5,094 research outputs found

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    All-Optical Programmable Disaggregated Data Centre Network realized by FPGA-based Switch and Interface Card

    Get PDF
    This paper reports an FPGA-based switch and interface card (SIC) and its application scenario in an all-optical, programmable disaggregated data center network (DCN). Our novel SIC is designed and implemented to replace traditional optical network interface cards, plugged into the server directly, supporting optical packet switching (OPS)/optical circuit switching (OCS) or time division multiplexing (TDM)/wavelength division multiplexing (WDM) traffic on demand. Placing the SIC in each server/blade, we eliminate electronics from the top of rack (ToR) switch by pushing all the functionality on each blade while enabling direct intrarack blade-to-blade communication to deliver ultralow chip-to-chip latency. We demonstrate the disaggregated DCN architecture scenarios along with all-optical dimension-programmable N Ă— M spectrum selective Switches (SSS) and an architecture-on-demand (AoD) optical backplane. OPS and OCS complement each other as do TDM and WDM, which can support variable traffic flows. A flat disaggregated DCN architecture is realized by connecting the optical ToR switches directly to either an optical top of cluster switch or the intracluster AoD optical backplane, while clusters are further interconnected to an intercluster AoD for scaling out

    LIGHTNESS: a function-virtualizable software defined data center network with all-optical circuit/packet switching

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Modern high-performance data centers are responsible for delivering a huge variety of cloud applications to the end-users, which are increasingly pushing the limits of the currently deployed computing and network infrastructure. All-optical dynamic data center network (DCN) architectures are strong candidates to overcome those adversities, especially when they are combined with an intelligent software defined control plane. In this paper, we report the first harmonious integration of an optical flexible hardware framework operated by an agile software and virtualization platform. The LIGHTNESS deeply programmable all-optical circuit and packet switched data plane is able to perform unicast/multicast switch-over on-demand, while the powerful software defined networking (SDN) control plane enables the virtualization of computing and network resources creating a virtual data center and virtual network functions (VNF) on top of the data plane. We experimentally demonstrate realistic intra DCN with deterministic latencies for both unicast and multicast, showcasing monitoring, and database migration scenarios each of which is enabled by an associated network function virtualization element. Results demonstrate a fully functional complete unification of an advanced optical data plane with an SDN control plane, promising more efficient management of the next-generation data center compute and network resources.Peer ReviewedPostprint (author's final draft

    Diluting the Scalability Boundaries: Exploring the Use of Disaggregated Architectures for High-Level Network Data Analysis

    Get PDF
    Traditional data centers are designed with a rigid architecture of fit-for-purpose servers that provision resources beyond the average workload in order to deal with occasional peaks of data. Heterogeneous data centers are pushing towards more cost-efficient architectures with better resource provisioning. In this paper we study the feasibility of using disaggregated architectures for intensive data applications, in contrast to the monolithic approach of server-oriented architectures. Particularly, we have tested a proactive network analysis system in which the workload demands are highly variable. In the context of the dReDBox disaggregated architecture, the results show that the overhead caused by using remote memory resources is significant, between 66\% and 80\%, but we have also observed that the memory usage is one order of magnitude higher for the stress case with respect to average workloads. Therefore, dimensioning memory for the worst case in conventional systems will result in a notable waste of resources. Finally, we found that, for the selected use case, parallelism is limited by memory. Therefore, using a disaggregated architecture will allow for increased parallelism, which, at the same time, will mitigate the overhead caused by remote memory.Comment: 8 pages, 6 figures, 2 tables, 32 references. Pre-print. The paper will be presented during the IEEE International Conference on High Performance Computing and Communications in Bangkok, Thailand. 18 - 20 December, 2017. To be published in the conference proceeding

    SDN-controlled and Orchestrated OPSquare DCN Enabling Automatic Network Slicing with Differentiated QoS Provisioning

    Get PDF
    In this work, we propose and experimentally assess the automatic and flexible NSs configurations of optical OPSquare DCN controlled and orchestrated by an extended SDN control plane for multi-tenant applications with differentiated QoS provisioning. Optical Flow Control (OFC) protocol has been developed to prevent packet losses at switch sides caused by packet contentions.Based on the collected resource topology of data plane, the optical network slices can be dynamically provisioned and automatically reconfigured by the SDN control plane. Meanwhile, experimental results validate that the priority assignment of application flows supplies dynamic QoS performance to various slices running applications with specific requirements in terms of packet loss and transmission latency. In addition, the capability of exposing traffic statistics information of data plane to SDN control plane enables the implementation of load balancing algorithms further improving the network performance with high QoS. No packet loss and less than 4.8 us server-to-server latency can be guaranteed for the sliced network with highest priority at a load of 0.5
    • …
    corecore