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ABSTRACT 

Yijing Su 
 

PROTEIN FOLD RECOGNITION USING ADABOOST STRATEGY 

Protein structure prediction is one of the most important and difficult problems in 

computational molecular biology.  Unlike sequence-only comparison, protein fold 

recognition based on machine learning algorithms attempts to detect similarities 

between protein structures which might not be accompanied with any significant 

sequence similarity.  It takes advantage of the information from structural and 

physic properties beyond sequence information. In this thesis, we present a novel 

classifier on protein fold recognition, using AdaBoost algorithm that hybrids to k 

Nearest Neighbor classifier.  The experiment framework consists of two tasks: (i) 

carry out cross validation within the training dataset, and (ii) test on unseen 

validation dataset, in which 90% of the proteins have less than 25% sequence 

identity in training samples.  Our result yields 64.7% successful rate in classifying 

independent validation dataset into 27 types of protein folds. Our experiments on 

the task of protein folding recognition prove the merit of this approach, as it 

shows that AdaBoost strategy coupling with weak learning classifiers lead to 

improved and robust performance of 64.7% accuracy versus 61.2% accuracy in 

published literatures using identical sample sets, feature representation, and class 

labels.  

[READ THIS ABSTRACT ABOVE.]
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CHAPTER ONE: INTRODUCTION 

Proteins are an important class of biological macromolecules present in all 

biological organisms.  Proteins have different levels of structural organization and 

generally fold into one or more specific spatial conformations, driven by a number of 

noncovalent interactions such as hydrogen bonding, ionic interactions, Van der Waals 

forces, and hydrophobic packing.  Most proteins can carry out their biological functions 

only when folding has been completed, because three-dimensional shape of the proteins 

in the native state is critical to their function (Malacinski, 2003). 

In order to understand the functions of proteins at a molecular level, it is 

necessary to determine the three dimensional structure of proteins.  The two major 

laboratory methods available for studying protein folding structure, X-ray crystallography 

and Nuclear Magnetic Resonance (NMR) spectroscopy, are time consuming and 

expensive (Baldi and Brunak, 2001).  The current proteomic study shows that the number 

of known protein sequence discovered from wet bench grows exponentially every year 

while the progress of determining protein structure is still far behind sequence finding.  

Generally the ratio of the number of known amino acid sequences to the number of 

validated three dimensional protein structures is about 100 to 1, while this gap 

continuously widen every year (Okun, 2004).  Toward this end, extracting structural 

information automatically from sequence databases is critically needed and predicting 

structure relying on computational algorithms are becoming more and more important.  

Protein structure prediction from the amino acid sequence information have tremendous 

impact in all of biotechnology and drug design, and it is a main stream in bioinformatic 
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proteome research (Rost and Sander,1994).  A wide range of machine learning 

approaches have been extensively applied for the prediction of protein structural classes 

and folds.  Among these various machine learning tools, neural networks (NNs) have 

been quite successful for such prediction (Ding and Dubchak, 2001).  Multi-layer 

perceptron (MLP) network (Bologna and Appel, 2002) and radial basis function (RBF) 

network (Chung et al., 2003) have been used broadly to protein fold determination.  In 

recent years, along with the achievement of support vector machines (SVMs) made in 

pattern classification including bioinformatics applications, SVMs have also been used in 

protein fold determination (Ding and Dubchak, 2001; Chung et al., 2003). 

Much progress has been made by many research groups that are interested in such 

kind of tasks.  When categorizing protein structure into 4 major classes - all α, all β, α/β, 

and α+β, a higher than 70% prediction accuracy can be achieved by various classification 

methods mentioned above, using sets of vector presentation such as simple frequency 

feature as well as general features extracted from a collection of protein sequences 

(Dubchak et. al., 1999; Chung et. al., 2003).  However, categorizing proteins into these 4 

structure classes is generally the first step in summarizing protein folding.  When we are 

further interested in knowing the details of folding structure beyond these 4 structure 

classes, such as globin-like(which belongs to all α), immunoglobulin-like (which belongs 

to all β), (TIM)-barrel (which belongs to α/β), prediction accuracy often degrades rapidly 

with respect to the increasing number of classes.  It is a fact that it is more challenging to 

deal with multiple class label classification when the number of classes is large (Chung 

et. al., 2003). 
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The objective of my thesis work is to investigate and develop a computational 

frame work which for m class classification while m is a large number.  To make fair 

comparison among state-of- art computational algorithms, we focus our effort only on 

those research groups which have performed their methods on same working datasets, 

which contain 27 classes.  The existing literature report an overall successful recognition 

rate is about 61.2% so far (Bologna and Appel, 2002) 

Our experiments consist of two innovative pattern classification methods to 

predict the fold pattern from query protein sequences: (i) ensemble classifier using hybrid 

multi-layer back-propagation neural networks, and (ii) AdaBoost algorithm hybrids to k 

nearest neighbor classifier.  The performance is compared to the baseline algorithm, k 

nearest neighbor algorithm, and further challenges the outcomes from the existing 

research groups. 

The organization of this thesis is as follows: Chapter Two gives an introduction of 

protein structure and its relationship with function, as well as protein structure prediction 

using computational techniques; Chapter Three is the literature review, explaining the 

way of extracting features from amino acid sequences and  briefly listing state of the art 

for protein structure prediction with the emphasis on the research groups involving the 

same working datasets; Chapter Four illustrates the methodology used in this thesis; 

Chapter Five describes the experiments setup, system architecture and data preparation, 

and shows the performance; Chapter Six compares this novel classifier with the 

benchmarks and makes some discussion on the contribution of AdaBoost algorithm in the 

tasks of protein fold recognition. 
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CHAPTER TWO: BACKGROUND 

This chapter gives an introduction of the topic in this thesis and illustrates the 

importance of this topic, by providing some background knowledge and information from 

the biological side to computational side.  The organization is as following: (i) protein 

structure and its relationship with function, giving an introduction of protein structure and 

explaining why put efforts on studying protein structure; (ii) protein structure 

classification systems, introducing the existing protein structure databases; (iii) protein 

structure determination, briefly describing two experimental techniques used in protein 

structure determination; and (iv) computational prediction of protein structure, illustrating 

three major theoretical methods for predicting the structure of proteins using 

computational techniques. 

 

 

Protein Structure and its Relationship with Function 

Proteins are an important class of biological macromolecules present in all 

biological organisms, made up of such elements as carbon, hydrogen, nitrogen, oxygen, 

and sulfur.  Proteins and peptides form the very basis of life, by regulating a variety of 

activities in all known organisms, and are generally responsible for regulating the cellular 

machinery and consequently, the phenotype of an organism (Malacinski, 2003).  Proteins 

have different levels of structural organization including: 

(i) Primary structure refers to the amino acid sequence of the peptide chains, 

which can be looked as the "linear" sequence of amino acids.   
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(ii) Secondary structure is the "local" ordered structure in proteins and is mainly 

formed through hydrogen bonds between backbone atoms.  The most common secondary 

structure elements in proteins are the α-helix and the β-sheet.  Secondary structure is 

defined as the local conformation of its backbone. 

(iii) Tertiary structure is the "global" folding of a single polypeptide chain, 

describing the packing of α-helices, β-sheets and random coils with respect to each other 

on the level of one whole polypeptide chain.  A major driving force in determining the 

tertiary structure of globular proteins is the hydrophobic effect.  The polypeptide chain 

folds such that the side chains of the nonpolar amino acids are "hidden" within the 

structure and the side chains of the polar residues are exposed on the outer surface.  

