2,966 research outputs found

    Discrete-time switching MPC with applications to mitigate resistance in viral infections

    Get PDF
    Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments.Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; ArgentinaFil: GonzĂĄlez, Alejandro HernĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; ArgentinaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; ArgentinaFil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; Alemani

    Lamivudine monotherapy in children and adolescents: The devil is in the detail

    Get PDF
    Although expanded access to antiretroviral therapy (ART), and starting lifelong ART as soon as possible after diagnosis of HIV, have dramatically improved survival and reduced morbidity in HIV-infected children and adolescents, ~20% of children will develop virological failure (VF). Children and adolescents may be at higher risk of VF and drug resistance for a number of reasons, including prevention of mother-to-child exposure, reliance on a caregiver to administer ART, poor palatability of paediatric drugs, tuberculosis/HIV co-treatment in protease inhibitor (PI) (mainly lopinavir/ritonavir)-based regimens, and adolescence being associated with poor adherence. In children with VF, if adherence issues are addressed and re-suppression is not achieved, a switch to second- or third-line drugs may be indicated, which is the gold standard in management. However, in the face of ongoing adherence challenges, with potential accumulation of resistance mutations, limited treatment options due to extensive resistance and limited approved paediatric formulations, other strategies have been used. These include continuing a failing PI regimen, switching to a holding regimen (one or more nucleoside reverse transcriptase inhibitors) or discontinuing ART. Lamivudine monotherapy is a common choice when holding regimens are used, on the premise that the lamivudine-associated M184V resistance mutation reduces viral replication and may maintain clinical and immunological stability compared with discontinuing treatment altogether. However, this strategy is generally associated with immunological, and in some cases clinical, decline after starting lamivudine monotherapy. We discuss the pros and cons of using this therapy in children. We also propose guidance for using lamivudine monotherapy, suggesting clinical and immunological criteria for its use. Close monitoring and adherence support are required with this approach. Given many new emerging ART drugs and strategies, lamivudine monotherapy should be administered temporarily, while efforts to improve adherence are implemented. It should not be considered a default option in children with VF

    An introduction to positive switched systems and their application to HIV treatment modeling

    Get PDF
    In the present work an introduction to positive switched systems is provided, along with an interesting application of this kind of systems to the biomededical area. Reflecting this twofold objective, the thesis is divided into two parts: in the first one classical theoretical aspects concerning positive switched systems are addressed by resorting to the Lyapunov function approach, while in the second part an application to the problem of drug treatment scheduling in HIV infection is presente

    Stability and Stabilization of Positive Switched Systems with Application to HIV Treatment

    Get PDF
    HIV mutates rapidly and may develop resistance to specific drug therapies. There is no general agreement on how to optimally schedule the treatments for mitigating the effects of mutations. We examine control strategies applied to two positive switched systems models of HIV under therapy. Simulation results show that model-based control approaches may outperform the common clinical treatment recommendationsope

    Optimal Treatment Strategies in the Context of ‘Treatment for Prevention’ against HIV-1 in Resource-Poor Settings

    Get PDF
    An estimated 2.7 million new HIV-1 infections occurred in 2010. `Treatment- for-prevention’ may strongly prevent HIV-1 transmission. The basic idea is that immediate treatment initiation rapidly decreases virus burden, which reduces the number of transmittable viruses and thereby the probability of infection. However, HIV inevitably develops drug resistance, which leads to virus rebound and nullifies the effect of `treatment-for-prevention’ for the time it remains unrecognized. While timely conducted treatment changes may avert periods of viral rebound, necessary treatment options and diagnostics may be lacking in resource-constrained settings. Within this work, we provide a mathematical platform for comparing different treatment paradigms that can be applied to many medical phenomena. We use this platform to optimize two distinct approaches for the treatment of HIV-1: (i) a diagnostic-guided treatment strategy, based on infrequent and patient-specific diagnostic schedules and (ii) a pro-active strategy that allows treatment adaptation prior to diagnostic ascertainment. Both strategies are compared to current clinical protocols (standard of care and the HPTN052 protocol) in terms of patient health, economic means and reduction in HIV-1 onward transmission exemplarily for South Africa. All therapeutic strategies are assessed using a coarse-grained stochastic model of within-host HIV dynamics and pseudo-codes for solving the respective optimal control problems are provided. Our mathematical model suggests that both optimal strategies (i)-(ii) perform better than the current clinical protocols and no treatment in terms of economic means, life prolongation and reduction of HIV-transmission. The optimal diagnostic-guided strategy suggests rare diagnostics and performs similar to the optimal pro-active strategy. Our results suggest that ‘treatment-for-prevention’ may be further improved using either of the two analyzed treatment paradigms

    Contributions to the Mathematical Systems Medicine of Antimicrobial Therapy and Genotype-Phenotype Inference.

    Get PDF
    The following summary of my publications describes the main ideas in the corresponding research articles and clarfifies my contribution in multi-author publications. I decided to apply for habilitation according to x2.I.1.(c) of the Habilitationsordnung (this path is usually referred as Kumulative Habilitation"). I selected 13 first- or last author publications for this habilitation that concern contributions to the mathematical systems medicine of antiviral therapy [tMH10, tMS+11, FtK+11, tMMS12, DSt12, DWSt15, Dt16, DSt16, DDKt18, DSD+19, DDKt19], as well as inference of genotype-phenotype associations [SDH+15, SSJ+18]. The selected publications represent my major contributions in this research eld since submitting my doctoral thesis in September 2009

    Five-year follow up of genotypic resistance patterns in HIV-1 subtype C infected patients in Botswana after failure of thymidine analogue-based regimens

    Get PDF
    Objective: Our objective was to establish genotypic resistance profiles among the 4% of Batswana patients who experienced virologic failure while being followed within Botswana's National Antiretroviral Treatment Program between 2002 and 2007. Methods: At the beginning of the national program in 2002, almost all patients received stavudine (d4T), together with didanosine (ddI), as part of their first nucleoside reverse transcriptase inhibitor (NRTI)-based regimen (Group 1). In contrast, the standard of care for all patients subsequently enrolled (2002-2007) included zidovudine/lamivudine (ZDV/3TC) (Group 2). Genotypes were analyzed in 26 patients from Group 1 and 37 patients from Group 2. Associations between mutations were determined using Pearson's correlation coefficient and Jaccard's coefficient of similarity. Results: Seventy-eight percent of genotyped patients possessed mutations associated with protease inhibitor (PI) resistance while 87% and 90%, respectively, exhibited mutations associated with NRTIs and non-nucleoside reverse transcriptase inhibitors (NNRTIs). The most frequent PI mutations involving resistance to NFV were L90M (25.2%) and D30N (16.2%), but mutations at positions K45Q and D30N were often observed in tandem (P = 60.5, J = 50; p = 0.002; Group 2) alongside Q61E in 42.8% of patients who received ZDV/3TC. Both major patterns of thymidine analogue mutations, TAM 1 (48%) and TAM 2 (59%), were represented in patients from Group 1 and 2, although M184V was higher among individuals who had initially received ddI (61% versus 40.5%). In contrast, L74V was more frequent among individuals from Group 2 (16.2% versus 7.7%). Differences in regard to NNRTI mutations were also observed between Group 1 and Group 2 patients. Conclusion: Despite a low rate of therapeutic failure (4%) among these patients, those who failed possessed high numbers of resistance mutations as well as novel resistance mutations and/or polymorphisms at sites within reverse transcriptase and protease
    • 

    corecore