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Abstract

The paper is concerned with the state estimation problem fora class of time-delayed complex networks with

event-triggering communication protocol. A novel event generator function, which is dependent not only on the

measurement output but also on a predefined positive constant, is proposed with hope to reduce the communication

burden. A new concept of exponentially ultimate boundedness is provided to quantify the estimation performance.

By means of the comparison principle, some sufficient conditions are obtained to guarantee that the estimation error

is exponentially ultimately bounded, and then the estimator gains are obtained in terms of the solution of certain

matrix inequalities. Furthermore, a rigorous proof is proposed to show that the designed triggering condition is free

of the Zeno behavior. Finally, a numerical example is given to illustrate the effectiveness of the proposed event-based

estimator.
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I. INTRODUCTION

Nowadays, it is widely recognized that complex networks arecapable of modeling various natural phenomena

owing to their potential applications in the areas of image processing, neuronal synchronization and secure commu-

nication [36]. With the development of information technology, complex networks are ubiquitous, such as neural

networks, ecosystems, social network, the Internet, the WWW and electrical power grids, etc. Since the seminal

work on the “small-world” and “scale-free” properties in [1] and [38], complex networks have become an ongoing

research topic that attracts ever-increasing attention inrecent years. Up to now, there has been a rich body of results

on the dynamics analysis issues of complex networks such as stability and stabilization [11], synchronization [27],

[28], [31] and pinning control [2], [24].

As with the traditional dynamical systems, time-delays areubiquitous in the implementation of practical complex

networks because of the finite speed of transmission and spreading as well as congestions in signal transition [16],
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[33], [44]. Since time-delays could lead to undesirable dynamic behavior such as oscillation and instability, it

is vitally important to examine the impact from time-delayson dynamical performance [44]. As such, the last

decade has witnessed a rapidly growing interest in the pinning control and synchronization problems for various

kinds of complex networks with node delays [14], [41], coupling delays [11] or random sensor delays [4], [17].

For instance, the synchronization problem has been investigated in [26] for an array of linearly coupled identical

connected neural networks by using variational method, where the coupling matrix is not restricted to be symmetric

or irreducible. In [11], a delay-partitioning approach hasbeen used to obtain a new delay-range-dependent criterion

for the synchronization stability of complex dynamical networks.

It is worth noting that, in most works on the pinning control and the synchronization, it has been implicitly

assumed that system states are fully accessible. This is, unfortunately, not always the case in practice [32]. For

instance, only partial information about the network states is available in virus spreading networks and sensor

networks. In multi-agent systems, the information of positions is usually utilized to achieve the consensus control,

and the velocities are commonly discarded due to the expensive measurements. In this case, it is of both theoretical

importance and practical significance to estimate the node states of complex networks by using the available

measurements [25] so as to carry out subsequent tasks such asperformance analysis and design. By now, some

preliminary results have been reported on the state estimation problems of complex/neural/sensor networks [4],

[21], [37]. For instance, the references [32] and [4] have provided estimator design approaches, in terms of linear

matrix inequalities, for the systems with uncertain inner coupling and incomplete measurements as well as the

systems with the random sensor delays, respectively. Nevertheless, the state estimation problem for more general

complex networks with time-varying delays has not yet received adequate research attention, and this constitutes

the first motivation for our current investigation.

In the execution of estimation algorithms, the sampled-data estimation strategy has been generally applied due

to the increasing popularity of communication networks. Insuch a strategy, the sampling period is predetermined

which might lead to over-provisioning of the real-time system hardware. In addition, the limited communication

resources could also be overly consumed especially for the large-scale distributed systems including complex

networks as a special case. Very recently, a novel communication protocol, namely, event-triggering mechanism,

has been developed to overcome the aforementioned drawbacks, see [29], [34], [35], [39], [43], [45] and the reference

therein. In comparison of the time-triggering case (i.e. the periodic sampling case), the input to the controller or

estimator is updated only when a certain triggering condition is violated. Up to now, only limited work has been

available in the literature on the synchronization of complex networks with event-triggering. For instance, a new

distributed event-triggered mechanism has been introduced in [12] for pinning control synchronization of complex

networks. The event-triggered distributed state estimation problem over sensor networks has been investigated in

[15] for a class of discrete-time nonlinear stochastic systems with mixed network-induced phenomena.

