+ PO - CT1 (0))
1=1

+ (1 - Po) JZPi/O&CxiCt - cr2 (t))) + Uj(t)ldt 
1=1 J

2
+ ZZ^-i ’̂ e'(t “ CTl (t)))dt»i(O 

1=1 
2

+ IZ^y^’ ei(t)-ef(t _
i=l

Taking the activation function as g(-) = tanh(| • | - 1) 
and /(•) = sin(| • | - 1). T| (t) = (t) = 0.75 - 0.25cos(t),
r2(f) = er2(t) = 0.75 - 0.25sin(t). We have r =<7 = 0.15. 
<5o = Po = 0-2.

_ 1 o "I Ti o
a _ |_o 1 J- |_o l •

h tv rtn J10- lxi(f)l<!.
b„(x1(t)) = jio |Xl(t)|>L

h tv (tn i70’
b,2(x1(t))= j50 |vl(t)|>l,

b (v (til- I1-8-
b2i(x2(t))- jl g |X2(t)|>r

b tv (til -J08’ IX2(OI<1.
b22(x2(t))-j10 |v2(t)|>l,

o tv ftll - f11’ 1^(01 <2,
Qii(yi(O) - j2 0 |yi(t)[>2,

n tvtfll-J6'8- 1^1(01 <2,
Qi2(yi(O) - j4 6 |yi(t)[>2,

n (v ftll - I1'5’ ly2(t)l -2’q2i(y2(t)) - 5 |y2(t)|>2,

n tvtfll-J0'9’
q22(y2(t))- 12 |y2(t)| > 2,

r tv tf-rtflll - J-15’ |Xl(t- r(t))| < 1.
Cn(Xl(f T(f)))-|_12 |Xl(t-T(t))| > 1,

r tv tf-rtflll - J1'0’ |xi(t-r(t))| < 1.C12(X!(£ r(t)))-j0.8, |Xl(t - r(t))| > 1,

r tv tf-rtflll - J0'8’ |x2(f-T(t))| < 1.
c2i(x2(t T(O))-|10 |v2(t-r(t))| > l,

c tv tf-rtflll-J-1-4’ |x2(t-r(t))l < 1.
C22(x2(t T(t))) - |_16 |x2(t-T(t))| > 1,

n tv tf-o-tfin - J-1-3’ lyiCt-^co)! <2,
Pn(yi(f or(f)))-(_11 |yi(t-or(t))| >2,

n tv tf-o-(fill - J°-7’ lyiU-CTCt))! <2,
pi2(yi(f a(t))) - |o.9, |yi(t-<7(t))| > 2,

n tv tf-o-(fill - J°-9’ lyzCt-^Ct))! <2,
p2i(y2(t CT(O))-j12i |y2(t_CT(t))|>2,

n tv tf-o-tfin - J _1-3’ lyzCt-CTCO)! <2,
p22(y2(r or(f)))-(_17 |y2(t_CT(t))| >2.

For the controllers, we let kx = diagfl, 1}. ky = diag{ 1.1} 
and //x = diag{115.160}, qy = diag{175,177} We choose 
a = 0.6, and the initial values of the state variables
as [x1(t),x2(t)] = [-1.45.1.6], [x,(t),x2(t>] = [-1.35,1.5],
[yi(t).y2(t)l = [-1.95,1.2] and [y,(t),y2(t)[ = [-1.85,1.3],

The Brownian motion satisfies Ea>(t) = 0, Dco(t) = 1.
j0ji(t.ej(t),ej(t- tjlt)) = diagfO^etit) + 0.3e!(t- ^(t)), 

-0.5e2(t) + 0.2e2(t-r1(t))},
j0ji(t. ej(t), ej(t - t2(t)) = diag{0.4e! (t) + 0.4e, (t - r2(t)), 

-0.5e2(t) + 0.2e2(t-T2(t))},
ej(t), ej(t - oq (t)) = diag{0.4e! (t) + 0.3e] (t - oq(t)), 

-0.5e2(t) + 0.2e2(t - <7, (t))},
Aj(t. ef(t), ej(t - <72(t)) = diag{0.4e! (t) + O^e, (t - a2(t)), 

-0.5e2(t) + 0.2e2(t - cr2(t))}.
Fig. 2 shows that the drive system (3) has a limit cycle in the 

case of the above-mentioned parameters. It is clear that drive sys
tem (3) and the corresponding response system (4) are globally 
anti-synchronized in the mean square. Figs. 3 and 4 depict the 
state trajectories and anti-synchronization error of the state vari
ables between systems (3) and (4), respectively.

