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Event-Based State Estimation for a Class of
Complex Networks with Time-Varying Delays: A
Comparison Principle Approach

Wenbing Zhan¢, Zidong Wang*, Yurong Liu~¢, Derui Ding and Fuad E. Alsaadli

Abstract

The paper is concerned with the state estimation problena fdass of time-delayed complex networks with
event-triggering communication protocol. A novel evenhgetor function, which is dependent not only on the
measurement output but also on a predefined positive can&agroposed with hope to reduce the communication
burden. A new concept of exponentially ultimate boundedneprovided to quantify the estimation performance.
By means of the comparison principle, some sufficient céontare obtained to guarantee that the estimation error
is exponentially ultimately bounded, and then the estimgtins are obtained in terms of the solution of certain
matrix inequalities. Furthermore, a rigorous proof is fregd to show that the designed triggering condition is free
of the Zeno behavior. Finally, a numerical example is giveitlastrate the effectiveness of the proposed event-based
estimator.

Index Terms

Event-triggering; State estimation; Complex networksmparison principle; Time-varying delays.

. INTRODUCTION

Nowadays, it is widely recognized that complex networks @apable of modeling various natural phenomena
owing to their potential applications in the areas of imagecpssing, neuronal synchronization and secure commu-
nication [36]. With the development of information techogy, complex networks are ubiquitous, such as neural
networks, ecosystems, social network, the Internet, theWV#hd electrical power grids, etc. Since the seminal
work on the “small-world” and “scale-free” properties in| [dnd [38], complex networks have become an ongoing
research topic that attracts ever-increasing attentioadant years. Up to now, there has been a rich body of results
on the dynamics analysis issues of complex networks suctabgity and stabilization [11], synchronization [27],
[28], [31] and pinning control [2], [24].

As with the traditional dynamical systems, time-delayswasiguitous in the implementation of practical complex
networks because of the finite speed of transmission anadimge as well as congestions in signal transition [16],
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[33], [44]. Since time-delays could lead to undesirable aiyit behavior such as oscillation and instability, it
is vitally important to examine the impact from time-delays dynamical performance [44]. As such, the last
decade has witnessed a rapidly growing interest in the pignnontrol and synchronization problems for various
kinds of complex networks with node delays [14], [41], cangldelays [11] or random sensor delays [4], [17].
For instance, the synchronization problem has been igagstl in [26] for an array of linearly coupled identical
connected neural networks by using variational method revttee coupling matrix is not restricted to be symmetric
or irreducible. In [11], a delay-partitioning approach leen used to obtain a new delay-range-dependent criterion
for the synchronization stability of complex dynamicalwetks.

It is worth noting that, in most works on the pinning controldathe synchronization, it has been implicitly
assumed that system states are fully accessible. This fiertumately, not always the case in practice [32]. For
instance, only partial information about the network sate available in virus spreading networks and sensor
networks. In multi-agent systems, the information of goss is usually utilized to achieve the consensus control,
and the velocities are commonly discarded due to the expensasurements. In this case, it is of both theoretical
importance and practical significance to estimate the ndaeess of complex networks by using the available
measurements [25] so as to carry out subsequent tasks symrfagmance analysis and design. By now, some
preliminary results have been reported on the state estimaroblems of complex/neural/sensor networks [4],
[21], [37]. For instance, the references [32] and [4] havevjgled estimator design approaches, in terms of linear
matrix inequalities, for the systems with uncertain inneumling and incomplete measurements as well as the
systems with the random sensor delays, respectively. Neless, the state estimation problem for more general
complex networks with time-varying delays has not yet neegtiadequate research attention, and this constitutes
the first motivation for our current investigation.