When both the time-varying delays and event-triggering communication protocol are taken into simultaneous

consideration, the estimator design problem for complex networks exhibits a few technical challenges. On one hand,

it is well known that, due to the added delay-related terms, the frequently used Lyapunov-Krasovskii functional

approach would inevitably suffer from increased complexity of the design schemes especially for large-scale systems.

As such, the first difficulty would be how to develop a new method to reduce the effect from time-delays on the

estimator design. Thus, the motivation of this paper is to derive a comparison principle to study the state estimation

problem of time-delayed complex networks with event-triggering communication protocol such that the derived

results have less decision variables.
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On the other hand, different from the discrete-time cases [3], [5], [7], [8], the application of the event-triggering

mechanism for continuous-time systems could lead to a well-known yet undesirable phenomenon called rendezvous

(Zeno) phenomenon that possesses a strong destructivenessfor the system equipment. So, the second challenge

would be how to construct a suitable event generator function to avoid such a rendezvous behavior. Although the

rendezvous problem has been discussed in [6], [10] for multi-agent systems, the mathematical analysis problem

on this behavior is still open for the state estimation issues of complex networks with time-varying delays. It is,

therefore, the second motivation of this paper to provide satisfactory answers to the two questions mentioned above

and also propose a design scheme of the event-based estimator for the addressed complex networks.

Motivated by the above discussions, in this paper, we aim to design an event-triggered estimator for a class

of complex networks with time-varying delays. In terms of the Lyapunov functional approach combined with the

comparison principle, some sufficient conditions are derived to guarantee that the error dynamics is exponentially

ultimately bounded. Furthermore, the proposed results arespecialized to two classes of complex networks. Finally,

a numerical example is given to illustrate the effectiveness of the proposed event-based estimator. The novelties of

this paper lie in the following three aspects:1) a novel event generator function, which is dependent not only on the

measurement output but also on a predefined positive constant, is proposed to reduce the communication burden;

2) the comparison principle is utilized to derive the desired sufficient conditions with the purpose of simplifying

the estimator design; 3) a rigorous proof is proposed to showthat the designed triggering condition is free of the

Zeno behavior.

Notations: Throughout this paper,Rn denotes then-dimensional Euclidean space.N denotes the set of natural

numbers. Forx ∈ R
n, xT denotes its transpose. The vector norm is defined as‖x‖ =

√
xTx. In denotesn-

dimensional identity matrix. For matrixA ∈ R
n×n, ‖A‖ =

√

λmax(ATA), whereλmax(·) represents the largest

eigenvalue. Moreover, for real symmetric matricesX andY , the notationX ≤ Y (respectively,X < Y ) means

that the matrixX − Y is negative semidefinite (respectively, negative definite). C([−r, 0];Rn) denotes the family

of continuous functions from[−r, 0] to R
n with the norm‖φ‖r = sup−r≤θ≤0 φ(θ).

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, consider the following time-delayed complexnetwork consisting ofN coupled nodes of the form:
{

ẋi(t) = Dxi(t) + f(xi(t)) + g(xi(t− τ(t))) +
∑N

j=1 aijΓxj(t)

yi(t) = Cixi(t)
(1)

wherexi(t) ∈ R
n andyi(t) ∈ R

m (i = 1, 2, . . . , N ) are, respectively, the state vector and the measurement output

of the ith node at timet. D ∈ R
n×n andCi ∈ R

m×n are two known constant matrices.f(·) andg(·) are nonlinear

functions satisfying certain conditions to be given later.τ(t) describes the known time-varying delay satisfying

0 ≤ τ(t) ≤ τ , whereτ is a known positive scalar representing the maximum delay.Γ = diag{γ1, γ2, . . . , γn} is

the inner-coupling matrix linking thejth state variable asγi > 0 (i = 1, 2, . . . , n). A = [aij ]N×N is the coupled

configuration matrix of the network withaij > 0 (i 6= j) but not all zero. Furthermore, the diagonal elementaii

satisfies

aii = −
N
∑

j=1,j 6=i

aij .

