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Contributions to the Mathematical Systems Medicine of

Antimicrobial Therapy and Genotype-Phenotype Inference.

Summary of Publications for Habilitation

Introduction

The following summary of my publications describes the main ideas in the corresponding re-

search articles and clarifies my contribution in multi-author publications. I decided to apply for

habilitation according to §2.I.1.(c) of the Habilitationsordnung (this path is usually referred as

“Kumulative Habilitation”).

I selected 13 first- or last author publications for this habilitation that concern contributions to

the mathematical systems medicine of antiviral therapy [tMH10, tMS+11, FtK+11, tMMS12,

DSt12, DWSt15, Dt16, DSt16, DDKt18, DSD+19, DDKt19], as well as inference of genotype-

phenotype associations [SDH+15, SSJ+18]. The selected publications represent my major con-

tributions in this research field since submitting my doctoral thesis [1] in September 2009.

Own contribution: All indicated publications follow author ordering procedures common to

the natural sciences. My contributions will be further exemplified below. In summary, three

publications are single first author publications [tMH10, tMS+11, tMMS12]. In these publi-

cations, I was involved in the drafting and execution of research ideas, as well as in the re-

search design, the communication between the project members and I wrote the bulk of the

manuscripts. One publications [FtK+11] is a shared first-author, shared corresponding-author

publication. This is a multi-disciplinary publication, where I was involved in the drafting and

execution of the stochastic modelling and simulation part, except for the pharmacokinetic mod-

elling and analysis (justifying the shared first-authorship). I also contributed to the research de-

sign and the communication between the project members (justifying the shared corresponding-

authorship). I contributed to writing most parts of the manuscript, except the pharmacoki-

netic modelling. In the remaining publications, I am either sole last (corresponding) author

[DSt12, DWSt15, Dt16, DSt16, DDKt18, DSD+19, DDKt19], or shared corresponding/last au-

thor [SDH+15, SSJ+18]. With regards to the publications where I am sole last author, my main

contribution is in the design of the research project, the drafting of the ideas and supervision.

Moreover, I wrote the bulk of these manuscripts with input from the other authors. The two

shared last author publications [SDH+15, SSJ+18] are again multi-disciplinary publications. In

publication [SDH+15], I designed and implemented the biostatistical methods that allow to

analyse- and interpret the data generated by my experimental collaboration partners. I con-

tributed to writing the manuscript and wrote all supplementary texts. In [SSJ+18], I designed

the biostatistical methods that allow to analyse- and interpret the data generated by my exper-

imental collaboration partners and supervised their implementation. I contributed to writing

the manuscript and supplementary texts.
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Scientific area: Scientific Research sets itself apart from other human endeavours by its requi-

site to generate testable explanations and reproducible predictions. However, when considering

research on human subjects, large (ethical and practical) restrictions are imposed on the testa-

bility and reproducibility of interventions. For example, it is not possible to directly analyse a

drugs’ e↵ect at an arbitrary resolution within a living being (e.g. at the level of drug-protein

interaction) and it is often very di�cult to control experimental conditions in humans (diet,

sleep-wake cycles, stress conditions, etc...). As with other disciplines, testability can still be

achieved by breaking down the process of interest into its individual, directly testable, subpro-

cesses and by building a chain of arguments that explain a clinical response in terms of these

individual parts. For example, the research goal could be to elucidate the relationship between

drug administration and liver damage to determine the safety of a drug. At the molecular level,

the drug interacts with a cellular protein. This interaction a↵ects particular subsets of cellular

pathways, which, all together, change the cellular phenotype. Multiple cells within an organ

interact with one another, triggering a change at the organ level, which may lead to a change

in a measurable biomarker for e.g. liver damage.

A major challenge in this area of research is to correctly interpret and mathematically integrate

the testable sub-processes. The process of testing- and assembling testable sub-processes to

explain clinical outcomes quantitatively is called Systems Medicine or Translational Medicine.

Noteworthy, mathematics and computer science are absolutely essential to enabling Systems

Medicine due to their ability to analyse, integrate and test vast amounts of potential explana-

tions/models. Major theoretical challenges are currently met in (i) multi-scale modelling and

-simulation and the inference of unknown mathematical models and -functions that describe-

and integrate the testable biological sub-processes.

Besides theoretical challenges in multi-scale modelling and simulation, another important aspect

is the integration of lab- and clinical data into the process. In the last years, large progress has

been made in RNA and DNA sequencing technologies through the introduction of next- and

third-generation sequencing techniques. These technologies can generate gigabytes of data in a

single run and are nowadays routinely used in clinical settings. However, unlike with traditional

methods, the direct interpretation of the data is no longer feasible, as it requires multiple steps

of computer-based processing and analysis. Furthermore, the sheer amount of simultaneously

testable hypotheses and the high error rates of these techniques bears great risk for false positive

“discovery”. Major challenges are therefore to develop methods allowing to (ii) mechanistically

and phenotypically interpret the data and to (iii) develop robust statistical methods to avoid

misleading interpretations.

Apart from technical challenges, the work described here are truly interdisciplinary projects

carried out in close cooperation with wet-lab scientist and clinicians. While I describe my

contributions in detail, I want to gratefully acknowledge the contribution of my experimental

partners, without whom many projects would not have been sucessful. In the following two sec-

tions, the selected thirteen projects are introduced, shortly sumarized and my contributions are

clarified. The projects are categorised into two inter-connected areas, based on the kind of un-

derlying data and mathematical approaches taken. The first section describes my contributions

to mathematical systems medicine of antiviral therapy, whereas the second section describes my

contribution to the inference of genotype-phenotype associations.
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Mathematical Systems Medicine of Antimicrobial Therapy

In the selected publications, I concentrated on modelling, simulation and optimal control applied

to antiviral treatment, -prophylaxis, virus evolution and infection dynamics.

Modelling. I focussed on kinetic modelling approaches, and with regards to the modelling

philosophy, I followed both a minimal, data-driven, approach whenever a dynamical descrip-

tion or input was su�cient and parameter estimation would in-justify more complex models.

To the contrary, mechanistic models were developed when biological pre-knowledge and pa-

rameters were readily available and when the intention was to explore/predict scenarios be-

yond the scope of the data. Often mixed strategies were used, for example a data-driven,

minimal approach to model drug concentrations (i.e. pharmacokinetic inputs) and a mech-

anistic approach to model viral dynamics, which are a↵ected by the pharmacokinetic input

[FtK+11, DSt12, DSt16, DDKt18, DSD+19]. Also, the two approaches were used to validate-

and add interpretability to one another [Dt16]. A major focus was on biological systems which,

at least partially, display stochastic behaviour. Applications include the emergence of drug re-

sistance during treatment, the modelling of the mechanisms of action of antiviral drugs or the

modelling of infection dynamics, which are inherently stochastic (since not every exposure leads

to infection).

Simulation. Simulation of intrinsically stochastic systems in biology requires solving the chem-

ical master equation (CME), or to sample from its solution via Monte-Carlo techniques. Directly

solving-, or even sampling from the solution of the chemical master equation quickly becomes in-

feasible as its complexity grows exponentially with the number of biological- or chemical species

considered. To overcome this dilemma, hybrid approaches can be used. Their basic underlying

assumption is that some chemical- or biological species can be accurately approximated using a

(stochastic) di↵erential equation (ODE/SDE) based approach, while the remaining species are

modelled using the CME approach. The resulting coupled system is then either solved directly

or Monte-Carlo techniques are used to sample from its solution.

In the selected publications di↵erent approaches were used: In [DWSt15], a coarse-grained

(dimension-reduced) CME was directly solved as part of an optimal control problem. In [tMMS12],

analytical solutions were derived to compute mean first passage times of the underlying CME.

In [DSt16] hybrid formulations (ODE-CME) were derived and subsequently a finite state projec-

tion (FSP) was applied to the CME part, which allowed to solve the coupled system numerically

using ODE integration schemes. In [DDKt19] branching techniques were used to compute an-

alytical solutions of the CME for t ! 1. In the remaining publications, hybrid Monte-Carlo

techniques were implemented and used to study the stochastic viral response to drug treatment

and prophylaxis: In [tMH10, tMS+11, FtK+11] and [DSt12], an (adaptive) integral-method was

used and an adaptive FSP scheme was developed for the EXTRANDE algorithm and used in

[DDKt18, DSD+19].

Many of these projects required novel algorithmic developments [DWSt15, DDKt18, DSD+19]

and e�cient implementations that could be parallelized and run on a high-performance com-

puting cluster [tMH10, tMS+11, FtK+11, DSt12, DDKt18, DSD+19].
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HIV transduction model

The first contribution [tMH10] was concerned with the development of a stochastic “transduction

model” that relates drug treatment to HIV replication, quasi-species- and resistance dynamics.

The “transduction model” essentially allows to link predictive markers of (time-varying) drug

e�cacy at di↵erent levels (molecular target, cellular level) to clinical endpoints (virus load

measurements). The “transduction model” constitutes a versatile modelling platform that can

be extended based on specific research questions to be addressed. In HIV infection, di↵erent

measures, such as cellular single-round replication assays and clinical viral load decay, are used

to assess drug e�cacy in vitro and in vivo. For the newly introduced class of integrase inhibitors,

a huge discrepancy between these two measures of e�cacy was observed. Hence, a thorough

understanding of the relation between these two measures of drug e�cacy was warranted.

My contribution in [tMH10] concerns the development of a novel virus dynamics model, which

allows for a mechanistic integration of the mode of action of all approved drugs and which,

based on hybrid-stochastic simulation, allowed to predict viral dynamics (the clinical endpoint)

and resistance evolution on arbitrary fitness landscapes. Notably, the model was derived from

first principles and coarse-grained such that available (in vitro/clinical) parameters could be

used for its parameterisation. A new measure, the reproductive capacity, was developed that

allowed a fair comparison of e�cacy between the di↵erent drug classes. Using this measure, we

could show that the drug-target half life is a key characteristic that a↵ects both the emergence

of resistance, as well as the in vitro-in vivo correlation of e�cacy measures in HIV treatment.

We found that protease inhibitors, due to the short half-life of their target, decrease the total

amount of viral replication and the emergence of resistance most e�ciently.

The project started towards my final year at the Hamilton Institute Ireland and was completed

during my Post-Doc at the FU Berlin. I conceived and designed the project. The model- and

the adaptive hybrid Monte-Carlo simulation scheme was implemented by myself and Stefan

Menz. Data interpretation was carried out by myself with input from Stefan Menz and Wilhelm

Huisinga. I wrote the paper with contributions from Stefan Menz and Wilhelm Huisinga.

Application to resistance-mitigating therapy

Next, we wanted to apply the developed framework to investigate whether HIV treatment

schemes can be designed that mitigate drug resistance development and preserve future treat-

ment options. Currently, it is recommended to change treatment only after treatment- or vi-

rological failure. However, when virological failure is detected, a viral rebound with resistant

viruses has already occurred and these resistant viruses are then likely to be “archived” in long-

lived/latently infected cells, which could remove future treatment options permanently.

The probability of de novo resistance emergence is a function of the selection pressure exerted by

the drug treatment and, at the same time, the total amount of replication. The total amount of

replication is, in turn, a function of the population size. The idea presented in [tMS+11] is to use

an initial treatment regimen that decreases the viral population size and to pro-actively switch

to a treatment regimen with orthogonal resistance profile before the outgrowth and archiving of

viruses that are resistant to the first treatment line. To determine the time to switch treatment
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we utilised the reproductive capacity, which was introduced in [tMH10]. This measure sum-

marises both the abundance and the instantaneous replication potential of each quasi-species

for each possible treatment line. Based on this measure, an ideal time to switch treatment

is given when the derivative of the reproductive capacity changes its sign (from negative to

positive). The interpretation of this measure is that the total number of treatment-susceptible

strains are less e↵ectively cleared than the resistant viruses grow (the treatment does “more

harm than good”).

Based on massively parallel hybrid stochastic simulations we estimated that an optimal trade-o↵

is achieved when treatment is pro-actively switched at about 80 days after the therapy initiation.

Interestingly, a randomized trial indicated that continuous pro-active treatment alternation can

improve clinical outcome. Our results indicate that a similar improvement might also be reached

after a single pro-active treatment switch.

The approach taken in [tMS+11] can be considered to follow some ideas of model-predictive con-

trol. However, there is no guarantee that the treatment scheme is also mathematically optimal.

However, due to the complexity of the underlying dynamical system considered in [tMS+11]

(essentially a CME with about (M · 7)10
10

states; M= number of viral quasi-species), an opti-

mal control approach was not feasible using the model in [tMS+11]. We therefore developed a

coarse-grained Markov state model of viral dynamics and resistance development in [DWSt15]

that was fitted to available clinical data. Next, we developed algorithms to solve the optimal

control problem for this reduced-state CME.

Optimal control is an active field of research when applied to stochastic dynamical systems [2],

as imposed by our field of study. In our work we investigate switched systems, which are par-

ticularly challenging to solve as the cost function cannot be di↵erentiated with respect to the

control (i.e. as in the forward-backward sweep algorithm). Solving the control problem therefore

boils down to solving a combinatorial problem for which we adapted dynamical programming

techniques. In [DWSt15], we investigate two approaches: (i) a feedback-control strategy (closed-

loop control) and (ii) a pro-active strategy (open-loop control). Mathematically, the problem

is to find the optimal actions for each possible state of the infection that minimise the time-

discounted costs of the illness, the treatment and the diagnostics.

Ad (i): In [3], we had developed the theory of ‘Markov control processes with rare state observa-

tions’. The theory is an extension to classical Markov Control by introducing costly diagnostics

into the control function. Applied to the HIV-resistance mitigating therapy, it allows for a

diagnostic-guided treatment strategy, based on infrequent and patient-specific diagnostic sched-

ules. An optimal policy (which treatment to take and when to take the next diagnostic) can be

computed based on an adapted policy iteration scheme applied to the corresponding Bellmann

equation.

Ad (ii): The pro-active strategy does not consider diagnostics (and thus no diagnostic costs).

Here, we consider a Bolza-type cost function, that was parameterised in analogy to (i). To

compute the optimal pro-active strategy, we apply linear programming techniques to the corre-

sponding performance criterion (forward solution) and the Hamiltonian (backward solution) to

prune the space of possible controls, akin to a branch-and-cut algorithm.

Our mathematical modelling suggested that both optimal strategies (i)-(ii) perform better than

the current clinical protocols in terms of economic means, life prolongation and reduction of
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onwards HIV-transmission and that the two strategies perform similarly to one another.

In [tMS+11] I conceived and designed the project. Programming was conducted by myself and

Stefan Menz and codes were uploaded as a supplementary material. I enabled and performed

large-scale simulations on the HPC at the National University Ireland using the portable batch

systems. Data interpretation was carried out by myself, Stefan Menz, Wilhelm Huisinga and

Christof Schütte. Clinical input was given by Hartmut Stocker and Kaikawus Arasteh. I wrote

the paper with inputs from Hartmut Stocker, Kaikawus Arasteh, Stefan Menz, Wilhelm Huisinga

and Christof Schütte and I managed the communication between project members at FU, Uni

Potsdam and the AVK.

In [DWSt15] I conceived the idea for the paper and supervised Sulav Duwal, who implemented

all algorithms to compute the pro-active treatment strategy and the algorithms for solving

the feedback control, based on work by Stefanie Winkelmann. Codes and software (treatment

optimizer, “TOP”) are available through my webpage. I developed and implemented the coarse-

grained CME model. Simulations were performed by Sulav Duwal with input and supervision

from me. Interpretation and analysis of simulation data was carried by myself and Sulav Duwal

with inputs from Stefanie Winkelmann and Christof Schütte. I wrote the paper together with

Sulav Duwal.

The molecular mechanism of action of NRTIs

In the preceding works antiviral treatment was considered as a categorial “on” and “o↵” vari-

able. Next, we wanted to capture the precise relation between drug concentration and the drugs’

e↵ect. Most frequently, this relation is modelled by the so-called Emax equation, whose param-

eters are fittet to the available (molecular-, cellular- or clinical-) data.

At the molecular level, the Emax equation can, in some cases, be mechanistically derived from

first principles [1]. In these cases, it describes the relative reduction in the targeted reactions’

velocity. However, it is not clear whether it is an accurate description of the drugs e↵ect at

higher levels of resolution, i.e. to describe the drugs’ e↵ect on cellular phenotypes, or clinical

endpoints. We set out to explore this relation in more detail for the antiviral class of nucleoside

reverse transcriptase inhibitors (NRTIs). NRTIs are so-called ‘prodrugs’, i.e. the chemical entity

that is administered is not pharmacologically active. Rather, NRTIs get chemically modified

after absorption by HIV target-cells to form the active moiety, the NRTI-triphosphate (TP).

Noteworthy, the concentrations of the pharmacologically active NRTI-TP within cells and the

pro-drug in the blood plasma are usually non-linearly related and temporally asynchronous [4].

Thus, applying the Emax equation to plasma prodrug concentrations to describe clinical e�cacy

will most certainly provide incorrect predictions.

In [tMMS12], we set out to build the first mechanistic model of the molecular mechanisms of

action (MMOA) of NRTIs: The pharmacologically active NRTI-TP competes with endogenous

deoxynucleoside triphosphates (dATP, dCTP, dGTP or dTTP) for incorporation into nascent

viral DNA during reverse transcription (RT), i.e. shortly after a virus has fused with a target

cell (typically a CD4+ T cell) and before proviral integration into host cells. When the inhibitor

gets incorporated into the nascent viral DNA, it essentially halts further polymerisation until

excised from the DNA, because the necessary chemical group for attaching the next incoming
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nucleotide is missing in the NRTI. I modelled the process of viral DNA polymerisation by reverse

transcriptase as a Markov process and derived analytical solutions for the mean first passage

time (time to finalise the DNA polymerisation). The drugs’ direct e↵ect was then assessed as

the relative increase in the mean first passage time, compared to the absence of drug. In vitro

kinetic parameters for the model were gathered from a large body of published literature and al-

lowed to predict the relation between NRTI-TP intracellular concentrations and residual reverse

transcription for all ⇡10 NRTIs, their combinations and various viral genotypes. Furthermore,

it allowed to quantify viral fitness and epistasis from micro-kinetic measurements.

But are these predictions correct, and have all important molecular processes been modelled?

Amongst other things, the MMOA model allows to predict antiviral potency (50% inhibitory

concentration, IC50) of any antiviral from in vitro data. To assess the validity of these predic-

tions, we implemented an entirely independent approach (a typical top-down approach) using

only clinical data to predict the very same parameter, the antivirals’ IC50 in [Dt16]. While the

top-down approach is limited in its scope (may not be extrapolatable), it certainly represents the

relevant, clinical e�cacy endpoint and consequently allows to assess whether the MMOA model

can be extrapolated to the clinical condition. In the top-down approach, we combined models

of the plasma- and intracellular pharmacokinetics and viral dynamics, leaving the IC50 as the

only ‘free’ parameter. For all drugs tested (where clinical data was available), the top-down-

and MMOA predicted IC50 were in excellent agreement, giving us confidence in the relevance

and validity of the MMOA model. Subsequently, we used the MMOA model to assess scenarios

for which clinical data is not available or cannot be derived, for example the clinical potency of

antivirals against resistant viral strains.

In [tMMS12] I conceived, designed, managed and implemented the project with biological input

from Roland Marquet. I conducted all simulations. Philipp Metzner provided mathematical

input regarding the computation of the mean first passage times. Data interpretation was car-

ried out by myself, Roland Marquet and Christof Schütte. I wrote the paper with inputs from

Roland Marquet. Codes are available as supplementary material in [DSt16].

In [Dt16] I conceived the idea for the paper and supervised Sulav Duwal, who implemented

everything and conducted the simulations. Interpretation and analysis of simulation data was

carried by myself and Sulav Duwal. I wrote the paper together with Sulav Duwal. Codes for

the MMOA model were provided as supplementary material in [DSt16].

HIV prophylaxis

Using the HIV transduction model [tMH10], the MMOA model [tMMS12] and various models of

antiviral pharmacokinetics, we had laid the foundation for exploring novel clinical applications.

One such promising applications is HIV chemo-prophylaxis. HIV prophylaxis has nowadays

become an integral tool to control the spread of HIV, because neither a cure, nor a vaccine exist

despite over 30 years of intense research. The core idea of HIV prophylaxis is to provide antivi-

rals to uninfected individuals that are at risk of becoming infected. The administered antiviral

can then lower the risk- or entirely prevent HIV infection. Prophylaxis thus works in a similar

way to a vaccination, only that the prophylactic protection is a direct function of the antivirals’

concentration at the moment of pathogen exposure.
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We started working on the topic of pre-exposure prophylaxis (PrEP) before the approval of the

first PrEP regimen in 2012 [DSt12]. Since then we have made a few contributions which I will

shortly summarise in a thematic (not chronological) order:

Based on the HIV transduction model [tMH10], we derived a branching process formulation

for the infection probability in [DDKt19]. We analytically solved the branching process, which

allowed us to compute the probability of infection for any (fixed) drug concentration, for any

drug, based on its molecular mechanisms of action. This (i) enabled to assess the drug-class

specific utility of antivirals and to (ii) assess the prophylactic potential of each drug by consider-

ing clinical concentrations ranges typically achieved during treatment. We found that protease

inhibitors displayed an atypical switch-like concentration-prophylaxis profile. This profile would

likely make them unsuitable as prophylactic e�cacy may alternate between zero and complete

protection if, e.g. an individual misses a drug dose. Secondly, based on clinical concentrations,

we found several candidates out of the ⇡ 30 treatment-approved drugs may o↵er complete HIV

protection. These were nevirapine, dolutegravir, efavirenz, darunavir, rilpivirine and etravirine.

In [DSt16] we wanted to incorporate varying drug concentrations that change due to drug dosing

and drug-specific pharmacokinetics. This would allow to assess di↵erent dosing schemes and the

e↵ects of e.g. adherence which is currently considered the main barrier to prophylactic e�cacy.

We utilised the previously developed MMOA model [tMMS12] to compute the potency of all

treatment-approved NRTIs in a ‘bottom-up’ sense. Furthermore, we utilised various ‘top-down’

pharmacokinetic models that we had previously developed [DSt12, Dt16]. We then developed

a hybrid CME-finite state projection approach that we solved directly. Pharmacokinetics (PK)

were therein regarded deterministically and according to the mechanisms of action of the con-

sidered drug, the pharmacokinetics would a↵ect a specific parameter of the virus dynamics in a

time-dependent fashion. We then set up an infinitesimal generator that modelled the intrinsi-

cally stochastic dynamics of HIV during its first replication cycle, subjected to the (time-varying)

drug e↵ects with a ‘sink’ state that denoted the probability to survive the first replication cy-

cle and produce viral progeny. The probability of reaching this state for t ! 1 was used to

approximate the infection risk. This coupled PK- finite state CME was co-evolved numerically

using standard ODE integration schemes. Within this framework, we could also model infection

after exposure to multiple viruses, by assuming statistical independence.

While the developed numerical approach is quite powerful, its central underlying assumption

is that ‘if the virus isn’t cleared in the first replication cycle, it cannot be cleared any time

after’. Biologically, if the virus survives the first replication cycle, it will produce on average

1000 progeny viruses (eliminating all progeny will thus be p(D)999 less likely; p(D) < 1 being

the probability to eliminate one virus during one replication cycle in the presence of drug D).

Therefore, our underlying assumption is quite realistic, if the drugs’ potency is weak-to-moderate

(which applied for all drugs analysed in [DSt16]). However, if the drug is very potent (p(D) very

close to 1), or if the drug directly a↵ects the production of viral progeny (as in the case of pro-

tease inhibitors), the numerical approach developed in [DSt16] may under-predict prophylactic

e�cacy.

In [FtK+11] and [DSt12] we therefore used a di↵erent numerical approach: Here, we massively

sampled viral trajectories using the hybrid stochastic-deterministic integral method (an exact

method). I.e., pharmacokinetics were again treated deterministically and reactions a↵ecting the
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viral dynamics were adaptively assigned to a stochastic vs. a deterministic regimen. We applied

this approach to (i) assess the prophylactic e�cacy of nevirapine in preventing the transmission

of HIV from an HIV-infected mother to her child [FtK+11] and (ii) to assess the prophylactic

e�cacy of tenofovir against sexual transmission of HIV [DSt12]. Regarding (i) we found that

when nevirapine is given to an HIV infected mother during labor, it protects the child because it

is trans-placentally delivered to the child before it is exposed to maternal (HIV-infected) blood

during birth. Regarding (ii), we found that tenofovir (which was approved as part of PrEP in

2012) insu�ciently ( 80%) protects against HIV infection and that its protective levels only

build up very slowly, i.e. after several dosing events.

Numerically, we classified hydrid stochastic trajectories as infection events, whenever the virus

population outgrew a particular threshold. However, this threshold was arbitrarily chosen. We

chose a large threshold, which increased the compute-time of our simulations. By contrast, a

small threshold may under-predict the prophylactic e�cacy.