In the execution of estimation algorithms, the sampleddstimation strategy has been generally applied due
to the increasing popularity of communication networksslich a strategy, the sampling period is predetermined
which might lead to over-provisioning of the real-time mthardware. In addition, the limited communication
resources could also be overly consumed especially for dhgedscale distributed systems including complex
networks as a special case. Very recently, a novel commtimrcarotocol, namely, event-triggering mechanism,
has been developed to overcome the aforementioned drastsaek[29], [34], [35], [39], [43], [45] and the reference
therein. In comparison of the time-triggering case (i.e periodic sampling case), the input to the controller or
estimator is updated only when a certain triggering coadiis violated. Up to now, only limited work has been
available in the literature on the synchronization of cagmphetworks with event-triggering. For instance, a new
distributed event-triggered mechanism has been intratlircgl2] for pinning control synchronization of complex
networks. The event-triggered distributed state estonagiroblem over sensor networks has been investigated in
[15] for a class of discrete-time nonlinear stochastic esyst with mixed network-induced phenomena.

When both the time-varying delays and event-triggering mamication protocol are taken into simultaneous
consideration, the estimator design problem for compléworks exhibits a few technical challenges. On one hand,
it is well known that, due to the added delay-related terrhs, ftequently used Lyapunov-Krasovskii functional
approach would inevitably suffer from increased compieaftthe design schemes especially for large-scale systems.
As such, the first difficulty would be how to develop a new metho reduce the effect from time-delays on the
estimator design. Thus, the motivation of this paper is tivdea comparison principle to study the state estimation
problem of time-delayed complex networks with event-teiggg communication protocol such that the derived
results have less decision variables.
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On the other hand, different from the discrete-time casgq4%3 [7], [8], the application of the event-triggering
mechanism for continuous-time systems could lead to a kvelivn yet undesirable phenomenon called rendezvous
(Zeno) phenomenon that possesses a strong destructiviemebe system equipment. So, the second challenge
would be how to construct a suitable event generator fundtioavoid such a rendezvous behavior. Although the
rendezvous problem has been discussed in [6], [10] for ragkint systems, the mathematical analysis problem
on this behavior is still open for the state estimation issoecomplex networks with time-varying delays. It is,
therefore, the second motivation of this paper to providsfe&tory answers to the two questions mentioned above
and also propose a design scheme of the event-based estforatioe addressed complex networks.

Motivated by the above discussions, in this paper, we aimeigth an event-triggered estimator for a class
of complex networks with time-varying delays. In terms oé thyapunov functional approach combined with the
comparison principle, some sufficient conditions are aetito guarantee that the error dynamics is exponentially
ultimately bounded. Furthermore, the proposed resultspeeialized to two classes of complex networks. Finally,
a numerical example is given to illustrate the effectiveneisthe proposed event-based estimator. The novelties of
this paper lie in the following three aspecid:a novel event generator function, which is dependent niyt @n the
measurement output but also on a predefined positive canssaproposed to reduce the communication burden;
2) the comparison principle is utilized to derive the dedisafficient conditions with the purpose of simplifying
the estimator design; 3) a rigorous proof is proposed to shioa¥ the designed triggering condition is free of the
Zeno behavior.

Notations: Throughout this papeR” denotes the:-dimensional Euclidean spads.denotes the set of natural
numbers. Forz € R”, 2T denotes its transpose. The vector norm is definedsdls= vzTz. I,, denotesn-
dimensional identity matrix. For matrixd € R™ ", [|A|| = /Amax(ATA), Where \max(-) represents the largest
eigenvalue. Moreover, for real symmetric matricésand Y, the notationX <Y (respectively,X <Y ) means
that the matrixX — Y is negative semidefinite (respectively, negative defint§)—r, 0]; R™) denotes the family
of continuous functions fron—r, 0] to R™ with the norm||¢||, = sup_, << ¢(0).

I[I. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, consider the following time-delayed compiexwork consisting ofV coupled nodes of the form:

{ #i(t) = Day(t) + f(wi(t)) + glai(t = 7(t))) + 75, ayTa;(t) )
yi(t) = Cix;(t)

wherex;(t) € R™ andy;(t) € R™ (i = 1,2,..., N) are, respectively, the state vector and the measuremémitou
of the ith node at time. D € R™*™ andC; € R™*" are two known constant matricef(-) andg(-) are nonlinear
functions satisfying certain conditions to be given lateit) describes the known time-varying delay satisfying
0 < 7(t) < 7, wherer is a known positive scalar representing the maximum ddlay diag{~1,v2, ...,V } IS
the inner-coupling matrix linking thgth state variable as; > 0 (i = 1,2,...,n). A = [a;j]nxn IS the coupled
configuration matrix of the network with;; > 0 (i # j) but not all zero. Furthermore, the diagonal element
satisfies