As discussed in the introduction, an event-triggered mechanism is adopted to reduce the communication burden.

In order to characterize such a mechanism, let the triggering time sequence of nodei be

t0 = ti0 < ti1 < . . . tik < . . .
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For each nodei, the sequence of event triggering instants is determined iteratively by

tik+1 = inf{t|t > tik, f̆i(yi(t), δi, β) > 0} (2)

where the event generator function̆fi(yi(t), δi, β) to be defined later is dependent on the measurement output and

the given thresholdsβ > 0 andδi > 0.

In the event-triggered setup, the state estimator with zero-order holder on nodei is proposed as follows:

˙̂xi(t) = Dx̂i(t) + f(x̂i(t)) + g(x̂i(t− τ(t)))

+

N
∑

j=1

aijΓx̂j(t) +Ki(yi(t
i
k)− Cix̂i(t

i
k)), t ∈ [tik, t

i
k+1)

(3)

wherex̂i(t) is the estimate of the statexi(t) andKi ∈ R
n×m is the estimator gain matrix to be designed.

Now, for the implementation of designed estimators, we adopt the event generator function on nodei as follows:

f̆i(yi(t), δi, β) = εTi (t)εi(t)− β‖yi(t)− Cix̂i(t)‖2 − δi (4)

whereεi(t) = yi(t)−Cix̂i(t)− (yi(t
i
k)−Cix̂i(t

i
k)) andyi(tik) is the measurement output at the latest event instant.

Remark 1: In this paper, the selected triggering function (4) is linearly dependent on the measurement’s norm

and a predefined positive constant. It is not difficult to see that the triggering function (4) will reduce to the case

in [15], [45] when β = 0. In addition, the inter-event intervals for each node become shorter asδi decreases.

Therefore, such a construction provides more design margin/flexibility to exclude the Zeno phenomenon.

Let ei(t) = x̂i(t)− xi(t), f̂(ei(t)) = f(x̂i(t))− f(xi(t)) and ĝ(ei(t)) = g(x̂i(t))− g(xi(t)). It follows from (1)

and (3) that the error dynamics of the state estimation obeys

ėi(t) = Dei(t) + f̂(ei(t)) + ĝ(ei(t− τ(t))) +

N
∑

j=1

aijΓej(t)−KiCiei(t) +Kiεi(t). (5)

For notational simplicity, we define

e(t) =
[

eT1 (t), e
T
2 (t), . . . , e

T
N (t)

]T

ε(t) =
[

εT1 (t), ε
T
2 (t), . . . , ε

T
N (t)

]T

F (e(t)) =
[

f̂T (e1(t)), f̂
T (e2(t)), . . . , f̂

T (eN (t))
]T

G(e(t)) =
[

ĝT (e1(t)), ĝ
T (e2(t)), . . . , ĝ

T (eN (t))
]T

D =IN ⊗D, C = diag{C1, C2. . . . , CN}
K =diag{K1,K2. . . . ,KN}.

By using the matrix’s Kronecker product, the error dynamics(5) can be rewritten as

ė(t) = De(t) + F (e(t)) +G(e(t)) + (A⊗ Γ)e(t) −KCe(t) +Kε(t). (6)

Before proceeding further, we introduce the following definitions, lemmas and assumptions.

Definition 1 ( [45]): The dynamics of the estimation error is exponentially ultimately bounded if there exist

positive constantsM , λ andω such that

‖e(t)‖2 ≤ Me−λ(t−t0) + ω. (7)
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Assumption 1:For ∀x, y ∈ R
n, the nonlinear vector-valued functionsf andg are continuous and satisfy

‖f(x)− f(y)‖ ≤ ‖L1‖‖x− y‖ (8)

‖g(x) − g(y)‖ ≤ ‖L2‖‖x− y‖ (9)

whereL1 andL2 are known constant matrices with appropriate dimensions.

Lemma 1:For ∀x, y ∈ R
n, the following inequality holds

xT y + yTx ≤ xTQx+ yTQ−1y (10)

whereQ is a diagonal positive definite matrix with appropriate dimensional.