Tertiary structure of a protein is formed when the attractions of side chains and those of 

the secondary structure combine and cause the amino acid chain to form a distinct and 

unique 3-dimensional structure.  It is this unique structure that gives a protein is specific 

function. 

(iv) Quaternary structure involves the association of two or more polypeptide 

chains into a multi-subunit structure.  Quaternary structure is the stable association of 

multiple polypeptide chains resulting in an active unit.  Not all proteins exhibit 

quaternary structure.  It only exists when there is more than one polypeptide chain 

present in a complex protein.  Then quaternary structure describes the spatial 

organization of the chains. 

Most proteins can carry out their biological functions only when folding has been 

completed, because three-dimensional shape of the proteins in the native state is critical 

to their function.  The secondary structures, the most common of which are α-helix and β-



 6 

sheet, are formed by a small number of amino acids that are close together, which then, in 

turn, interact, fold and coil to produce the tertiary structure that contains its functional 

regions (Malacinski, 2003).  In order to understand the functions of proteins at a 

molecular level, it is necessary to determine the three dimensional structure of proteins. 

 

 

Protein Structure Classification Systems 

There are several databases existing to identify groups of similarly folded 

proteins. SCOP, CATH, and FSSP are the largest ones.  CATH is a semi-automatic, 

hierarchical classification of protein domains, which clusters proteins at four major 

levels: Class (C), Architecture (A), Topology (T), and Homologous superfamily (H).  

SCOP (Structured Classification of Proteins) is a largely manual classification of protein 

structural domains based on similarities of their amino acid sequences and three-

dimensional structures, providing a detailed and comprehensive description of the 

structural and evolutionary relationships among all proteins whose structures are known.  

SCOP utilizes four levels of hierarchic structural classification: Class, Fold, Superfamily, 

and Family.  This classification is more significantly based on the human expertise than 

semi-automatic CATH, its chief rival. It is usually accepted that SCOP provides a better 

justified classification (Baldi and Brunak, 2001).  Human expertise is needed to decide 

whether certain proteins are evolutionary related and therefore should be assigned to the 

same superfamily, or their similarity is a result of structural constraints and therefore they 

belong to the same fold.  FSSP is both known as Fold classification based on Structure-

Structure alignment of Proteins and Families of Structurally Similar Proteins.  FSSP is 
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purely automatically generated (including regular automatic updates) but offers no 

classification, allowing the user to draw their own conclusion as to the significance of 

structural relationships based on the pairwise comparisons of individual protein 

structures.  Although using different methods and there are some differences in these 

databases, the classification of the majority of proteins which have been classified is 

consistent in general (Baldi and Brunak, 2001). 

 

 

Protein Structure Determination 

As of today, there are two experimental techniques, which are namely, X-ray 

crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy, available to 

determine the 3D structure of proteins.  Around 90% of the protein structures in the 

Protein Data Bank are determined by X-ray crystallography.  This method allows one to 

measure the 3D density distribution of electrons in the protein (in the crystallized state) 

and thereby infer the 3D coordinates of all the atoms to be determined to a certain 

resolution.  Roughly 9% of the known protein structures are obtained by NMR techniques 

(Malacinski, 2003).  However, these two laboratory methods are time consuming and 

expensive.  And the current proteomic study shows that the number of known protein 

sequence discovered from wet bench grows exponentially every year while the progress 

of determining protein structures is still far behind sequence finding.  Generally the ratio 

of the number of known amino acid sequences to the number of validated 3D structures is 

about 100 to 1, while this gap continuously widen every year (Okun, 2004).  Toward this 
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end, the practical role of protein structure prediction using computational methods is now 

more necessary and more important than ever. 

 

Computational Prediction of Protein Structure 

Due to the fact that the structure of a protein gives much more insight in the 

function of the protein than its sequence, as well as the large gap between the number of 

known amino acid sequences and the number of known protein structures, a wide range 

of methods for the computational prediction of protein structure from its sequence have 

been proposed.  There are certainly a number of factors make it a very difficult task, 

including the number of possible structures that proteins may possess is extremely large, 

the physical basis of protein structural stability is not fully understood, the tertiary 

structure of a native protein may not be readily formed without the aid of transacting 

factors, one particular sequence may be able to assume multiple conformations depending 

on its environment, and so on (Malacinski, 2003). 

In spite of the above hindrances, much progress has been made by the many 

research groups that are interested in the task.  Prediction of structures for small proteins 

is now a perfectly realistic goal.  There are three major theoretical methods for predicting 

the structure of proteins: Ab initio prediction, comparative modeling, and fold 

recognition. 

(i) Ab initio protein modeling method is a mixture of science and engineering, 

seeking to build 3D protein models from scratch, i.e., based on physical principles rather 

than directly on previously solved structures.  The science portion is in understanding 

how the 3D structure of proteins is attained, while the engineering one is in deducing the 
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3D structure by a given sequence.  This modeling method tends to require vast 

computational resources, and have thus only been carried out for tiny proteins.  To 

attempt to predict protein structure de novo for larger proteins, we will need better 

algorithms and larger computational resources like those afforded by either powerful 

supercomputers or distributed computing (Pevzner, 2000). 

(ii) Comparative protein modeling, also known as homology modeling, is based 

on the reasonable assumption that two homologous proteins will share very similar 

structures.  Since it is widely accepted that a protein's fold is more evolutionarily 

conserved than its amino acid sequence; this method uses previously solved structures as 

starting points or templates to predict the structure of the target sequence.  

Unsurprisingly, homology modeling is most accurate when the target and template have 

similar sequences (Malacinski, 2003).  But, it is quite often that the query protein does 

not have any structure-known homologous protein in the existing databases. 

(iii) Protein fold recognition or threading scans the amino acid sequence of an 

unknown structure against a database of solved structures, producing a list of scores.  The 

scores are then ranked and the fold with the best score is assumed to be the one adopted 

by the sequence (Malacinski, 2003).  Fold recognition methods are widely used and 

effective because it is believed that there are a strictly limited number of different protein 

folds in nature, mostly as a result of evolution but also due to constraints imposed by the 

basic physics and chemistry of polypeptide chains (Dubchak et. al., 1999). 

Based on the statistics of SCOP, currently there are 971 different protein folds 

known (from SCOP database statistics for 1.71 release (October 2006)), and new folds 

are still being discovered every year thanks in part to the ongoing structural genomics 
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projects.  By the assumption that the number of protein folds is restricted, predicting the 

three-dimensional structure of a protein may be preliminary converted to a particular 

classification problem.  This thesis follows this approach and does some research based 

on it. 

When studying the protein structure prediction problems, a primitive way to 

categorize protein structure into four major classes is generally used.  This is 

systematically based upon α-helix and β-sheet as well as the general topological 

properties of the mixture of both.  As described in chapter two, α-helices and β-sheets are 

two well-defined secondary structural units abundantly existing in proteins.  Different 

topology may constitute a specific type of fold (Malacinski, 2003).  These four major 

classes are: 

(i) all α: the secondary structure is almost exclusively α –helices; 

(ii) all β: the secondary structure is composed almost exclusively of β –sheets;  

(iii) α/β: helices and sheets are arranged in the sequence of β-α-β units and the β -

sheet strands are in parallel;  

(iv) α+β: helices and sheets tend to be spatially separated in different parts of the 

protein and lack of β-α-β supersecondary structure.   

Beyond the 4 major structural classes, there is deeper level classification of 

protein folds.  Table 1 lists the number of protein folds based on SCOP statistics for 1.71 

releases (October 2006).  Accordingly, categorizing protein structure into these 4 major 

classes is generally the first step in summarizing protein folding, and we are further 

interested in knowing the details of folding structure beyond these 4 major classes, such 
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as globin-like(which belongs to all α), immunoglobulin-like (which belongs to all β), 

(TIM)-barrel (which belongs to α/β), etc.  