To prevent any biases from manually choosing thresholds to classify viral trajectories as infection

events, we developed a numerically accurate (error-controlled) technique in [DDKt18, DSD+19].

Again, we used a hybrid sampling strategy. We treated pharmacokinetics deterministically and

viral dynamics as intrinsically stochastic. We then adapted the numerically exact EXTRANDE

algorithm to our needs. Specifically, using results from [DDKt19], we were able to compute an

‘extinction simplex’. The extinction simplex denotes the part of the viral state space where the

probability of viral extinction exceeds a particular threshold " > 0. The user-defined threshold "

is then directly related to the probability of misclassifying a viral trajectory as an infection event.

Generally, this threshold can be set to the inverse of the number of stochastic samples, which

guarantees that the misclassification error is smaller than the sampling error. The extinction

simplex is then adapted in such way that it takes the maximum achievable drug concentration (=

largest simplex) for any future times into account. Our algorithms therefore allows for the exact

and computationally e�cient computation of prophylactic e�cacy for any arbitrary prophy-

lactic dosing- and adherence regimen. Using population pharmacokinetic models for efavirenz

[DSD+19] and dolutegravir [DDKt18] we then predicted their respective prophylactic e�cacy

for PrEP, ‘PrEP on demand’ and post-exposure prophylaxis using di↵erent levels of adherence

and viral exposures. We found that reduced dose (300mg) efavirenz may be a superior and

cost-e↵ective alternative to currently approved Truvada (tenofovir + emtricitabine) providing

almost 100% protection, whereas dolutegravir may be non-inferior to Truvada.

I conceptualised and designed the project in [DDKt19] together with Sulav Duwal as part of

his PhD work, which I supervised. I managed the communication between all project members.

Sulav Duwal and I developed the methods and Sulav Duwal implemented everything. Data

interpretation was carried out by myself and Sulav Duwal with inputs from Saye Khoo. I wrote

the paper with Sulav Duwal and input on clinical aspects was provided by Laura Dickinson and

Saye Khoo. A software is provided through my webpage (PrEP-Predictor).

The project [DSt16] was conceptualized by me and Sulav Duwal as part of his PhD work. Codes

were written by Sulav Duwal and myself and are available as supplementary material in [DSt16].

Vikram Sunkara contributed the FSP idea and Sulav Duwal and I wrote the manuscript.

The idea for the inter-disciplinary project [FtK+11] emerged through discussions between my-

self and Monika Frank during my Post-Doc with Christof Schütte and her PhD with Charlotte
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Kloft. I implemented and wrote all parts concerning the viral- and pharmacodynamic modelling,

whereas Monika Frank performed and documented the pharmacokinetic modelling with data

provided by Andrea Kunz and Gundula Harms. I also largely managed the communication be-

tween the project members at the Charité, the pharmacy department at FU and myself/Christof

Schütte.

In [DSt12], I developed the idea for the project and contributed the initial code for the integral

method, which Sulav Duwal then used as part of his overall implementation. The pharma-

cokinetic modelling part was developed by Sulav Duwal during his Bachelor’s thesis, which I

supervised. I wrote the paper with input from Sulav Duwal and Christof Schütte.

The idea for the inter-disciplinary project [DDKt18] emerged from discussions between myself,

Sulav Duwal, Laura Dickinson and Saye Khoo. I managed the project and the communication

between project members. Sulav Duwal and I developed the methods and Sulav Duwal imple-

mented everything. Data interpretation was carried out by myself and Sulav Duwal with inputs

from Saye Khoo and Laura Dickinson who provided the pharmacokinetic modelling. I wrote the

paper with Sulav Duwal and Laura Dickinson and with inputs by Saye Khoo.

The idea for the inter-disciplinary project [DSD+19] emerged from discussions between myself,

Sulav Duwal, Laura Dickinson and Saye Khoo. I managed the project and the communication

between project members. I supervised Daniel Seeler who implemented everything and per-

formed simulations as part of his Master’s thesis based on previous work by Sulav Duwal. Data

interpretation was carried out by myself and Daniel Seeler with inputs from Laura Dickinson

who provided the pharmacokinetic modelling. I wrote the paper with Daniel Seeler and with

inputs by Laura Dickinson and Saye Khoo.

Inference of Genotype-Phenotype Associations

The second set of publications [SDH+15, SSJ+18] is related to the analysis and interpreta-

tion of data arising from next-generation sequencing (NGS) experiments, specifically genotype-

phenotype mapping. The broader context and its association with translational systems medicine

is that NGS, and more recently nanopore sequencing, are now routinely used in diagnostics and

it is envisaged to use them for treatment personalisation. Standard bioinformatics pipelines

(e.g. assembly, alignment, quality control), may inform about the existence and abundance of

particular mutations in a sample. But in most cases it is unclear how to use this information for

treatment personalisation. E.g., what is the level of drug resistance conferred by the detected

viral quasi-species and what is its propensity to develop resistance? Genotype-phenotype map-

ping can fill this gap by relating the genomic sequence to phenotypic endpoints, such as drug

resistance or fitness.

Standard methods for genotype-phenotype mapping involve the laborious generation and test-

ing of each genotype in a phenotypic assay, or to measure its selection and outgrowth in an

evolutionary experiment [5]. The latter can also be performed based on massive amounts of

patient data, if genotyping has been performed and su�cient information on the treatment

history (=information on selection pressure) is available. However, the precise treatment condi-

tions (co-medication, adherence, pharmacokinetics) are usually not available or -controllable in

human subjects as there are many confounding factors. To fill this gap, we developed a novel
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quantitative high-throughput genotype-phenotype mapping method, the Mutational Interfer-

ence Mapping Experiment (MIME). Our method [SDH+15] was published in Nature Methods

and featured on the cover of the September issue in 2015.

Biological domain. Although not confined to a specific biological domain, we focussed in our

work on non-coding RNA (ncRNA). NcRNA denotes a large class of RNA molecules (tRNA,

snoRNA, lncRNA, etc...) that are not translated to protein and that continue to be discovered

and annotated. To date, we already know that they regulate virtually all cellular processes.

Consequently, many recent discoveries associate ncRNA with various, poorly understood, dis-

eases. Currently, despite their important role, ncRNAs are not systematically exploited as drug

targets, mainly because the functional mechanisms are often insu�ciently understood. As in the

case of proteins, it is believed that their three dimensional structure allows to create chemical

micro-milieus that can determine their function. However, RNAs are structurally flexible and

the mechanisms and dynamics governing ncRNA structure are not well described. Notably,

through genotype-phenotype mapping as outlined below, the MIME method can significantly

contribute to understanding RNA function & structure to a level of detail that would be su�-

cient to guide pharmacophore design.

Disease. In our work described herein, we focus on studying the function of ncRNA in RNA

viruses (viruses who’s genome is an RNA; Examples: HIV, Influenza, Hepatitis C, Ebolavirus,

...). May viruses have extremely compact genomes with many overlapping regulatory functions.

I.e. they code for proteins, as well as many non-coding RNAs that help to reprogram an infected

human cell to produce viral progeny. The HIV genome, for example, codes for only 9 proteins.

The number of ncRNAs that it codes for is currently unknown.

The 5’ untranslated region (5’ UTR) of the HIV genome is a non-coding RNA that is highly

conserved between distinct patient-derived viruses. It is thus a prime suspect for a functional

ncRNA. In our publications, we specifically studied the various functions of this ncRNA in HIV

replication. Our work may thus create valuable insights to pharmacologically target the 5’ UTR

of HIV to prevent HIV replication.

The Mutational Interference Mapping Experiment

The method was initially applied to study the function of the HIV 5’ UTR in vitro [SDH+15],

and subsequently extended to the in cellulo situation [SSJ+18]. The method is related to “in

vitro evolution” for which Francis Arnold received the Nobel price in chemistry in 2018. The

core idea is to (i) create a pool (library) of all possible genotypes through random mutation,

to (ii) subject this pool to a specific selection pressure, e.g. the binding to a protein and (iii)

to physically separate the genotypes according to functionality (e.g. into bound- and unbound

RNA) and to (iv) sequence both the functionally selected- and deselected genotypes using NGS,

which provides information regarding their abundance.

My contributions are the development of mathematical and statistical methods that allow in-

terpretation and analysis of the generated NGS data: (A) Through mathematical modelling, I

could show that the frequency of a mutation in the deselected pool, divided by the frequency

in the selected pool equals the change in function that the respective mutation confers (=the

phenotype; e.g. binding a�nity). Since NGS provides all mutational frequencies in a single
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run, our method thus allows to predict the phenotype of N · 3 mutations from a single experi-

ment (N being the length of the considered molecule, 3 is the number of possible mutations per

residue). However, NGS is error-prone and thus many detected “mutations” may actually be

sequencing errors, which could lead to false positive “discoveries”. (B) My second contribution

is to develop a robust statistical method that allows to ascertain whether predicted phenotypes

are significant and whether the signal (mutation frequency) exceeds the sequencing error. The

core idea is based on re-sampling techniques: To re-sample the phenotype, pairs of residues

are considered, with only one residue mutated. Since only a subset of NGS reads cover both

residues, the method is related to cross-validation and the jack-knife procedure. Assessing all

pairs of residues then allow to empirically construct a probability density function for each of

the N · 3 phenotypic estimates and assess whether they are significantly di↵erent from the wild

type. This process runs in O(N2). Contributions (A) and (B) allow to analyse the phenotypic

contribution of all single-mutations. Moreover, they allow to characterise functional domains in

the molecule: i.e. all positions where mutations significantly decrease function constitute the

functional domain. However, at this point it is not clear how they a↵ect the function. For exam-

ple, is the residue directly interacting with another molecule (as in RNA-protein interactions)?

Or does it contribute to the folding of the RNA, such that the protein-RNA interaction can take

place? (C) The third contribution resolves this ambiguity: Through combinatorics, I developed

a method that identifies residues within the RNA that directly interact with one another to form

a functional structure. The method identifies residue pairs, where structure-altering mutations

at only one residue negatively a↵ect the molecule’s function and where structure reconstituting

mutations at both residues restore function, i.e. we look at pairs of mutated residues that confer

a particular form of positive epistasis.

In [SDH+15] the MIME method was introduced to study RNA-protein binding in vitro, and ap-

plied to HIV genomic RNA capturing by the gag protein. In [6] we introduced a GUI-software

that perform all analysis steps. In [SSJ+18] we adopted the method to in cellulo experiments

to study the intracellular regulation of viral genome production and viral genome packaging by

the 5’UTR of HIV. Interestingly, the ratio of mutation frequencies in the deselected vs. selected

pools was again directly related to the phenotypic endpoint.

In [SDH+15] I developed and implemented all mathematical-/statistical tools to allow genotype-

phenotype mapping and to infer function-associated ncRNA structure directly from next-generation

sequencing data, while Redmond P Smyth and Roland Marquet developed the idea for-, and con-

ducted all experiments. Bioinformatic processing of the raw data (alignment, trimming, quality

control) was performed by Redmond P Smyth. All authors contributed to analysing the data.

I contributed to writing the main manuscript and wrote all supplementary texts. In [SSJ+18]

I developed the mathematical/statistical tools and closely supervised my student (Maureen R

Smith) who implemented everything. Redmond P Smyth and Roland Marquet developed the

idea for the experiments and Redmond P Smyth performed all experiments and the primary

bioinformatic processing. Data was jointly analysed. I contributed to writing the manuscript

and wrote all supplementary texts.
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Further Publications

The thirteen selected publications describe my major research after completing my doctoral

thesis. I addition, I co-authored another 29 publications (+ 1 patent) which I did not include

in the selection of manuscripts for the habilitation procedure. Publications [7, 8, 9, 10, 11, 12]

could have been added to the list based on my contributions, but I chose not to include them

because they focus on other topics than the ones presented herein. I did not include [6] as it

concerned a software development based on existing ideas presented in [SDH+15]. Publications

[3, 2, 13] are mathematical papers, where the main mathematical ideas were largely contributed

by Stefanie Winkelmann and Wei Zhang respectively. Publication [5] involved crucial methods

development by me and my PhD student at the time, Kaveh Pouran Yousef, to infer genotype-

phenotype associations, as well as the writing of the manuscript. However, our contribution was

not gratified with appropriate authorship and thus this publication is not included in the list.

Publication [14] was written during an internship as part of my Bachelor studies. Research in

[15, 16, 17] was largely based on ideas from my PhD supervisor. Publication [4] was based on my

own ideas, but largely part of my PhD research [1]. Publications [18, 19, 20, 21, 22, 23, 24, 25]

mainly involved clinical data analysis where I contributed some methods development and ideas,

however where I was not the lead researcher or PI. Publications [26, 27] study HIV evolution

from surveillance data. I did not include the former because I am not the first- or corresponding

author, whereas the latter was not included in the list because I consider my contribution was

not significant enough to justify this inclusion. Publications [28, 29] involve some intellectual

contributions from my side, but insu�cient to be included here.

Thirteen Publications Selected for Habilitation Procedure

DDKt18. Sulav Duwal, Laura Dickinson, Saye Khoo, and von Kleist, Max. Hybrid stochas-

tic framework predicts e�cacy of prophylaxis against HIV: An example with dif-

ferent dolutegravir prophylaxis schemes. PLoS Comput Biol, 14(6):e1006155, 2018.

DDKt19. Sulav Duwal, Laura Dickinson, Saye Khoo, and von Kleist, Max. Mechanistic

framework predicts drug-class specific utility of antiretrovirals for HIV prophylaxis.

PLoS Comput Biol, 15(1):e1006740, 2019.

DSD+19. Sulav Duwal, Daniel Seeler, Laura Dickinson, Saye Khoo, and von Kleist, Max.

The utility of efavirenz-based prophylaxis against HIV infection. a systems phar-

macological analysis. Front Pharmacol, 10:199, 2019.

DSt12. Sulav Duwal, Christof Schütte, and von Kleist, Max. Pharmacokinetics and

pharmacodynamics of the reverse transcriptase inhibitor tenofovir and prophylactic

e�cacy against HIV-1 infection. PloS one, 7:e40382, 2012.

DSt16. Sulav Duwal, Vikram Sunkara, and von Kleist, Max. Multiscale systems-

pharmacology pipeline to assess the prophylactic e�cacy of nrtis against HIV-1.

CPT: pharmacometrics & systems pharmacology, 5:377–387, 2016.
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Dt16. Sulav Duwal and von Kleist, Max. Top-down and bottom-up modeling in system

pharmacology to understand clinical e�cacy: An example with NRTIs of HIV-1.

European journal of pharmaceutical sciences, 94:72–83, 2016.

DWSt15. Sulav Duwal, Stefanie Winkelmann, Christof Schütte, and von Kleist, Max. Opti-

mal treatment strategies in the context of ’treatment for prevention’ against HIV-1

in resource-poor settings. PLoS computational biology, 11:e1004200, 2015.

FtK+11. Monica Frank*, von Kleist*+, Max, Andrea Kunz, Gundel Harms, Christof

Schütte, and Charlotte Kloft+. Quantifying the impact of nevirapine-based pro-

phylaxis strategies to prevent mother-to-child transmission of HIV-1: a combined

pharmacokinetic, pharmacodynamic, and viral dynamic analysis to predict clinical

outcomes. Antimicrobial agents and chemotherapy, 55:5529–5540 (*equal contribu-

tion, + co–corresponding), 2011.

SDH+15. Redmond P Smyth*, Redmond P, Laurence Despons, Gong Huili, Serena Bernac-

chi, Marcel Hijnen, Johnson Mak, Fabrice Jossinet, Li Weixi, Jean-Christophe Pail-

lart, von Kleist*, Max, and Roland Marquet*. Mutational interference mapping

experiment (MIME) for studying RNA structure and function. Nature methods,

12:866–872 (*shared corr. authorship), 2015.

SSJ+18. Redmond P Smyth*, Maureen R Smith, Anne-Caroline Jousset, Laurence Despons,

Géraldine Laumond, Thomas Decoville, Pierre Cattenoz, Christiane Moog, Fabrice

Jossinet, Marylène Mougel, Jean-Christophe Paillart, von Kleist*, Max, and

Roland Marquet*. In cell mutational interference mapping experiment (in cell

MIME) identifies the 5’ polyadenylation signal as a dual regulator of HIV-1 ge-

nomic rna production and packaging. Nucleic Acids Res, 46(9):e57 (*shared corr.

authorship), 2018.

tMH10. von Kleist, Max, Stephan Menz, and Wilhelm Huisinga. Drug-class specific

impact of antivirals on the reproductive capacity of HIV. PLoS computational

biology, 6:e1000720, 2010.

tMMS12. von Kleist, Max, Philipp Metzner, Roland Marquet, and Christof Schütte. HIV-

1 polymerase inhibition by nucleoside analogs: cellular- and kinetic parameters

of e�cacy, susceptibility and resistance selection. PLoS computational biology,

8:e1002359, 2012.

tMS+11. von Kleist, Max, Stephan Menz, Hartmut Stocker, Keikawus Arasteh, Christof

Schütte, and Wilhelm Huisinga. HIV quasispecies dynamics during pro-active treat-

ment switching: impact on multi-drug resistance and resistance archiving in latent

reservoirs. PloS one, 6:e18204, 2011.
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tems. Communications in Mathematical Sciences, 16(2):293–331, 2018.
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Abstract

To achieve the 90-90-90 goals set by UNAIDS, the number of new HIV infections needs to

decrease to approximately 500,000 by 2020. One of the ‘five pillars’ to achieve this goal is

pre-exposure prophylaxis (PrEP). Truvada (emtricitabine-tenofovir) is currently the only

medication approved for PrEP. Despite its advantages, Truvada is costly and requires indi-

viduals to adhere to the once-daily regimen. To improve PrEP, many next-generation regi-

men, including long-acting formulations, are currently investigated. However, pre-clinical

testing may not guide candidate selection, since it often fails to translate into clinical effi-

cacy. On the other hand, quantifying prophylactic efficacy in the clinic is ethically problem-

atic and requires to conduct long (years) and large (N!1000 individuals) trials, precluding

systematic evaluation of candidates and deployment strategies. To prioritize- and help

design PrEP regimen, tools are urgently needed that integrate pharmacological-, viral-

and host factors determining prophylactic efficacy. Integrating the aforementioned factors,

we developed an efficient and exact stochastic simulation approach to predict prophylactic

efficacy, as an example for dolutegravir (DTG). Combining the population pharmacokinetics

of DTG with the stochastic framework, we predicted that plasma concentrations of 145.18

and 722.23nM prevent 50- and 90% sexual transmissions respectively. We then predicted

the reduction in HIV infection when DTG was used in PrEP, PrEP ‘on demand’ and post-

exposure prophylaxis (PEP) before/after virus exposure. Once daily PrEP with 50mg oral

DTG prevented 99–100% infections, and 85% of infections when 50% of dosing events

were missed. PrEP ‘on demand’ prevented 79–84% infections and PEP !80% when initi-

ated within 6 hours after virus exposure and continued for as long as possible. While the

simulation framework can easily be adapted to other PrEP candidates, our simulations

indicated that oral 50mg DTG is non-inferior to Truvada. Moreover, the predicted 90% pre-

ventive concentrations can guide release kinetics of currently developed DTG nano-

formulations.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006155 June 14, 2018 1 / 25
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Author summary

In 2012, pre-exposure prophylaxis (PrEP) with Truvada was approved. It is considered
one of the ‘five pillars’ by UNAIDS to drastically reduce HIV transmission. However, Tru-
vada provides imperfect protection, is costly and individuals often fail to adhere to the
once-daily regimen. Next-generation PrEP compounds, including long-acting formula-
tions, are currently developed to improve PrEP. However, clinical trials using next-PrEP
often fail. Since they involve many (>1000) individuals and long durations this incurs
unacceptable costs, apart from individual tragedies. While animal- and ex vivo/in vitro
experiments poorly translate into human efficacy, predictive tools are urgently needed
that allow for PrEP candidate prioritisation. We developed an efficient simulation tool to
predict the prophylactic utility of arbitrary dosing regimen. After developing population
pharmacokinetic models for dolutegravir (DTG), we set out to predict its prophylactic
utility in PrEP, PrEP ‘on demand’ and post-exposure prophylaxis. We found that 50mg
DTG is non-inferior to Truvada in all aforementioned prophylaxis schemes. Moreover,
we determined concentrations-prophylaxis profiles, which can guide release kinetics of
currently developed DTG nano-formulations.

Introduction

HIV-1 continues to be one of the greatest public health challenges. While it is possible to sup-
press virus replication with antiretroviral combination treatment, the virus can persist in cellu-
lar and anatomical reservoirs for decades, precluding a cure [1–3]. Because of the inability to
cure HIV, preventing its transmission is of utmost importance. The 90-90-90 target formu-
lated by UNAIDS aim to end AIDS by 2030. An intermittent goal will be a drastic reduction of
new HIV infections: While approximately 2.1 million individuals became infected with HIV in
2015 [4], the intention is to reduce this number to 500,000 cases by 2020 and to fewer than
200,000 by 2030.

Currently, pre-exposure prophylaxis (PrEP) for high-risk individuals is one of the five ‘pil-
lars’ set by UNAIDS to achieve a drastic reduction in HIV infections. Of the available agents,
tenofovir and emtricitabine (Truvada) have been extensively studied and were approved by
the FDA and EMEA in 2012 and 2016 respectively. Most studies agree that Truvada can
potently prevent HIV infection, if individuals adhere to the once-daily regimen [5, 6]. How-
ever, major shortcomings of Truvada-based PrEP are its costs [7], the fact that it imperfectly
protects from infection, and the necessity for daily drug intake, which often leads to inade-
quate adherence. These deficits of Truvada-based PrEP may be overcome by next-generation
PrEP regimen, including more cost-efficient drugs, and drug formulations that require antivi-
ral injections only every few month (see [8] for an overview of the PrEP pipeline).

Quantifying prophylactic efficacy in the clinic is ethically problematic and extremely expen-
sive, since it requires to conduct large (N > 1000 individuals) trials over very long time spans
(years) to obtain statistically evaluable results. On the other hand, pre-clinical PrEP experi-
ments only allow to study certain aspects in isolation. While PrEP efficacy is the result of a
multivariate interplay of viral- and host factors there is a lack of translational tools to integrate
available knowledge and to rationalize which agents and dosing regimen to test clinically. Hav-
ing predictive models at hand that allow to rule out-, or prioritize certain regimen can avoid
putting individuals at harm and greatly reduce clinical failure rates and associated costs.

Stochastic framework predicts prophylactic efficacy of dolutegravir against HIV

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006155 June 14, 2018 2 / 25

data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

20

https://doi.org/10.1371/journal.pcbi.1006155


Our intention was to develop a method that integrates pharmacokinetic and pharmacody-
namic (PK/PD), as well as viral characteristics to a priori assess the per contact prophylactic
efficacy of arbitrary PrEP strategies against HIV.

Recently, modelling approaches have been developed to predict the per-contact PrEP effi-
cacy [9, 10] by integrating various host and viral factors. Despite their advantages, these
approaches conventionally neglect the pharmacokinetic–pharmacodynamic characteristics
of HIV drugs and are therefore unable to simulate drug dosing, and dose frequency in order
to ascertain how PrEP can most effectively be deployed. We recently developed a novel
approach which fully integrates the pharmacology of nucleotide reverse transcriptase inhibi-
tors (NRTIs) [11]. This approach, however, approximates virus extinction by its elimination
probability during the first replication cycle. While this assumption is reasonable for moder-
ately potent prophylactic compounds (like all investigated NRTIs), it underestimates the
prophylactic efficacy of highly potent drugs and fails to predict efficacy in post-exposure pro-
phylaxis (PEP). We overcome the aforementioned limitations by building on recent develop-
ments for the simulation of stochastic processes [12], implementing a numerically exact
simulation approach to assess PrEP/PEP efficacy for time-varying drug concentrations (phar-
macokinetics). The benefit of such integrative framework is to elucidate the relative impor-
tance of the distinct pharmacological and viral factors, such as the on- and offset of
prophylactic protection, sensitivity to missed dosing events, -virus inoculum size and -timing
of virus exposure. In the current work, we combine population pharmacokinetics with the
novel stochastic simulation method to analyze different PrEP/PEP schedules with the sec-
ond-generation integrase inhibitor dolutegravir.