Lemma 2 ( [13]): If P ∈ R
n×n is a symmetric and positive definite matrix andQ ∈ R

n×n is a symmetric

matrix, then

λmin(P
−1Q)xTPx ≤ xTQx ≤ λmax(P

−1Q)xTPx, x ∈ R
n.

The main purpose of this paper is to design a state estimator such that the error dynamics (5) or (6) with the

triggering time sequence given in (2) is exponentially ultimately bounded.

III. M AIN RESULTS

In this section, the stability of the error dynamics is firstly investigated by means of the comparison principle

and Lyapunov functional approach. Then, a design scheme of the state estimator for addressed complex networks

is given via the solution to certain matrix inequalities.

Theorem 1:Let the estimator gain matrixKi (i = 1, 2, . . . , N ) and the threshold parametersβ and δi (i =

1, 2, . . . , N ) be given. If there exist a positive definite matrixP ∈ R
nN×nN , two diagonal positive definite matrices

Q,S ∈ R
n×n and two positive scalarsµ andρ satisfying the following condition

PD+D
TP − PKC −CTKTP + P (A⊗ Γ) + (A⊗ Γ)TP

+ P (Q⊗ IN )−1P + P (S ⊗ IN )−1P + ‖L1‖2(Q⊗ IN ) + µP +
PKKTP

ρ
< 0, (11)

− µ+ η + γ < 0, (12)

then the error dynamics (5) or (6) with triggering time sequences (2) is exponentially ultimately bounded where

η = λmax(P
−1‖L2‖2(S ⊗ IN )), γ = max

i=1,2,...,N

{ρβ‖Ci‖2
λmin(P )

}

.

Proof: First, consider the following Lyapunov function

V (t) = eT (t)Pe(t). (13)

Then, along the trajectory of system (6), calculating the derivative of V (t) leads to

V̇ (t) = 2eT (t)P
[

De(t) + F (e(t)) +G(e(t − τ(t))) + (A⊗ Γ)e(t)−KCe(t) +Kε(t)
]

. (14)

In what follows, by utilizing Lemmas 1 and 2, we have

2eT (t)PF (e(t)) ≤ eT (t)P (Q⊗ IN )−1Pe(t) + ‖L1‖2eT (t)(Q⊗ IN )e(t) (15)

2eT (t)PG(e(t − τ(t))) ≤ eT (t)P (S ⊗ IN )−1Pe(t)

+ λmax(P
−1‖L2‖2S ⊗ IN )eT (t− τ(t))Pe(t − τ(t)) (16)

2eT (t)PKε(t) ≤ eT (t)PKKTPe(t)

ρ
+ ρε(t)T ε(t). (17)
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In view of (11), (14)-(17), one has

V̇ (t) ≤ −µV (t) + ηV (t− τ(t)) + ρ

N
∑

i=1

εi(t)
T εi(t), t ∈ [tik, t

i
k+1). (18)

On the other hand, ast ∈ [tik, t
i
k+1), the triggering condition (2) can be rewritten as

εTi (t)εi(t) ≤ β‖Ci‖2‖ei(t)‖2 + δi (19)

which implies

εT (t)ε(t) ≤ β max
i=1,2,...,N

{‖Ci‖2}
1

λmin(P )
eT (t)Pe(t) +

N
∑

i=1

δi. (20)

Letting ∆ = ρ
∑N

i=1 δi and taking the above inequality into account, we

obtain from (18) that

V̇ (t) ≤ (−µ+ γ)V (t) + ηV (t− τ(t)) + ∆. (21)

Now, let us investigate the exponentially ultimately boundedness of the solution of the differential equation

governing the error dynamics by using the comparison principle. For this purpose, letv(t) be a unique solution of

the following delayed system
{

v̇(t) = (−µ+ γ)v(t) + ηv(t− τ(t)) + ∆ + ǫ

v(s) = V (s), s ∈ [−τ, 0]
(22)

whereǫ is a positive scalar. Then, by using the formula of integration, system (22) yields

v(t) ≤Me(−µ+γ)(t−t0) +

∫ t

t0

e(−µ+γ)(t−s)[ηv(s − τ(s)) + ∆ + ǫ]ds (23)

whereM = sup−τ≤t≤0 v(t). Therefore, we only need to prove

v(t) < Me−λ(t−t0) +
ǫ+∆

µ− γ − η
(24)

whereλ > 0 is the unique solution of

λ− µ+ γ + ηeλτ = 0. (25)

Furthermore, the proof can be divided into two parts, that is, the part oft ∈ [t0 − τ, t0] and the partt > t0.