 

 

Table 1. Protein structure classes with the number of protein folds based on SCOP 

statistics for 1.71 releases (October 2006). 

Class Number of folds 

  

All α proteins (essentially formed by α –helices) 226 

All β proteins (essentially formed by β –sheets) 149 

α/β proteins (β-α-β units with parallel β –sheets) 134 

α+β proteins (lack of β-α-β, segregated α and β regions) 286 

Others (membrane and cell surface proteins, small proteins, etc.) 176 

  

Total 971 
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CHAPTER THREE: LITERATURE REVIEW 

The section of the literature review will go over some progress made on protein 

structure prediction using various computational methods. This chapter explains the way 

of extracting features from amino acid sequences and briefly lists the various 

computational algorithms for protein structure prediction with the emphasis on the 

research groups involving the same working datasets. 

To systematically illustrate the machine learning methods of protein structure 

prediction and to make fair comparison among state-of- the-art computational algorithms, 

this thesis focuses the effort only on those research groups which have performed their 

efforts on the same working datasets using the same methods to extract features from 

amino acid sequences, which will be discussed below.  

The reason why this thesis chooses the working datasets is the challenge of 

dealing with multiple class label classification problem when the number of classes is 

large.  In a broad structural classification, which contains four major classes - all α, all β, 

α/β, and α+β (as described in chapter two), a higher than 70% prediction accuracy can be 

achieved by various classification methods, using set of vector presentation such as 

simple frequency feature as well as general features extracted from a collection of protein 

sequences (Dubchak et. al., 1999; Chung et. al., 2003).  However, when the classification 

goes into a deeper level, protein fold recognition, the prediction accuracy often degrades 

rapidly with respect to the increasing number of classes.  It is fact that it is more 

challenging to deal with multiple class label classification problem when the number of 

classes is large.   
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Feature Extraction 

The working datasets, used for training and testing by those research groups 

(which will be discussed in the next section), are taken from Ding and Dubchak (2001).  

The proteins in the training and testing datasets are classified into the 27 fold types 

according to the SCOP database (Andreeva et al, 2004; Murzin et al, 1995).  Among the 

above 27 fold types, there are 6 types belong to all α structural class, 9 types to all β 

class, 9 types to α/β class, and 3 types to α+β class.  Therefore, the classification of 27 

folds is one level deeper and more challenge than that of 4 major structural classes. To 

design experiments utilizing machine learning approach and applying learning-from-

example strategy, six feature subsets are extracted from protein sequences based on the 

following manners (Dubchak et al, 1999; Dubchak et al, 1995).  Percentage composition 

of the twenty amino acids forms the first feature subset consisting of 20 features, named 

as amino acids composition.  The other five subsets of feature vectors are named 

predicted secondary structure, hydrophobicity, normalized van der Waals volume, 

polarity, and polarizability.  Each of these five feature subsets contains 21 dimension 

feature vectors.  Thus, a feature vector concatenate six feature subsets and produces 125 

feature values in total (20 + 21 × 5). 

In order to understand how to extract these feature vectors from amino acid 

sequences, here we will briefly introduce the approach used in Dubchak et al (1995, 

1999), which used a combination of local and global information about amino acid 

sequences and constructed in two steps. 

In the first step, twenty amino acids were divided into three groups for each 

subset representing the main clusters of the amino acid index of Tomii and Kanehisa 
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(1996).  Thus, for each subset, every amino acid was replaced by the index 1, 2, or 3 

according to one of the three groups to which it belonged.  For the subsets predicted 

secondary structure, the index 1, 2, and 3 correspond to the helix, strand, and coil, 

respectively.  For the other four attributes, those of hydrophobicity, normalized van der 

Waals volume, polarity, and polarizability, the 20 amino acids were divided into three 

groups according to the magnitudes of their numerical values.  The ranges of these 

numerical values and the amino acids belonging to each group are shown in Table 2. 

 

 

Table 2. Amino acid attributes and the division of the amino acids into 3 groups for each 

attribute (source from Dubchak et al, 1999) 

Property Group 1 Group 2 Group 3 

    
Hydrophobicity Polar 

R, K, E, D, Q, N 
Neutral 
G, A, S, T, P,H,Y 

Hydrophobic 
C, V, L, I, M, F,W 

Normalized van der 
Waals volume 

0–2.78 
G, A, S, C, T, P, D 

2.95–4.0 
N, V, E, Q, I, L 

4.43–8.08 
M, H, K, F, R,Y,W 

Polarity 4.9–6.2 
L, I, F,W, C, M, V,Y 

8.0–9.2 
P, A, T, G, S 

10.4–13.0 
H, Q, R, K, N, E, D 

Polarizability 0–0.108 
G, A, S, D, T 

0.128–0.186 
C, P, N, V, E, Q, I, L 

0.219–0.409 
K, M, H, F, R,Y,W 
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In the second step, three descriptors were calculated for a given subset: (i) 

Composition (C), to describe the global percent composition of each of the three groups 

in a protein; (ii) Transition (T), to describe the percent frequencies with which the 

attribute changes its index along the entire length of the protein; and (iii) Distribution 

(D), to describe the distribution pattern of the attribute along the sequence (Dubchak et 

al, 1995, 1999). 

Let us consider the hydrophobicity attribute as an example (see table 3).  The 

model sequence is LTKDEYERHNSYTCEATHKTSTSP.  Based on the partition rules 

discussed above, all amino acids are divided into three groups, polar, neutral, and 

hydrophobic, it can be transferred into 321112112122231222122222. 

 

Table 3. Model sequence consisting of 3 types of residues (Group 1, 2 and 3) to describe 

the feature vectors of hydrophobicity  

Numbering 1    5     1
0     1

5     2
0     

                         
Sequence L T K D E Y E R H N S Y T C E A T H K T S T S P 

Group 3 2 1 1 1 2 1 1 2 1 2 2 2 3 1 2 2 2 1 2 2 2 2 2 

                         
Group 1   * * *  * *  *     *    *      

Group 2  *    *   *  * * *   * * *  * * * * * 

Group 3 *             *           

1-2 transitions   *   * *  * * *     *   * *     

1-3 transitions               *          

2-3 transitions  *            *           
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The model sequence includes 8 Group 1 residues (n 1 = 8), 14 Group 2 residues (n 

2 = 14) and 2 Group 3 residues (n 3 = 2). The percent compositions are calculated as 

follows: n1 / (n1 + n2 + n3) = 33.3% for Group1, n2 / (n1 + n2 + n3) = 58.3% for Group2, 

and n3 / (n1 + n2 + n3) = 8.3% for Group3. These three numbers represent the first 

descriptor, C, the global percent compositions of polar, neutral, and hydrophobic residues 

in the protein. The second descriptor, T, also consists of the three numbers -- the percent 

frequency with which: (i) a polar residue is followed by a neutral residue or a neutral 

residue by a polar residue, in which case, there are 9 transitions of this type, that is (9 / 