Methods

The initial replication events after exposure to HIV are highly stochastic. Typically, a low num-
ber of founder viruses is responsible for establishing infection [13–16] and the transmission
probability per sexual exposure [17, 18] is very low. While two types of stochastic noise are typ-
ically considered in biology, roughly categorized as internal- vs. external noise [19, 20], we
herein focused on the former. This assumes that the stochastic outcome of viral exposure
(infection/non-infection) can be explained by the order in which reaction occur. For example,
when a single virus comes into proximity of target cells, it may either be cleared or it may infect
the target cell which can trigger a systemic infection. Prophylactic drugs shift the balance
between these two events in favor of virus clearance. Stochastic dynamics of this type are
defined by a multivariate Poisson process. The evolution of the state probabilities given the ini-
tial state x0 is then described by the chemical master equation (CME). For each possible state xi

we have

d
dt
PÖXt à xijX0 à x0Ü à

XK

kà1

akÖxi � nkÜ � PÖXt à xi � nkjX0 à x0Ü

�akÖxiÜ � PÖXt à xijX0 à x0Ü;

for time t� 0, with Xt 2 Ns denoting the state of the system (the combination of the number
of viruses, infected cells and drug particles), where s denotes the overall number of variables
(‘species’). In the equation above, the index k runs over all reactions and ak, νk denote the reac-
tion propensity of the kth reaction and its stoichiometric change vector respectively. A practical
problem with the CME is that even for moderately sized systems (s small) the curse of
dimensionality is encountered and consequently the CME is intractable [21].
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Hybrid formulation

It has been shown that intrinsic stochastic fluctuations may be negligible in the so-called large
copy number regimen (when Xt >> 1) and consequently, an ODE approach that models con-
centrations of molecules Xt/O, suffices [22]. In the current work, we re-formulate the above
stated CME into a hybrid stochastic-deterministic (discrete-continuous) system Xt = (Yt; Zt),
where Yt denotes the discrete-stochastic and Zt denotes the continuous-deterministic part. In
our application, we view the antiviral pharmacokinetics (concentration time profile) as the
external dynamical environment Zt, which we will model in terms of a low-dimensional set of
ODEs (exemplified below). This is common practice in the pharmacometrics/systems pharma-
cology field and is supported by the fact that typically large quantities of drug molecules reach
the target site. The target site concentrations Dt✓ Zt affect reaction propensities of our internal
stochastic system, which models the stochastic events after exposure (viral replication and
clearance reactions). The internal system Yt represents the state of the viral compartments rep-
resented by the number of free viruses V, early stage infected T cells T1 and late infected T cells
T2, i.e Yt = [V, T1, T2,]T, exemplified below.

While this reduces the dimensionality, propensity functions of the stochastic sub-system
are subsequently time-dependent, i.e. the continuous-deterministic drug concentration-time
profile may affect reaction rates of the discrete-stochastic subsystem Yt on an infinitesimally
small time scale. We will tackle this problem algorithmically, enabling the numerically exact
estimation of prophylactic efficacy.

Prophylactic efficacy of a drug regimen

Our goal is to estimate the prophylactic efficacy φ of particular medication regimen SD. The
prophylactic efficacy denotes the reduction in infection probability per contact,

φÖY0; SDÜ à 1� 1� PEÖY0jSDÜ
1� PEÖY0jÜ

Öprophylactic efficacyÜ; Ö1Ü

where PE(Y0|SD) and PE(Y0|) denote the virus extinction probabilities for a particular pro-
phylactic regimen SD and in the absence of prophylactic drugs respectively. The extinction
probability is defined as

PEÖY0ÜؔP Yt à

0

0

0

2

6664

3

7775

���� Y0 à

V

T1

T2

2

6664

3

7775

0

BBB@

1

CCCA Ö2Ü

for t!1 and where Y0 denotes the initial state of the stochastic viral dynamics subsystem. In
other words, the extinction probability is the probability that a stochastic trajectory eventually
reaches the absorbing state [0, 0, 0]T of the viral subsystem Y. Naturally, the infection probabil-
ity is the complement of the extinction probability, PI(Y0) = 1 − PE(Y0). The terms PE(Y0|SD),
PE(Y0|) will be computed using a mathematical model of the viral dynamics that mechanisti-
cally considers the direct effects of antivirals on their respective target processes (outlined in a
related article [23]), as well as individual drug pharmacokinetics following particular prophy-
laxis regimen.

Viral dynamics (stochastic part)

We adopted the viral dynamics model described in [24, 25]. Long-lived and latently infected
cells are only implicitly considered (outlined at the end of the section), motivated by the
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observation that transmitted viruses are not macrophage-tropic [26, 27] and in line with
related modelling approaches [9, 10, 28–30]. Although this model is a coarse representation of
the molecular events happening during virus replication, it allows to accurately and mechanis-
tically describe the effect of all existing antiretroviral drug classes on viral replication, as dem-
onstrated in e.g. [31], and can be parameterized by in vitro and clinical data, Table 1. The
modelled viral replication cycle consists of free infectious viruses V, uninfected T-cells, early
infected T-cells (T1) and productively infected T-cells (T2). Early infected T-cells (T1) and pro-
ductively infected T-cells (T2) denote T-cells prior- and after proviral integration respectively,
where the latter produces virus progeny. During the onset of infection the number of viruses is
relatively low and the number of uninfected T-cells Tu is fairly unaffected by virus dynamics
[28, 32, 33]. We thus consider Tu = ĕT/ĎT to be constant over the course of simulations. The
dynamics of the stochastic viral replication model after virus exposure are then defined by six
reactions (the model is depicted in S1 Fig):

a1 à ÖCLá CLT � TuÜ � Vt Öclearance of free virus; V ! ⇤Ü Ö3Ü

a2 à ÖdPIC á dT1
Ü � T1;t Öclearance of early infected cell; T1 ! ⇤Ü Ö4Ü

a3 à dT2
� T2 ;t Öclearance of late infected cell; T2 ! ⇤Ü Ö5Ü

a4 à b � Tu � Vt Öinfection of a susceptible cell; V ! T1Ü Ö6Ü

a5ÖDtÜ à Ö1� ZDÖtÜÜ � k � T1 ;t Öproviral integration; T1 ! T2Ü Ö7Ü

a6 à NT � T2 ;t Öproduction of virus; T2 ! Vá T2Ü; Ö8Ü

with CLT à 1
rrev
� 1

⇣ ⌘
� b in eq (3), as outlined in [24] where ρrev = 0.5 denotes the probability

to successfully complete reverse transcription in the absence of inhibitors [34, 35]. Free viruses
are cleared by the immune system with a rate constant CL. Further, free viruses can be also
cleared during unsuccessful T-cell infection CLT through the destruction of essential viral
components of the reverse transcription-, or pre-integration complex [34, 35]. The term Č rep-
resents the lumped rate of infection of T-cells, including the processes of virus attachment to
the cell, fusion and reverse transcription, leading to an early infected cell T1, before proviral
integration. The term k denotes the rate by which early infected T1 cells are transformed into

Table 1. Parameters used for the viral dynamics model. Excerpt from [24], except for CL(naive), which assumed that
virus clearance is smaller in virus-naive individuals compared to infected individuals, in line with [55, 87]. All parame-
ters refer to the absence of drug treatment. All parameters in units [1/day]).

Parameter Value Reference

ĕT 2�109 [82]

dT; dT1
0.02 [83]

dT2
1 [84]

ĎPIC 0.35 [35, 85]

k 0.35 [35]

Č 8�10−12 [86]

NT 670 [24, 83]

CL(naive) 2.3 [10, 28]

https://doi.org/10.1371/journal.pcbi.1006155.t001
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productively infected T2 cells, involving proviral integration and cellular reprogramming. The
term NT denotes the rate of production of infectious virus progeny by productively infected T2

cells. The terms dT1
< dT2

denote the rates of clearance of T1 and T2 cells respectively and ĎPIC

denotes the rate of intracellular destruction of the pre-integration complex. Parameters for the
viral model are summarized in Table 1 and a mechanistic derivation of the dynamics from first
principles is given in [24] (Supplementary Text therein). In this article, we study distinct pro-
phylactic schemes with the second-generation integrase inhibitor dolutegravir (DTG). Inte-
grase inhibitors act intracellularly by preventing proviral integration. In our virus dynamics
model (eqs (3)–(8)), this translates into a decrease in propensity function a5 by a factor
(1 − đD). Notably, DTG is active in its adminstered form (does not require biotransformation)
and has physicochemical attributes that allow the unbound drug to rapidly cross the cellular
membrane. We modelled the direct effect of dolutegravir using the Emax-equation [36]

ZDÖtÜ à
Dm

t

ICm
50 á Dm

t
; Ö9Ü

where Dt is the target site concentration of the drug at time t and the term IC50 and m denote
the drug concentration at which the targeted process is inhibited by 50% and a hill coefficient
[37] respectively. Note that the equation above couples the stochastic viral dynamics subsys-
tem Yt to the deterministic subsystem Zt, where the latter propagates the drug concentrations
Dt✓ Zt.

Pharmacodynamic parameters. The hill coefficient m and 50% inhibitory concentration
IC50 have been measured ex vivo using single-round infection assays in primary human
peripheral blood mononuclear cells, supplemented with 50% human serum [38]. However, the
measured IC50 has to be corrected for protein binding, since dolutegravir is highly protein
bound in human plasma (98.9%) which will be underestimated by the assay (which utilizes
50% human serum). This correction is in line with the widely accepted ‘free drug hypothesis’
[39] that states that the available concentrations at the target site (intracellular space) corre-
spond to the unbound moieties [40, 41]. Dolutegravir obeys physico-chemical characteristics
to enable the unbound drug to rapidly cross cellular membranes, generating an equilibrium
between the unbound drug on either side of the cellular membrane [42]. However, since the
unbound fraction fu,assay in the assay is different to the physiological unbound fraction fu,plasma,
the measured IC50 value needs to be adjusted/scaled. After protein adjustment, we obtain
IC50 = 89(CV = 25.3%) [nM] and m = 1.3(CV = 15.3%), see related article [23].

Dolutegravir pharmacokinetics (deterministic part)

We used non-linear mixed effects modelling techniques [43] to derive a descriptive pharmaco-
kinetic model that accurately captures the observed pharmacokinetic variability within- and
across different patients. In this framework, both a minimal structural model f(θi, �) is fitted
to clinical data, alongside with statistical models describing the distribution of pharmacoki-
netic parameters θ within the population, as well as the measurement- or unexplained noise.

LetDi;t be the measured plasma concentration of a drug in the ith individual at time point t.
The likelihood of that measurement is defined through

Di;t à f Öyi; tÜ � Ö1á ✏i;tÜ á ~✏ i;t Ö10Ü

where f denotes the solution of the structural model (a low dimensional set of ordinary differ-
ential equations; see below) that corresponds to the measurement. The vector θi contains the
pharmacokinetic parameters for the ith individual. The variables ✏i, t and ~✏ i;t denote propor-

tional and additive error terms (measurement- or unexplained noise), which are typically
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assumed to be normal distributed, i.e. ✏i;t ⇠ N Ö0; s2Ü and ~✏ i;t ⇠ N Ö0; ~s2Ü. The prior probabil-

ity is typically assumed to be a multivariate log-normal distribution with

log yi à log yá ri; Ö11Ü

where θ denotes the vector of mean population parameters (fixed effects) and ri is normal dis-
tributed, i.e. ri ⇠ N Ö0;CÜ.

Parameter and model inference. We used dolutegravir concentration-time data from two
clinical studies. One study assessed 50mg once daily dolutegravir administered to 17 healthy
volunteers for 10 days and serial blood sampling performed up to 216 hours after the final dose
[44] (n = 12 female, n = 8 Caucasian). The second study was performed in 39 HIV-infected
patients (n = 2 female, n = 27 Caucasian) stable on efavirenz-based therapy (viral load<40 cop-
ies/mL), switched to dolutegravir (50mg once daily). Random, single blood samples were
drawn over the 24 hour dosing interval 1, 2, 3 and 4 weeks post-switch [45]. Median (range)
age, weight and BMI of all individuals were 47 years (26-68), 76 kg (51-105) and 26 kg/m2. All
data were modelled simultaneously and the first-order estimation (FOCE-I) method of NON-
MEM (v.7.3, ICON plc, Dublin, Ireland), interfaced with Pirana (v.2.9.0; www.pirana-software.
com) was used for parameter inference. One- and two compartment models were explored
with differences between hierarchical models assessed by statistical and graphical methods. The
minimal objective function value (OFV; equal to -2 log likelihood) was used as a goodness-of-
fit diagnostic with a decrease of at least 3.84 units corresponding to a statistically significant dif-
ference between nested models (p = 0.05, ġ2 distribution, 1 degree of freedom). Standard errors
of the estimates were determined with the COVARIANCE option of NONMEM and individual
Bayesian parameter and concentration estimates by the POSTHOC option. Random effects
(inter-individual, inter-occasion variability) in model parameters were included if model fit was
improved (i.e. ïOFV�-3.84 points). To describe residual variability, proportional, additive
and a combined proportional-additive error models were evaluated and the best fitting were
carried forward. The effect of residual efavirenz concentrations on dolutegravir clearance was
determined by estimating 5 separate fixed effects (CL/F values) for dolutegravir alone in healthy
volunteers (study 1) and for weeks, 1, 2, 3, 4, post-switch from efavirenz in HIV-infected
patients (study 2). Other covariates assessed in the model included weight, age, body mass
index (BMI), sex, ethnicity, HIV status, and food consumption within 3 hours of drug intake. A
forwards inclusion-backwards elimination method [46] was used to determine whether there
were any important associations between parameter estimates and covariates. Each covariate
was introduced separately and only retained in the model if inclusion produced a statistically
significant decrease in OFV of at least 3.84 units (p 0.05, ġ2 distribution, 1 degree of freedom)
and was biologically plausible. A backwards elimination step was carried out once all relevant
covariates were incorporated and covariates retained if removal from the model produced a sig-
nificant increase in OFV (> 10.83 points; p 0.001, ġ2 distribution, 1 degree of freedom).

Final PK model. The final model was a two-compartment model with oral absorption:

d
dt

Z1 à �ka � Z1
Ö12Ü

d
dt

D à d
dt

Z2 à ka � Z1

Vc=Fbio
� CL=Fbio

Vc=Fbio
� Z2 �

Q=Fbio

Vc=Fbio
� Z2 á

Q=Fbio

Vp=Fbio
� Z3 Ö13Ü

d
dt

Z3 à Q=Fbio

Vc=Fbio
� Z2 �

Q=Fbio

Vp=Fbio
� Z3; Ö14Ü
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whereby Z1 and Z3 denote the amount of drug in the dosing compartment and the concentra-
tion of dolutegravir in the peripheral compartment respectively. The variable of interest is the
concentration in the blood plasma (central compartment), i.e. D = Z2. Dosing events were
modelled as impulse inputs, with

Z1;t à Z1;t á dosek; Ö15Ü

whenever the current simulation time t coincided with a dosing event τk. In the equations
above, ka and CL/Fbio denote the uptake and bioavailability-adjusted drug clearance respec-
tively. The term Vc/Fbio and Vp/Fbio are the bioavailability-adjusted volume of the central and
peripheral compartment. The term Q/Fbio is the intercompartmental clearance rate adjusted
for bioavailability.

Numerical simulation of hybrid model

As mentioned before, direct computation of the extinction probabilities in eq (1) may not be
possible as Yt still contains a prohibitively large number of states. In the following, we will uti-
lize the results from a related article [23] in combination with the novel EXTRANDE algo-
rithm [12] to compute the extinction probabilities for time-varying drug effects, i.e. taking
drug pharmacokinetics into account.

We consider a0(Yt, Dt) = ∑k ak(Yt, Dt) to be the sum of the K reaction propensities changing
the internal stochastic system. Note that in the exact SSA [47], no external input exists and
therefore the propensities stay constant in between two reaction firings. In this case, the time
to the next reaction event is exponentially distributed with parameter a0. In our case a0(t)
changes between two stochastic reaction firings because of pharmacokinetic inputs. Solving
this problem requires to compute a0(t) by numerical integration each time after a stochastic
reaction has fired, which can be computationally expensive. Instead, in EXTRANDE, an upper
bound B for a0(t) is estimated and thinning techniques (rejection steps) are employed. For a
look-ahead time horizon L, the upper bound Bt+L is chosen, such that

BtáL � a0ÖYtáu;DtáuÜ Ö16Ü

holds for all u L and assuming no stochastic reaction fires within the time interval t + L.
When L is fixed, it is possible to solve for Dt+L, since it is assumed that stochastic reactions do
not affect D. E.g. if the dynamics of D✓ Z are determined by a set of ordinary differential
equations, numerical integration from t to t + L enables to predict Dt+L, which in turn allows
to compute a0(Yt+u, Dt+u).

The internal stochastic system is then augmented with an extra reaction (a K+1th reaction),
whose firing does not change the state of the stochastic subsystem Y. The probability of firing

this extra reaction at time t + L is proportional to the ratio BtáL�a0ÖYtáu;DtáuÜ
BtáL

.

Obviously, it has to be guaranteed that eq (16) is true for the entire look-ahead time horizon
L. On the other hand when Bt+L is chosen to be too large, many extra reactions will be fired
(rejection/thinning step) and the algorithm becomes inefficient. A key to efficient simulation
with EXTRANDE is therefore a good choice of Bt+L, which in turn depends on the look-ahead
time horizon L.

Upper bound B and look-ahead horizon L. From equation eq (9) it is clear that (1 − đD) 2
[0, 1] and consequently

a0ÖYtáu;DtáuÜ  a0ÖYt;Ü; Ö17Ü

for any time interval 0 u τ before a stochastic reaction has fired where parameter denotes

Stochastic framework predicts prophylactic efficacy of dolutegravir against HIV

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006155 June 14, 2018 8 / 25

26

https://doi.org/10.1371/journal.pcbi.1006155


the absence of drugs. Consequently, we used B = a0(Yt,) throughout the article as an upper
bound to meet condition a0(Yt+u, Dt+u) B without the requirement to select a look-ahead
time horizon L.

Classification of trajectories. When using EXTRANDE to assess the PrEP/PEP efficacy,
we are particularly interested in classifying stochastic trajectories as extinction or infection
events. The virus dynamics model has an absorbing state Yt = [0, 0, 0]T corresponding to virus
extinction. Whenever trajectories hit this state we can stop the simulation. To stop the simula-
tion when trajectories move away from the extinction state is not a straightforward choice.

Given a user-defined threshold ď<< 1 we only consider stochastic states within an extinc-
tion simplex, e.g. states Y for which

PEÖYt;DmaxÖtÜÜ � ď Ö18Ü

is true, i.e. extinction can occur with a probability greater ď. Simulations are consequently
stopped whenever PE(Yt, Dmax(t))< ď, where Dmax(t) = maxu2[t,1] Du denotes the maximum
achievable drug concentration in [t,1] to be pre-computed from a pharmacokinetic trajec-
tory. This criterium guarantees that the numerical error in classifying trajectories as infection
events stays below the user defined criteria ď<< 1.

In a related article [23], we derived analytical solutions for computing the extinction proba-
bility for any particular state of the virus dynamics system, under the assumption that the drug
concentrations D were constant (for computing the extinction simplex, we use D = Dmax(t)):

log10ÖPEÖY;DÜÜ à V � log10ÖPEÖV̂ ;DÜÜáT1 � log10ÖPEÖT̂1;DÜÜáT2 � log10ÖPEÖT̂2;DÜÜ:

where PEÖY0 à V̂Ü, PEÖY0 à T̂1Ü and PEÖY0 à T̂2Ü denote the extinction probabilities when
only one virus, one early- or one productively infected cell was present, and V, T1 and T2

denote the number of viruses, early- and late infected cells. These terms can be further decom-
posed (see related article [23]) into

PEÖY0 à V̂ Ü à min 1; 1� a4

a1 á a4

� a5ÖDÜ
a2 á a5ÖDÜ

� 1� 1

R0ÖV;DÜ

✓ ◆✓ ◆
Ö19Ü

PEÖY0 à T̂1Ü à min 1; 1� a5ÖDÜ
a2 á a5ÖDÜ

� 1� 1

R0ÖV;DÜ

✓ ◆✓ ◆
Ö20Ü

PEÖY0 à T̂2Ü à min 1;
1

R0ÖV;DÜ

✓ ◆
; Ö21Ü

where R0 V;DÖ Ü à a4
a1áa4
� a5ÖDÜ

a2áa5ÖDÜ
� a6

a3
is the reproductive number in the presence of drug D, i.e.

the expected number of viruses emerging from a single parent virus in one replication cycle.

The extinction simplex (eq (18)) then divides the entire state space of Y 2 N3 into two sets:
one where the extinction is possible (the probability of extinction exceeds ď) and one where
irreversible infection occurred. Consequently, we can stop simulating and classify a trajectory
as an ‘infection event’ whenever the trajectory leaves the extinction simplex. Moreover, the
extinction simplex is dynamically adapted through the simulations by adaptation of Dmax(t).
The effects of changing drug concentrations on the extinction simplex are illustrated in Fig 1
for a short course PrEP (‘PrEP on demand’) with dolutegravir in a virtual patient. The green
triangle highlights the extinction simplex without drugs. Obviously, the extinction simplex in
the absence of drugs is enclosed by the extinction simplices in presence of antivirals (i.e. viral
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extinction may still be possible in the presence of drugs when the viral population is substantial
as in post-exposure prophylaxis PEP). Fig 2 shows two exemplary trajectories for the coupled
pharmacokinetic-viral dynamic system, in case of low (5%) adherence to a 2mg oral dolutegra-
vir regimen. Panels A & B show the instantaneous drug efficacy đ (panel A) and the corre-
sponding viral trajectory which is classified as an ‘infection event’ (panel B), whereas panels C
& D show an exemplary trajectory where virus elimination occurs.

Infection of long-lived cells. It has been proposed that long lived- and latently infected
cells denote a major barrier to the elimination of HIV and that they may be established early in
infection [48–50]. Thus, if any of these compartments become infected after viral exposure,
infection may be considered irreversible. During simulations we considered two parameters,

Fig 1. Adaptation of extinction simplex for pharmacokinetics. A: Exemplary DTG pharmacokinetics for 3days of 2mg oral DTG once
daily. The blue line represents DTG plasma concentrations. The dashed orange line represents the function Dmax(t), which for a particular t
returns the maximum DTG concentration achieved in any future time i.e Dmax(t) = max(D(u)) where u 2 [t,1). The black horizontal
dashed line marks the IC50 for DTG [38]. B: Instantaneous target-process inhibition (blue line) corresponding to the concentration-time
profile in A. The orange line is the target-process efficacy profile for Dmax(t). The black horizontal dashed line marks đ = 50%. C: Extinction
simplex (viral infection state where the probability of viral extinction is greater than ď) corresponding to ZDmax

à 84:5%. D: The extinction

simplex corresponding to đ = 50%. Panels C&D show the state space with three dimensions corresponding to number of free viruses, early-
infected T cells (T1) and late-stage infected T cells (T2). The color varies from bright yellow denoting certain extinction, to black denoting an
extinction probability less than 0.0001. The region enclosed by green lines is the extinction simplex in absence of antivirals.

https://doi.org/10.1371/journal.pcbi.1006155.g001
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pMja4
à 1:25 � 10�4 and pLja5

à 8 � 10�6 to assess whether a long-lived cell (e.g. macrophage)

had been infected or whether a latently infected cell emerged. These parameter choices accu-
rately reproduce viral decay kinetics during antiretroviral combination therapy, as shown in
[24, 25] and recapture estimated reservoir sizes during chronic infection [2, 48]. I.e., during
simulations, whenever reaction R4, or R5 fires, it is assessed whether a long lived- or latently
infected cell emerged.

The complete pseudo-code of the adapted EXTRANDE algorithm is presented S1 Text.