The part of t ∈ [t0 − τ, t0]: It is easy to see that

v(t) ≤ M ≤ Me−λ(t−t0) < Me−λ(t−t0) +
ǫ+∆

µ− γ − η
. (26)

The part of t > t0: In this part, the proof is carried out by using contradiction. Specially, assume that there

exists at least onet > t0 such that

v(t) ≥ Me−λ(t−t0) +
ǫ+∆

µ− γ − η
. (27)

Denotet∗ = inf{t > t0|v(t) ≥ Me−λ(t−t0) + ǫ+∆
µ−γ−η

}. In the following, we shall use thist∗ to reveal that (27)

is not true.

First, according to the definition oft∗, one has

v(t∗) = Me−λ(t∗−t0) +
ǫ+∆

µ− γ − η
(28)
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and

v(t) < Me−λ(t−t0) +
ǫ+∆

µ− γ − η
, t < t∗. (29)

Then, it follows from (23) that

v(t∗) = Me(−µ+γ)(t∗−t0) +

∫ t∗

t0

e(−µ+γ)(t∗−s)[ηv(s − τ(s)) + ∆ + ǫ]ds

< e(−µ+γ)(t∗−t0)
{

M +
ǫ+∆

µ− γ − η
+

∫ t∗

t0

e(µ−γ)(s−t0)

×
[

η
(

Me−λ(s−τ(s)−t0) +
ǫ+∆

µ− γ − η

)

+∆+ ǫ
]

ds
}

< e(−µ+γ)(t∗−t0)
{

M +
ǫ+∆

µ− γ − η
+Mηeλτ

∫ t∗

t0

e(µ−γ−λ)(s−t0)ds

+
(µ− γ)(ǫ+∆)

µ− γ − η

∫ t∗

t0

e(µ−γ)(s−t0)ds
}

= Me−λ(t∗−t0) +
ǫ+∆

µ− γ − η
, (30)

which contradicts to (27) or (28) and therefore

v(t) < Me−λ(t−t0) +
ǫ+∆

µ− γ − η
. (31)

By means of the comparison principle [42], we have

V (t) ≤ v(t) < Me−λ(t−t0) +
ǫ+∆

µ− γ − η
(32)

which, asǫ → 0, results in

V (t) ≤ Me−λ(t−t0) +
∆

µ− γ − η
. (33)

Finally, we will prove that the Zeno behavior can be excludedfor the selected triggering condition. Fort ∈
[tik, t

i
k+1), computing the upper right-hand Dini derivative of‖εi(t)‖ yields

D+‖εi(t)‖ ≤‖ε̇i(t)‖

≤‖Ci‖
[

‖D−KiCi‖‖ei(t)‖+ ‖L1‖‖ei(t)‖

+ ‖L2‖ei(t− τ(t))‖+
∥

∥

∥

N
∑

j=1

aijΓej(t)
∥

∥

∥
+ ‖Ki‖‖εi(t)‖

]

. (34)

For the three variables on the right side of above inequality, we have

‖ei(t)‖ ≤
√

M

λmin(P )
e−

λ

2
(t−t0) +

√

∆

λmin(P )(µ − γ − η)

≤
√

M

λmin(P )
e−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)

‖
N
∑

j=1

aijΓej(t)‖ ≤ |aii|‖Γ‖
N
∑

j=1

‖ej(t)‖ ≤ |aii|‖Γ‖
[

√

NM

λmin(P )
e−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)

]

‖ei(t− τ(t))‖ ≤
√

M

λmin(P )
e

λ

2
τe−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)
.