23) ×100% = 39.1%; (ii) a polar residue is followed by a hydrophobic residue or a 

hydrophobic residue by a polar residue, in which case, there are 1 transitions of this type, 

that is (1 / 23) ×  100% = 4.3%;  and (iii) a neutral residue is followed by a hydrophobic 

residue or a hydrophobic residue by a neutral residue, in which case, there are 2 

transitions of this type, that is (2 / 23) ×100% = 8.7%. The third descriptor, D, consists of 

the five numbers for each of the three groups: the fractions of the entire sequence, where 

the first residue of a given group is located, and where the 25%, 50%, 75%, and 100% of 

those are contained. In this example, the first residue of Group 1 coincides with the first 3 

of the chain, so the first number of D descriptor equals (3 / 24) ×  100% = 12.5%. 25% of 

all Group 1 residues (25% ×  8 = 2 residues) are contained within the first 4 residues of 

the protein chain, so the second number equals (4 / 24) ×  100% = 16.7%. Similarly, 50% 

of Group 1 residues (50% ×  8 = 4 residues) are within the first 7 residues of the chain; 

thus, the third number is (7 / 24) ×  100% = 29.2%. The fourth and the fifth numbers of 

the distribution descriptor are 41.7% and 79.2%, respectively. Analogous numbers for 

Group 2 are 8.3%, 37.5%, 66.7%, 83.3%, and 100%, respectively. Analogous numbers 
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for Group 3 are 0.0, 0.0, 4.2%, 4.2%, and 58.3%, respectively. Thus, the complete 

parameter vector contains 3 (C) + 3 (T) + 5 ×  3 (D) = 21 scalar components. They are 

33.3, 58.3, 8.3, 39.1, 4.3, 8.7, 12.5, 16.7, 29.2, 41.7, 79.2, 8.3, 37.5, 66.7, 83.3, 100.0, 0.0, 

0.0, 4.2, 4.2, and 58.3. 

Within the feature extraction method described above, feature vectors can be 

easily calculated from new sequences, and fold prediction by different machine-learning 

techniques can be performed rapidly and automatically.  

 

 

State-of-the-Art 

When dealing with the classification within four classes - all α, all β, α/β, and 

α+β, a higher than 70% prediction accuracy can be achieved by various classification 

methods, using the sets of feature vectors extracted from protein sequences by the 

methods illustrated in previous section (Dubchak et. al., 1999; Chung et. al., 2003).  

However, when the classification goes into a deeper level, protein fold recognition, the 

prediction accuracy often degrades rapidly with respect to the increasing number of 

classes. 

All the approaches, briefly analyzed below, use the working datasets, which 

contains 27 classes and whose feature vectors are extracted from protein sequences by the 

methods described above. Unless otherwise stated, a 125 dimensional feature vector is 

assumed for each protein fold. 

Ding and Dubchak (2001) employed one-versus-others, unique one-versus-others 

and all-versus-all methods to utilize many two-class classifiers (for example, 27 two-way 
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classifiers for one-versus-others, 27 ×  (27 - 1) / 2 = 351 two-way classifiers for all-

versus-all methods) as the building blocks of this multi-class classification problem.  In 

their work, support vector machines (SVMs) and three-layer feed-forward neural 

networks (NNs) were used.  

Bologna and Appel (2002) used a 131 dimensional feature vector and an 

ensemble of four-layer Discretized Interpretable Multi-Layer Perceptrons (DIMLP). In 

their working datasets, the protein length for each protein fold is reported in each of the 

six feature subsets in addition, thus the feature vector concatenate produced 131 feature 

values in total (21 + 22 × 5).  In DIMLP, each network learns all protein folds 

simultaneously, which is in contrast to Ding and Dubchak’s work (2001). Bagging and 

arcing algorithms were employed to combine the outputs of DIMLPs individually.  

Chung et al. (2003) designed a hierarchical two-level classification and selected 

Neural Networks (NNs) and SVMs as base classifiers. At first level of classification, a 

protein to be recognized was assigned to one of the four classes (all α, all β, (α+β), or 

α/β). At second level, it was classified as one of the 27 folds. This level employed the 

outputs of the first level, which meant they were not trained to predict all folds, but only 

those belonging to a certain structural class. In contrary to Ding and Dubchak’s work 

(2001), each NN or SVM is a multi-class classifier so that the number of classifiers is 

greatly reduced (actually, it is equal to five: one classifier for class recognition and the 

four for fold recognition). The common NN models including Multi-Layer Perceptron 

(MLP), Radial Basis Function Network (RBFN), and General Regression Neural 

Network (GRNN) with a single hidden layer were used.  
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Okun (2004) explored new techniques by modifying the standard K-nearest 

neighbor algorithm intending to improve the classification performance of the 

conventional KNN to a level of SVM. Unlike the SVM, which builds a nonlinear 

decision surface, separating different classes of the data, in a high (often infinite) 

dimensional feature space, K-Local Hyperplane Distance Nearest Neighbor algorithm 

(HKNN) tries to find this surface directly in input space. It was assumed that each class 

was locally linear in such a high dimensional space. The idea of HKNN was to fantasize 

the missing points in the manifold, which introducing artifacts in the decision surface 

generated by the conventional KNN, thus negatively affecting the generalization ability 

of KNN, based on a local linear approximation of the manifold of each class.  
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CHAPTER FOUR: METHODOLOGY 

In this thesis, there are two independent machine learning methods are employed 

and explored for the tasks of protein fold classification. One is the ensemble classifier 

using hybrid multi-layer neural networks, in which the back-propagation neural networks 

(BP-NN) are used and data fusion approach is employed to hybrid the intelligence 

classifiers. The other is AdaBoost algorithm hybrids to k nearest neighbor (KNN) 

classifier, in which k nearest neighbor algorithm is brought into play as the baseline 

algorithm to generate weak classifiers and AdaBoost algorithm is for improving the 

accuracy of k nearest neighbor algorithm.  Here we will provide a brief description of 

these baseline classifiers and ensemble algorithms individually. 

 

 

Neural Networks 

Neural networks (NNs) have been trained to perform complex functions in 

various fields of application including pattern recognition, identification, classification, 

speech, vision and control systems (Haykin, 1998).  Today neural networks can be 

trained to solve problems that are difficult for conventional computers or human beings 

and have also been widely used for protein fold determination (Malacinski, 2003).  In this 

thesis, we use back-propagation neural networks, which are a popular type of network 

that can be trained to recognize different patterns. The back-propagation networks consist 

of several layers of neurons of which first one is the input layer and the last one is the 

output layer, remaining layers are called hidden layers. The number of neurons in the 

input layer depends on the number of possible inputs we have, while the number of 
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neurons in the output layer depends on the number of desired outputs. The number of 

hidden layers and how many neurons in each hidden layer cannot be well defined in 

advance, and could change depending on the network configuration and the types of data. 

By offering such a degree of data compression or expansion, neural networks are good 

choices in the hybrid systems, in which logical processing layer is generally compact and 

fuse data from different feature modalities and cognitive modes. 

 

 

Data Fusion 

Data fusion is the process of putting together information obtained from many 

heterogeneous sensors, on many platforms, into a single composite picture of the 

environment.  We employ it here to hybrid intelligent classifiers by constructing a multi-

layer pattern classification system for the purpose of fusing distinct modalities of folding 

feature vectors.  The concept of reductionism is a common practice in the development of 

intelligent systems - to design solutions to complex problems through a stepwise 

decomposition of the task into successive modules (Kuncheva et al, 2001).  Typically, in 

hybrid systems, reflexive tasks are assigned to the connectionist subsystem and 

deliberative tasks to the second level of classifier.  The hybrid approach for classification 

involves specific levels of knowledge where the hierarchy is defined in terms of concept 

granularity and specific interfaces (Oza et al, 2005).  As one moves upward in the 

hierarchical structure, we witness a corresponding degree of data compression so more 

powerful ('reasoning') methods can be employed on reduced amounts of data.  