Fig 2. Examplary trajectories for time-varying drug effects. The left panels show an example of an infection event, whereas the right panels show an
example of viral extinction for chronic PrEP with 2mg DTG and 5% adherence. Panels A and C depict the instantaneous target-process inhibition profiles
and panels B and D depict the corresponding viral trajectories using the adapted EXTRANDE algorithm. Viral exposure occurs randomly during a 3 month
period and is sampled from the distribution parameterized in [11] (Figure 2 therein). A&C: The blue lines depict the instantaneous target-process inhibition
profiles đD(t). The dashed red line denotes the maximum target-process inhibition ZDmax

ÖtÜ. The leftmost grey vertical dashed lines mark the time of viral

exposure, whereas the rightmost lines marks the time point of either establishment of infection (panel A) or virus extinction (panel C). B&D: Stochastic
trajectories of viral compartments (orange: free viruses, green: early-infected cells T1, purple: late-infected T2 cells) for the time after virus exposure and
before virus infection/extinction. Stochastic simulations are stopped in panel B when the trajectories leave the extinction simplex and because of virus
extinction in panel D.

https://doi.org/10.1371/journal.pcbi.1006155.g002
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Simulation of pre- and post-exposure prophylaxis

Codes were written in MatLab R2016b (MathWorks, Natick, MA; v. 9.1, including optimiza-
tion, parallel computing and statistics toolboxes). Individual pharmacokinetic model parame-
ters for healthy individuals were drawn from the distributions defined by the parameter
estimates from the final dolutegravir population pharmacokinetic model (Table 2; NONMEM
$SIMULATION, n = 1000 individuals; eqs (12)–(14)). We then simulated individual pharma-
cokinetic profiles for the prophylactic schedule SD under consideration using ode15s in
MatLab. To simulate different adherence levels, a sequence of uniformly distributed random
numbers with ri ⇠ UÖ0; 1Ü was drawn and the ith dose was missed if ri > adherence level. The
number of viruses to be inoculated were drawn from a previously parameterized distribution
that accurately resembles the relation between transmitter virus loads and recipient infection
probabilities [11]. In brief, we used a two-stage process: First, we sampled the viral load VL in
a potential transmitter. Earlier work [11] (Supplementary Note 4 therein) showed that the
virus load distribution in potential transmitter populations [51] follows a log-normal distribu-
tion, i.e. VL ⇠ logN Öm; sÜ with μ = 4.51 and σ = 0.98. Secondly, we used the virus load in the
transmitter to determine the number of viruses V0 entering a replication-competent compart-
ment in the virus-exposed individual using a binomial model: V0 ⇠ BÖf ÖVLÜ; rhomoÜ with
rhomo = 3.71 × 10−3 for homosexual exposure [11], f(VL) = ||VLc||, where ||�|| is the next integer
function, and c = 0.389 [52, 53]. For PrEP simulations with different adherence levels, a time
of virus exposure was randomly drawn within a 3 month interval. The corresponding drug
concentrations at this time and the number of transmitted viruses reaching a target cell com-
partment were used as the initial states for EXTRANDE and simulated until stopping criteria
were satisfied, illustrated in Fig 2 for virus infection (panels A & B) and -elimination (panels
C & D). For ‘PrEP on demand’ simulations, the time of virus exposure was fixed as indicated
in the corresponding graphics. In case of PEP, virus was inoculated as stated above and the sto-
chastic viral dynamics were simulated in the absence of drugs until the time of PEP initiation
to determine the initial condition of the system and henceforth simulated until a stopping cri-
terium was reached.

In total, for each prophylactic strategy, 5000 simulations were run.

Results

Pharmacokinetics of oral dolutegravir

A total of 354 plasma concentration measurements from 56 individuals were used to build the
population pharmacokinetic (PK) model for dolutegravir (DTG). Healthy volunteers (N = 17)

Table 2. Pharmacokinetic parameter estimates. The table displays the estimated pharmacokinetic parameter esti-
mates for healthy individuals. Interindiviual variability (random effects) was included on drug clearance CL/Fbio and
the volume of distribution Vc/Fbio. These parameters were log-normal distributed as outlined in the Methods section,

eq (11), with coefficient of variation [%] CV à 100 �
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
es2 � 1
p

, where σ2 is the variance of the associated normal distri-

bution. A covariance of 11:3% à 100 �
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
es2

x;y � 1
p

between x = CL/Fbio and y = Vc/Fbio was estimated. The absorption
rate constant was fixed [88] to 2.24h−1. Residual variability (eq (10)) was described by a combined proportional-addi-
tive model for healthy volunteers [σ = 0.213 (37.2%) and ~s à 0.0019 mg/L (40.9%), respectively] and a proportional
error model for HIV-infected patients [σ = 0.402 (24.2%)].

parameter value unit CV [%]

Vp/Fbio 0.73 L -

Q/Fbio 0.0082 L/h -

CL/Fbio 0.85 L/h 16.9

Vc/Fbio 17.7 L 16.4

https://doi.org/10.1371/journal.pcbi.1006155.t002
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contributed rich PK profiles with a total of 270 samples taken between 0 hours (pre-dose)
and 216 hours after a final DTG dose. In addition, eighty-four measurements, randomly
drawn between 1-25.75 hours post-dose were available from HIV patients week 1, 2, 3 and 4
weeks post-efavirenz switch. A two-compartment pharmacokinetic model best described the
data (Fig 1A) and was fitted in a Bayesian context to fully capture inter-individual pharmaco-
kinetic variability. Following multivariate analysis, allometric scaling (centered on 70kg) of
weight was considered as a fixed effect in the model. Different values of apparent oral clear-
ance (CL/Fbio) were estimated for DTG alone in healthy volunteers and in patients following
1, 2, 3 and 4 weeks post-treatment switch. Residual variability was described by a combined
proportional-additive model for healthy volunteers and a proportional error model for HIV-
infected patients. All parameter estimates for healthy volunteers are displayed in Table 2.
The model was used to generate PK parameters of virtual patients populations, whose PK-
profiles are summarized in Fig 3B–3D alongside observed DTG concentrations, Fig 3C
and 3D.

As can be seen in Fig 3B, dolutegravir is rapidly absorbed after oral administration and
maximal concentrations are achieved after tmax = 1.58 hours (population 5–95% range 1.53–
1.63). Pharmacokinetics reach a steady state after about 4 doses. During steady state, mini-
mum- (pre-dose) and maximum concentrations were Cmin = 2918nM (1916–4336) and
Cmax = 8471nM (6353–11331) for 50mg oral DTG and the half life of the drug was 14.5h (5–
95% range 13.5–15.9).

Prophylactic utility of oral dolutegravir

Fig 4A shows the relation between the plasma concentration of DTG and its prophylactic effi-
cacy after homosexual virus exposure. For these simulations, the number of viruses reaching a
replication-competent compartment after homosexual contact were sampled from a previ-
ously parameterized virus exposure model [11] (Fig.2 and Supplementary Note 4 therein). The
estimated concentration ranges achieved at steady state for 2-, 10- and 50mg oral DTG once
daily were 117–339, 583–1694 and 2918–8471nM respectively as indicated on the y-axis of Fig
4A. Within this concentration range, the median prophylactic efficacy for once daily 2mg ran-
ged from 43.6 to 75.7%. For 10mg, efficacies ranged from 87.1 to 97.5%, and for 50mg almost
complete (99.5 to 100%) protection was achieved. The estimated concentrations to prevent 50-

and 90% infections, EC50ÖV̂Ü and EC90ÖV̂Ü, were 145.18 and 722.23nM respectively.

Sensitivity to incomplete medication adherence

During pre-exposure prophylaxis, medication adherence may be incomplete. Fig 4B displays
the prophylactic efficacy of once daily 50mg, 10mg and 2mg oral dolutegravir, considering
varying levels of adherence (25-, 50-, 75-, 95- and 100% of doses taken). Viral challenges
were simulated to randomly take place during a 3 month interval with inoculum sizes drawn
from a previously parameterized distribution [11], see Fig 2 for two examples. The mean
predicted prophylactic efficacies for 50mg with 25-, 50-, 75-, 95- and 100% adherence were
60% (95% confidence bounds: 55.15–64.84), 85.54% (82.58–88.50), 96.63% (95.19–98.07),
98.88% (98.04–99.71) and 99.36% (98.73–99.99), respectively. Notably, the prophylactic effi-
cacy of 50mg oral DTG becomes saturated, and exceeds 95%, if at least 75% of the pills were
taken. Conversely, 2mg and 10mg oral dolutegravir allow for considerable residual infection
events and 2mg oral dolutegravir efficacy increases almost linear with increasing adherence
levels.
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PrEP on demand/event-based dosing

‘PrEP on demand’ denotes a short-term pre-exposure prophylaxis, initiated only a few hours
before a potential viral exposure. This strategy has recently been evaluated in the IPERGAY
study using Truvada [54]. We simulated a dosing scheme similar to the IPERGAY protocol
[54]: An individual at risk initiates PrEP only a few hours before a potential viral exposure and
takes two consecutive doses 24 and 48hours after the first dose. Fig 4C depicts the predicted
prophylactic efficacy of DTG when taken ‘on demand’. Population pharmacokinetic profiles
for ‘PrEP on demand’ using 50mg are depicted in Fig 3A. The mean prophylactic efficacies for

Fig 3. Population pharmacokinetics of dolutegravir (DTG). A: Pharmacokinetic model. Concentrations within the central
compartment with bioavailability-adjusted volume Vc/F correspond to measured plasma concentrations of DTG (indicated by the
blue pin). Parameters ka, Q/Fbio and CL/Fbio denote the uptake and bioavailability-adjusted inter-compartimental and drug
clearance rate respectively and Vp/Fbio denotes the bioavailability adjusted volume of the peripheral compartment (which
summarizes all ‘deep’ compartments, which are not in rapid exchange with the plasma). B: Predicted plasma concentration time
profiles of dolutegravir (DTG) for the first four days after initiation of a once daily 50mg oral regimen (N = 300 virtual patients).
The red line depicts the median predicted concentrations, whereas the dark- and light grey areas present the quartile range and
5–95% range respectively. Predicted (red line, grey areas) and measured plasma concentrations during 24h after drug intake in
steady state (panel C) and after cessation of drug intake (panel D). Black circles and thin dashed lines represent DTG plasma
concentration profiles in healthy volunteers (n = 17 concentration time profiles, 270 data points in total), whereas yellow circles,
purple squares, grey diamonds and cyan triangles are DTG plasma concentration measurements in HIV patients (n = 39)
observed 1, 2, 3 and 4 weeks after switching from efavirenz-based therapy to dolutegravir. Altogether, 354 plasma concentration
measurements from 56 individuals are depicted.

https://doi.org/10.1371/journal.pcbi.1006155.g003
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50mg varied, depending on the timing of the first dose with respect to viral exposure, between
78.63–83.93% (95% confidence bounds: 75.05–87.05), for 10mg between 64.49–73.01%
(59.92–77.02) and for 2mg it was 36.86–46.34% (30.87–51.90). The prophylactic efficacy
decreased with decreasing dose and also with increasing time difference between the initiation
of ‘PrEP on demand’ and viral exposure, clearly visible for 50 and 10mg. This trend is opposite
to the trend for ‘PrEP on demand’ with Truvada [11]. A reason for this is the fast uptake of

Fig 4. Efficacy of different DTG prophylactic regimen. A: Prophylactic utility of chronically administered oral DTG regimen (homosexual contact [11]).
The red-, green and blue dashed boxes mark the considered concentration ranges of DTG [Cmin (pre-dose), Cmax] achieved with 50, 10 and 2mg once
daily (OD) oral dosing. The left pointing arrows at the y-axis mark the respective prophylactic efficacy ranges. B: Prophylactic efficacy of chronically
adminstered oral DTG regimen with varying adherence levels. The red-, green- and blue lines denote mean prophylactic efficacy for a 50mg, 10mg and
2mg oral DTG regimen. Errorbars depict the 95% confidence bounds for the ensemble estimate, computed using Greenwoods formula. C: Prophylactic
efficacy of DTG for ‘PrEP on demand’. Only three doses of oral DTG were ingested at 0, 24 and 48 hours. Homosexual viral exposure occurred within the
first dosing interval at either 1, 3, 6, 12, 18 or 23 hours after initiating ‘PrEP on demand’. The red, green and blue lines represent the mean prophylactic
efficacy for ‘PrEP on demand’ using 50-, 10 or 2mg respectively, where error bars denote the 95% confidence bounds for the ensemble estimate, computed
using Greenwoods formula. D: Prophylactic efficacy for ‘post exposure prophylaxis’ (PEP) with 50mg DTG for various durations of PEP (y-axis; 3, 5, 7 and
9 days) and delayed initiation of PEP after homosexual viral exposure (x-axis; 2, 4, 6, 12 and 24 hours). Error bars mark the 95% confidence bounds
computed using Greenwoods formula.

https://doi.org/10.1371/journal.pcbi.1006155.g004
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systemic DTG (compare Fig 4B), whereas the Truvada’s active components tenofovir diphos-
phate (TFV-DP) and emtricitabine triphosphate (FTC-TP) require intracellular phosphoryla-
tion after cellular uptake of the parent compound, which delays the time until maximal
concentrations are achieved at the target site [31, 55]. Since DTG does not need to undergo
any chemical modification, and according to ‘free drug hypothesis’ the unbound intracellular
concentration largely reflects the unbound plasma concentration, implying that the drug rap-
idly reaches the target site.

Post-exposure prophylaxis (PEP)

Lastly, we wanted to assess the efficacy of 50mg oral DTG in preventing infection when taken
as post-exposure prophylaxis (PEP). We assessed the prophylactic efficacy with regard to dif-
ferent durations of PEP and with regard to the timing of initiation after virus exposure in Fig
4D. Fig 4D indicates that 50mg oral DTG can effectively prevent infection (> 80%) when initi-
ated shortly (within 6 hours) after exposure and when continued for as long as possible. The
graphics indicate that the efficacy starts to drop when PEP is initiated later than 6 hours and
when it is taken shorter than 7 days. Also, our simulations suggest that initiating the prophy-
laxis earlier has a more pronounced effect than prolonging PEP, arguing for the immediate
start of PEP in case of known- or suspected HIV exposure.

Comparison with Truvada

We previously estimated that once daily PrEP with Truvada provides⇡ 96% protection in
fully adherent individuals [11]. While it is difficult to quantify PrEP adherence clinically [56], a
surrogate measure is often calculated based on the percentage of individuals with detectable
drug. Corresponding clinical efficacy estimates in apparently highly adherent individuals were
86-100% in the IPERGAY study [57], 58-96% in the PROUD study [6] and 96% in the Partners
PrEP OLE study. In comparison, we predicted almost complete (99-100%) protection when
50mg DTG was taken once daily for prophylaxis. The VOICE [58] and FEM-PrEP [59] studies
indicated that Truvada may not prevent infection in poorly adherent individuals, i.e. if⇡ 30%
of individuals had detectable drug. In comparison, with 25% adherence to once daily 50mg
DTG, we estimated about 60% protection and over 85% protection if at least half the drugs
were taken. For ‘PrEP on demand’ with Truvada, we recently estimated [11] that about 74–
92% infections can be averted, depending on the time of viral exposure relative to the initiation
of Truvada dosing. The corresponding efficacy estimate in the IPERGAY trial was 86% [54], in
line with our previous work. Herein, we predicted that ‘on demand’ PrEP with 50mg DTG is
non-inferior to Truvada, providing 78.63–83.93% protection. Lastly, while PEP with Truvada
is not recommended due to the slow intracellular accumulation of pharmacologically active
NRTI-triphosphates, PEP with 50mg DTG can prevent about 80% infections when initiated
no later than 6hours post exposure. In summary, our simulations indicate that prophylaxis
with 50mg DTG is non-inferior to Truvada and that it may outperform Truvada when individ-
uals’ medication adherence substantially deviates from a once daily PrEP protocol, as in the
case of poor adherence and post-exposure prophylaxis.

Discussion

While pre-exposure prophylaxis with Truvada can prevent sexual HIV-1 transmission, it has
severe limitations that are to be overcome by next-generation PrEP regimen [8]. However,
drug candidate selection for next-generation PrEP and selection of administration schemes in
clinical trials are prone to high failure rates. One reason is the poor translatability of animal-
and ex vivo/in vitro experiments, whereas the statistical requirement of large sample sizes
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(N> 1000 individuals) and long trial durations to detect prophylactic efficacy clinically leads
to exorbitant costs. Thus, there is an unmet need for tools to a priori assess the utility-, select
and prioritise next generation PrEP candidates for human trials.

Our intent was to develop a method that integrates pharmacokinetic and pharmacody-
namic (PK/PD), as well as viral characteristics (inoculum size, timing of exposure) to a priori
assess prophylactic strategies against HIV. Such integrative framework allows for the intelli-
gent design of once-daily, episodic PrEP, as well as simulating the on- and offset of event-
driven PrEP [54] or long-acting injectable PrEP formulations [60–62]. Moreover, it allows to
assess how stable a prophylaxis is when individuals poorly adhere to the planned prophylaxis
scheme, i.e. when individuals miss dosing events or start to take the drugs shortly before- or
only after exposure to HIV. The use of population pharmacokinetic models allows for an accu-
rate description of the observed pharmacokinetic variability within- and across patients, which
can be used to assess the effectiveness of PrEP coverage in metabolically diverse population
(Figs 3 and 4). While the attributes which make any compound favourable in the clinic extend
beyond PK/PD, our approach is particularly useful to rule out- or prioritize PrEP candidates
and/or strategies for further clinical investigation.

To enable this ambitious goal we had to develop the theoretical basis that would enable us
to accurately predict infection/extinction events for any arbitrary prophylaxis dosing regimen.
The theoretical context is to compute solutions of the chemical master equation (CME), which
is intractable due to the curse of dimension. Most naturally, instead of directly solving the
CME, it is possible to sample trajectories using Monte Carlo techniques such as the stochastic
simulation algorithm (SSA) [47] and to empirically reconstruct PÖXt à xiÜ from the trajecto-
ries. However, it is not clear when to classify a trajectory as an infection event. Moreover, sto-
chastic simulations become inefficient when reaction propensities are high, which is typically
encountered in a large copy number regimen, e.g. when Xt >> 1. To solve the latter issue
(large copy number regimen), a number of hybrid methods have been proposed that partition
a system X = (Y, Z) into species Y that are represented by a discrete-stochastic (CME) model
and species Z that are approximated by their concentrations [63, 64]. Since Z then evolves on
an infinitesimally small time scale, a natural consequence of this partitioning is that stochastic
propensity functions a(Yt, Zt) evolve between two stochastic reaction firings (t, t + τ). Thus,
numerically exact computation requires to solve an integration problem to compute a(Yt,
Zt+u). In sampling-based methods, i.e. the integral-based methods employed in [25, 55], fre-
quent initialization of numerical integrators can become a major computational burden (i.e. τ
small). Direct hybrid methods [65–67] overcome this problem, however these methods still
require to directly solve the CME part, which can be prohibitively large (involving thousands
of states), limiting their applicability. In S2 Fig we show a comparison of simulations results
obtained by integral-based (e.g. as used in [25, 55]) sampling methods vs. the EXTRANDE
method, as well as their respective run times. As expected, the results are identical, while the
simulation time is lower for EXTRANDE.

The method we are using is the recently developed EXTRANDE (extra reaction algorithm
for networks in dynamic environment) method [12]. The EXTRANDE approach is based on a
rejection, or thinning and allows for the numerically exact simulation of intrinsically stochastic
kinetics embedded in a dynamical environment, i.e. the stochastic sub-system Y may consti-
tute time-dependent propensities that are affected by the dynamic environment Z. We adapted
EXTRANDE to allow the numerically exact prediction of infection/virus clearance in the con-
text of time-varying drug inhibition. The key adaptation was to define proper stopping criteria
that classify trajectories as infection events. To this end, utilizing results from a related article
[23], we were able to compute and dynamically update an extinction simplex (eq (18)), i.e. a
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part of the state space in which extinction can occur, see Fig 1. Whenever a trajectory leaves
the extinction simplex, it is safe to classify it as an infection event and to stop the simulation.

Classifying trajectories as infection events is not a straightforward choice: Using arbitrary
thresholds Ytr = [Vt = c0, T1,t = c1, T2,t = c2]T can significantly distort predictions (e.g. ‘PrEP
efficacy’) or increase computational run-time: While too small thresholds overestimate the
number of infection events, large thresholds increase the computational run-time unnecessar-
ily, since stochastic simulations become very inefficient when Y>> 1. Furthermore, there is
no control- or knowledge of the numerical error made (the probability to falsely classify a tra-
jectory as an infection event). Using the extinction simplex method proposed herein, it is
guaranteed that the probability to falsely classify a trajectory stays below a user-defined thresh-
old ď<< 1. Moreover, the algorithmic run-time is optimal for providing this user-defined
precision.

Particularly during ‘PrEP on demand’ or ‘PEP’ simulations, dynamic adaptation of the
extinction simplex can be algorithmically harnessed: Note that there is a positive relation
between the size of the extinction simplex and the drug concentration D (compare Fig 1). After
the last dosing events in ‘PrEP on demand’ or ‘PEP’ simulations the size of the extinction sim-
plex shrinks as the drug concentration tapers, making it more likely that stopping criteria are
met, which minimizes runtime.

We used our framework to assess the utility of dolutegravir (DTG), which may be suitable
for prophylaxis, since it has a good safety profile [68], a high resistance barrier [69] and a
long half life in the blood plasma. Foremost, utilizing in vitro and in vivo parameters in

our mathematical framework, we estimated that concentrations of EC50ÖV̂Ü à 145:18 and

EC90ÖV̂Ü à 722:23nM prevent 50- and 90% infections respectively. These concentrations
can guide dosing and release kinetics of nanoformulated long-acting dolutegravir, which is
currently in preclinical development [62]. Moreover, as soon as human pharmacokinetic
data is available, our framework can easily be adapted to predict the PrEP utility of the long-
acting formulation (by updating the pharmacokinetic model). As an example, we focussed
on oral DTG herein, for which we had sufficient pharmacokinetic data to build a population
PK model. Combining this model with the EXTRANDE framework, allowed to assess differ-
ent prophylactic strategies: Overall, our simulations suggested that oral 50mg OD DTG may
have a potential for PrEP with an estimated efficacy of 99 to 100% (perfect adherence). For
comparison, we previously estimated that Truvada may prevent 96% of infections when
taken once daily (perfect adherence) [11]. Our model suggests that DTG’s protective efficacy
remains high (> 80%) even at adherence levels as low as 50%. This apparent forgiveness to
poor adherence is due to DTG’s prophylactic potency rather than its halflife: I.e. if most
DTG doses are taken, concentrations ranges are achieved where the concentration-prophy-
laxis profile is saturating (compare Fig 4A). Consequently, concentration changes do not
proportionally translate into changes in prophylactic efficacy. In event-driven PrEP, we pre-
dicted that prophylactic efficacy reflects the drug profile in the blood plasma (compare Fig
3), which is characterized by a rapid absorption (tmax ⇡ 1.58 [h]) and slow elimination. This
is in contrast to tenofovir-emtricitabine (Truvada) whose activity is not reflected by their
plasma levels, since these drugs require conversion to intracellular diphosphates [31, 55] to
exert their antiviral activity, delaying the overall onset of activity. The main advantage of
DTG over Truvada is in the context of post-exposure prophylaxis (PEP), where we predicted
that it can potently prevent infection if initiated no later than 6hours post-exposure and
taken for at least 5 days. We do not suggest to use single drug PEP with DTG; the sole pur-
pose was to determine whether DTG would be effective, if individuals fail to take it before
virus exposure. This kind of assessment allows to quantify the risks of prophylaxis in
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situations where the regimen is not taken as intended and moreover provides a scientific
basis to include it in PEP multi-drug combinations.

Our model has several limitations, but also a number of important advantages. Our simula-
tions do not take into account drug concentrations at the site of mucosal exposure (e.g. cervix,
rectum) [60, 70]. These concentrations have, however, not been validated as targets for suc-
cessful prevention or treatment, whereas data exist (albeit limited) for plasma drug concentra-
tions. Instead, we modelled based on unbound concentrations, in line with the widely accepted
‘free drug hypothesis’, stating that unbound concentrations at the target site are responsible
for pharmacological action. For drugs highly bound to plasma protein (> 90%), naturally
since plasma protein concentrations are lower in tissues other than plasma, their total concen-
trations at sites other than the plasma are magnitudes lower [70]. Strikingly, however, the
unbound plasma concentrations coincide with the unbound tissue concentrations [71],
strongly arguing for the validity of the ‘free drug hypothesis’ [40, 41]. Therefore, throughout
the work, we assumed, according to the ‘free drug hypothesis’ [39] that the unbound concen-
trations in plasma and at the target site coincide. Note that dolutegravir is highly lipophilic
(logP⇡ 2), enabling the unbound drug to rapidly cross cellular membranes, generating an
equilibrium between the unbound drug on either side of the cellular membrane [42].

We estimated the probability of virus clearance (and the prophylactic efficacy φ) as a func-
tion of the number of viruses ultimately reaching a target cell environment after sexual expo-
sure, and not as a function of mucosal exposure. The utilized virus exposure model [11] is
calibrated to reflect the per-contact infection risks for typical transmitter virus loads and differ-
ent routes of sexual exposure exposure. However, it should be noted that in an accompanying
article [23], we also observed that increasing the inoculum size decreases the prophylactic effi-
cacy, i.e. estimates of prophylactic efficacy depend on the route of transmission: For example,
if exposure to HIV occurs via blood transfusion (large inoculum size), most prophylactic
drugs may fail to offer protection.

Our framework can be adapted or developed in a number of ways. The separate impact of
treatment as prevention [72] (reduction of donor virus load to decrease contagiousness) versus
prophylactic efficacy in the recipient individual can be simulated by calibrating the virus inoc-
ulum distribution [11]. The effect of PrEP on resistance transmission from a donor to a recipi-
ent can be incorporated in the framework by increasing IC50 in eq (9) (fold resistance) and
possibly reducing certain reaction constants (fitness deficits). Likewise, the effects of PrEP on
resistance emergence can be considered. However, during the early events after virus exposure
(when infection can still be averted), the population size may be too small for resistance to
appear de novo in the exposed individual. For example, a particular point mutation appears
with probability 1 − (1 − μ)n, where μ⇡ 2.2 � 10−5 [73] is the per base mutation rate of HIV per
cell infection (= reverse transcription event) and n the number of cell infection events. Accord-
ing to these numbers, it requires⇡ 30000 cells to be infected for resistance to arise with 50%
probability. Considering these numbers, a likely scenario for de novo resistance to appear is
when PrEP had not been taken at the time of exposure, such that the infection expanded expo-
nentially and a resistant mutant may have been generated at random. When PrEP is (re-)initi-
ated at some later time it could provide the necessary pressure to select out the resistant type
from the quasispecies population. Modelling these events is out of the scope of the recent
work, as it requires distinct (and more coarse) simulation approaches, e.g. [25, 74].

