18,071 research outputs found

    Methods in Mathematica for Solving Ordinary Differential Equations

    Full text link
    An overview of the solution methods for ordinary differential equations in the Mathematica function DSolve is presented.Comment: 13 page

    Converting DAE models to ODE models: application to reactive Rayleigh distillation

    Get PDF
    This paper illustrates the application of an index reduction method to some differential algebraic equations (DAE) modelling the reactive Rayleigh distillation. After two deflation steps, this DAE is converted to an equivalent first-order explicit ordinary differential equation (ODE). This ODE involves a reduced number of dependent variables, and some evaluations of implicit functions defined, either from the original algebraic constraints, or from the hidden ones. Consistent initial conditions are no longer to be computed; at the opposite of some other index reduction methods, which generate a drift-off effect, the algebraic constraints remain satisfied at any time; and, finally, the computational effort to solve the ODE may be less than the one associated to the original DAE

    Open problems in symmetry analysis

    Get PDF

    Composing and Factoring Generalized Green's Operators and Ordinary Boundary Problems

    Full text link
    We consider solution operators of linear ordinary boundary problems with "too many" boundary conditions, which are not always solvable. These generalized Green's operators are a certain kind of generalized inverses of differential operators. We answer the question when the product of two generalized Green's operators is again a generalized Green's operator for the product of the corresponding differential operators and which boundary problem it solves. Moreover, we show that---provided a factorization of the underlying differential operator---a generalized boundary problem can be factored into lower order problems corresponding to a factorization of the respective Green's operators. We illustrate our results by examples using the Maple package IntDiffOp, where the presented algorithms are implemented.Comment: 19 page

    Symbolic Software for the Painleve Test of Nonlinear Ordinary and Partial Differential Equations

    Full text link
    The automation of the traditional Painleve test in Mathematica is discussed. The package PainleveTest.m allows for the testing of polynomial systems of ordinary and partial differential equations which may be parameterized by arbitrary functions (or constants). Except where limited by memory, there is no restriction on the number of independent or dependent variables. The package is quite robust in determining all the possible dominant behaviors of the Laurent series solutions of the differential equation. The omission of valid dominant behaviors is a common problem in many implementations of the Painleve test, and these omissions often lead to erroneous results. Finally, our package is compared with the other available implementations of the Painleve test.Comment: Published in the Journal of Nonlinear Mathematical Physics (http://www.sm.luth.se/math/JNMP/), vol. 13(1), pp. 90-110 (Feb. 2006). The software can be downloaded at either http://www.douglasbaldwin.com or http://www.mines.edu/fs_home/wherema

    Difference Methods and Deferred Corrections for Ordinary Boundary Value Problems

    Get PDF
    Compact as possible difference schemes for systems of nth order equations are developed. Generalizations of the Mehrstellenverfahren and simple theoretically sound implementations of deferred corrections are given. It is shown that higher order systems are more efficiently solved as given rather than as reduced to larger lower order systems. Tables of coefficients to implement these methods are included and have been derived using symbolic computations

    Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake

    Get PDF
    In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available

    Fast computation of power series solutions of systems of differential equations

    Get PDF
    We propose new algorithms for the computation of the first N terms of a vector (resp. a basis) of power series solutions of a linear system of differential equations at an ordinary point, using a number of arithmetic operations which is quasi-linear with respect to N. Similar results are also given in the non-linear case. This extends previous results obtained by Brent and Kung for scalar differential equations of order one and two
    corecore