(35)
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Taking (35) into (34) leads to

D+‖εi(t)‖ ≤ ‖Ci‖
[

(‖D −KiCi‖+ ‖L1‖)
(
√

M

λmin(P )
e−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)

)

+ ‖L2‖
(
√

M

λmin(P )
e

λ

2
τ e−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)

)

+ |aii|‖Γ‖
(
√

NM

λmin(P )
e−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)

)

+ ‖Ci‖‖Ki‖‖εi(t)‖
]

. (36)

Denoting

αti
k

= ‖Ci‖
[

(‖D −KiCi‖+ ‖L1‖)
(
√

M

λmin(P )
e−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)

)

+ ‖L2‖
(
√

M

λmin(P )
e

λ

2
τe−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)

)

+ |aii|‖Γ‖
(
√

NM

λmin(P )
e−

λ

2
(ti

k
−t0) +

√

∆

λmin(P )(µ − γ − η)

)]

,

we can find from (36) that

‖εi(t)‖ ≤
αti

k

(e‖Ki‖‖Ci‖(t−ti
k
) − 1)

‖Ki‖‖Ci‖
. (37)

In addition, we have

‖εi(tik+1)‖ ≤
αti

k

(e‖Ki‖‖Ci‖(tik+1−ti
k
) − 1)

‖Ki‖‖Ci‖
. (38)

Note that the next event will not be triggered before‖εi(t)‖ = δi. Thus

tik+1 − tik ≥ ln
(δi‖Ki‖‖Ci‖

αti
k

+ 1
)

> 0, (39)

which completes the proof.

Remark 2:As we know, the Zeno phenomenon resulting from the application of the event-triggering mechanism

is a typical dynamical behavior which prevents the implementation of sampling devices. Up to now, some preliminary

results have been reported in the literature on the Zeno problem (see e.g. [6], [10]). In this paper, by utilizing the

Dini derivative, the lower bound of the interval times is accurately given. It is worth mentioning that this interval can

be obtained via distributed computation as it is dependent on the selected parameterδi and the designed estimator

gain Ki. Due to the existence ofδi, the exponentially ultimately bound of the estimation error is investigated.

However, the results in this paper can be easily extended to the exponentially convergence by designing the similar

event-triggering sequencefi as (10) in [18].

Remark 3:Traditionally, for networks with time-varying delays, theLyapunov-Krasovskii functional approach

has been widely utilized to analyze the system performance,and this would inevitably lead to more decision

variables and more conservative sufficient conditions. Forinstance, in [45], the event-triggering state estimation

problem was investigated for complex networks with mixed time delays, where the Lyapunov-Krasovskii functional

approach was used to obtain the main results. It can be seen from Theorem 1 that in [45], the decision variables

are 3Nn(Nn + 1) + 2(Nn)2 + 11, whereN is the number of the nodes andn is the dimensional size of each

node, while the decision variables in Theorem 1 areNn(Nn+1)/2 +n(n+1) + 2. Thus, the complexity of LMI
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computations in [45] remains higher than that of our results. Accordingly, the resulting design approach would have

limited application scope in real-world problems. Different from traditional approaches, in this paper, the comparison

principle is skillfully to derive a simplified matrix inequality whose feasibility guarantees the exponentially ultimately

boundedness of the addressed complex networks with both theevent-triggering mechanism and the time-varying

delays.

Up to now, the analysis problem of the estimator performancehas been dealt with. Next, we are in a position to

consider the estimator design problem for the complex network (1). The following result can be easily accessible

from Theorem 1 and the proof is therefore omitted.

Theorem 2:Let the threshold parametersβ and δi (i = 1, 2, . . . , N ) be given. If there exist a matrixY =

diag{Y1, Y2, . . . , YN} ∈ R
Nn×Nm, a positive definite matrixP = diag{P1, P2, . . . , PN} ∈ R

nN×nN , two diagonal

positive definite matricesQ,S ∈ R
n×n, and two positive scalarsµ andρ satisfying the following condition

PD+D
TP − Y C − CTY T + P (A⊗ Γ) + (A⊗ Γ)TP

+ P (Q⊗ IN )−1P + P (S ⊗ IN )−1P + ‖L1‖2(Q⊗ IN ) + µP +
Y Y T

ρ
< 0 (40)

− µ+ η + γ < 0 (41)

then the error dynamics (5) or (6) with triggering time sequences (2) is exponentially ultimately bounded. Further-

more, if (40) and (41) hold, then the estimator gain matrix onnodei is given byKi = P−1
i Yi.