It is well known that the establishment of a latent reservoir is the major barrier to viral
extinction during treatment [49] and this reservoir may be established as early as 3 days post
infection [48, 50]. We considered infection of long lived cells during our simulations, as out-
lined in the Methods section. I.e., whenever long-lived cells became infected during simula-
tions, viral extinction was considered infeasible. Notably, there are two sources: one with a half
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life of⇡ 14 days is responsible for the second phase of viral decay that can be observed in
infected patients on combination treatment [75, 76]. This reservoir has been attributed to
infected macrophages [75, 77]. Based on the mentioned half life of this reservoir, it would

require T xÖ Ü à � lnÖ1�xÜ
lnÖ2Ü=t1=2

days to eliminate a single cell with probability x under complete virus

inhibition, e.g.⇡ 45 days to eliminate a single infected macrophage with 90% probability
(x = 0.9) and over 90 days to eliminate this reservoir with 99% probability. Latent infected T
cells decline even slower, with a half life of⇡ 6-44 month [78–80]. This reservoir is partly
responsible for the third phase of ‘decay’ and is assumed to prevent HIV cure during effective
combination treatment.

In summary, we have developed an innovative modelling approach to a priori assess pro-
phylactic roll-out strategies by fully integrating individual PK/PD profiles and viral dynamics
into a hybrid stochastic-deterministic framework. We used this framework to assess the pro-
phylactic efficacy of the second-generation integrase inhibitor dolutegravir with respect to
poor adherence, in event-driven prophylaxis and post-exposure prophylaxis. Overall our simu-
lations showed that oral prophylaxis with 50mg DTG is non-inferior to Truvada and has pro-
found advantages with respect to post-exposure prophylaxis. Moreover, we predicted that
concentrations above EC90 = 722.23nM can prevent> 90% infections after sexual exposure.
These target concentrations can guide loading doses for novel long-acting nanoformulations
of DTG [62]. By adapting the pharmacokinetics model, the framework can easily be used to
predict the prophylactic utility of other candidate drugs currently under development, such as
oral maraviroc (MVC) [81], and raltegravir (RAL) long-acting injectable rilpivirine [60] or
cabotegravir [61], or it may be adapted to predict vaccine efficacy.

Supporting information

S1 Fig. Schematic of the HIV replication cycle and mechanism of interference by dolute-
gravir. The viral dynamics model (adapted from [24, 25]) consists of free infectious viruses V,
early infected T-cells (T1), productively infected T-cells (T2) and uninfected T-cells Tu = const..
Early infected T-cells (T1) and productively infected T-cells (T2) denote T-cells prior- and after
proviral integration respectively, where the latter produces virus progeny. Free viruses are
cleared by the immune system with a rate constant CL. Further, free viruses can be also cleared
during unsuccessful T-cell infection CLT through the destruction of essential viral components
of the reverse transcription-, or pre-integration complex [34, 35]. The term Č represents the
lumped rate of infection of T-cells, including the processes of virus attachment to the cell,
fusion and reverse transcription, leading to an early infected cell T1, before proviral integra-
tion. The term k denotes the rate by which early infected T1 cells are transformed into produc-
tively infected T2 cells, involving proviral integration and cellular reprogramming. The term
NT denotes the rate of production of infectious virus progeny by productively infected T2 cells.
The terms dT1

< dT2
denote the rates of clearance of T1 and T2 cells respectively and ĎPIC

denotes the rate of intracellular destruction of the pre-integration complex. Parameters are
summarized in Table 1. The second-generation integrase inhibitor dolutegravir (DTG) pre-
vents proviral integration and consequently decreases k by a factor (1 − đD). Long-lived and
latently infected cells are implicitly considered in the model, i.e. the parameters pMja4

and pLja5

denote the conditional probabilities that a long lived- or a latent cell, which are a barrier to
viral eradication, become infected. These rare events define algorithmic stopping criteria (irre-
versible infection) when modelling complex prophylactic regimen, e.g. long-term pre-expo-
sure prophylaxis with inadequate adherence. DTG: dolutegravir.
(EPS)
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S2 Fig. Comparison of EXTRANDE (green) and integral-based hybrid stochastic-deter-
ministic simulation (red). A: Prophylactic efficacy for ‘post exposure prophylaxis’ (PEP) with
50mg DTG for various durations of PEP (x-axis; 3, 5, 7 and 9 days) and when initiated 24
hours after homosexual viral exposure. Error bars mark the 5-95% range computed using
Greenwoods formula. B: Corresponding simulation run times on an intel i7 core with 2.5Ghz
and 16 GB RAM. C: Simulation run times for the subset of simulations where infection
occurred. Median (25-75 quartile ranges) runtime (sec) for 3 days PEP: 8.524 (2.4–20.5) vs.
10.548 (2.4–26.1); 5 days PEP: 10.0 (2.8–25.9) vs. 23.0 (6.8–48.1); 7 days PEP: 17.4 (5.3–35.4)
vs. 25.5 (10.1–57.4) and 9 days PEP: 26.1 (7.6–57.3) vs. 34.1 (12.0–82.3).
(EPS)

S1 Text. The supplementary text contains a complete pseudo-code for the adapted
EXTRANDE algorithm used for simulating initial viral dynamics during prophylaxis.
(PDF)

Acknowledgments

S.D, M.v.K and L.D. acknowledge fruitful communications with Akil Jackson.

Author Contributions

Conceptualization: Sulav Duwal, Max von Kleist.

Formal analysis: Sulav Duwal, Laura Dickinson, Saye Khoo, Max von Kleist.

Funding acquisition: Max von Kleist.

Investigation: Sulav Duwal, Laura Dickinson, Max von Kleist.

Methodology: Sulav Duwal, Laura Dickinson, Max von Kleist.

Project administration: Max von Kleist.

Supervision: Saye Khoo, Max von Kleist.

Visualization: Sulav Duwal.

Writing – original draft: Sulav Duwal, Laura Dickinson, Saye Khoo, Max von Kleist.

References
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Abstract

Currently, there is no effective vaccine to halt HIV transmission. However, pre-exposure pro-

phylaxis (PrEP) with the drug combination Truvada can substantially decrease HIV trans-

mission in individuals at risk. Despite its benefits, Truvada-based PrEP is expensive and

needs to be taken once-daily, which often leads to inadequate adherence and incomplete

protection. These deficits may be overcome by next-generation PrEP regimen, including

currently investigated long-acting formulations, or patent-expired drugs. However, poor

translatability of animal- and ex vivo/in vitro experiments, and the necessity to conduct long-

term (several years) human trials involving considerable sample sizes (N!1000 individuals)

are major obstacles to rationalize drug-candidate selection. We developed a prophylaxis

modelling tool that mechanistically considers the mode-of-action of all available drugs. We

used the tool to screen antivirals for their prophylactic utility and identify lower bound effec-

tive concentrations that can guide dose selection in PrEP trials. While in vitro measurable

drug potency usually guides PrEP trial design, we found that it may over-predict PrEP

potency for all drug classes except reverse transcriptase inhibitors. While most drugs dis-

played graded concentration-prophylaxis profiles, protease inhibitors tended to switch

between none- and complete protection. While several treatment-approved drugs could be

ruled out as PrEP candidates based on lack-of-prophylactic efficacy, darunavir, efavirenz,

nevirapine, etravirine and rilpivirine could more potently prevent infection than existing PrEP

regimen (Truvada). Notably, some drugs from this candidate set are patent-expired and cur-

rently neglected for PrEP repurposing. A next step is to further trim this candidate set by rul-

ing out compounds with ominous safety profiles, to assess different administration schemes

in silico and to test the remaining candidates in human trials.

Author summary

Pre-exposure prophylaxis (PrEP) is a novel, promising strategy to halt HIV transmission.
PrEP with Truvada can substantially decrease the risk of infection. However, individuals
often inadequately adhere to the once-daily regimen and the drug is expensive. These
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shortcomings may be overcome by next-generation PrEP compounds, including long-
acting formulations. However, poor translatability of animal- and ex vivo/in vitro experi-
ments, and difficulties in conducting long-term trials involving considerable sample sizes
(N > 1000 individuals) make drug-candidate selection and optimization of administra-
tion schemes costly and often infeasible. We developed a simulation tool that mechanisti-
cally considers the mode-of-action of all antivirals. We used the tool to screen all available
antivirals for their prophylactic utility and identified lower bound effective concentrations
for designing PrEP dosing regimen in clinical trials. We found that in vitro measured
drug potency may over-predict PrEP potency, for all antiviral classes except reverse tran-
scriptase inhibitors. We could rule out a number of antivirals for PrEP repurposing and
predicted that darunavir, efavirenz, nevirapine, etravirine and rilpivirine provide com-
plete protection at clinically relevant concentrations. Further trimming of this candidate
set by compound-safety and by assessing different implementation schemes is envisaged.

Introduction

Pre-exposure prophylaxis (PrEP) to prevent HIV infection (using drugs which are licensed for
its treatment) has been assessed in people at high risk of sexual transmission. Of the available
agents, once-daily tenofovir and emtricitabine (Truvada) have been extensively studied, and
demonstrate protective efficacy (59–100% [1, 2]) in individuals who are adherent to the medi-
cation; conversely poor medication adherence explains the lack of protection observed in
some trials [3]. However, major shortcomings of Truvada-based PrEP are its costs [4], a resid-
ual infection risk and the necessity for daily drug intake (which often leads to inadequate
adherence). These deficits may be overcome by next-generation PrEP regimen, including pat-
ent-expired antivirals and long-acting formulations.

Studies assessing next-generation PrEP regimen are underway [5], but rational selection of
which agents to advance into PrEP trials based on their intrinsic pharmacology and mode of
action has not been comprehensively or systematically undertaken. Moreover, studies have
focussed on patent-protected compounds [6], which are likely unaffordable in resource-con-
strained settings [4] hit hardest by the epidemic.

The considerable sample sizes (N > 1000 individuals) and clinical trial duration required
(years) to test any new candidate against tenofovir-emtricitabine, and the need to assess regi-
mens with forgiveness for missed dosing or episodic, event-driven PrEP make the current
strategy of empirical drug selection costly and prone to failure. We chose to explore an alterna-
tive strategy by developing a mathematical modelling tool to assess the per-contact efficacy of
anti-HIV drugs. This approach allows prediction of prophylactic utility by integrating drug
specific factors (pharmacokinetic/pharmacodynamic (PK/PD) attributes) and attributes of the
targeted risk group in order to probe and discard candidates, accelerate drug development and
markedly reduce costs. In this work, we are particularly interested in agents where existing pat-
ents had already, or are about to expire, in order to maximise the potential impact for low and
middle income countries.

Various epidemiological modelling approaches have been used to predict the public health
benefits of PrEP [7] and the risk of emergent drug resistance [8–10]. These approaches are
highly dependent on ad hoc parameter assumptions [11] (specifically the per-contact PrEP effi-
cacy), which may explain the different and contradictory predictions which have emerged.

Knowledge of the per-contact PrEP efficacy, ideally concentration-prophylaxis relation-
ships, are currently lacking and parameters derived from animal models poorly translate into

Drug-class specific utility of antiretrovirals for HIV prophylaxis
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human efficacy. Concentration-prophylaxis relationships are particularly critical to define
lower concentrations in human trials that can attain e.g.> 90% protection: I.e., ideally a PrEP
candidate should be dosed such that the concentrations stay above this target (e.g. 90% protec-
tion) and at the same time avoid adverse effects in all individuals. For prophylaxis, there is a
general void of information regarding drug-specific and drug-class specific concentration-pro-
phylaxis relationships. While the potency of drugs to inhibit HIV replication can readily be
measured in vitro, researchers are often unaware that this measure of drug potency may not
coincide with the potency to prevent HIV infection (prophylactic potency) and consequently
PrEP trial design may be flawed, incurring costs and putting individuals at risk.

In a top-down approach, Hendrix et al. [12] analyzed available clinical data for Truvada to
define concentration-prophylaxis relationships. However, this approach is naturally limited to
PrEP candidates where sufficient clinical data already exists and is not able to disentangle the
potency of the administered drugs from confounding factors. More mechanistic, bottom-up
approaches integrate various host- and viral factors [13–18] to predict the probability of viral
extinction. Despite their advantages, these approaches conventionally do not establish concen-
tration-prophylaxis relations, or they are specific to particular drugs [17] or drug classes [18].

In this work, we will first analyze the drug-class specific relation between in vitro potency
and PrEP efficacy and its dependency on the amount- and type of transmitted virus. Utilizing
pharmacokinetic and pharmacodynamic data for all treatment-approved drugs, and simulat-
ing typical viral exposures during sexual contact, we will then screen all treatment-approved
drugs for their PrEP utility and assess the sensitivity of the prophylactic endpoint with regard
to uncertainties in viral dynamics parameters and with regard to variabilities in drug concen-
tration, which can typically result from inter-individual metabolic differences or differences in
medication adherence. Our central aim is to provide a tool to screen out drug candidates with
a lack of- or uncertain prophylactic efficacy.

Methods

Before HIV infection is irreversibly established, viral replication is highly stochastic [19], cor-
roborated by the observation of a low transmission probability per exposure [20, 21] and a low
number of founder viruses responsible for establishing infection [22–25]. The stochasticity can
be explained by the order in which viral dynamics reactions occur: For example, when a single
virus comes into proximity of target cells, it may either be cleared or it may infect the target
cell which can eventually lead to systemic infection. In the current work, we will make use of
branching process theory [26] to derive analytical solutions for the probability of viral extinc-
tion [13, 15], i.e. the probability to hit the absorbing state where all viral compartments go
extinct. These solutions can be used directly to benchmark antivirals for their potential to
prevent infection as exemplified in the current work, or they can be used to design efficient
algorithms for the numerically exact simulation of complex prophylactic dosing regimen as
proposed in a related article [27].

Prophylactic efficacy

The infection probability PI(Y0) for some initial state Y0 is the complement of the extinction
probability PE(Y0)

PIÖY0Ü à 1� PEÖY0Ü; Ö1Ü

where Y0 denotes the initial viral population in a replication enabling (target-cell) environ-
ment. Throughout the article we will use Y = [V, T1, T2]T, i.e. the state of the viral dynamics is
defined by infectious viruses, early- and productively infected cells as outlined below. The
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extinction probability is defined by

PEÖY0Üؔ 3 Yt à

0

0

0

2

6664

3

7775 Y0 à

V

T1

T2

2

6664

3

7775

���������

1

CCCA

0

BBB@ Ö2Ü

for t!1. In words, the probability that all viral compartments will eventually go extinct. The
prophylactic efficacy φ then denotes the reduction in infection probability per contact,

φ à 1� PIÖY0jDÜ
PIÖY0jÜ

Öprophylactic efficacyÜ; Ö3Ü

where PI(Y0|D) and PI(Y0|) denote the infection probabilities in the presence- and absence
of prophylactic drugs D respectively. The term PI(Y0|D) was computed using a mathematical
model of the viral dynamics (below) and by mechanistically considering the direct effects of
the distinct antivirals on viral replication whereas PI(Y0|) is computed analogously, assuming
the absence of drug D = 0.

Drug-class specific direct effects on virus replication

Virus replication dynamics. We adopted the viral dynamics model described in [28, 29].
Although this model is a coarse representation of the molecular events happening during virus
replication, it allows to accurately and mechanistically describe the effect of all existing antire-
troviral drug classes on viral replication, as demonstrated in e.g. [30], and can be parameter-
ized by available in vitro and clinical data. Unlike the original model [28, 29] we do not
consider macrophages, motivated by the observation that transmitted viruses are not macro-
phage-tropic [31, 32] and in line with related modelling approaches [13, 14, 33–35]. The
model is schematically depicted in Fig 1. The modelled viral replication cycle consists of free
infectious viruses, uninfected T-cells, early infected T-cells (T1) and productively infected T-
cells (T2). Early infected T-cells (T1) and productively infected T-cells (T2) denote T-cells
prior- and after proviral integration respectively, where the latter produces virus progeny. The
term Tu = ĕT/ĎT denotes the steady state level of uninfected T-cells prior to virus challenge,
where ĕT denotes the birth and ĎT the death rate of uninfected T-cells. During the onset of
infection the number viruses are relatively low and the number of uninfected T-cells is fairly
unaffected by virus dynamics [33, 36]. Thus, for all computations, we consider the number of
uninfected T-cells to be constant, in line with related approaches [14, 15]. The dynamics of the
stochastic viral replication model after virus exposure are then defined by six reactions. In
absence of antivirals we have

a1ÖÜ à ÖCLá CLT � TuÜ � V Öclearance of free virus; V ! ⇤Ü Ö4Ü

a2ÖÜ à ÖdPIC á dT1
Ü � T1 Öclearance of early infected cell; T1 ! ⇤Ü Ö5Ü

a3ÖÜ à dT2
� T2 Öclearance of late infected cell; T2 ! ⇤Ü Ö6Ü

a4ÖÜ à b � Tu � V Ösuccessful infection of a suscept: cell; V ! T1Ü Ö7Ü
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a5ÖÜ à k � T1 Öproviral integration; T1 ! T2Ü Ö8Ü

a6ÖÜ à NT � T2 Öproduction of infectious virus; T2 ! Vá T2Ü; Ö9Ü

with CLT à 1
rrev;
� 1

⇣ ⌘
� b in Eq (4) as outlined in [28] where ρrev, = 0.5 denotes the proba-

bility to successfully complete reverse transcription in the absence of inhibitors [37, 38]. Free
viruses are cleared by the immune system with a rate constant CL. Further, free viruses can be
also cleared during unsuccessful T-cell infection CLT through the destruction of essential viral
components of the reverse transcription-, or pre-integration complex intracellularly after the
virus entered the cell [37, 38]. The term Č represents the lumped rate of infection of T-cells,
including the processes of virus attachment to the cell, fusion and reverse transcription, lead-
ing to an early infected cell T1, before proviral integration. Similarly, the term k denotes the
rate by which early infected T1 cells are transformed into productively infected T2 cells, involv-
ing proviral integration and cellular reprogramming. The term NT denotes the rate of produc-
tion of infectious virus progeny by productively infected T2 cells (infectious burst size). The
terms dT1

< dT2
denote the rates of clearance of T1 and T2 cells respectively and ĎPIC denotes

the rate of intracellular destruction of the pre-integration complex. Parameters for the viral
model are summarized in Table 1 and a mechanistic derivation of the dynamics from first
principles is given in [28] (Supplementary Text therein).

Class-specific direct drug effects. The direct effect of drugs D 2 {RTI, CRA, InI, PI} on
their target process is typically modelled using the Emax-equation [39]

ZDÖtÜ à
Dm

t

ICm
50 á Dm

t
; Ö10Ü

where Dt is the target site concentration of the drug and the term IC50 and m denote the drug

Fig 1. Schematic of the HIV replication cycle and mechanism of interference by treatment-approved drug classes.
Free viruses are cleared by the immune system with a rate constant CL. Further, free viruses can be also cleared during
unsuccessful T-cell infection CLT through the destruction of essential viral components of the reverse transcription-,
or pre-integration complex [37, 38]. The term Č represents the lumped rate of infection of T-cells, including the
processes of virus attachment to the cell, fusion and reverse transcription, leading to an early infected cell T1, before
proviral integration. Similarly, the term k denotes the rate by which early infected T1 cells are transformed into
productively infected T2 cells, involving proviral integration and cellular reprogramming. The term NT denotes the
rate of production of infectious virus progeny by productively infected T2 cells. The rates Č, CLT, k and NT may be
modified by different antiretrovirals as indicated by bars (inhibition) and pointers with plus sign (drug-dependent
increase). The terms dT1

< dT2
denote the rates of clearance of T1 and T2 cells respectively and ĎPIC denotes the rate of

intracellular destruction of the pre-integration complex. CRA: Co-receptor antagonists, RTIs: reverse transcriptase
inhibitors, InIs: Integrase inhibitors, PIs: Protease inhibitors.

https://doi.org/10.1371/journal.pcbi.1006740.g001
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concentration at which the targeted process is inhibited by 50% and a hill coefficient [40]
respectively. In the current article we will assume that drug concentrations stay constant over
the course of infection, which allows to study drug- and drug class specific properties with
regard to prophylaxis. This assumption is overcome in related article [27], where pharmacoki-
netic inputs are explicitly considered to evaluate particular prophylactic dosing regimen.

Reverse transcriptase inhibitors. In the presence of reverse transcriptase inhibitors RTI
the reaction propensities a1 and a4 are affected [28], i.e.

a1ÖRTIÜ à CLá 1

rrev;
� Ö1� ZRTIÜ

 !

� b � Tu

 !

� V Ö11Ü

a4ÖRTIÜ à Ö1� ZRTIÜ � b � Tu � V Ö12Ü

where đRTI 2 [0, 1] follows from Eq (10). Eq (11) results from the specific action of reverse
transcriptase inhibitors: they act only after irreversible fusion of viral particles and release of
viral contents has occurred by halting reverse transcription, which increases the probability
that essential viral constituents get cleared intracellularly preventing viral replication to prog-
ress. Thus, inhibition by RTIs can lead to an increase of cell-dependent clearance of viral parti-
cles as modelled in Eq (11) (see Supplementary Information of [28] for an explicit derivation).
From the equations it becomes evident that the increase in cell-dependent clearance (effect on
a1) matches the reduction in successful infection (effect on a4). The validity of this model has
been assessed in [30].

Other inhibitor classes. Co-receptor antagonists (CRA) decrease the infection propensity
a4 and a1, whereas integrase inhibitors InI decrease a5 and protease inhibitors PI reduce a6

respectively by a factor (1 − đD) [28]:

a1ÖCRAÜ à CLá Ö1� ZCRAÜ �
1

rrev;
� 1

 !

� b � Tu

 !

� V Ö13Ü

a4ÖCRAÜ à Ö1� ZCRAÜ � b � Tu � V Ö14Ü

a5ÖInIÜ à Ö1� ZInIÜ � k � T1 Ö15Ü

a6ÖPIÜ à Ö1� ZPIÜ � NT � T2 Ö16Ü

Note that unlike RTIs, CRAs decrease the adsorption of viral particles by cells, which does not
per se lead to a cell-dependent clearance of viral particles as in the case of RTIs. InIs block pro-
viral integration, affecting a5 and PIs prevent maturation, which lowers the amount of infec-
tious viruses produced.

Probability of virus extinction

For the ease of notation we introduce the unit vectors bV, bT1 and bT2 which represent the states
where only one infected compartment is present (either virus, early- or late infected cells)

bV à

1

0

0

2

6664

3

7775 ;
bT1 à

0

1

0

2

6664

3

7775 ;
bT2 à

0

0

1

2

6664

3

7775 Ö17Ü
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While free virus is typically transmitted, our framework also allows to study prophylactic
efficacy for arbitrary initial states. Using the notation above, any state of the system can be

expressed as a linear combination of the unit vectors above. For example, 5 � bV � 3 � bT1 � 12 �
bT2 denotes the state where we have 5 viruses, 3 early infected cells and 12 late infected cells. In
S1 Text we provide a detailed derivation of infection/extinction probabilities after viral expo-
sure. Herein, we will provide a sketch of the central idea.

Starting from a single virus Y0 à bV, we can write the Chapman-Kolmogorov equation:

PEÖY0 à bVÜ à
X1

nà0

3ÖYr à n � bVjY0 à bVÜ � PEÖYr à bVÜ
n: Ö18Ü

In words, the extinction probability PEÖY0 à bVÜ is given by the probability that n viruses are

produced in a single replication cycle r, 3ÖYr à n � bVjY0 à bVÜ, and that all of these viruses
eventually go extinct, considering all possible values of n. Herein we assumed statistical
independence, i.e. PEÖYr à n � bVÜ à PEÖYr à bVÜ

n. Furthermore, the extinction probabilities
for parent- and progeny virus are identical when the inhibitor efficacy is constant, i.e.