Connectionism can handle the whole range of sensory inputs and their variability 
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('noise').  Its distributed nature provides for fault tolerance to missing and incomplete 

data.  The output of such modules, known to have a well-defined maximum likelihood 

(ML) probabilistic meaning, can be thus combined across ensemble of such networks.  

Symbolic methods are compact and can fuse data from different sensory modalities and 

cognitive modes.  As a consequence one can make sense of the sensory input and 

interpret ('explain') it using meaningful coding units (Oza et al, 2005). 

The hybrid classifier architecture for protein folding prediction tasks pursued in 

this thesis consists of two layers of back-propagation (BP) networks.  The system 

architecture is shown in Figure 1.  This algorithm uses ensemble neural network 

computation for protein folding classification.  The hybrid intelligent classifiers consist of 

a set of ensemble networks using back-propagation and the network outputs are 

summarized by another back-propagation neural network.  At first layer, several BP-NNs 

are used individually.  A single Back-propagation neural network at the second layer of 

system architecture implements the fusing stage using the first layer outputs as input 

vectors.  The CV ensembles implements active learning schemes leading to increased 

ambiguity by employing different topologies for the networks themselves and training the 

networks on different data sets corresponding to variations of the original data. 
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Figure 1. The architecture of the hybrid classifier system 

 

 

AdaBoost Algorithm 

AdaBoost, also named as “adaptive boosting" algorithm, introduced by Freund 

and Schapire (1996, 1997), with the goal of improving the accuracy of any given learning 

algorithm.  It works by incrementally adding one hypothesis at a time to an ensemble 

classifier.  In AdaBoost, each training sample receives a weight, which is initialized to be 

uniform, to determine its probability of being re-selected for training classifier in next 

iteration. If a training pattern is accurately classified, then its chance of being used again 

in a subsequent component classifier is reduced. Conversely, if the pattern is 

misclassified, then its chance of being used again is raised. AdaBoost.M1 is the most 

straightforward extension of AdaBoost used for multi-class classifier (Dietterich, 2000).  

We let the feature vector of the samples and their labels in D be denoted by xi and 

yi, respectively, let Ck be the classifier on iteration k, and let Wk(i) be the kth discrete 
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distribution over all these training samples.  The AdaBoost.M1 pseudocode (Dietterich, 

2000), is as following: 
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In line 5, kE , the error for classifier Ck, is determined with respect to the 

distribution ( )iWk over D on which it was trained.  In line 7, kZ is chosen to 

normalize 1+kW ; while ( )i
k xh  is the category label (+1 or -1) given to pattern ix  by weak 

classifier kC .  The final classification of a testing sample vector x is based on a 

discriminant function that is the weighted sum of the outputs given by the component 

classifiers ∑
=∈

=
K

k
kkYy

hH
1

maxarg α .  

Figure 2 shows the system architecture of AdaBoost hybrid weak classifiers.  

 

 

 

Figure 2. The architecture of AdaBoost hybrid weak classifiers system 
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K Nearest Neighbor Algorithm 

K Nearest Neighbor algorithm (KNN) was first introduced by the researchers Fix 

and Hodges (1951) for classifying objects based on closest training examples in the 

feature space.  The training examples are mapped into multidimensional feature space, 

thus, the space is partitioned into regions by class labels of the training samples. A point 

in the space is assigned to the class c if it is the most frequent class label among the k 

nearest training samples, where k is the number of neighbors.  Usually Euclidean 

distance is used.  The Euclidean distance between two points P = ( p1, p2, …, pn ) and Q 

= ( q1, q2, …, qn ), in Euclidean n-space, is defined as: 

( ) ( )∑
=

−=−+⋅⋅⋅+−+−
n

i
iinn qpqpqpqp

1

222
22

2
11 )()(  

The best choice of k depends upon the data; generally, larger values of k reduce the effect 

of noise on the classification, but make boundaries between classes less distinct.  

In this thesis, we use AdaBoost Algorithm to hybrid on k nearest neighbor 

classifiers. As discussed in previous section, in AdaBoost, each training sample receives 

a weight which determines its probability of being re-selected for training classifier in 

next iteration. To integrate these two algorithms, we employ the weight for each training 

sample in each of iteration in AdaBoost to k nearest neighbor algorithm. We let n be the 

number of samples in D, whose weight, feature vector, labels are denoted by iw , xi, and 

yi, where { }kyi ,...,1∈ , respectively. We let NN be the number of the nearest neighbor and 

let NS be the neighbor set. The pseudocode of modified KNN is as following: 
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3.  Calculate the distances di,j between iX  and jX  , niij ,...,1,1,...,1 +−=  
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CHAPTER FIVE: EXPERIMENTS AND RESULTS 

In this thesis, there are two independent machine learning methods employed and 

explored to solve the problem of protein fold recognition as mentioned in chapter four.  

One is namely ensemble classifier using hybrid multi-layer back-propagation neural 

networks (BP- NN), the other is AdaBoost algorithm hybrids to k nearest neighbor 

classifier. Please note, these two sets of methods are independent and experiments are 

carried out individually. 

 

 

Working Datasets 

The training and testing datasets in this thesis are taken from Ding and Dubchak 

(2001) and many research groups have performed their methods on it as discussed in 

chapter three. The working datasets are available online 

(http://crd.lbl.gov/~cding/protein/).   

The training database, which contains 313 proteins, is based on the PDB_select 

sets (Hobohm and Sander, 1994), where two proteins have no more than 35% of the 

sequence identity for the aligned subsequences longer than 80 residues.  The independent 

testing dataset, which contains 385 proteins, is composed of protein sequences of less 

than 40% identity with each other and less than 35% identity with the proteins of the 

training dataset.  In fact, 90% of the proteins of the testing dataset have less than 25% 

sequence identity with the proteins of the training dataset (Dubchak et al, 1995, 1999).  

The proteins in the training and testing datasets are classified into the 27 fold types 

according to the SCOP database (Andreeva et al, 2004; Murzin et al, 1995).   

http://crd.lbl.gov/~cding/protein/�
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Table 4.  27 SCOP folds used in current study (source from Dubchak et al, 1999) 

Index Structure 
Class Fold Ntrain Ntest 

     1 

all α 
 

Globin-like   13 6 

2 Cytochrome c 7 9 

3 DNA-binding 3-helical bundle 12 20 

4 4-helical up-and-down bundle 7 8 

5 4-helical cytokines 9 9 
6 EF-hand 7 9 

     7 

all β 
 

Immunoglobulin-like beta-sandwich 30 44 

8 Cupredoxins 9 12 

9 Viral coat and capsid proteins 16 13 

10 ConA-like lectins/glucanases 7 6 

11 SH3-like barrel 8 8 

12 OB-fold 13 19 

13 Trefoil 8 4 

14 Trypsin-like serine proteases 9 4 
15 Lipocalins 9 7 

     16 

α/β 
 

(TIM)-barrel 29 48 

17 FAD (also NAD)-binding motif 11 12 

18 Flavodoxin-like 11 13 

19 NAD(P)-binding Rossmann-fold domains 13 27 

20 P-loop containing nucleotide triphosphate hydrolases 10 12 

21 Thioredoxin-like 9 8 

22 Ribonuclease H-like motif 10 14 

23 Hydrolases 11 7 
24 Periplasmic binding protein-like 11 4 

     25 
α+β 

 

β -Grasp  7 8 

26 Ferredoxin-like 13 27 

27 Small inhibitors, toxins, lectins 14 27 
     
Total 313 385 
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Among the 27 fold types, there are 6 types belong to all α structural class, 9 types 

to all β class, 9 types to α/β class, and 3 types to α+β class.  Therefore, the classification 

of 27 folds is one level deeper and more challenging than that of 4 major structural 

classes. These 27 fold types and the corresponding number of proteins in training (Ntrain) 

and testing (Ntest) are shown in Table 4.   