In what follows, we show that our main result can be easily specialized to the following two cases: 1) the complex

networks without time-delays; and 2) the complex networks with N = 1 (i.e. general nonlinear systems).

Case 1: The complex networks without time-delays.

In this case, the complex network (1) reduces to
{

ẋi(t) = Dxi(t) + f(xi(t)) +
∑N

j=1 aijΓxj(t)

yi(t) = Cixi(t)
(42)

and the corresponding state estimator is of the form

˙̂xi(t) = Dx̂i(t) + f(x̂i(t)) +

N
∑

j=1

aijΓx̂j(t) +Ki(yi(t
i
k)− Cix̂i(t

i
k)), i = 1, 2, . . . , N. (43)

According to (42) and (43), the error dynamics becomes

ėi(t) = Dei(t) + f̂(ei(t)) +

N
∑

j=1

aijΓej(t)−KiCiei(t) +Kiεi(t). (44)

Furthermore, by means of Theorem 2, we have the following corollary readily.

Corollary 1: Let the threshold parametersβ and δi (i = 1, 2, . . . , N ) be given. If there exist a matrix̄Y =

diag{Ȳ1, Ȳ2, . . . , ȲN} ∈ R
Nn×Nm, a positive definite matrixP̄ = diag{P̄1, P̄2, . . . , P̄N} ∈ R

nN×nN , a diagonal

positive definite matrixQ̄ ∈ R
n×n, and two positive scalars̄µ and ρ̄ satisfying the following condition:

P̄D+D
T P̄ − Ȳ C − CT Ȳ T + P̄ (A⊗ Γ) + (A⊗ Γ)T P̄

+P̄ (Q̄⊗ IN )−1P̄ + ‖L1‖2(Q̄⊗ IN ) + µ̄P̄ +
Ȳ Ȳ T

ρ̄
< 0 (45)

−µ̄+γ̄ < 0 (46)
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with γ̄ = maxi=1,2,...,N{ρβ‖Ci‖2

λmin(P̄ )
}, then the error dynamics (44) with triggering time sequences (2) is exponentially

ultimately bounded. Furthermore, if (45) and (46) hold, then the estimator gain matrix on nodei is given by

Ki = P̄−1
i Ȳi.

Case 2: The complex networks withN = 1, i.e. general nonlinear systems.

As N = 1, the complex network system (1) becomes the following nonlinear system with time-varying delays
{

ẋ1(t) = Dx1(t) + f(x1(t)) + g(x1(t− τ(t)))

y1(t) = C1x1(t).
(47)

Similar to (3) and (5), the state estimator and error dynamics are, respectively, rewritten as follows

˙̂x1(t) = Dx̂1(t) + f(x̂1(t)) + g(x̂1(t− τ(t))) + K̄1(y1(t
1
k)− Cx̂1(t

1
k)) (48)

and

ė1(t) = De1(t) + f̂(e1(t))−K1C1e1(t) +K1ε1(t). (49)

The following corollary can be obtained easily from Theorem2.

Corollary 2: Let the threshold parametersβ andδ1 in (2) be given. If there exist a matrix̃Y ∈ R
m×n, a positive

definite matrixP̃ ∈ R
n×n, two diagonal positive definite matrices̃Q, S̃ ∈ R

n×n, and two positive scalars̃µ and ρ̃

satisfying the following condition:

P̃D +DT P̃ − Ỹ C1 −CT
1 Ỹ

T + P̃ Q̃−1P̃

+ P̃ S̃−1P̃ + ‖L1‖2Q̃+ µ̃P̃ +
Ỹ Ỹ T

ρ̃
< 0 (50)

− µ̃+ η̃ + γ̃ < 0 (51)

with η̃ = λmax(P̃
−1‖L2‖2S̃) and γ̃ = maxi=1,2,...,N{ρβ‖C1‖2

λmin(P̃ )
}, then the error dynamics (49) with triggering time

sequences (2) is exponentially ultimately bounded. Furthermore, if (50) and (51) hold, then the estimator gain

matrix is given byK1 = P̃−1Ỹ .