PEÖY0 à bVÜ à PEÖYr à bVÜ. Next, we construct the embedded Markov chain [26]
corresponding from the continuous-time Markov jump model depicted in Fig 1 with
parameters in Table 1 (details in S1 Text). This allows to derive algebraic formulas for

3ÖYr à n � bVjY0 à bVÜ; n à 0 . . .1. Substituting these into Eq (18), rearranging and solv-

ing for PEÖY0 à bVÜ yields a quadratic formula. Solving the quadratic formula, and using
PE(�) = 1 − PI(�) we derive analytical solutions for the infection probabilities after exposure

to a single virus bV, early- bT1 and late infected cell bT2:

PIÖY0 à bVÜ à max 0;
a4ÖDÜ

a1ÖDÜ á a4ÖDÜ
� a5ÖDÜ

a2 á a5ÖDÜ
1� 1

R0ÖDÜ

✓ ◆✓ ◆
Ö19Ü

PIÖY0 à bT1Ü à max 0;
a5ÖDÜ

a2 á a5ÖDÜ
� 1� 1

R0ÖDÜ

✓ ◆✓ ◆
Ö20Ü

PIÖY0 à bT2Ü à max 0; 1� 1

R0ÖDÜ

✓ ◆
: Ö21Ü

where R0(D) denotes the basic reproductive number, i.e. the average number of viruses pro-
duced from a single founder virus [41] in a single replication cycle under the action of drug

D. Using our model we have R0ÖDÜ à
a4ÖDÜ

a1ÖDÜáa4ÖDÜ
� a5ÖDÜ

a2áa5ÖDÜ
� a6ÖDÜ

a3
. The first solution PI(�) = 0 of

Table 1. Parameters generally used for the viral dynamics model. Excerpt from [28], except for CL(naive), which assumed that virus clearance is smaller in virus-naive
individuals compared to infected individuals, in line with [17, 72]. All parameters refer to the absence of drug treatment. All parameters in units [1/day], except for ĕ
[cells/day] and Č [1/day/virus]. Parameter sensitivity was assessed in S2 Text.

Parameter Value Reference Parameter Value Reference

ĕT 2�109 [78] k 0.35 [38]

dT; dT1
0.02 [79] Č 8�10−12 [80]

dT2
1 [81] NT 670 [28, 79]

ĎPIC 0.35 [38, 82] CL(naive) 2.3 [14, 33]

https://doi.org/10.1371/journal.pcbi.1006740.t001
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Eqs (19)–(21) are valid in the regimen where R0(D)  1, i.e. in the regimen where extinction
is certain. The second solution describes the case where infection may occur, i.e. R0(D) > 1.
The pre-terms in the second solution of Eqs (19) and (20) denote the bottlenecking proba-
bilities that a late-infected, virus producing cell is reached, starting from a free virus (Eq
(19)) or starting from an early infected cell (Eq (20)) respectively.

We can assume statistical independence during the onset of infection (i.e. competition for
target cells is negligible) as noted before. Hence, for any given combination of free virus, early-
stage infected cell and late-stage infected cell the extinction probability is given by

PE Y0 à

V

T1

T2

2

6664

3

7775

0

BBB@

1

CCCA à
⇣

PEÖY0 à bVÜ
⌘V
�
⇣

PEÖY0 à bT1Ü
⌘T1

�
⇣

PEÖY0 à bT2Ü
⌘T2

; Ö22Ü

where the exponents V, T1 and T2 denote the number of free virus, early- and late-stage
infected cells present and where we notice that PE(�) = 1 − PI(�).

Virus exposure model

Initial viral exposure after sexual intercourse occurs at tissue sites typically not receptive for
establishing and shedding HIV infection (e.g. mucosal tissues). Hence, the virus needs to pass
several bottlenecks and physiological barriers to reach a replication enabling (target-cell) envi-
ronment where infection can be established and from where it can shed systemically [42]. To
determine realistic inoculum sizes after sexual exposure to HIV, we previously developed a
data-driven statistical model linking plasma viremia in a transmitter to the initial viral popula-
tion Y0 in a replication-enabling environment [18] (Supplementary Note 4 therein for details).
Herein, we used the ‘exposure model’ to compute drug efficacy estimates after homosexual
exposure presented in section Prophylactic efficacy of treatment-approved antivirals. In brief,
this ‘exposure model’ was developed to capture key clinical observations: (i) the average HIV
transmission probabilities per exposure as reported in [20, 21, 43]. (ii) the fact that viral loads
in the untreated transmitter population are approximately log-normal distributed [18, 44–46]
(μ = 4.51, σ = 0.98) and (iii) the observation that the plasma viremia in the transmitter is the
most dominant factor determining HIV transmission [44, 47–49]. More specifically, it was
reported that each 10-fold increase in the transmitter’s viral load increases the transmission
probability per coitus by approximately 2.45-fold [47] (similar values confirmed in [49]). The
aforementioned clinical observations can be summarised in the formula below:

�P trans à
Z 1

nà0

PÖVL à nÜ �
X1

nà0

PÖY0 à n � bVjVL à nÜ � PIÖY0 à n � bVÜ
 !

Ö23Ü

where �Ptrans is the average transmission probability per exposure/coitus (given in (i)), P(VL = ν)
is the probability density of viral load in the donor (log-normal distributed, given in (ii)),

PIÖY0 à n � bVÜ is the infection probability when n viruses reach a replication enabling

site (computed from the virus dynamics model above with PIÖY0 à bVÜ ⇡ 0:0996) and

PÖY0 à n � bVjVL à nÜ denotes the ‘exposure model’ (the probability that n viruses reach a rep-
lication-enabling compartment after viral exposure from a transmitter with virus load ν). For
the ‘exposure model’, we assumed a binomial distribution

PÖY0 à n � bVjVL à nÜ à
dnme

n

✓ ◆
� rn � Ö1� rÜdn

me�nÜ Ö24Ü
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where m = log10 (2.45) is given by (iii) [47] and the success probability r was estimated in
a previous work [18] (Supplementary Note 4 therein), e.g. rhomo = 3.71 � 10−3 for homosex-
ual exposure. However, the model can be adapted to the different exposure types (e.g.
heterosexual, needle-stick, etc . . .). In this model, the success probability r summarises both
the extent of local exposure, as well as the probability of passing all bottlenecking physiolog-
ical barriers and reaching a replication enabling target cell compartment. Lastly, in line with
Keele et al. [22], we observed that if infection occurs in our model it is established by a very
low number of viruses after homosexual contact and usually by a single founder virus after
heterosexual contact.

Results

Relation between direct effects and prophylactic efficacy

Drug-specific inhibition of viral replication can be studied in vitro, for example in single-
round turnover experiments [40] or even more mechanistically using enzymatic assays in con-
junction with appropriate mathematical models [50]. Since the infection risk per exposure is
already low in untreated individuals [20, 21], exploring the prophylactic efficacy (reduction in
infection risk) in the clinic is difficult, requiring very long (several years) clinical trials with
many individuals (N> 1000) to achieve statistically evaluable results. Systematic evaluation of
concentration-effect relations is not feasible in this context, notwithstanding ethical concerns.

We wanted to gain a deeper insight how in vitro measurable direct drug efficacy đ translates
into prophylactic efficacy φ (reduction in infection probability per exposure) in a drug-class
specific manner. Particularly, since different antiviral drug classes inhibit distinct stages in the
HIV replication cycle, we wanted to elucidate how these different mechanisms of action affect
prophylaxis. We combined Eqs (11)–(16) with Eqs (19)–(21) into Eq (3) to predict prophylac-
tic efficacy. When relating direct drug effects đ to prophylactic efficacy φ we observed striking
drug-class specific differences as illustrated in Fig 2. Using parameters from Table 1 we found
that the prophylactic efficacy φ may be less than predicted by in vitro measurable direct drug
effects đ. The sole exception are reverse transcriptase inhibitors (RTI) in case of exposure to a

single virus particle Y0 à bV where the two measures of drug efficacy coincide. While the pro-
phylactic efficacy after exposure to a single virus are moderately less than the direct effects of
co-receptor antagonists CRA and integrase inhibitors InI respectively (Fig 2A), there is a pro-
found difference for protease inhibitors, which do not seem to reduce HIV transmission unless
their direct efficacy đ exceeds⇡ 95%. Interestingly, a similar observation using a different
mathematical model and only distinguishing RTIs and PIs has been made by Conway et al.
[13].

While HIV-transmission typically occurs after exposure to free virus, it is still useful to
study the prophylactic efficacy of distinct drug classes in the hypothetical case when infected
cells were present in the exposed individual. A realistic example for this scenario is post-
exposure prophylaxis (PEP): During PEP, drugs are taken shortly after virus exposure and
initial viral replication steps may have taken place generating early- or late infected cells. As
can be seen in Fig 2B and 2C, the prophylactic efficacy of all drugs profoundly deteriorates
compared to their direct effects, i.e. only very effective (in terms of đ) drugs may prevent sys-
temic infection once cells become infected in the exposed individual. An exception are inte-
grase inhibitors: their prophylactic efficacy φ is moderately less than their direct effect đ
(panel B) if only early infected cells T1 (before proviral integration) were present. Thus,
while the prophylactic efficacy of all other drug classes is profoundly less than their direct
effects once infected cells emerged, integrase inhibitors may still potently prevent infection.
An intuitive explanation for the deterioriation of prophylactic efficacy can be made in terms
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of changes in drug-target stoichiometry: For example, after exposure to a single virus bV,
drugs from the classes of CRAs, RTIs and InIs need to block a single reaction to foster viral
extinction. For PIs however, the same is only achieved if maturation of the entire viral prog-
eny is inhibited (possibly hundreds of particles). Similarly, when considering a single early

infected cell bT1, CRAs and RTIs can only prevent further viral expansion after viral progeny
has emerged. Subsequently, for each viral particle (possibly hundreds) the respective target
processes (receptor binding, reverse transcription) need to be blocked by the inhibitors.
Along the same lines of argumentation it is also evident that prophylactic efficacy is generally
more favourable in the case of PrEP, compared to post-exposure prophylaxis (PEP), where
initial viral replication may have occurred.

In vitro drug potency may overestimate PrEP potency

In vitro measured drug potency IC50, IC90 usually guides the design of PrEP trials [51]. In par-
ticular, dosing regimen are designed so that the majority of individuals achieve drug levels just
above the 90% inhibitory concentrations IC90. However, it has never been rigorously investi-
gated whether these ‘target concentrations’ are sufficient to provide 90% protection against
HIV infection. Integrating Eq (10) into Eqs (11)–(16), (19) and (3) allows to predict the con-
centration-prophylaxis profile for different HIV-1 inhibitor classes. Rearranging this compos-
ite equation reveals how in vitro measured drug potency IC50, IC90 can be translated into
prophylactic potency (50% and 90% reduction in infection risk, EC50 and EC90, respectively),
guiding clinical trial design. The derived analytical expressions for the prophylactic efficacy
(reduction in infection risk) indicate that the shape of the concentration-prophylaxis profile
varies considerably for different HIV-1 inhibitor classes with important consequences for their
prophylactic endpoints (% reduction in HIV transmissibility).

After exposure to a single virion Y0 à bV, the overall shape of the concentration-prophylaxis
profile for co-receptor antagonists (CRAs), reverse transcriptase inhibitors (RTIs) and inte-
grase inhibitors (InIs) is a classical Emax equation (the equation of choice for evaluating

Fig 2. Relation between direct drug effect and prophylactic efficacy. The relation between direct drug effect đ and prophylactic efficacy φ (reduction in infection) is
shown for different drug classes utilizing the viral model depicted in Fig 1 with parameters stated in Table 1. Panel A: Relation between đ and φ when a single virus

Y0 à bV reached a replication-enabling compartment in the virus-exposed individual. Panel B: Relation between đ and φ when a single early infected cell Y0 à bT1 or

(panel C) a late infected T-cell Y0 à bT2 reached a replication-enabling compartment. Solid red lines: CRAs, solid green line: RTIs, dashed blue line: InI, dashed purple
line: PIs.

https://doi.org/10.1371/journal.pcbi.1006740.g002
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concentration-effect relations), see S1 Text for derivation.

φÖbVÜ à R0ÖÜ
R0ÖÜ � 1

� Dm

ICm
50

1
u

� �
á Dm

⇡
R0ÖÜ�1 Dm

ECm
50 á Dm ÖCRAÜ Ö25Ü

φÖbVÜ à R0ÖÜ
R0ÖÜ � 1

� Dm

ICm
50 á Dm ⇡

R0ÖÜ�1 Dm

ECm
50 á Dm ÖRTIÜ Ö26Ü

φÖbVÜ à R0ÖÜ
R0ÖÜ � 1

� Dm

ICm
50

1
W

� �
á Dm

⇡
R0ÖÜ�1 Dm

ECm
50 á Dm ÖInIÜ Ö27Ü

where D denotes the concentration of the drug in the blood plasma, m is a slope parameter
and IC50 denotes the plasma concentration of the drug that inhibits the targeted process (co-
receptor binding, reverse transcription or proviral integration) by 50 percent. This parameter
can typically be measured in vitro, e.g. using single-round turnover experiments [40] and is

stated in Table 2 for various drugs. Parameters u à CL�rrev;
CL�rrev;áb�Tu

< 1 and W à dPICádT1
dPICádT1

ák < 1

denote the respective probabilities, in the absence of drugs, that the virus is eliminated before
entering a host cell, and that essential virus compartments get cleared intracellularly after
reverse transcription and before provirus integration. The parameter EC50 denotes the plasma
concentration of the drug that decreases the probability of infection by 50%, i.e. the prophylac-
tic potency of the drug. R0() denotes the basic reproductive number in the absence of drugs,
i.e. the average number of viruses produced from a single founder virus [41] in a single replica-
tion cycle when no antivirals were present (R0()⇡ 67 according to the utilized model).
When the target cell density is sufficiently high (herein considered as a target cell environ-
ment), we have R0()� 1 and hence the left-side scaling factor in Eqs (25)–(27) will be
close to one, R0()/(R0() − 1)⇡ 1. An analysis with low target cell densities is provided in
S2 Text.

In case of exposure to a single virus particle bV, the slope parameters in the right-most equa-
tions coincide with the slope parameter for the respective drug-targeted process m (Eq (10)),
stated in Table 2. Notably, for RTIs, we have EC50⇡ IC50, i.e. the drugs potency measured in
vitro in single-round turnover experiments [40] directly translates into its potency to prevent
infection. Using parameters from Table 1 we observe EC50 > IC50 for CRAs and InIs, i.e. com-
pared to their in vitro potency, they are less potent in preventing infection. This is largely due
to the respective factors ϑ−1, υ−1 > 1, compare Fig 3A–3C. For InIs this observation is robust
across a broad range of parameter values, as shown in S2 Text. Consequently, for InIs, higher
concentrations are required to prevent infection than suggested after conducting the respective
in vitro experiments. For CRAs, predictions are parameter dependent, S2 Text. Rearranging
Eqs (25)–(27) allows to directly compute the drug concentration that prevents infection with x
percent probability (the ECx) from the corresponding in vitro 50% inhibitory concentration
IC50 (derivations in S3 Text): In case of exposure to a single virus particle we get

ECx à IC50 � F � x
100 � C � x

⇣ ⌘1=m
; Ö28Ü

where ECx is the drug concentration that achieves x percent of prophylactic efficacy and the
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term F� 1 is a drug class specific factor

F à

CLá b�Tu
r

⇣ ⌘
=CL; for CRA

1; for RTI

1=W; for InI:

8
>>>><

>>>>:

Ö29Ü

and

C ؔ R0ÖÜ
R0ÖÜ � 1

⇡ 1; Ö30Ü

if R0()� 1. Importantly, when exposure to multiple viruses occurs, the concentration-pro-
phylaxis profile is no longer an Emax equation for any inhibitor class, Fig 3A–3C. Further-
more, the slope parameter increases and the EC50 may exceed the in vitro measurable IC50

value. At large inoculum, the corresponding profiles become switch-like. For protease inhibi-
tors (PIs), we derive a power function to describe their prophylactic efficacy (mechanistic deri-
vation in S1 Text):
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Table 2. Pharmacodynamic and pharmacokinetic parameters. IC50 [nM] and m [unit less] values are available from single turnover experiments in primary peripheral
blood mononuclear cells supplemented with 50% human serum from Shen et al. [40], Laskey et al. [92] (DTG) and Jilek at al. [93] (MVC). Because some compounds are
highly protein bound, IC50 values had to be adjusted for protein binding as outlined in the S5 Text. Indicated values are after protein adjustment. IC50 values are reported
to be log normal distributed and m values to be normal distributed [40, 93] with respective coefficients of variation CV = 100 � σ/μ [%]. Parameters Cmin and Cmax refer to
the minimum and maximum concentrations in [nM] during chronic administration using the standard dosing regimen, taken from Shen et al. [40] except those for DTG
[94], RPV [95] and MVC [96] (150mg twice daily). t1/2—half life of the drug in [hr], fb—fraction of the drug bound to plasma proteins in [%]. +These values were fixed to
the typical parameter distributions observed for all other compounds. ⇧Parameters were taken from Drug Bank when available https://www.drugbank.ca/, accession num-
bers: DB04835, DB00625, DB00238, DB00705, DB08864, DB06817, DB09101, DB08930, DB01072, DB00701, DB01264, DB00224, DB00220, DB00932 or [PubChem
https://pubchem.ncbi.nlm.nih.gov, id: 92727. When parameters were not readily available in these databases, parameters were obtained from the indicated literature
source. MVC -maraviroc, EFV -efavirenz, NVP -nevirapine, DLV -delavirine, ETR -etravirine, RPV -rilpivirine, RAL -raltegravir, EVG -elvitegravir, DTG -dolutegravir,
ATV -atazanavir, APV -amprenavir, DRV -darunavir, IDV -indinavir, LPV -lopinavir, NFV -nelfinavir, SQV -saquinavir, TPV -tipranavir.

Class Name IC50 (CV) m (CV) Cmin Cmax fb t1/2

CRA MVC 5.06 (290) 0.61 (27.9) 45 557 76⇧ 14⇧

RTI EFV 10.7 (16.7) 1.69 (4.73) 5630 12968 99.4 [83] 40⇧

RTI NVP 116 (31.2) 1.55 (9.68) 10883 25153 60⇧ 45⇧

RTI DLV 336 (44.7) 1.56 (11.5) 10672 27134 98 [84] 5.8⇧

RTI ETR 8.59 (16.3) 1.81 (12.7) 688 1617 99.9 [85] 35 [86]

RTI RPV 7.73 (17.9) 1.92 (10.4) 177 470 99.1⇧ 44.5⇧

InI RAL 25.5 (12.1) 1.1 (4.55) 203 3996 83⇧ 9⇧

InI EVG 55.6 (43.8) 0.95 (4.21) 301 1661 99⇧ 8.7⇧

InI DTG 89.0 (25.3+) 1.3 (15.4+) 2918 8471 98.9⇧ 14.5 [87]

PI ATV 23.9 (11.8) 2.69 (10.4) 899 6264 86 [88] 7⇧

PI APV 262 (12.6) 2.09 (6.70) 2870 14319 90⇧ 7.1⇧

PI DRV 45.0 (21.6) 3.61 (8.86) 5081 14783 95 [85] 15⇧

PI IDV 130 (11.0) 4.53 (7.94) 1827 12508 60 [89] 1.8⇧

PI LPV 70.9 (20.1) 2.05 (5.85) 8757 15602 99 [60] 2.5[

PI NFV 327 (26.8) 1.81 (12.7) 2285 5104 98⇧ 3.5⇧

PI SQV 88.0 (9.7) 3.68 (6.25) 897 13282 97 [90] 3.9 [91]

PI TPV 483 (18.0) 2.51 (14.3) 35598 77585 99.9⇧ 5⇧

https://doi.org/10.1371/journal.pcbi.1006740.t002
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where C<< 1 is a constant. Moreover, for realistic (large) R0()� 3 their plasma concentra-
tion has to exceed their IC50 to decrease the probability of infection by at least 50%, Fig 3D.
Similarly, we can rearrange the equation above and obtain

ECx à IC50 � G � x
100

⇣ ⌘1=m
; Ö32Ü

Fig 3. Shape of the concentration-prophylaxis profile. Colored lines depict the concentration-prophylaxis profile for an average drug class-specific slope parameter

�m in Eq (10). Solid colored line for an inoculum of one virus Y0 à bV and dashed colored line for an inoculum of Y0 à 100 � bV. Shaded areas indicate the
concentration-prophylaxis profile for the smallest mmin and largest class-specific slope parameter mmax for the respective drug class as indicated in Table 2. A: Co-
receptor antagonists. Currently only one co-receptor antagonist, maraviroc, is approved. We use �m à mmin à 0:61 and also plot mmax = 1 as a reference. B: Non-
nucleoside reverse transcriptase inhibitors (NNRTIs); �m à 1:71, mmin = 1.55 and mmax = 1.92. Nucleoside reverse transcriptase inhibitors (NRTI) have been analyzed
in [18]. C: Integrase inhibitors, �m à 1:12, mmin = 0.95 and mmax = 1.3. D: Protease inhibitors; �m à 2:87, mmin = 1.81 and mmax = 4.53. Utilized virus dynamics
parameters are stated in Table 1.

https://doi.org/10.1371/journal.pcbi.1006740.g003
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for the exposure to a to a single virus, where G ؔ R0() − 1. Again, in case of exposure to mul-
tiple viruses, the slope parameter and EC50 increase, making the prophylactic efficacy of PIs
exhibiting a switch-like behaviour as can be seen in Fig 3D. This switch-like behaviour makes
the prophylactic use of PIs vulnerable to non-adherence, as well as general variations in con-
centrations (e.g. pharmacokinetics, inter-individual variability), and the prophylactic efficacy
with these inhibitors may alternate between zero- or complete protection.

Prophylactic efficacy of treatment-approved antivirals

The combination of the nucleoside reverse transcriptase inhibitors (NRTIs) emtricitabine and
tenofovir (Truvada) is the only intervention approved for pre-exposure prophylaxis (PrEP).
According to our previous estimates [18], Truvada provides 96% protection in fully adherent
individuals, which is in line with clinical estimates of 86-100% protection in the IPERGAY
study [1], 58-96% in the PROUD study [2] and 96% in the Partners PrEP OLE study in appar-
ently highly adherent individuals. The VOICE [3] and FEM-PrEP [52] studies indicated that
Truvada may not prevent infection in poorly adherent individuals.

Currently, a number of drugs are under investigation for PrEP repurposing [6]. Notably, all
currently investigated compounds are patent-protected and may not be affordable in resource-
constrained countries hit hardest by the epidemic. In this work, we wanted to unselectively
assess the utility of treatment-approved antivirals for prophylaxis and to assess whether cur-
rently neglected (patent-expired) compounds may be cost-efficient alternatives to be further
explored in non-profit prophylaxis programmes.

We utilized comprehensive sets of drug-specific pharmacodynamic- and pharmacokinetic
parameters (Table 2) to parameterize Eq (10) and to predict the prophylactic efficacy of treat-
ment approved CRAs, non-nucleoside reverse transcriptase inhibitors (NNRTIs), InIs and PIs
at clinically relevant concentration ranges (the class of NRTIs have been analyzed in earlier
work [18]). Moreover, we sampled the extent of viral exposure (number of viruses transmitted
and reaching a replication-enabling compartment; Eq (22)) from a previously parameterized
distribution [18] that accurately reflects transmitter virus loads and drug-free infection proba-
bilities after sexual contact. The resultant benchmark is depicted in Fig 4. Fig 4 allows for an
initial screen of the utility of the various drugs for oral PrEP. Most analyzed drugs, except for
maraviroc (MVC), raltegravir (RAL), elvitegravir (EVG) and nelfinavir (NFV), potently pre-
vent infection at concentrations ranges typically encountered in fully adherent individuals
during treatment (range between minimum- to maximum concentration, [Cmin; Cmax]). Dur-
ing prophylaxis, adherence to the dosing regimen is a major problem and we thus consider a
lower bound concentration that would arise if the drug had not been taken for three days prior
to exposure Clow (thin dashed vertical line in Fig 4) to emphasise a ‘pharmacokinetic safety
margin’ in case of poor adherence. Numerical values for the computed maximum prophylactic
efficacy and the efficacy at the lower bound concentrations are reported in Table 3 alongside
with estimated EC50 and EC90 values. While in Table 3 we report the EC50 and EC90 values

after challenge with a single virus bV, the corresponding values after virus challenges sampled
from the distribution for homosexual exposure Eq (24) were almost identical, see S4 Text for a
comparison. Our simulations indicate a residual risk of infection for most analyzed drugs.
Notably, most protease inhibitors may confer anything from none- to absolute protection
within relevant concentration ranges, [Clow; Cmax], which highlights a severe limitation to their
PrEP use in the context of poor adherence or pharmacokinetic (intra-/inter individual) vari-
ability. An exception among this rule is darunavir (DRV), which is predicted to be almost fully
protective for the entire concentration range.
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Fig 4. Drug specific prophylactic efficacy. Solid and dashed colored lines depict the concentration-prophylaxis profile for the
individual drugs. The solid lines represent the concentration-prophylaxis profiles and light and dark grey areas indicate the quartile
ranges and 5-95% ranges of the concentration-prophylaxis profile, considering uncertainty in pharmacodynamic parameters
(Table 2) and the distribution of viral inoculum sizes after homosexual exposure to HIV using the virus exposure model’ (Methods
section and [18]). Maximum clinically achievable concentrations Cmax for chronic oral administration of the standard dosing
regimen and a lower bound concentration Clow that would be achieved if the last dose had been taken three days prior to virus
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Of the analyzed non-PI drugs, the NNRTIs efavirenz (EFV), nevirapine (NVP), etravirine
(ETR) and rilpivirine (RPV) are extremely potent with regard to prophylaxis: These drugs pre-
vent infection, even when the drug had not been taken for three consecutive days, Table 3.
Notably, NVP and EFV are patent-expired and may represent suitable candidates for use in
resource-constrained settings (price per day⇡ 0.1US$). The co-receptor antagonist maraviroc
(MVC) and the integrase inhibitor dolutegravir (DTG) retain some prophylactic efficacy (50
and 72% respectively) at lower bound concentrations Clow. The CRA maraviroc (MVC), the
NNRTI rilpivirine (RPV) and the InI raltegravir (RAL) are currently investigated for use as
PrEP compounds (long-acting injections of RPV and RAL; oral- or topical application of
MVC). In our simulations the predicted PrEP efficacy of these drugs would drop to 8% (RAL)
and 50% (MVC) when the drug had not been taken for three consecutive days prior to virus
exposure. Notably, RPV remained 100% effective.