The feature vector of the working datasets can be concatenated into six feature 

subsets, named amino acids composition, predicted secondary structure, hydrophobicity, 

normalized van der Waals volume, polarity, and polarizability, respectively.  They are all 

extracted from protein sequences based on the methods of feature extraction which has 

been described in chapter three. There are 21 feature values in each subset, except amino 

acids composition, in which there are 20 feature values. 

 

 

Table 5.  Six feature subsets extracted from protein sequence and the dimension of the 

feature vectors (source from Dubchak et al, 2001) 

Parameter set Symbol Dimension 

   
Amino acid composition C 20 

Predicted secondary structure S 21 

Hydrophobicity H 21 

Normalized van der Waals volume V 21 

Polarity P 21 

Polarizability Z 21 
   

Total 125 
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Experiment 1: Ensemble Classifier Hybrid Two-layer BP- NN 

In experiment 1, ensemble neural network computation is used for the protein 

folding classification tasks pursued in this thesis.  The organization of this section is as 

following: (i) system architecture and I/O vectors, illustrating the architecture of this 

experiment, as well as the input and output vectors of two layers back-propagation neural 

networks; (ii) class label binary representation, explaining why and how to convert the 

class labels to binary string; (iii) data preparation, describing how to partition the working 

datasets for two layers networks training and cross validation; and (iv) classification 

within six folds, introducing an effort made on six classes which are taken from the 

original datasets and show the performance as well as the discussion.  

 

 

System Architecture and I/O Vectors 

The hybrid classifier architecture, which has been discussed in chapter four, 

consists of two layers of back-propagation neural networks (BP-NN).  The hybrid 

intelligent classifiers consist of a set of ensemble networks using back-propagation and 

the network outputs are summarized by another back-propagation neural network.   

At first layer, six BP-NNs are used.  The inputs of them are the six feature 

subsets, amino acids composition, predicted secondary structure, hydrophobicity, 

normalized van der Waals volume, polarity, and polarizability.  These six neural 

networks are trained individually and independently.  The number of hidden layers and 

how many neurons in each hidden layer could be different in each of these six networks.  
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Just as already have been discussed in previous chapter, these parameters can be adjusted 

depending on the different network configuration and data. 

At the second layer of system architecture, a single Back-propagation neural 

network (BP-NN) implements the fusing stage. It uses the outputs from the first layer 

neural networks as the input vectors to train the second layer neural network (see figure 

3). 

 

 

 

Figure 3. System architecture and I/O vectors of the ensemble classifier hybrid two-layer 

BP- NN 
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Class Label Binary Representation 

As described before, a single back-propagation neural network, which implements 

the fusing stage at the second layer of system architecture, uses the first layer’s outputs as 

input vectors to train the second layer’s back-propagation neural network.  Accordingly, 

the class labels, which act as target outputs in first layer’s networks as well as the inputs 

in second layer’s neural network, should be converted to binary string.  Here shows an 

example of the switching when dealing with a dataset having 5 classes. The original class 

labels are transferred to binary strings as follows. 

       
Class 1  1 0 0 0 0 

Class 2  0 1 0 0 0 

Class 3  0 0 1 0 0 

Class 4  0 0 0 1 0 

Class 5  0 0 0 0 1 

 

 

Data Preparation 

As shown in figure 3, there are two datasets used to train the back-propagation 

neural networks at two layers individually.  Therefore, the original training set is 

partitioned into two parts, called training set and tuning set, used to train the first and the 

second layer neural networks, respectively.  With this purpose, the original training set in 

this experiment, is randomly partitioned into 3 parts, Set1, Set2, and Set3.  The partition 

and usage of these sets are listed in figure 4.  (i) Set1 and Set2 act as training set to train 

the first layer neural networks, (ii) all of these 3 sets are brought into the tuning set to test 
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the first layer neural networks, and the outputs are used to train the second layer network, 

and (iii) the unseen testing set are taken to both of these two layers neural networks.  To 

evaluate the robustness of this learning method, 3 fold cross validation is carried out, by 

repeating the above steps 3 times, using Set1 and Set2 as training set at first time, Set1 

and Set3 at second time, and then Set2 and Set3.  All of these3 sets are used as tuning set 

at each time. 

 

 

 

Figure 4. The partition of the original datasets and their usage. 
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fold name and the number of proteins in original training set and unseen testing set for 

each of these six folds as well as the number of proteins in Set1, Set2, and Set3 (which 

are from original training set) are listed in table 6. 

 

 

Table 6.  Six protein folds are taken from the datasets and the original training set are 

further partitioned into 3 sets. 

Fold Name # in Original 
Training 

# in 
Set1 

# in 
Set2 

# in 
Set3 

# in 
Test 

      

Globin-like 13 5 4 4 6 

Immunoglobulin-like 30 10 10 10 44 

Viral coat and capsid proteins 16 6 5 5 13 

(TIM)-barrel 29 9 10 10 48 

NAD(P)-binding Rossmann-fold 13 4 5 4 27 

Small inhibitors, toxins, lectins 14 4 5 5 27 

      
Total 115 38 39 38 165 

 

 

The performance of the classification within these six protein folds using this 

ensemble classifier hybrid two-layer BP- NN is shown in table 7.  The successful rate on 

classifying unseen testing sample are 70%, 67%, and 61% for 3 fold cross validation, 

respectively.  And the successful rate on each of the six classes varies from 46% to 73% 
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(average within 3 fold cross validation).  The differences of the accuracy on each of 3 

folds are from 8% (Class 6) to 39% (Class 3).  It is rational to believe that there might be 

much lower accuracy when applying this method to all of the 27 classes in original 

working datasets, as mentioned in previous chapters.  With such concern, we tend to look 

for and further explore some ensemble approaches which can help to improve the 

accuracy of the given machine learning algorithms. 

 

 

Table 7.  The performance of the classification within these six protein folds using the 

ensemble classifier hybrid two-layer BP- NN. A 3-fold cross validation is carried out. 

 Number of 
Test Samples 

Correct Identification  
Average  Standard 

Deviation 
CV1 CV2 CV3 

       

Class 1 6 4 (67%) 4 (67%) 3 (50%) 3.7 (61%) 0.58 

Class 2 44 32 (73%) 28 (64%) 29 (66%) 29.7 (67%) 2.08 

Class 3 13 7 (54%) 8 (62%) 3 (23%) 6.0 (46%) 2.65 

Class 4 48 33 (69%) 38 (79%) 34 (71%) 35.0 (73%) 2.65 

Class 5 27 19 (70%) 13 (48%) 12 (44%) 14.7(54%) 3.79 

Class 6 27 21 (78%) 19 (70%) 19 (70%) 19.7 (73%) 1.15 

       

Total 165 116 (70 %) 110 (67%) 100 (61%) 109 (66%) 8.08 
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Experiment 2: AdaBoost Algorithm Hybrids K Nearest Neighbor Classifier 

AdaBoost is such kind of method, with the goal of improving the accuracy of any 

given learning algorithm by incrementally adding one hypothesis at a time to an 

ensemble.  Each new hypothesis is constructed by a learning algorithm that seeks to 

minimize the classification error on a weighted training data set.  In experiment 2, it is 

employed to hybrid the baseline algorithm, k nearest neighbor algorithm.  The reason of 

choosing k nearest neighbor as our baseline algorithm is that among the various methods 

of supervised statistical pattern recognition, normally nearest neighbor algorithm 

achieves comparatively stable performance with the only parameter k to be set.  