Remark 4: In this paper, the state estimation problem is investigatedfor a class of complex networks with

time-varying delays and event-triggering communication protocol. By means of the constructed triggering function

combined with the comparison principle, a novel scheme of estimator design is proposed to guarantee the desired

estimation performance and exclude the undesired Zeno behavior. In addition, from Corollary 2, we can see that

our results can also shed light on state estimation of general nonlinear time-delayed systems with event-triggering

mechanism.

IV. N UMERICAL SIMULATIONS

Consider the time-delayed complex network (1) with three nodes. The coupling configuration matrix is assumed

to be

A =







−2 1 1

1 −2 1

1 1 −2






.

The system matrixD, the inner-coupling matrixΓ and the measurement matricesCi (i = 1, 2, 3) are selected as

D = −
[

1 0

0 1

]

,Γ =

[

1 0

0 1

]

, Ci =
[

0.5 0.4
]

.



ACCEPTED 11

The nonlinear vector-valued functionsf(xi(t)) andg(xi(t)) (i = 1, 2, 3) are chosen as

f(xi(t)) =

[

0.5 −0.2

0.5 0.4

][

|xi1(t)+1|−|xi1(t)−1|
2

|xi2(t)+1|−|xi2(t)−1|
2

]

g(xi(t)) =

[

0.7 0.3

−0.1 0.4

][

|xi1(t)+1|−|xi1(t)−1|
2

|xi2(t)+1|−|xi2(t)−1|
2

]

.

We can easily check that Assumption 1 is satisfied with

L1 =

[

0.5 −0.2

0.5 0.4

]

, L2 =

[

0.7 0.3

−0.1 0.4

]

.

Furthermore, in this example, the thresholds are selected as δi = 0.6 (i = 1, 2, 3) andβ = 0.2. The time-varying

delay isτ(t) = et

1+et
.

Using the Matlab software, a set of estimator gains in terms of the solution of Theorem 2 can be obtained as

follows

K1 =

[

0.9557

0.9510

]

,K2 =

[

0.7013

0.7433

]

,K3 =

[

0.7013

0.7433

]

. (52)

Simulation results are shown in Figs. 1-3 for three nodes, and event-triggering instants for differentδi are plotted in

Fig. 4. It can be seen from Fig. 4 that a largeδi can reduce the triggering frequency and thereby effectively alleviating

the unnecessary energy consumption, while a smallδi means a high triggering frequency and possibly results in

a better system performance. We can see from the figures that the proposed estimator can provide satisfactory

estimation performance for the addressed complex networkswith event-triggering communication protocol. If we

assume thatδ = 0.8, then event-triggering instants for differentβ are plotted in Fig. 5. It can be concluded that a

smallβ can make the conditions more feasible. Meanwhile, it will lead to frequently updates of the event-triggering

mechanism, which means that more updates of the event-triggering mechanism are required to enforce the estimation

error of (5) to zero.

V. CONCLUSION

In this paper, the state estimation problem has been investigated for a class of complex networks with time-varying

delays and event-triggering communication protocols. A new event-triggering function, in which the threshold is

not only dependent on the measurement outputs but also dependent on a predefined constant, has been proposed to

effectively reduce communication burden and avoid the Zenophenomenon. By means of comparison principle and

the Lyapunov function method, some sufficient conditions have derived to ensure that the estimation error dynamics

is exponentially ultimately bounded. In addition, the desired estimator gains have been obtained in terms of the

solution of matrix inequalities. Finally, a simulation hasbeen given to illustrate the effectiveness of our theoretical

results. Further research topics include the extension of this work to more general systems such as Markovian

jumping systems [20], [30], [40], discrete-time systems and sensor networks [9], [22], [23].
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