N
aj; = — g Ajj-
=15

As discussed in the introduction, an event-triggered meishais adopted to reduce the communication burden.
In order to characterize such a mechanism, let the triggdine sequence of nodebe

to=th <th<..th<..
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For each node, the sequence of event triggering instants is determirezdtively by

where the event generator functigfr(yi(t), di, 8) to be defined later is dependent on the measurement output and
the given thresholdg > 0 andd; > 0.
In the event-triggered setup, the state estimator with-peder holder on nodéis proposed as follows:

2i(t) = Dai(t) + f(#i(t)) + g(:(t — (1))

al P % ) ) (3)
+ > aiTa () + Kii(ty) — Cita(t]), ¢ € [ths thg)
=1

wherez;(t) is the estimate of the statg(¢) and K; € R"*"™ is the estimator gain matrix to be designed.
Now, for the implementation of designed estimators, we attop event generator function on nodas follows:

filyi(t),0:,8) = el (t)ei(t) — Bllys(t) — Cidi(t)||* — 6 (4)

wheree; (t) = y;(t) — Cidi(t) — (vi(t}) — Cid;(¢)) andy;(¢}) is the measurement output at the latest event instant.
Remark 1:In this paper, the selected triggering function (4) is limgalependent on the measurement’s norm
and a predefined positive constant. It is not difficult to des the triggering function (4) will reduce to the case
in [15], [45] when 8 = 0. In addition, the inter-event intervals for each node beemhorter asj; decreases.
Therefore, such a construction provides more design méegiibility to exclude the Zeno phenomenon.

Let ei(t) = Zi(t) — @i(t), flei(t)) = f(2:(t) — f(xi(t)) andg(ei(t)) = g(2:(t)) — g(wi(¢)). It follows from (1)
and (3) that the error dynamics of the state estimation obeys

N
éi(t) = Dei(t) + f(ei(t)) + dles(t — (1) + Y _ ayTej(t) — KiCiei(t) + Kigi(t). 5)
j=1
For notational simplicity, we define
e(t) =[ef (1), (0),..... k)]
e(t) =[ef (0,25 (), ()]
F(et)) =[fT(ex(t), fT(e2(t)), ..., T (en(t))]
Gle() =[5" (er(t)), 5" (ea(t)), ..., g (en ()]

D=Iy® D, C=dag{C,Cs....,Cn}
K :diag{Kl,Kg. C 7KN}-

By using the matrix’s Kronecker product, the error dynan{l&scan be rewritten as
é(t) = De(t) + F(e(t)) + Gle(t)) + (A De(t) — KCe(t) + Ke(t). (6)

Before proceeding further, we introduce the following digifms, lemmas and assumptions.
Definition 1 ( [45]): The dynamics of the estimation error is exponentially udtiely bounded if there exist
positive constantd/, A andw such that

le(t)]|? < M) 4y, @)



ACCEPTED 5

Assumption 1:For Vz,y € R™, the nonlinear vector-valued functiorfsand g are continuous and satisfy

1F () = F @I < [ Lallllz = wll (8)
lg(z) =gl < [[Lallllx =yl ©)

where L; and Ly are known constant matrices with appropriate dimensions.
Lemma 1:For Vz,y € R", the following inequality holds

wTy + yTac < wTQx + yTQ_ly (20)

where( is a diagonal positive definite matrix with appropriate dinsienal.
Lemma 2 ([13]):If P € R™ " is a symmetric and positive definite matrix agd € R™*" is a symmetric
matrix, then

)\min(P_lQ)wTPw <2'Qz < )\max(P_lQ)xTPw, r e R™

The main purpose of this paper is to design a state estimatdr that the error dynamics (5) or (6) with the
triggering time sequence given in (2) is exponentiallymittely bounded.