Therefore, it would be easy to tell whether AdaBoost can make contribution on this 

classification task.  Under such intention, we would like to make the system architecture 

straightforward in this experiment by putting six feature subsets, amino acids 

composition, predicted secondary structure, hydrophobicity, normalized van der Waals 

volume, polarity, and polarizability together to form 125 dimensional feature vectors (20 

+ 21×5) and learning them as a whole piece.  Moreover, there is no need to further 

normalize these features due to the reason that all of them are percent composition, 

percent frequencies, or distribution, with the values from 0 to 1.  

To demonstrate the power of our classifier, predictions are conducted based on 

the same training and testing datasets which were used by the previous investigators as 

described in chapter three.  None of proteins in these datasets has more than 35% 

sequence identity to any other, and most of proteins in the testing dataset have below 

25% sequence identity with those in the training dataset (Ding & Dubchak, 2001). 
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The organization of this section is as following: (i) cross validation within the 

training dataset, illustrating how to carry out 5 fold cross validation within the training 

dataset to evaluate the robustness of this approach and choose the best classifier for 

unseen testing samples; (ii) prediction on unseen testing set, showing the performance of 

classifying test proteins into 27 classes and with the comparison to the benchmark. 

 

 

Cross Validation within Training Dataset 

The purpose of cross validation in this experiment is to choose the best classifier 

for the unseen testing set by determining the values of the parameters in the learning 

algorithms used in this experiment, and to evaluate the strength and consistency of this 

method.   

According to the two algorithms, AdaBoost and k nearest neighbor, employed in 

this experiment, there are two parameters should be determined before using the classifier 

to do classifying on the independent testing dataset.  One is k (the number of neighbors) 

in weak classifier using k nearest neighbor algorithm, the other is the iteration number in 

AdaBoost algorithm (here, we name it i).  To successfully choose these two parameters, 

we use cross validation within the original training dataset and compare the performances 

of the classifiers using different k and i.  A 5-fold cross validation is carried out within 

the original training set, which contains 313 proteins classified into 27 types of protein 

folds.  The original training set is partitioned into 5 subsets; each one contains 62 or 63 

proteins.  Of the 5 subsets, a single subset is retained as the validation data for testing the 

model, and the remaining 4 subsets are used as training data.  The cross validation 
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process is then repeated 5 times, with each of the 5 subsets used exactly once as the 

validation data. 

 

 

Table 8. Accuracy (in percents) for AdaBoost hybrid k nearest neighbor algorithm, 

depending on different values of k and i. A 5-fold cross validation is carried out to get the 

average accuracy. 

 k = 1 k = 2 k = 3 k = 4 k = 5 

      
i = 0 0.631 0.625 0.610 0.619 0.615 

i = 5 0.560 0.551 0.495 0.500 0.560 

i = 10 0.455 0.522 0.421 0.415 0.418 

i = 15 0.419 0.480 0.406 0.413 0.414 

i = 20 0.438 0.439 0.397 0.410 0.405 

i = 25 0.435 0.425 0.382 0.397 0.402 

i = 30 0.430 0.405 0.382 0.375 0.398 

i = 35 0.425 0.410 0.375 0.360 0.395 

i = 40 0.418 0.415 0.362 0.365 0.375 

i = 45 0.410 0.398 0.349 0.361 0.371 

i = 50 0.396 0.380 0.349 0.356 0.368 

i = 55 0.410 0.385 0.353 0.368 0.362 

i = 60 0.422 0.380 0.349 0.363 0.354 

i = 65 0.401 0.391 0.353 0.356 0.348 

i = 70 0.398 0.402 0.349 0.347 0.380 

i = 75 0.401 0.388 0.349 0.355 0.383 

i = 80 0.405 0.372 0.349 0.368 0.395 
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The average error rates are given in Table 8 depending on various values of k and 

i when 125 dimensional feature vectors are used and a 5-fold cross validation is carried 

out.  The value of k to be tested and compared is set from 1 to 5 here since the larger k, 

the more outliers have a chance to be included into a neighborhood. And we stop the 

iteration when it arrives 80.  From table 8, one can see that the error rate is already below 

0.4 after 20 iterations when k = 3.  Such performance is encouraging because that there is 

low sequence identity between any two proteins in the training set. 
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Figure 5. Line chart of the cross validation average accuracy rates depending on different 

k values and iteration numbers 
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Figure 5 is the line chart of the average accuracy rates.  From the line chart one 

can see that the overall error rate drops down with respect to the increment of i values 

especially from i = 0 to 50 and there is small fluctuation from 50.  Based on it, we can say 

that the AdaBoost algorithm does help to improve the accuracy of k nearest neighbor, the 

baseline algorithm used in this experiment, as we have expected.  Moreover, the line for k 

= 3 (which is in red in figure 5) drops down steadily with the comparison to other lines 

for different k values.  Therefore, i = 50 and k = 3 might be the good choice for the 

classifier which will be used on the unseen validation set. 

 

 

Prediction on Unseen Testing Set 

Predictions are conducted on the independent unseen testing datasets which 

contains 27 types of folds and where most of proteins have below 25% sequence identity 

with those in the training dataset.  

To illustrate the contribution of AdaBoost on this task, figure 6 shows both the 

error rate of prediction on test samples by employing k nearest neighbor with AdaBoost 

(which is in red) and the error rate by k nearest neighbor classifier individually (which is 

in blue) when k = 3.  One can see that the error rate of k-NN classifier with AdaBoost is 

always below the one without using AdaBoost algorithm, which can validate the 

assumption and support the motivation of the methods used in this experiment. 
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Figure 6. Error rate of prediction on test samples using k- NN classifier with AdaBoost 

(in red) vs. k- NN classifier without AdaBoost (in blue) when k = 3 

 

 

The overall success rate in recognizing the fold among the 27 folding types by our 

classifier, with i = 50 and k = 3 (determined through cross validation), for the proteins in 

the independent dataset is given in Table 9, where, for facilitating comparison, the 

success rates by the other approaches are also listed.  From Table 9, one can see that our 

classifier, which is formed by AdaBoost algorithm hybrids to k nearest neighbor 

classifiers (KNN-AB), successfully compete even outperform the other approaches. 
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Table 9. Overall accuracy by different approaches in recognizing the fold types for 

proteins in the independent testing dataset 

Classifier Source Accuracy 

   
NN (Neural Networks) a Ding and Dubchak, 2001 41.8% 

SVM (Support Vector Machine) b Ding and Dubchak, 2001 45.2% 
 

SVM (Support Vector Machine) c Ding and Dubchak, 2001 
 

51.1% 
 

SVM (Support Vector Machine) d Ding and Dubchak, 2001 
 

56.0% 
 

BIMLP-B (Discretized Interpretable Multi-Layer  

Perceptrons with Bagging) 

 

Bologna and Appel, 2002 
 

61.2% 
 

BIMLP-A (Discretized Interpretable Multi-Layer  

Perceptrons with Arcing) 

 

Bologna and Appel, 2002 
 

59.1% 
 

MLP (Multi-Layer Perceptron) Chung and Huang, 2003 48.8% 

RBFN (Radial Basis Function Network) Chung and Huang, 2003 
 

49.4% 
 

GRNN (General Regression Neural Network) Chung and Huang, 2003 
 

44.2% 
 

SVM (Support Vector Machine) Chung and Huang, 2003 
 

51.4% 
 

HKNN (K-Local Hyperplane Distance Nearest  

Neighbor algorithm) 

 

Okun, 2004 
 

57.4% 
 

KNN-AB (K-Nearest Neighbor algorithm with  

AdaBoost) 

Yijing, 2007 
 

64.7% 
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a The training method for NN is “one against others”. 

b The training method for SVM is “one against others”. 

c The training method for SVM is “unique one against others”. 

d The training method for SVM is “all against all”. 