Lastly, we want to note that our predictions are based on viral dynamics parameters that
may under-predict prophylactic efficacy, as indicated in S2 Text. The main purpose of this
modelling study was to rule out drug candidates, based on lack-off- or uncertain- prophylactic

exposure are marked by thick and thin vertical black dashed lines respectively. For IDV, LPV, NFV and SQV Clow falls below the
range of the x-axis. Downward pointing arrows indicate minimum (pre-dose) concentrations achieved for standard regimen in
adherent individuals as reported in [40], [96] and [95]. MVC -maraviroc, EFV -efavirenz, NVP -nevirapine, DLV -delavirdine, ETR
-etravirine, RPV -rilpivirine, RAL -raltegravir, EVG -elvitegravir, DTG -dolutegravir, ATV -atazanavir, APV -amprenavir, DRV
-darunavir, IDV -indinavir, LPV -lopinavir, NFV -nelfinavir, SQV -saquinavir, TPV -tipranavir. ⇤recently or currently tested for
PrEP.

https://doi.org/10.1371/journal.pcbi.1006740.g004

Table 3. Prophylactic efficacy and sensitivity to incomplete adherence. The table shows the prophylactic efficacy (% reduction in infection probability) of all investigated
drugs at their respective maximum achievable drug concentrations after chronic oral administration of the standard regimen and its efficacy at a concentration level that
would be reached if the last dose had been taken least three days prior to virus exposure Clow à Cmin � e�2�24�ke , with ke = ln(2)/t1/2 and halflifes t1/2 reported in Table 2. The
5-95% range of these estimates are shown in brackets and consider uncertainty in pharmacodynamic parameters IC50, m and variability in virus exposure after homosexual
contact, according to the ‘virus exposure model’ (Methods section and Duwal et al. [18]. The last two columns show the EC50 and EC90 in the case when an individual was

exposed to a single virus bV. MVC -maraviroc, EFV -efavirenz, NVP -nevirapine, DLV -delavirdine, ETR -etravirine, RPV -rilpivirine, RAL -raltegravir, EVG -elvitegravir,
DTG -dolutegravir, ATV -atazanavir, APV -amprenavir, DRV -darunavir, IDV -indinavir, LPV -lopinavir, NFV -nelfinavir, SQV -saquinavir, TPV -tipranavir. ⇤currently
investigated for PrEP.

prophylactic efficacy φ [%] EC50ÖbVÜ EC90ÖbVÜ
drug φ(Cmax) φ(Clow) [nM] [nM]

MVC⇤ 96.10 (74.11;100) 50.12 (18.63;85.42) 11.45 349.63

EFV 100 (100;100) 100 (100;100) 10.55 36.23

NVP 100 (100;100) 100 (100;100) 114.06 438.06

DLV 100 (100;100) 3.38 (0.88;10.19) 329.50 1254.58

ETR 100 (100;100) 100 (100;100) 8.45 26.75

RPV⇤ 100 (100;100) 100 (99.02;100) 7.61 22.55

RAL⇤ 100 (100;100) 8.15 (6.32;10.23) 45.40 302.36

DTG⇤ 100 (99.03;100) 72.12 (57.77;84.85) 145.18 722.23

EVG 94.61 (89.02;97.97) 6.96 (3.66;12.49) 108.66 976.25

ATV 100 (100;100) 0.08 (0.04;0.15) 87.44 108.79

APV 100 (100;100) 0.01 (0.01;0.03) 1394.96 1848

DRV⇤ 100 (100;100) 100 (100;100) 118.32 139.24

IDV 100 (100;100) 0 (0;0) 280.80 319.71

LPV 100 (100;100) 0 (0;0) 389.69 519.09

NFV 100 (64.01;100) 0 (0;0) 2253.66 3118.34

SQV 100 (100;100) 0 (0;0) 227.29 266.66

TPV 100 (100;100) 0 (0;0.02) 1944.89 2458.09

https://doi.org/10.1371/journal.pcbi.1006740.t003
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efficacy. While some drugs’ prophylactic efficacy might be under-predicted, this conservative
choice of parameters provides a more solid scientific basis for the remaining candidates that
are predicted to be potent.

Discussion

Our intent was to develop a tool to screen out unsuitable candidates for PrEP based on unfa-
vourable pharmacokinetic and pharmacodynamic characteristics. Clearly, the attributes which
make any compound favourable extend beyond PK/PD, and critically also depend on tolera-
bility, ease of dosing, cost and acceptability. Nevertheless, screening antiretroviral agents based
on their intrinsic antiviral activity, mode of action, duration of efficacy beyond the dosing
interval, and tolerance for missed dosing is a logical starting point when assessing potential
candidates for PrEP.

Strikingly, we observed that in vitro measured drug potency may over-estimate PrEP
potency in a drug-class specific manner. For all non-RTI drugs dosing schedules in clinical
trials may have to be adjusted accordingly to reach the desired prophylaxis endpoints (% pro-
tection). We provide an easy-to-use software tool to determine the corresponding target con-
centrations (www.systems-pharmacology.org/prep-predictor).

For non-PI drugs, we observed a more graded relationship between their prophylactic effi-
cacy and drug concentrations. At low virus inoculum sizes, the slope of their concentration-
prophylaxis profile is largely determined by the slope coefficient that describes their direct
effects [40]. Notably, for PIs we observed a very steep concentration prophylaxis profile, sug-
gesting that within clinically relevant ranges for oral PrEP (Fig 4) their efficacy is likely to
switch between zero- and complete protection, in an ‘either-or’ scenario. This characteristic
renders PIs particularly vulnerable to poor adherence and drug-drug interactions. An intuitive
explanation for this steep concentration-prophylaxis profile of PIs (power function in Eq (31))
is based on its unfortunate drug-to-target stoichiometry: A single late infected cell T2 produces
hundreds of infectious viruses on average (using parameters from Table 1 a6/a3 = 670) and a
PI needs to prevent all of them from becoming infectious to fully prevent infection. By con-
trast, all other compounds only need to prevent a single viral entity from progressing, explain-
ing the proportionality to the EMAX equation seen in Eqs (25)–(27).

By screening all treatment-approved antivirals for their PrEP utility, we predicted that efa-
virenz (EFV), nevirapine (NVP), etravirine (ETR), rilpivirine (RPV) and darunavir (DRV)
may fully prevent infection after oral application and in case of poor adherence (Table 3 and
Fig 4). Notably, these compounds have favourable inhibitory quotients (clinically achieved
concentrations vastly exceed their EC50) and their long elimination half-lives guarantees that
inhibitory quotients stay in that favourable range. The drugs maraviroc (MVC) and dolutegra-
vir (DTG) potently prevent infection but may allow for HIV transmission when individuals
poorly adhere to the medication. Notably, the NNRTIs EFV, NVP, RPV and ETR exhibit long
elimination half-lives (30-40h) and achieve concentrations required for PrEP to act quickly,
and durably. However, there are some safety concerns with liver toxicity, which contraindicate
e.g. the use of NVP in uninfected individuals. Liver toxicity to ETR remains to be elucidated in
the context of prophylaxis. Skin reactions (ETR and EFV) and neuropsychiatric effects (EFV)
have been reported in the context of HIV treatment that need to be evaluated in the context of
potential PrEP applications. Likewise, skin reactions and rare liver toxicities with DRV need
careful assessment in the context of PrEP repurposing. Moreover, the particular concentra-
tion-prophylaxis profile, as depicted in Fig 4, argues for a form of DRV administration that is
not dependent on daily dosing for maintaining drug levels (e.g. slow release or nanoparticle
formulations). For rilpivirine (RPV), our simulations suggest that near complete protection
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can be achieved when concentrations exceed EC90, Fig 4. RPV is currently investigated as a
long-acting formulation in HPTN076 using 1200mg injections every 2 month which yields
tough concentrations (median 186 nM) well in excess of this target. However, significant vari-
ability is still observed related to gender, and between injections on different occasions [51]
which could be incorporated into future model generations. Besides rilpivirine, maraviroc
(MVC; 300mg once daily), and raltegravir (RAL) are currently clinically investigated for oral
PrEP. Our simulations suggest MVC may incompletely prevent infection even at maximum
concentrations and that its efficacy steadily drops with declining levels down to 50% when
the drug had not been taken for three days prior to exposure. Results from the NEXT-PrEP
(HPTN 069) phase II study observed that MVC may not be potent enough on its own and that
among those acquiring HIV infection, MVC concentrations were low, absent or variable [53].
Our model prediction is consistent with the reported lack of efficacy of MVC as PrEP in ani-
mals and human explant samples [54] and suggests that the potency of MVC, against infection
may be less than its potency in preventing HIV replication (EC50 > IC50, EC90 > IC90). How-
ever, EC50, EC90 estimates for co-receptor antagonists are highly parameter sensitive (S2 Text)
warranting further research into elucidating the early infection dynamics. Using the parame-
ters presented in Table 1, we estimate that the EC90 may be around 350nM, which is approxi-
mately 70 times larger than its IC50 (conversion formula provided in the results section).
Notably, during the dose finding for MVC an IC90 of only 3.9nM (2ng/ml) was considered
and this estimate was taken directly to determine target concentrations providing 90% prophy-
lactic efficacy. Other compounds currently under investigation (HPTN-083) [55], but not eval-
uated in our study are the novel long-acting integrase inhibitor cabotegravir.

Our model has several limitations, but also a number of important advantages. Our simula-
tions do not take into account drug concentrations at the site of mucosal exposure (e.g. cervix,
rectum) [51, 56]. These concentrations have, however, not been validated as targets for suc-
cessful prevention or treatment, whereas data exist (albeit limited) for plasma drug concentra-
tions. Instead, we modelled based on unbound concentrations, in line with the broadly
accepted ‘free drug hypothesis’. Under the ‘free drug hypothesis’, the unbound concentrations
are assumed to be available at the target site to exert pharmacological effects. For drugs highly
bound to plasma protein (> 90%), naturally, their total concentrations at sites other than the
plasma are magnitudes lower [56]. Strikingly, however, the unbound concentrations are iden-
tical [57]. Therefore, throughout the work, we assumed, according to the ‘free drug hypothesis’
[58] that the unbound concentrations in plasma and at the target site coincide, where the latter
exerts the antiviral effect [59, 60]. All analyzed NNRTIs, InIs and PIs, except for raltegravir
(RAL), are highly lipophilic, enabling the unbound drug to rapidly cross cellular membranes,
generating an equilibrium between the unbound drug on either side of the cellular membrane
[61]. Even for the weakly lipophilic compound raltegravir, intracellular concentrations are
proportional to plasma concentrations by a factor precisely resembling their unbound moiety
[62, 63], strongly arguing for the validity of the ‘free drug hypothesis’ for all analyzed drugs.
However, ultimate proof in terms of local measurements in humans are lacking currently and
may be difficult to obtain experimentally. On the contrary, nucleoside reverse transcriptase
inhibitors (NRTIs), which we analysed in a previous work [18] are not expected to obey the
‘free drug hypothesis’ [17, 30, 64]. These compounds need to be actively taken up by cells and
converted intracellularly into pharmacologically active triphosphates (NRTI-TP). Since the
expression of transporters and intracellular enzymes is likely cell-specific, different cell types
may contain vastly different concentrations of pharmacologically active compound. It is
therefore entirely unclear what relevance concentration measurements of NRTI-TPs in tissue
homogenates [65] (containing HIV target- and non-target cells) from sites of viral exposure
(e.g. cervix, rectum) have in terms of prophylaxis.
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Utilising the virus exposure model Eqs (23) and (24), we estimated the probability of virus
clearance (and the prophylactic efficacy φ) as a function of the number of viruses ultimately
reaching a target cell environment, and not as a function of mucosal exposure. The quantita-
tive role of a number of physiological processes underlying primary infection is currently not
fully resolved and impossible to measure in humans (e.g. the cells involved at the local site of
exposure, their abundance, locations, their capabilities to transduce virus through physiologi-
cal barriers and the respective R0s). It is known however, that the virus has to overcome a num-
ber of physiological bottlenecks/barriers to reach a compartment that permits viral expansion.
Despite the mucosal barrier, the sub-mucosal target cell density might initially be low [66],
such that only a tiny fraction of viruses find a target cell before being cleared. It has also been
reported [66–68], that target cells are subsequently recruited to the site of initial exposure due
to inflammation and seminal exposure, mitigating the ‘low target cell bottleneck’ subsequently.
If the low target-cell bottleneck is only prevalent during the first replication cycle it can also be
modelled by simply considering a smaller virus inoculum that reaches a target-cell environ-
ment. In our approach, to obviate model- and parameter uncertainties, we chose a minimal/
parsimoneous, data-driven approach that treats all physiological barriers as a single bottleneck
lumped in terms of the ‘success probability’ r in Eq (24).

The target cell environment herein is a compartment that is decisive for establishing- and
shedding infection (this compartment requires R0 > 1). We also assumed that this compart-
ment is well-perfused at the time scale of interest. Under this assumption, viral kinetic parame-
ters measured in plasma coincide with kinetic parameters at the target cell environment, after
converting the deterministic reaction parameters to their respective stochastic counterparts
(Table 1).

Notably, the model (see Methods section) is calibrated [18] to reflect the per-contact infec-
tion risks for typical transmitter virus loads and different modes of sexual exposure (homo-
and heterosexual), but can also be adapted to model intravenous exposure by e.g. injection.
The calibrated virus exposure model [18] (see Methods section) predicts that either none- or a
single infectious virus enter a replication enabling compartment in the majority of hetero-/

homosexual contacts. Thus, we suggest that EC50ÖbVÜ, EC90ÖbVÜ values stated in Table 3 pro-
vide a good proxy for the drug-specific prophylactic potency after sexual exposure to HIV (see
also S4 Text for a comparison). Importantly, we also observed that increasing the inoculum
size decreases the prophylactic efficacy of all drug classes considered (as suggested by increas-
ing EC50 and EC90) and increases the steepness of the concentration prophylaxis profile, Fig 3.
PIs in particular displayed an almost switch-like prophylactic profile in the case of large inocu-
lum sizes. These observations strikingly indicate that preventive target concentrations can
depend on the route of transmission. I.e., intravenous exposure to HIV (larger inoculum sizes
compared to sexual exposure) may require higher concentrations for HIV prevention.

When R0() is relatively large, we find that our predictions of prophylactic efficacy and
-potency for or CRAs, RTIs and InIs are relatively invariant to parameter changes (compare
Eqs (25)–(30)). However, we find that when considering an extremely broad range of 1.7 <
R0() < 112 values, as in S2 Text, that the parameters used are rather conservative in the sense
that they disfavour the drugs and may under-predict prophylactic efficacy. With regard to our
work’s aim (screen out candidates based on lack-off-, or uncertain potency) such a conservative
parameter choice should be preferred. For PIs, although highly sensitive to changes R0 (com-
pare Eqs (31) and (32)) the qualitative statements made (the prophylactic potency is less than
suggested by IC50, as well as the steep shape of the concentration-prophylaxis profile) are
unaffected for arbitrary, yet realistic parameters, as analysed in S2 Text. However, in the pro-
vided software tool (www.systems-pharmacology.org/prep-predictor) it is possible to freely
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change all virus dynamics parameters. Notably, Ribero et al. [69] have recently estimated R0⇡
8 during acute infection ( 10 days after exposure, virus is detectable), which is much lower
than the value used by us R0⇡ 67, which considers viral replication immediately after expo-
sure, in the so-called eclipse phase before virus becomes detectable. Our R0 value is relatively
high because we assume a lower CL (clearance of free virus) during this early phase of infec-
tion, in line with other modelling approaches [14, 33] and in line with the observation that
adaptive immune responses develop only after about 14 days post exposure [70]. However, if
we utilise CL = 23 (1/day), as in Ribero et al. [69], we obtain similar values of R0.

The knowledge of concentration-prophylaxis relationships between drug classes, and for
each component of a particular drug class allows for the intelligent design of PrEP regimens,
including how quickly protection can be achieved after a loading dose and how forgiving the
regimen is towards missed dosing events. In related article [27] we develop a sophisticated
simulation framework that allows to make use of population pharmacokinetic models, to fully
explore inter-individual pharmacokinetics and to assess sensitivity towards dosing, individual
pharmacokinetic variability and timing of viral challenges.

Our model can be adapted or developed in a number of ways. On a technical side, the ana-
lytical solutions provided in the article can be neatly integrated into hybrid stochastic-deter-
ministic algorithms that consider time-varying drug concentrations (pharmacokinetics), as
outlined in an accompanying article [27]. In brief, therein we utilize analytic solutions for the
extinction probability, Eq (22), to define a set of states where extinction is feasible (extinction
simplex). Whenever trajectories leave the extinction simplex, simulations can be stopped and a
hybrid stochastic-deterministic trajectory can be safely classified as an infection event. Regard-
ing applications, the separate impact of treatment as prevention [71] (in the case of the donor)
versus prophylactic efficacy in the exposed individual can be readily simulated by calibrating
the virus load distribution in potential transmitter populations (see ‘exposure model’ in the
Methods section). The effect of PrEP on the transmission of resistance can be estimated by
altering R0() (the fitness cost of resistance) and by simultaneously increasing IC50 in Eq (10)
(extent of resistance). The fitness cost of resistance translates into a decreased transmissibility
of resistance in the absence of drugs (Eqs (19)–(21)), while the extent of resistance translates
into an increased transmissibility relative to the wildtype at increasing drug concentrations, as
e.g. illustrated in [18] (Figure 3 therein). Consequently, provided any transmitted resistance
confers some fitness defect, prophylaxis may increase the frequency of transmitted resistance
relative to the wildtype, but not its absolute occurrence [18, 72]. Since resistance to HIV drugs
generally develops in a stepwise manner, the change in EC50 following acquisition of a resis-
tance mutation can be introduced into this model, to identify a zone of selective pressure for
the de novo evolution or spread of resistance under PrEP. However, during the early events
when the virus infection can still be averted, the population size is too small for resistance to
appear de novo: A single point mutation appears with probability 1 − (1 − μ)k at a particular
base, where μ⇡ 2.2 � 10-5 is the per base mutation rate of HIV during reverse transcription
[73] and k is the number of reverse transcription (= cell infection) events. Thus, de novo resis-
tance can be assumed to appear, if e.g. PrEP had not been taken at the time of exposure, such
that the infection expanded exponentially, and when PrEP is (re-)initiated some time after this
early infection has been established. De novo resistance development in the context of poor
adherence can be modelled in analogy to the work conducted by Rosenbloom et al. [74].

It is well known that the establishment of a latent reservoir is the major barrier to viral
extinction during treatment [75] and this reservoir may be established as early as 3 days post
infection [76, 77]. In the current framework, we computed viral extinction when t!1,
assuming drug concentrations stayed constant. Thus, extinction estimates are not affected
by the inclusion of a long lived cellular compartment. In an accompanying article [27] we
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overcome this assumption, explicitly considering drug pharmacokinetics and e.g. short-course
prophylaxis. In the accompanying article infection of long lived cells are considered as an algo-
rithmic stopping criterium: I.e., whenever long lived cells become infected, viral extinction is
considered infeasible.

In summary, we have developed a mechanistic modelling tool to a priori screen antivirals
for their prophylactic utility. Our approach revealed that in vitro measured drug potency
(IC50, IC90) should not be used directly to identify lower bound effective concentrations in
PrEP trials: With the exception of reverse transcriptase inhibitors, PrEP potency may be less
than in vitro drug potency, i.e. higher concentrations of drug are required for prophylaxis than
suggested by their in vitro potency. Consequently, when clinical trial design is guided by in
vitro drug potency, prophylactic dosing regimen may be selected that attain insufficient con-
centrations to adequately prevent HIV infection.

Instead, we recommend to use the tool provided (www.systems-pharmacology.org/prep-
predictor) to translate in vitro drug potency into prophylactic efficacy. We used the developed
methods to assess the prophylactic utility of all treatment approved antivirals, allowing to rule
out particular candidates by lack-of-, or uncertain prophylactic efficacy. To this end, we pre-
sented results using viral dynamics parameters that may under-predict prophylactic efficacy
(S2 Text). These preliminary screens indicated that darunavir (DRV), efavirenz (EFV), nevira-
pine (NVP), etravirine (ETR) and rilpivirine (RPV) may fully prevent infection at concentra-
tions typically achieved during treatment and with an adequate ‘pharmacokinetic margin’.
Notably, this prediction is robust across a wide range of (uncertain) parameters (S2 Text).
Moreover, we predicted that maraviroc (MVC) and dolutegravir (DTG) can potently prevent
infection, but that these drugs do not provide a comparable ‘pharmacokinetic margin’. Fur-
thermore, predictions for MVC are uncertain with respect to viral dynamics parameters (effi-
cacy may both be over- or underpredicted). A next logical step is to further trim this candidate
set by ruling out compounds with ominous safety profiles, followed by an assessment of differ-
ent dosing (roll-out) schemes.

Supporting information

S1 Text. The Supplementary Text contains a step-by-step derivation of the equations for
the extinction/infection probability presented in the main article.
(PDF)

S2 Text. The Supplementary Text contains a sensitivity analysis with respect to viral
dynamics parameters.
(PDF)

S3 Text. The Supplementary Text contains details of the IC50-to-EC50 conversion.
(PDF)

S4 Text. The Supplementary Text compares the EC50 and EC90 (antiviral concentrations

that provide 50- and 90% protection) after viral challenge with (i) a single virus bV, and
after virus challenges (ii) sampled from the distribution for homosexual exposure, Eq (24).
(PDF)

S5 Text. The Supplementary Text contains details of the protein-binding adjustment for
pharmacodynamic parameters.
(PDF)
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Pre-exposure prophylaxis (PrEP) is considered one of the five “pillars” by UNAIDS

to reduce HIV transmission. Moreover, it is a tool for female self-protection against

HIV, making it highly relevant to sub-Saharan regions, where women have the highest

infection burden. To date, Truvada is the only medication for PrEP. However, the cost

of Truvada limits its uptake in resource-constrained countries. Similarly, several currently

investigated, patent-protected compounds may be unaffordable in these regions. We set

out to explore the potential of the patent-expired antiviral efavirenz (EFV) as a cost-efficient

PrEP alternative. A population pharmacokinetic model utilizing data from the ENCORE1

study was developed. The model was refined for metabolic autoinduction. We then

explored EFV cellular uptake mechanisms, finding that it is largely determined by plasma

protein binding. Next, we predicted the prophylactic efficacy of various EFV dosing

schemes after exposure to HIV using a stochastic simulation framework. We predicted

that plasma concentrations of 11, 36, 1287 and 1486ng/mL prevent 90% sexual

transmissions with wild type and Y181C, K103N and G190S mutants, respectively.

Trough concentrations achieved after 600 mg once daily dosing (median: 2017 ng/mL,

95% CI:445–9830) and after reduced dose (400 mg) efavirenz (median: 1349ng/mL,

95% CI: 297–6553) provided complete protection against wild-type virus and the Y181C

mutant, and median trough concentrations provided about 90% protection against the

K103N and G190S mutants. As reduced dose EFV has a lower toxicity profile, we

predicted the reduction in HIV infection when 400 mg EFV-PrEP was poorly adhered

to, when it was taken “on demand” and as post-exposure prophylaxis (PEP). Once daily

EFV-PrEP provided 99% protection against wild-type virus, if≥50% of doses were taken.

PrEP “on demand” provided complete protection against wild-type virus and prevented

≥81% infections in the mutants. PEP could prevent >98% infection with susceptible

virus when initiated within 24 h after virus exposure and continued for at least 9 days.