1. M AIN RESULTS

In this section, the stability of the error dynamics is firstivestigated by means of the comparison principle
and Lyapunov functional approach. Then, a design schemieeo$tate estimator for addressed complex networks
is given via the solution to certain matrix inequalities.

Theorem 1:Let the estimator gain matrix’; (i = 1,2,...,N) and the threshold parametefsand; (i =
1,2,...,N) be given. If there exist a positive definite matfixc R™V>*"V two diagonal positive definite matrices
Q,S € R™™ and two positive scalarg and p satisfying the following condition

PD+DTP - PKC -CTKTP+P(A®TD) +(AaD)TP

PKKTpP
+PQIN)'P+P(S®IN)'P+||L1]2(Q® IN) + pP + ——— <0, (11)
—p+n+vy<0, (12)

then the error dynamics (5) or (6) with triggering time sawpes (2) is exponentially ultimately bounded where

_ -1 2 _ P5||Cz’”2
1= AP LIPS @ In)), 7= _max (£
Proof: First, consider the following Lyapunov function
V(t) = el (t)Pe(t). (13)

Then, along the trajectory of system (6), calculating thevdéve of V (¢) leads to

V(t) = 2¢" (t)P[De(t) + F(e(t)) + Gle(t — 7(t)) + (A@T)e(t) — KCe(t) + Ke(t)]. (14)
In what follows, by utilizing Lemmas 1 and 2, we have
2¢7 (1) PF(e(t)) < " (1) P(Q ® In) ™ Pe(t) + | L1|*e” (t)(Q ® In)e(t) (15)
2T () PG(e(t — 7(t))) < el ()P(S ® In) "' Pe(t)
+ Amax (P | L2125 @ In)el (t — 7(t)) Pe(t — (1)) (16)
el (t)PK KT Pe(t)

2¢T (t)PKe(t) < + pe(t)Te(t). (17)

p
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In view of (11), (14)-(17), one has
V(t) < —pV (@) +nVi(t—7(t) + pz &i(t)" & [t;m t2+1). (18)

On the other hand, ase [t} 2+1), the triggering condition (2) can be rewritten as

ef (D)it) < BICiIP e + 6 (19)
which implies
N
() <5 _max (G2 5—e (Pe(t) + 35 (20)

=1
Letting A = pzﬁil 0; and taking the above inequality into account, we
obtain from (18) that

V(t) < (—p+7)V () + 0Vt —7(1) + A (21)

Now, let us investigate the exponentially ultimately boeddess of the solution of the differential equation
governing the error dynamics by using the comparison gylaciFor this purpose, let(¢) be a unique solution of
the following delayed system

0(t) = (—p+y)v(t) +nu(t —7(t) + A+e (22)
U(S) = V(S)v s € [_Tv 0]
wheree is a positive scalar. Then, by using the formula of integratisystem (22) yields
t
v(t) < MemHt7)(E=to) _|_/ e(—pt7)(t=s) u(s — 7(s)) + A + elds (23)
to
where M = sup_, -, v(t). Therefore, we only need to prove
A
v(t) < Me Mt—to) 4 e (24)
w="-1
where\ > 0 is the unique solution of
A —p+y+net =0. (25)
Furthermore, the proof can be divided into two parts, thathie part oft € [ty — 7, to] and the part > .
The part of ¢t € [to — 7,t0]: It is easy to see that
o(t) < M < Me=Mt=) < ppe=di—to) 4 _€FA (26)
w="9-1

The part of ¢ > ty: In this part, the proof is carried out by using contradicti®pecially, assume that there
exists at least oné > t; such that

u(t) > Me Mt—to) 4 i (27)
2
Denotet* = inf{t > tolv(t) > Me At—to) 4 MEJ;A }. In the following, we shall use this* to reveal that (27)
is not true.
First, according to the definition af, one has
e+ A

o(t*) = Me M) p — & (28)
w—="9-="
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and