 

 

Table 10 lists the prediction accuracy (in percentage) for each individual class of 

27 folds with the benchmark performance comparison.  Figure 7 is the bar chart of the 

prediction accuracy for individual fold by three different methods used on the same 

working datasets.  The blue bars are the prediction success rate using KNN-AB 

(AdaBoost algorithm hybrids to k nearest neighbor classifiers) in this experiment; the 

yellow bars are the success rate using SVM (Support Vector Machine) reported in Ding 

& Dubchak’s paper (2001); and the red bars are the success rate using HKNN (K-Local 

Hyperplane Distance Nearest Neighbor algorithm) reported in Okun’s paper (2004).  One 

can see that among the 27 prediction accuracy on individual class, KNN-AB has the 

highest accuracy on 18 classes and only 3 of 27 are lower. 
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Table 10. Prediction accuracy (in percentage) for each individual fold and overall 

accuracy (bottom line) for 27 folds 

Fold Index SVM d  
(Ding & Dubchak, 2001) 

HKNN  
(Okun, 2004) 

KNN-AB  
(Yijing, 2007) 

    1 83.3 83.3 100.0 
2 77.8 77.8 88.9 
3 35.0 50.0 60.0 
4 50.0 87.5 100.0 
5 100.0 88.9 77.8 
6 66.7 44.4 22.2 
7 71.6 56.8 72.7 
8 16.7 25.0 50.0 
9 50.0 84.6 76.9 
10 33.3 50.0 50.0 
11 50.0 50.0 50.0 
12 26.3 42.1 36.8 
13 50.0 50.0 75.0 
14 25.0 50.0 25.0 
15 57.1 42.9 42.9 
16 77.1 79.2 95.8 
17 58.3 58.3 75.0 
18 48.7 53.9 38.5 
19 61.1 40.7 51.9 
20 36.1 33.3 41.7 
21 50.0 37.5 50.0 
22 35.7 71.4 83.3 
23 71.4 71.4 85.7 
24 25.0 25.0 75.0 
25 12.5 25.0 50.0 
26 37.0 25.9 44.4 
27 83.3 85.2 64.0 
    
Average  56.0 57.1 64.7 
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Figure 7.  Bar chart of the prediction accuracy for individual fold by three different 

methods used on the same working datasets. 
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CHAPTER SIX: DISCUSSION 

In this thesis, two computational methods are investigated and explored for the 

task of protein fold recognition.  One is the ensemble classifier hybrid multi-layer back-

propagation neural networks; the other is AdaBoost algorithm hybrid to k nearest 

neighbor classifier.  These two methods are applied on a real-world dataset individually. 

To carry out these computational methods, we take advantage of the information 

extracted from structural and physico-chemical properties beyond sequence information, 

which forms 6 feature subsets and 125 features in total.  Two independent experiments 

are set up to perform these two methods individually.  The results show that the approach 

of AdaBoost algorithm hybrids to k nearest neighbor classifier achieves comparatively 

better performance, which reaches 64.7% successful rate in classifying independent 

validation dataset into 27 types of protein fold.  The following three sections briefly 

summarize the merit and contribution of this method, discuss the limitation of this 

method, as well as the future work. 

 

 

Summary 

AdaBoost algorithm is an effective method for constructing a “strong” classifier 

as linear combination of “weak” classifiers.  Since introduced by Freund and Schapire in 

1995, AdaBoost has successfully solved many practical problems in different fields, 

including some problems in bioinformatic research, such as protein subcellular 

localization and promoter detection.  However, it has never been applied onto the task of 

protein folding pattern recognition.  In this thesis, the experiment proves the merit of this 
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approach, as it shows the performance of this method is superior to all the existing 

published researches based on fair competition – using identical sample sets, feature 

representation, and class labels. The benchmark study shows that AdaBoost strategy 

coupling with weak learning classifier lead to improved and robust performance of 64.7% 

recognition rate versus 41.8% - 61.2% accuracy reported in published literatures.  

Besides, the result of experiment shows that the performance of k nearest neighbor 

classifier with AdaBoost algorithm is always better than of k nearest neighbor baseline 

algorithm without AdaBoost for the all iterations.  It validates the contribution of 

AdaBoost algorithm and supports our motivation of applying AdaBoost to improve the 

accuracy of k nearest neighbor algorithm.  Furthermore, this method has other 

advantages, such as the shorter time that spent on the whole process of training and 

testing and the fewer adjustable parameters compared to Support Vector Machines or 

Neural Networks. 

The experimental procedure and setup in this thesis was well-designed.  The 

experiment framework consists of two steps, cross validation within the training dataset 

and prediction on unseen validation dataset.  A 5-fold cross validation is carried out with 

the purpose of choosing the best value of the parameters with good grounds and 

evaluating the consistency of merit of AdaBoost algorithm hybrids to k nearest neighbor 

classifier.  Accordingly, we keep track of all the weaker classifiers during iterative 

adaptation and apply the best classifier on the unseen testing samples.  Moreover, this 

thesis systematically evaluates the robustness of the approach compared with the 

performance reported by other research groups which have performed their efforts on the 

same working datasets. 
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Limitations 

As discussed in previous chapter, AdaBoost gives each training sample a different 

weight in each iteration by updating the weights dynamically according to the errors in 

previous learning.  In this way, AdaBoost focuses in on the difficult patterns to greedily 

minimize the errors.  Simultaneously, it makes AdaBoost has a tendency to overfit when 

there is significant noise in the training data, preventing it from learning an effective 

ensemble (Dietterich, 2000).  In the experiment, we find that AdaBoost strategy is able to 

correctly classify a large percentage of data in most iteration, but struggle for better 

estimating on a small group of samples.  Furthermore, the weight values for the hard 

samples grow as the iteration number increases, making those proteins get more chances 

to be selected in the re-sampling process.  Accordingly, AdaBoost is “trapped” in those 

data. 

With such concern, therefore, we set the samples with the highest weights to be 0 

after n iterations.  By doing this, we could discard those hard examples (noise) and give 

AdaBoost chances of jumping out of these noisy data.  Besides, it is very important to 

carefully preprocess the data with the purpose of removing the noise.  It might achieve 

even better performance when using some of 6 feature subsets and 125 features, instead 

of using all of them.  However, de-noise is always tradeoff with retaining meaningful 

biological interpretation. 

 

 

Future Work 

From the results of experiment 2, one can obviously see the contribution of 
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AdaBoost algorithm to the improved accuracy of the baseline algorithm, k nearest 

neighbor.  As mentioned before, the reason of selecting k nearest neighbor in this 

experiment is its comparatively stable performance among the various methods of 

supervised statistical pattern recognition, which would make it easy to tell whether 

AdaBoost can make contribution on this protein fold recognition task.  Since the result of 

the experiment in this thesis strongly prove the merits of AdaBoost algorithm, we would 

like to apply AdaBoost to hybrid with more sophisticated learning algorithms, such as 

Support Vector Machines or Neural Networks.  Both of these two algorithms have been 

widely used in bioinformatic research including protein folding pattern recognition.  

Therefore, the upcoming goal is to find a feasible and efficient way to combine AdaBoost 

and Support Vector Machine or Neural Networks with intention of dealing with multiple 

class label classification when the number of classes is large.  It would be valuable to the 

task of protein fold recognition and other bioinformatic research. 
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