5 research outputs found

    Simulated annealing algorithm for solving the capacitated vehicle routing problem: a case study of pharmaceutical distribution

    Get PDF
    This study aims to find a set of vehicles routes with the minimum total transportation time for pharmaceutical distribution at PT. XYZ in West Jakarta. The problem is modeled as the capacitated vehicle routing problem (CVRP). The CVRP is known as an NP-Hard problem. Therefore, a simulated annealing (SA) heuristic is proposed. First, the proposed SA performance is compared with the performance of the algorithm form previous studies to solve CVRP. It is shown that the proposed SA is useful in solving CVRP benchmark instances. Then, the SA algorithm is compared to a commonly used heuristic known as the nearest neighborhood heuristics for the case study dataset. The results show that the simulated Annealing and the nearest neighbor algorithm is performing well based on the percentage differences between each algorithm with the optimal solution are 0.03% and 5.50%, respectively. Thus, the simulated annealing algorithm provides a better result compared to the nearest neighbour algorithm. Furthermore, the proposed simulated annealing algorithm can find the solution as same as the exact method quite consistently. This study has shown that the simulated annealing algorithm provides an excellent solution quality for the problem

    Prediction of High-Performance Concrete Strength Using a Hybrid Artificial Intelligence Approach

    Get PDF
    This study introduces an improved artificial intelligence (AI) approach called intelligence optimized support vector regression (IO-SVR) for estimating the compressive strength of high-performance concrete (HPC). The nonlinear functional mapping between the HPC materials and compressive strength is conducted using the AI approach. A dataset with 1,030 HPC experimental tests is used to train and validate the prediction model. Depending on the results of the experiments, the forecast outcomes of the IO-SVR model are of a much higher quality compared to the outcomes of other AI approaches. Additionally, because of the high-quality learning capabilities, the IO-SVR is highly recommended for calculating HPC strength

    Prediction of High-Performance Concrete Strength Using a Hybrid Artificial Intelligence Approach

    Get PDF
    This study introduces an improved artificial intelligence (AI) approach called intelligence optimized support vector regression (IO-SVR) for estimating the compressive strength of high-performance concrete (HPC). The nonlinear functional mapping between the HPC materials and compressive strength is conducted using the AI approach. A dataset with 1,030 HPC experimental tests is used to train and validate the prediction model. Depending on the results of the experiments, the forecast outcomes of the IO-SVR model are of a much higher quality compared to the outcomes of other AI approaches. Additionally, because of the high-quality learning capabilities, the IO-SVR is highly recommended for calculating HPC strength

    An efficient meta-heuristic algorithm for solving capacitated vehicle routing problem

    Get PDF
    This work aims to develop an enhanced Perturbation based Variable Neighborhood Search with Adaptive Selection Mechanism (PVNS ASM) to solve the capacitated vehicle routing problem (CVRP). This approach combined Perturbation based Variable Neighborhood Search (PVNS) with Adaptive Selection Mechanism (ASM) to control perturbation scheme. Instead of stochastic approach, selection of perturbation scheme used in the algorithm employed an empirical selection based on success rate of each perturbation scheme along the search. The ASM helped algorithm to get more diversification degree and jumping from local optimum condition using most successful perturbation scheme empirically in the search process. A comparative analysis with existing heuristics in the literature has been performed on 21 CVRP benchmarks. The computational results proof that the developed method is competitive and very efficient in achieving high quality solution within reasonable computation time

    Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem

    Get PDF
    Symbiotic Organisms Search (SOS) algorithm is an effective new metaheuristic search algorithm, which has recently recorded wider application in solving complex optimization problems. SOS mimics the symbiotic relationship strategies adopted by organisms in the ecosystem for survival. This paper, presents a study on the application of SOS with Simulated Annealing (SA) to solve the well-known traveling salesman problems (TSPs). The TSP is known to be NP-hard, which consist of a set of (n − 1)!/2 feasible solutions. The intent of the proposed hybrid method is to evaluate the convergence behaviour and scalability of the symbiotic organism’s search with simulated annealing to solve both small and large-scale travelling salesman problems. The implementation of the SA based SOS (SOS-SA) algorithm was done in the MATLAB environment. To inspect the performance of the proposed hybrid optimization method, experiments on the solution convergence, average execution time, and percentage deviations of both the best and average solutions to the best known solution were conducted. Similarly, in order to obtain unbiased and comprehensive comparisons, descriptive statistics such as mean, standard deviation, minimum, maximum and range were used to describe each of the algorithms, in the analysis section. The oneway ANOVA and Kruskal-Wallis test were further used to compare the significant difference in performance between SOS-SA and the other selected state-of-the-art algorithms. The performances of SOS-SA and SOS are evaluated on different sets of TSP benchmarks obtained from TSPLIB (a library containing samples of TSP instances). The empirical analysis’ results show that the quality of the final results as well as the convergence rate of the new algorithm in some cases produced even more superior solutions than the best known TSP benchmarked results
    corecore