A
o(t) < MeMmto) o T2y (29)
f=9-=n

Then, it follows from (23) that

o
o(t*) = Me—HtN(t —to) + / e(—ut7)(t" =) [nu(s —7(s)) + A+ €]ds

to

-
< e [ 4 e+a / (1= (s—to)
to

w=9="
“A(s—7(s)—to) e+ A
x[n(Me +M_7_n)+A+e}ds}
.
< e [y _<F A 4 M / (== N)(s—t0) g
H=9-" to
b
n (n—7)(e+A) / e(,u—'y)(s—tg)ds}
2 to
_ MMt CHA (30)
w="9-1
which contradicts to (27) or (28) and therefore
v(t) < Me M=t 4 _eta (31)
2
By means of the comparison principle [42], we have
V(t) <w(t) < Me Mt—t) 4 A (32)
H=9=1
which, ase — 0, results in
V(t) < Me Atto) 4 A (33)
H=9-"n

Finally, we will prove that the Zeno behavior can be excludedthe selected triggering condition. Fere
[t}..t}..1), computing the upper right-hand Dini derivative [of;(¢)|| yields

DY |lei(®)]l <ll&@)]
<IGill{ [P = KiCilllles (@) + [[La[lle: ()]

+WLﬂqu—ﬂwm+Hffwﬁq@w+Wmexwﬂ. (34)
j=1

For the three variables on the right side of above inequaliy have

M A A
ei(t)] < e~z (t7t) 4
el <y /@) Nanin(P) (=7 — 1)

< M e 4 A
~V Amin(P) Amin(P) (1 —~ — 1)
N N NI A (35)
a;;le;(t)]] < |ag|||T e;i ()| < lai|||T e~ 3 (ti—to) 4
H; iTei (O < aal| H;H J O < laalIT[l | o (P) )‘min(P)(M—’Y—Tl)]

M s sy A
et —7()| < e2Te 2 timto) 4 .
lestt =Dl <\ /30 Newin(P) (1 =7 — 1)
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Taking (35) into (34) leads to
M A A
D — K;C;|| + || L e_E(tk_tO) +
{ : ”1W< Amin (P) Awmin(P) (1 = = 1)

M N X (qi A
+ || L e2Te 2 (tito) 4
H 2” < )\min(P) )\min(P)(N - — 77)

DT |le®)] < ICill

NM A (g A
+ laqi;|||IT 6_5(t"_t0)+ + |Ci || K || e4 (¢ . 36
| WI( iy ) Il @)
Denoting
M A (g A
R KO 2 (ti~to)
. HCZH (HD KZCZ” * HLlH)( )\min(P)e " \/)‘min(P)(:u -7 77))

M A A (4 A
+||L e2Te"2(tit)
"”( Ao (P) Ao PYi— 7 — 1)

NM (i A
+ |ai |||T e_a(tk_to) + s
"””< Nain (P) Ain(P) 7 1)

we can find from (36) that

at};(el\szHIICill(t—t?;) —1)

() < 37
=01 = = rmen e
In addition, we have
) ati(ellKiIIHCiH(tiﬂ—ti) —-1)
Note that the next event will not be triggered befdieg(t)|| = 9;. Thus
ti, —t > (W +1) >0, (39)
which completes the proof. [ |

Remark 2: As we know, the Zeno phenomenon resulting from the apptioatif the event-triggering mechanism
is a typical dynamical behavior which prevents the impletaton of sampling devices. Up to now, some preliminary
results have been reported in the literature on the Zendgmolsee e.g. [6], [10]). In this paper, by utilizing the
Dini derivative, the lower bound of the interval times is ately given. It is worth mentioning that this interval can
be obtained via distributed computation as it is dependerthe selected paramet&rand the designed estimator
gain K;. Due to the existence af;, the exponentially ultimately bound of the estimation en® investigated.
However, the results in this paper can be easily extendeuet@xponentially convergence by designing the similar
event-triggering sequencg as (10) in [18].

