19 research outputs found

    Comparing Methods to Extract the Knowledge from Neural Networks

    Get PDF
    Neural networks (NN) have been shown to be accurate classifiers in many domains. Unfortunately, the lack of NN’s explanatory capability of knowledge learned has somewhat limited their application. A stream of research has therefore developed focusing on knowledge extraction from within neural networks. The literature, unfortunately, lacks consensus on how best to extract knowledge from help neural networks. Additionally, there is a lack of empirical studies that compare existing algorithms on relevant performance measures. Therefore, this study attempts to help fill this gap by comparing two different approaches to extracting IF-THEN rules from feedforward NN. The results show a significant difference in the performance of the two algorithms depending on the structure of the dataset utilized

    Survey on the Family of the Recursive-Rule Extraction Algorithm

    Get PDF
    In this paper, we first review the theoretical and historical backgrounds on rule extraction from neural network ensembles. Because the structures of previous neural network ensembles were quite complicated, research on an efficient rule extraction algorithm from neural network ensembles has been sparse, even though a practical need exists for rule extraction in Big Data datasets. We describe the Recursive-Rule extraction (Re-RX) algorithm, which is an important step toward handling large datasets. Then we survey the family of the Recursive-Rule extraction algorithm, i.e. the Multiple-MLP Ensemble Re-RX algorithm, and present concrete applications in financial and medical domains that require extremely high accuracy for classification rules. Finally, we mention two promising ideas to considerably enhance the accuracy of the Multiple-MLP Ensemble Re-RX algorithm. We also discuss developments in the near future that will make the Multiple-MLP Ensemble Re-RX algorithm much more accurate, concise, and comprehensible rule extraction from mixed datasets

    A Quantitative Evaluation of Global, Rule-Based Explanations of Post-Hoc, Model Agnostic Methods

    Get PDF
    Understanding the inferences of data-driven, machine-learned models can be seen as a process that discloses the relationships between their input and output. These relationships consist and can be represented as a set of inference rules. However, the models usually do not explicit these rules to their end-users who, subsequently, perceive them as black-boxes and might not trust their predictions. Therefore, scholars have proposed several methods for extracting rules from data-driven machine-learned models to explain their logic. However, limited work exists on the evaluation and comparison of these methods. This study proposes a novel comparative approach to evaluate and compare the rulesets produced by five model-agnostic, post-hoc rule extractors by employing eight quantitative metrics. Eventually, the Friedman test was employed to check whether a method consistently performed better than the others, in terms of the selected metrics, and could be considered superior. Findings demonstrate that these metrics do not provide sufficient evidence to identify superior methods over the others. However, when used together, these metrics form a tool, applicable to every rule-extraction method and machine-learned models, that is, suitable to highlight the strengths and weaknesses of the rule-extractors in various applications in an objective and straightforward manner, without any human interventions. Thus, they are capable of successfully modelling distinctively aspects of explainability, providing to researchers and practitioners vital insights on what a model has learned during its training process and how it makes its predictions

    The Right Direction Needed to Develop White-Box Deep Learning in Radiology, Pathology, and Ophthalmology: A Short Review

    Get PDF
    The popularity of deep learning (DL) in the machine learning community has been dramatically increasing since 2012. The theoretical foundations of DL are well-rooted in the classical neural network (NN). Rule extraction is not a new concept, but was originally devised for a shallow NN. For about the past 30 years, extensive efforts have been made by many researchers to resolve the “black box” problem of trained shallow NNs using rule extraction technology. A rule extraction technology that is well-balanced between accuracy and interpretability has recently been proposed for shallow NNs as a promising means to address this black box problem. Recently, we have been confronting a “new black box” problem caused by highly complex deep NNs (DNNs) generated by DL. In this paper, we first review four rule extraction approaches to resolve the black box problem of DNNs trained by DL in computer vision. Next, we discuss the fundamental limitations and criticisms of current DL approaches in radiology, pathology, and ophthalmology from the black box point of view. We also review the conversion methods from DNNs to decision trees and point out their limitations. Furthermore, we describe a transparent approach for resolving the black box problem of DNNs trained by a deep belief network. Finally, we provide a brief description to realize the transparency of DNNs generated by a convolutional NN and discuss a practical way to realize the transparency of DL in radiology, pathology, and ophthalmology

    Classification of Explainable Artificial Intelligence Methods through Their Output Formats

    Get PDF
    Machine and deep learning have proven their utility to generate data-driven models with high accuracy and precision. However, their non-linear, complex structures are often difficult to interpret. Consequently, many scholars have developed a plethora of methods to explain their functioning and the logic of their inferences. This systematic review aimed to organise these methods into a hierarchical classification system that builds upon and extends existing taxonomies by adding a significant dimension—the output formats. The reviewed scientific papers were retrieved by conducting an initial search on Google Scholar with the keywords “explainable artificial intelligence”; “explainable machine learning”; and “interpretable machine learning”. A subsequent iterative search was carried out by checking the bibliography of these articles. The addition of the dimension of the explanation format makes the proposed classification system a practical tool for scholars, supporting them to select the most suitable type of explanation format for the problem at hand. Given the wide variety of challenges faced by researchers, the existing XAI methods provide several solutions to meet the requirements that differ considerably between the users, problems and application fields of artificial intelligence (AI). The task of identifying the most appropriate explanation can be daunting, thus the need for a classification system that helps with the selection of methods. This work concludes by critically identifying the limitations of the formats of explanations and by providing recommendations and possible future research directions on how to build a more generally applicable XAI method. Future work should be flexible enough to meet the many requirements posed by the widespread use of AI in several fields, and the new regulation

    Regular Inference over Recurrent Neural Networks as a Method for Black Box Explainability

    Get PDF
    Incluye bibliografía.El presente Desarrollo de Tesis explora el problema general de explicar el comportamiento de una red neuronal recurrente (RNN por sus siglas en inglés). El objetivo es construir una representación que mejore el entendimiento humano de las RNN como clasificadores de secuencias, con el propósito de proveer entendimiento sobre el proceso de decisión detrás de la clasificación de una secuencia como positiva o negativa, y a su vez, habilitar un mayor análisis sobre las mismas como por ejemplo la verificación formal basada en autómatas. Se propone en concreto, un algoritmo de aprendizaje automático activo para la construcción de un autómata finito determinístico que es aproximadamente correcto respecto a una red neuronal artificial

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    Protein Fold Recognition Using Adaboost Learning Strategy

    Get PDF
    Protein structure prediction is one of the most important and difficult problems in computational molecular biology. Unlike sequence-only comparison, protein fold recognition based on machine learning algorithms attempts to detect similarities between protein structures which might not be accompanied with any significant sequence similarity. It takes advantage of the information from structural and physic properties beyond sequence information. In this thesis, we present a novel classifier on protein fold recognition, using AdaBoost algorithm that hybrids to k Nearest Neighbor classifier. The experiment framework consists of two tasks: (i) carry out cross validation within the training dataset, and (ii) test on unseen validation dataset, in which 90% of the proteins have less than 25% sequence identity in training samples. Our result yields 64.7% successful rate in classifying independent validation dataset into 27 types of protein folds. Our experiments on the task of protein folding recognition prove the merit of this approach, as it shows that AdaBoost strategy coupling with weak learning classifiers lead to improved and robust performance of 64.7% accuracy versus 61.2% accuracy in published literatures using identical sample sets, feature representation, and class labels
    corecore