Get together the above mentioned parameters with the con
dition (27), we calculate the setting times TyI = Tx2 = Tyj = Ty2 = 
0.995. It is easy to see that the states are quickly converging to 
stable according to Fig. 4 within the setting time. Hence, it can 
be concluded that, according to Theorem 1, the considered system 
(3) can be globally anti-synchronized with system (4) in the mean 
square.

The drive system (3) without leakage delays has chaotic attrac
tors under the initial values which can be seen in Fig. 5. It fol
lows from Corollary 1, that drive system (3) and the correspond
ing response system (4) without leakage delays are global anti
synchronized in the mean square. Fig. 6 depict the state trajecto
ries and anti-synchronization error of the state variables x, (t) + 

x2(t)+x2(t), yi(r) +yi(t), and y2(t)+y2(t) between sys
tems (3) and (4) without leakage delays, respectively. From Fig. 7, 
the results shown the feedback control inputs contribute to the
chaos anti-synchronization in the mean square.

It is shown that drive system (3) and the corresponding re
sponse system (28) are exponentially anti-synchronized in the



Fig. 2. Phase trajectories of the drive system (3).

Fig. 3. (a) and (b) State trajectories of the systems (3) and (4) without control; (c) and (d) State trajectories of the systems (3) and (4) under control, respectively.



Fig. 5. Phase trajectories of the drive system (3) without leakage delays.

mean square. Figs. 8 and 9 illustrated the state trajectories and 
anti-synchronization error of the state variables between systems 
(3) and (28), respectively. It is easy to see that the states are 
quickly converging to stable according to Fig. 9. Hence, it can be 
concluded that, according to Theorem 2, the considered BAM sys- 
tem (3) can be globally anti-synchronized with system (28) in the 
mean square.

The drive system (3) without leakage delays has chaotic at- 
tractors with the initial values which can be seen in Fig. 6. 
From Figs. 10 to 11, it is observed that the state trajectories of 
the considered MBAMNNs converge to zero globally in the mean 
square. Therefore it follows, from Corollary 2, the error systems 
(29) and (30) are stable in the mean square. This implies that 
the system (9) is a proper feedback controller to the chaos anti- 
synchronization.

5. Conclusion

We have investigated the finite-time anti-synchronization of 
stochastic MBAMNNs with probabilistic and leakage time-varying

delays. The mixed time-varying delays involve discrete time de
lays, probabilistic time-varying delays and a constant delay in the 
leakage term. We also considered the stochastic perturbations cor
responding to the probabilistic time-varying delays. Based on an 
effective Lyapunov function, finite-time stability theorem, stochas
tic analysis theory and Wirtinger-type inequality, sufficient condi
tions that depend on the time-varying delays are derived to en
sure that the MBAMNNs achieve anti-synchronization in the mean 
square within finite-time. Numerical examples were provided to 
demonstrate the usefulness and effectiveness of the proposed con
trol strategy. The obtained results extend and improve some previ
ous works on conventional BAMNNs.

The future work mainly includes the following aspects: (1) 
MBAMNNs is a new and interesting topic, searching for more prac- 
tical and complex MBAMNNs model is our further work. Since the 
MBAMNNs can be treated as a discontinuous switched system, it 
is significant to address a more preferable mathematical method 
to study; (2) So far, we have completed the application of MNNs 
to secure communication and image encryption. How to apply the 
results in practice, such as the associative memory and forget of 
brain-like, mass storage, machine learning, and so on. In summary,



Fig. 6. (a) and (b) State trajectories of the systems (3) and (4) without leakage delays and control; (c) and (d) State trajectories of the systems (3) and (4) without leakage 
delays but under control, respectively.

Fig. 7. (a) The anti-synchronization error of the systems (3) and (4) without leakage delays and control; (b) The anti-synchronization error of the systems (3) and (4) without
leakage delays but under control.



Fig. 9. (a) The anti-synchronization error of the systems (3) and (28) without control; (b) The anti-synchronization error of the systems (3) and (28) under control.



Fig. 10. (a) and (b) State trajectories of the systems (3)-(28) without leakage delays and control; (c) and (d) State trajectories of the systems (3) and (28) without leakage 
delays but under control, respectively.

Fig. 11. (a) The anti-synchronization error of the systems (3) and (4) without leakage delays and control; (b) The anti-synchronization error of the systems (3) and (4) without
leakage delays but under control.



the memristive associative memory neural networks still have a lot 
of problems worthy of further study.
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