Remark 3: Traditionally, for networks with time-varying delays, th&apunov-Krasovskii functional approach
has been widely utilized to analyze the system performaand, this would inevitably lead to more decision
variables and more conservative sufficient conditions. iRetance, in [45], the event-triggering state estimation
problem was investigated for complex networks with mixedktidelays, where the Lyapunov-Krasovskii functional
approach was used to obtain the main results. It can be seenTheorem 1 that in [45], the decision variables
are 3Nn(Nn + 1) + 2(Nn)? + 11, where N is the number of the nodes andis the dimensional size of each
node, while the decision variables in Theorem 1 &e(Nn+1)/2 +n(n+ 1) + 2. Thus, the complexity of LMI
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computations in [45] remains higher than that of our reséitordingly, the resulting design approach would have
limited application scope in real-world problems. Diffetérom traditional approaches, in this paper, the comparis
principle is skillfully to derive a simplified matrix ineqgliey whose feasibility guarantees the exponentially uétaly
boundedness of the addressed complex networks with bothviet-triggering mechanism and the time-varying
delays.

Up to now, the analysis problem of the estimator performdrazbeen dealt with. Next, we are in a position to
consider the estimator design problem for the complex ndtb). The following result can be easily accessible
from Theorem 1 and the proof is therefore omitted.

Theorem 2:Let the threshold parametefs and§; (- = 1,2,...,N) be given. If there exist a matri¥’ =
diag{Y1,Ys,...,Yn} € RV"XNm g positive definite matrix° = diag{ Py, P», ..., Py} € R*™W>*"V two diagonal
positive definite matrice§), S € R"*", and two positive scalarg and p satisfying the following condition

PD+D'P-vC-CTYT + PAaT) +(AaD)TP
T

YY
FPQ®Iy) P+ P(S®In) 'P+||Li]|2(Q @ In) + uP + <0 (40)

—p+n+v<0 (41)

then the error dynamics (5) or (6) with triggering time samees (2) is exponentially ultimately bounded. Further-
more, if (40) and (41) hold, then the estimator gain matrixnades is given by K; = Pi‘lY,-.

In what follows, we show that our main result can be easilycidieed to the following two cases: 1) the complex
networks without time-delays; and 2) the complex networlkh W = 1 (i.e. general nonlinear systems).

Case 1: The complex networks without time-delays.

In this case, the complex network (1) reduces to

&i(t) = Day(t) + f(ai(t) + Y3 aiiTay (1) (@)
yl(t) = CZ:L'Z(t)
and the corresponding state estimator is of the form
Zi(t) = Da;(t) + f(a@:(t) + Zamrx, )4 Ki(yi(th) — Cidg(th)), i=1,2,...,N. (43)
According to (42) and (43), the error dynamlcs becomes
éi(t) = De;(t) + f(ei(t)) + Z aiTej(t) — K;Ciei(t) + Kigi(t). (44)

Furthermore, by means of Theorem 2, we have the followingltzoy readily.

Corollary 1: Let the threshold parametefsandd; (i = 1,2,...,N) be given. If there exist a matrix” =
diag{Y1,Ys,..., Yy} € RVN"XNm g positive definite matrixP = diag{ P, P, ..., Py} € R"V*"N a diagonal
positive definite matrixQ) € R"*", and two positive scalarg and 5 satisfying the following condition:

PD+DTP-YC - CTYT + P(A@T)+ (AaT)'P

1 o YYy”T
+P(Q @ IN) 1P+ ||L1|*(Q ® In) + iP + —

<0 (45)

—i+7 <0 (46)
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with ¥ = max;—1 2 . {pﬁ”c s } then the error dynamics (44) with triggering time sequer(@g is exponentially
ultimately bounded. Furthermore if (45) and (46) hold,nthtbe estimator gain matrix on nodeis given by
K; = P71V,

Case 2: The complex networks withv = 1, i.e. general nonlinear systems.

As N =1, the complex network system (1) becomes the following m&a@i system with time-varying delays

21(t) = Dy (t) + f(21(t) + g(a1(t — 7(1))) 47)
yl(t) = Clxl(t).
Similar to (3) and (5), the state estimator and error dynaraie, respectively, rewritten as follows
21(t) = Di1(t) + f(&1(0) + g(@1(t — 7(1))) + K1y (k) — O (1)) (48)
and
é1(t) = Dey(t) + fler(t)) — K1Creq(t) + Kiey (¢). (49)

The following corollary can be obtained easily from Theorgm
Corollary 2: Let the threshold parametefisandd; in (2) be given. If there exist a matriX € R™*", a positive
definite matrix? € R"*", two diagonal positive definite matric€g, S € R"*", and two positive scalarg and
satisfying the following condition:
PD+DTP-YC, - CTYT + PQ'P

R ~ . yy”T
+ PSP+ | Ly|°Q + P + —

<0 (50)
ity <0 (51)

With 7 = Amax(P 71| L2[2S) and§ = max;—1 2 . {”6”0&! 1, then the error dynamics (49) with triggering time
sequences (2) is exponentially ultimately bounded Fumbee, if (50) and (51) hold, then the estimator gain
matrix is given byK; = P~1Y.

Remark 4:In this paper, the state estimation problem is investigdteda class of complex networks with
time-varying delays and event-triggering communicatiootqcol. By means of the constructed triggering function
combined with the comparison principle, a novel scheme timasor design is proposed to guarantee the desired
estimation performance and exclude the undesired Zenovimehtn addition, from Corollary 2, we can see that
our results can also shed light on state estimation of generdinear time-delayed systems with event-triggering

mechanism.

IV. NUMERICAL SIMULATIONS

Consider the time-delayed complex network (1) with thredaso The coupling configuration matrix is assumed
to be

The system matrixD, the inner-coupling matriX’ and the measurement matrio€s (i = 1,2, 3) are selected as

1
Do _ 0 T- 10
01 01

C; = [0.5 0.4} .
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The nonlinear vector-valued functiorf§z;(¢)) and g(z;(¢)) (i = 1,2, 3) are chosen as

B 05 —0.2 |Ii1(t)+1\;|ril(t)—1|
f(xl(t)) - 05 04 |x12(t)+1‘;|5012(t)_1|
0.7 0.3 |$11(t)+1‘g|u’0¢1(t)_1|

g(w’l(t)) = _01 04 |"Ei2(t)+1‘g|-’ﬂi2(t)—1| ’

We can easily check that Assumption 1 is satisfied with

0.5 —0.2 0.7 0.3
Ll = ) L2 = .
0.5 04 —-0.1 04
Furthermore, in this example, the thresholds are seleded @ 0.6 (: = 1,2,3) and 8 = 0.2. The time-varying

delay isT(t) = =.
Using the Matlab software, a set of estimator gains in terinth® solution of Theorem 2 can be obtained as

follows
0.9557 0.7013 0.7013
Kl — 7K2 — 7K3 = . (52)
0.9510 0.7433 0.7433

Simulation results are shown in Figs. 1-3 for three nodes gaent-triggering instants for differefitare plotted in
Fig. 4. It can be seen from Fig. 4 that a lai@ge&an reduce the triggering frequency and thereby effegtiaiiviating
the unnecessary energy consumption, while a simatheans a high triggering frequency and possibly results in
a better system performance. We can see from the figureshbgbroposed estimator can provide satisfactory
estimation performance for the addressed complex netwwitks event-triggering communication protocol. If we
assume that = 0.8, then event-triggering instants for differefitare plotted in Fig. 5. It can be concluded that a
small 5 can make the conditions more feasible. Meanwhile, it widlde¢o frequently updates of the event-triggering
mechanism, which means that more updates of the evenetiiggmechanism are required to enforce the estimation
error of (5) to zero.

V. CONCLUSION

In this paper, the state estimation problem has been igagstl for a class of complex networks with time-varying
delays and event-triggering communication protocols. & meent-triggering function, in which the threshold is
not only dependent on the measurement outputs but also depeon a predefined constant, has been proposed to
effectively reduce communication burden and avoid the Zamenomenon. By means of comparison principle and
the Lyapunov function method, some sufficient conditiongehderived to ensure that the estimation error dynamics
is exponentially ultimately bounded. In addition, the dediestimator gains have been obtained in terms of the
solution of matrix inequalities. Finally, a simulation hiasen given to illustrate the effectiveness of our theoaétic
results. Further research topics include the extensiorhisfwork to more general systems such as Markovian
jumping systems [20], [30], [40], discrete-time systemd aensor networks [9], [22], [23].
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