We predict that 400 mg oral EFV may provide superior protection against wild-type HIV.

However, further studies are warranted to evaluate EFV as a cost-efficient alternative

to Truvada. Predicted prophylactic concentrations may guide release kinetics of EFV

long-acting formulations for clinical trial design.

Keywords: PrEP, modeling, PK-PD, translation, repurposing, resource-constrained, cost-efficient, PEP
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1. INTRODUCTION

The ambitious goals formulated by UNAIDS are to end
AIDS by 2030 (UNAIDS, 2017). However, unlike many other
infections, no cure is available to clear HIV infection. Ending
AIDS therefore heavily relies on strategies to reduce the
number of new HIV infections from an estimated 2.1 million
in 2014 (UNAIDS, 2015) to 500,000 cases by 2020 and
to fewer than 200,000 by 2030 (UNAIDS, 2016). While a
vaccine would be the ideal tool for the purpose, intrinsic
difficulties have so far precluded the development of an
effective vaccine against HIV. Despite these setbacks, the
development of about 30 antiviral compounds to stop HIV
replication has been an overwhelming success (Gulick, 2018) in
HIV research.

In light of the current situation, recent years have seen an
increasing interest in utilizing antivirals not only for treatment,
but also to prevent HIV transmission. Two general strategies are
currently investigated for this purpose:

(i) Treatment-as-prevention (TasP) intends to put individuals
with an HIV diagnosis immediately on treatment, which
essentially makes them non-contagious (Cohen et al., 2011).
However, a major limitation of this approach is that HIV is
typically transmitted early after infection (Brenner et al., 2007;
Yousef et al., 2016), when the recently infected individual is
unaware of his/her HIV status and has consequently not initiated
TasP. Thus, maximizing the epidemiological impact of TasP also
requires to improve HIV diagnosis, which is a central component
of the 90-90-90 strategy (UNAIDS, 2017).

(ii) Pre-exposure prophylaxis (PrEP) acts on the viral
dynamics in the virologically challenged individual immediately
after virus exposure. Akin to a vaccination, PrEP increases
the probability that transmitted virus gets cleared, protecting
individuals from becoming irreversibly infected. However,
unlike vaccination, PrEP protection is a direct function of the
concentration of prophylactic drugs at the target site.

Once-daily oral PrEP with the drug combination Truvada
(tenofovir disoproxil fumarate-emtricitabine) has been approved
since 2012 in the US and since 2016 in the EU. Initial clinical
studies with Truvada demonstrated its utility as a PrEP agent
(Grant et al., 2010), while subsequent studies indicated that
the efficacy of Truvada-based PrEP was highly dependent on
the individual’s adherence to the once daily regimen. While
it is difficult to quantify PrEP adherence clinically (Haberer
et al., 2015), efficacy estimates in apparently highly adherent
individuals were 86–100% in the IPrEx OLE study, 58–96%
in the PROUD study and 96% in the Partners PrEP OLE
study (Grant et al., 2014; McCormack et al., 2016). The
VOICE and FEM-PrEP studies indicated that Truvada may
not prevent infection in poorly adherent individuals, i.e., if
30% of individuals had detectable drug in their blood plasma
(Van Damme et al., 2012; Marrazzo et al., 2015). Mathematical
modeling of Truvada-based PrEP (Duwal et al., 2016) established
the precise relationship between drug pharmacokinetics and
prophylactic efficacy confirming many clinical observations (i.e.,
quantifying the prophylactic efficacy to be ≈ 96% in fully
adherent individuals).

While adherence is a major current concern that motivates
the identification of novel long-acting drug candidates and
optimized deployment strategies (AVAC, 2019), a currently
neglected factor is the cost of PrEP, with the majority of
HIV infections occurring in resource-constrained countries
(UNAIDS, 2016). Keller and Smith (2011) noted that the price of
Truvada currently undermines the advancement of pre-exposure
prophylaxis, particular in resource-constrained settings. Yet
regrettably, current PrEP research focusses entirely on patent-
protected compounds (AVAC, 2019). This makes it unlikely that
a current, or next-generation PrEP regimen will become broadly
implemented in resource-constrained regions where they could
benefit most. Moreover, PrEP is the only strategy by which
women can protect themselves against HIV infection, making
PrEP highly relevant in regions like sub-Saharan Africa, where
young women are the most relevant target group to halt the
ongoing spread of HIV (Dellar et al., 2015; Maxmen, 2016),
accounting for≈ 7000 infections per week (Mathur et al., 2016).

A natural progression would therefore be whether currently
neglected, patent-expired compounds might make good
candidates for PrEP repurposing. Based on an initial
computational assessment of potential candidates (Duwal
et al., 2019), we focus herein on the patent-expired non-
nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz
(EFV), which is successfully used in HIV treatment, particularly
in resource-constrained settings, where it costs as little as 0.1US$
per day. To this end, we assess efavirenz pharmacokinetics,
consider its mode of action and establish the relationship
between pharmacokinetics and prophylactic efficacy. Since
reduced-dose (400 mg) efavirenz has a considerably improved
safety profile, we assess the prophylactic efficacy of 400 mg
oral EFV when used in chronic PrEP, PrEP on demand and
post-exposure prophylaxis (PEP).

2. PATIENTS

Apreviously developed population pharmacokinetic (PK)model,
constructed using data collected as part of ENCORE 1 was
used. ENCORE 1 was a multi-center, double-blind, placebo-
controlled trial designed to compare standard dose efavirenz
(600 mg once daily) to a reduced dose (400 mg once daily) in
HIV-infected, treatment-naive adults. Patients recruited at sites
across Africa, Asian, South America, Europe and Oceania were
randomized (1:1) to receive efavirenz 600 or 400 mg once daily
in combination with tenofovir disoproxil fumarate/emtricitabine
(Truvada, 300/200 mg once daily) (ENCORE1 Study Group,
2014; ENCORE1 Study Group et al., 2015).

At weeks 4 and 12 of therapy, single random blood samples
were drawn between 8-16 hours post-dose, additionally intensive
sampling was undertaken in a subgroup of patients between
weeks 4 and 8 [pre-dose (0 h), 2, 4, 8, 12, 16 and 24 h post-
dose]. Plasma efavirenz was quantified using a validated HPLC-
MS/MS method (Amara et al., 2011). Overall, 606 patients
(n=131, 32% female) randomized to efavirenz 600 mg (n = 311)
and 400 mg once daily (n = 295) contributed 1491 samples
for model development [median (range) 2 (1–9) per patient].
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Median (range) age and weight were 35 years (18–69) and
65kg (39–148) and baseline viral load ranged between 162
and 10,000,000 copies/mL. The majority of patients were of
African and Asian ethnicity (37 and 33%, respectively) with the
remainder identifying as Hispanic (17%), Caucasian (13%) and
Aboriginal and Torres Strait Islander (0.2%).

3. METHODS

3.1. Efavirenz Pharmacokinetics
Efavirenz (EFV) is a non-nucleoside reverse transcriptase
inhibitor that is frequently used in first-line therapy in resource-
constrained regions in combination with emtricitabine (FTC)
and tenofovir disoproxil fumerate (TDF) for treatment of
HIV infection. EFV is a small (molecular mass: 315.6 g/mol)
lipophilic (LogP ≈ 4) compound that is highly bound to plasma
proteins (human serum albumin and α-1-acid glycoprotein).
The unbound fraction of the drug in human plasma (fu) is
< 1% (Almond et al., 2005; Fayet et al., 2008; Burhenne
et al., 2010; Avery et al., 2011, 2013a). Efavirenz is a known
inducer of various CYP-P450 enzymes (Fichtenbaum and
Gerber, 2002), including CYP2B6, which is the main enzyme
mediating its own metabolism (Ward et al., 2003; Ogburn et al.,
2010). Moreover, it is known that CYP-P450 polymorphisms,
in particular CYP2B6 can lead to large inter-individual
variations in EFV concentrations (Orrell et al., 2016). We
derived statistical models for the inter-individual variability
in plasma pharmacokinetic profiles, particularly taking CYP
P450 polymorphisms (CYP2B6 and CYP2A6) in a representative
population (ENCORE 1) into account. Furthermore, we modeled
metabolic autoinduction and established the relationship
between plasma- and target-site concentrations.

3.1.1. Pharmacokinetic Model Building
The population pharmacokinetic analysis of ENCORE 1 has
previously been reported (Dickinson et al., 2015, 2016). Briefly,
nonlinear mixed effects modeling using NONMEM (v. 7.2; ICON
Development Solutions, Ellicott City, MD, USA) was applied to
the efavirenz concentration-time data using FOCE-I. The impact
of the following covariates on efavirenz apparent oral clearance
(CL/Fbio) was investigated: age, weight, fat-free mass (FFM),
body mass index (BMI), sex, ethnicity and CYP P450 genotypes
CYP2B6 516G>T, CYP2B6 983T>C, CYP2B6 15582C>T,
CYP2A6*9B, CYP2A6*17, CYP3A4*22, NR1I3 540C>T and
NR1I3 1089T>C. Specifically, of the 606 patients with PK data,
95% had a blood sample for genotyping (n=574), although
amplification failed for a small number of individuals (CYP2B6
15582C>T andCYP3A4*22, n=1;CYP2A6*17, n=2;CYP2A6*9B,
n=4). To drive the PrEP simulations, the final model was used
to simulate PK parameters of 1000 virtual patients receiving
efavirenz using the same distribution of significant covariates
as the original dataset. PK parameters of all virtual patients are
summarized in Supplementary Table 1.

Efavirenz concentrations over time were best described by a
1 compartment model parameterized by apparent oral clearance
[population value of CL/Fbio; estimate (RSE%): 11.9L/h (2.4%)
for the reference (wild-type) CYP genotype for all four SNPs;

CYP2B6: 516G>T/983T>C/CYP2A6*9B/*17 of a 70kg weighing
individual], apparent volume of distribution [population mean
V/Fbio; 282 L (5.2%)] and absorption rate constant ka fixed to a
value of 0.6h−1 (Arab-Alameddine et al., 2009):

d

dt
Z1 = −ka · Z1 (1)

d

dt
Di,j =

ka · Z1
Vi/Fbio

−
CLi,j(t)/Fbio
Vi/Fbio

· Di,j (2)

whereby Z1 denotes the amount of drug in the dosing
compartment. The variable of interest is the concentration in the
blood plasma (central compartment), i.e., D. Dosing events were
modeled as impulse inputs, with

Z1,t = Z1,t + dosek, (3)

whenever the current simulation time t coincided with a
dosing event τk. In the equations above, CLi,j(t)/Fbio denotes
the bioavailability-adjusted, individual drug clearance at
occasion j and ka denotes the rate of drug uptake. The
term Vi/Fbio is the bioavailability-adjusted volume of
distribution of individual i. Interindividual and interoccasion
variability was supported on CL/Fbio [36.6% (10.8%) and 21.0
(27.7%), respectively] and residual error was defined by a
proportional model [20% (8.6%)]. CL/Fbio and V/Fbio were
allometrically scaled by weight (centered on 70 kg) and CYP2B6
516G>T/983T>C/CYP2A6*9B/*17 composite genotype
significantly reduced efavirenz CL/Fbio between 4.5-82% ,
depending on allele combinations, compared to the reference
genotype. Pharmacokinetic parameters for a 70 kg individual
with reference genotype are summarized in Table 1. Overall,
there were 16 genotype subgroups (Supplementary Table 2).
Grouping of patients as extensive, intermediate or slow
metabolisers (see below) as part of the modelling process (or
after the final model was obtained) did not impact individual
parameter estimates. The reduced genotype groups were
defined as follows: (i) extensive metabolisers, (ii) intermediate
metabolisers and (iii) slow metabolisers as detailed in
Dickinson et al. (2015).

For initial model building clearance was assumed to reflect
values after metabolic autoinduction since pharmacokinetic data
was collected at weeks 4 and 12 of therapy. In the following, we
consider the autoinduction explicitly, since it affects PrEP efficacy
shortly after its initiation (e.g., “PrEP on demand”).

3.1.2. Metabolic Autoinduction
In our work, we modeled metabolic autoinduction similarly to
the model proposed by Zhu et al. (2009). We defined the term α

as the ratio of the mean clearance on day 1 to the mean clearance
at steady state (after autoinduction). The clearance ratio α is

then computed as α =
Ei(CLi,t0 )
Ei(CLi,SS)

where the average clearance

on the first day Ei(CLi,t0 ) = 5.76L/h was taken from Zhu et al.
(2009) and the average clearance at steady state E(CLi,SS) =

9.86L/h was computed from the virtual patient population
(Supplementary Table 1), deriving α = 0.58. For each virtual
patient generated from the population pharmacokinetic model,
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TABLE 1 | Pharmacokinetic parameters.

Parameter Value Unit Parameter Value Unit

CLss/Fbio 11.9 L/h V/Fbio 282 L

α 0.58 – σ 0.20 –

CVIIV(CLss/Fbio) 36.6 % CVIOV(CLss/Fbio) 21.0 %

The table displays the pharmacokinetic parameter estimates for a 70 kg individual with reference genotype (reference: CYP2B6, pos. 516:GG, pos. 516:TT and for CYP2A *9B and

*17: CC/CC or CC/CT or CC/TT or CA/CC or CA/CT or AA/CC or AA/CT Dickinson et al., 2015). Inter-individual variability (IIV), as well as inter-occasional variability (IOV) was included

on drug clearance CL/Fbio. These parameters were log-normal distributed with coefficient of variation [%] CV = 100 ·
√

eσ2
− 1, where σ 2 is the variance of the associated normal

distribution. Weight was considered to affect CLss (i)/Fbio = CLss/Fbio · (weight(i)/70)0.75 and the volume of distribution V (i)/Fbio = V/Fbio · (weight(i)/70) through allometric scaling.

Residual variability was described by a proportional error model (σ = 0.2).

the individual clearance at steady state was available and the
clearance at day 1 was computed using CLi,t0 = α · CLi,SS. Zhu
et al. (2009) proposed a model for time-dependent autoinduction
that we used herein

CLi(t) = CLi,t0 +
(

CLi,SS − CLi,t0
)

·
t − t0

(t − t0)+ T50
(4)

where CLi(t) is the individual clearance rate at the time t and t0
is the time of the first EFV dose. CLi(0) and CLi,SS represent the
clearance rates at day 1 and at steady state. The term T50 = 245h
(Zhu et al., 2009) is the time where the clearance rate reaches half
of its steady-state value.

3.1.3. Target-site Concentrations
The general perception is that only the free/unbound intracellular
concentration at the site of action (intracellular space) is
available to exert an antiviral effect (Smith et al., 2010). For
highly lipophilic drugs like EFV, passive diffusion may be
the dominating transport mechanisms and therefore the
unbound/free drug concentrations are identical on both sides
of biomembranes, whereas the relation between the total
concentrations can be computed by considering unspecific
drug retention by e.g. binding to plasma proteins or lipids.
These assumptions are implemented in so called partition
coefficient models commonly used in physiologically based
pharmacokinetic modeling, see von Kleist and Huisinga (2007)
for an overview. To test whether EFV is dominantly transported
into cells by passive diffusion/equilibrating transport we
implemented partition coefficient models and compared the
predictions with intracellular concentration measurements in
Supplementary Text 1. We found overwhelming evidence for
passive diffusion/equilibrating transport as the dominating
mechanism of cellular drug uptake. Moreover, under
passive diffusion and unspecific drug retention, there is a
direct proportionality between plasma concentrations and
concentrations at the site of action. This proportionality implies
that we can model the effect of EFV based on plasma drug
concentrations (derivations in Supplementary Text 1).

3.2. Direct Effects
We modeled the direct effect of efavirenz using the sigmoidal
Emax-equation (Chou, 2006)

ηD(t) =
Dm
t

ICm
50 + Dm

t

, (5)

TABLE 2 | Pharmacodynamic parameters.

Strain IC50 (± sd) m (± sd) f

wild type 5.4 (± 0.9) 1.69 (±0.08) 1

Y181C 2.8 · IC50(wt) 0.9 ·m(wt) 0.78

K103N 89.1 · IC50(wt) 0.83 ·m(wt) 0.74

G190S 72.1 · IC50(wt) 0.6 ·m(wt) 0.24

The table displays the pharmacodynamic parameters for wild type (Shen et al., 2008)

and different viral mutants (Sampah et al., 2011). The hill coefficient m (unit less) was

assumed to be normal distributed and IC50 values (nmol/L) were assumed to be log-

normal distributed (Jilek et al., 2012). Parameters were corrected for protein binding as

outlined in Supplementary Text 1. Parameter f (unit less) denotes the fitness of the

respective strains. The respective parameter distributions for the mutants (IC50, m) were

computed by assuming an identical coefficient of variation as compared to the wild type.

where Dt is the plasma concentration of the drug at time t, which
is directly proportional to the target-site concentration (previous
section and Supplementary Text 1) and the term IC50 and m
denote the plasma concentration at which the targeted process
is inhibited by 50% and a hill coefficient (Shen et al., 2008),
respectively. Parameters are displayed in Table 2 for wild type,
K103N, Y181C and G190S mutants together with their standard
deviation. Note that the equation above couples the stochastic
viral dynamics (below) to the deterministic pharmacokinetics
(above). The hill coefficient m and 50% inhibitory concentration
IC50 have been measured ex vivo using single-round infection
assays in primary human peripheral blood mononuclear cells,
supplemented with 50% human serum for wild-type HIV and
various resistance mutations (K103N, Y181C and G190S) (Shen
et al., 2008; Sampah et al., 2011). Since the ex vivo assay was
performed with 50% human serum, the measured IC50 has
to be corrected for protein content, since the drugs’ potency
might otherwise be overestimated, particularly for highly protein
bound drugs like EFV. The IC50 correction is demonstrated in
Supplementary Text 1, together with a sensitivity analysis with
regard to uncertainties in measuring the unbound fraction of
EFV in human blood plasma.

3.3. Viral dynamics.
We adopted the viral dynamics model described in von Kleist
et al. (2010) and von Kleist et al. (2011). Long-lived and
latently infected cells are only implicitly considered (outlined
at the end of the section), motivated by the observation that
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transmitted viruses are not macrophage-tropic (Isaacman-Beck
et al., 2009; Ping et al., 2013) and in line with related modeling
approaches (Tan and Wu, 1998; Stafford et al., 2000; Perelson,
2002; Tuckwell et al., 2008; Conway et al., 2013). Although this
model is a simplified representation of the molecular events
happening during virus replication, it allows to accurately and
mechanistically describe the effect of all existing antiretroviral
drug classes on viral replication, as previously reported in (e.g.,
Duwal and von Kleist, 2016), and can be parameterized by in
vitro and clinical data, Table 3. The modeled viral replication
cycle consists of free infectious viruses V , uninfected T-cells
(Tu), early infected T-cells (T1) and productively infected T-cells
(T2). Early infected T-cells (T1) and productively infected
T-cells (T2) denote T-cells prior- and after proviral integration,
respectively, where the latter produces virus progeny. During
the onset of infection the number of viruses is relatively low
and the number of uninfected T-cells Tu is fairly unaffected by
viral dynamics (Perelson et al., 1993; Tan and Wu, 1998; Pearson
et al., 2011). We thus consider Tu = λT/δT to be constant
over the course of simulations. The stochastic dynamics of viral
replication after virus exposure are then defined by six reactions:

a1(Dt) =
(

CLV + CLT(Dt , mut) · Tu
)

· Vt (clearance of free virus; V → ∗) (6)

a2 =
(

δPIC + δT1
)

· T1,t (clearance of early infected cell; T1 → ∗) (7)

a3 = δT2 · T2,t (clearance of late infected cell; T2 → ∗) (8)

a4(Dt) = (1− ηD(t)) · β · f (mut) · Tu · Vt (infection of a susceptible cell; V → T1) (9)

a5 = k · T1,t (proviral integration; T1 → T2) (10)

a6 = NT · T2,t (production of virus; T2 → V+ T2), (11)

with CLT(Dt , mut) =
(

1
ρrev

− (1− ηD(t))
)

· β · f (mut) in

Equation (6), as outlined in von Kleist et al. (2010) where
ρrev = 0.5 denotes the probability to successfully complete
reverse transcription in the absence of inhibitors (Pierson et al.,
2002; Zhou et al., 2005) and f (mut) denotes the fitness of
the mutant. Free viruses can be cleared within T-cells during
unsuccessful infection with rate CLT by destruction of essential
viral components of the reverse transcription-, or pre-integration
complex (Pierson et al., 2002; Zhou et al., 2005) or it may
get cleared by the immune system with a rate constant CLV.
Further, the term β represents the lumped rate of infection of
T-cells, including the processes of virus attachment to the cell,
fusion and reverse transcription, leading to an early infected cell
T1, before proviral integration. The term k denotes the rate by
which early infected T1 cells are transformed into productively
infected T2 cells, involving proviral integration and cellular
reprogramming. The term NT denotes the rate of production

of infectious virus progeny by productively infected T2 cells.
The terms δT1 < δT2 denote the rates of clearance of T1 and
T2 cells, respectively, and δPIC denotes the rate of intracellular
destruction of the pre-integration complex. Parameters for the
viral model are summarized in Table 3. In this article, we
study distinct prophylactic schemes with the non-nucleoside
reverse transcriptase inhibitor efavirenz. Reverse transcriptase
inhibitors act intracellularly on reverse transcription. In our viral
dynamics model this translates into an increase of propensity
function a1 and a proportional decrease in propensity function
a4. Derivations and motivation of this mechanisms of action
from first principles are given in von Kleist et al. (2010)
(Supplementary Methods therein).

3.4. Virus Exposure
Initial viral exposure after sexual intercourse occurs at tissue
sites typically not receptive for establishing and shedding HIV
infection (e.g., mucosal tissues). Hence, the virus needs to pass
several physiological barriers to reach a replication enabling
(target-cell) environment where infection can be established
and from where it can shed systemically (Joseph et al., 2015).

To determine realistic inoculum sizes after sexual exposure
to HIV (initial states for hybrid stochastic simulations), we
previously developed a data-driven statistical model linking
plasma viremia in a transmitter (VL) to the initial viral
population Y0 in a replication-enabling environment (Duwal
et al., 2016) (Supplementary Note 4 therein for details) precisely
capturing average per contact transmission rates for various types
of exposure. In brief, we assume a binomial model

P(Y0 = V|VL = ν) =

(

[νm]
n

)

· rn · (1− r)[ν
m]−n (12)

where [·] is the nearest integer function, m = log10(2.45) is
given by Wilson et al. (2008) and the success probability r was
estimated in a previous work (Duwal et al., 2016) (Supplementary
Note 4 therein), e.g., rhomo = 3.71 · 10−3 for homosexual- and
rhetero = 3.63 · 10−4 for heterosexual exposure. The parameter

TABLE 3 | Parameters used for the viral dynamics model.

Parameter Value References Parameter Value References

λT 2·109 Wei et al., 1995 k 0.35 Zhou et al., 2005

δT, δT1 0.02 Sedaghat et al., 2009 β 8·10−12 Sedaghat et al., 2008

δT2 1 Markowitz et al., 2003 NT 670 Sedaghat et al., 2009; von Kleist et al., 2010

δPIC 0.35 Zhou et al., 2005; Koelsch et al., 2008 CLV 2.3 Tan and Wu, 1998; Tuckwell et al., 2008

Excerpt from von Kleist et al. (2010), except for CLV , which assumed that virus clearance is smaller in virus-naive individuals compared to infected individuals, in line with Frank et al.,

2011; Duwal et al., 2012. All parameters refer to the absence of drug treatment ∅. All parameters in units (1/day), except for λ (cells/day) and β (1/(day · virus)).
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VL denotes the viral load in a potential transmitter (assumed to
be log-normal distributed with µ = 4.51, σ = 0.98 (Duwal et al.,
2016)). In this model, the success probability r summarizes both
the extent of local exposure, as well as the probability of passing
all bottlenecking physiological barriers and reaching a replication
enabling target cell compartment. Herein, we used the “exposure
model” to compute drug efficacy estimates after sexual exposure
presented in Figures 3, 4.

3.5. Numerical Simulation
We use the exact numerical simulation scheme proposed
in Duwal et al. (2018). Briefly, the modeled system is split
into stochastic reactions describing viral dynamics and a
set of ordinary differential equations describing individual
EFV pharmacokinetics after drug administration, including
covariates (e.g., CYP2B6 polymorphisms), autoinduction and
the relationship between plasma- and target-site concentrations
outlined above. In our approach EFV pharmacokinetics
affect certain stochastic reaction propensities as outlined in
Equations (6), (9). This hybrid system is then simulated using
the numerically exact EXTRANDE algorithm (Voliotis et al.,
2016) and hybrid trajectories are classified as extinction events
when all viral compartments are cleared. On the other hand,
trajectories were considered infections if (i) either long-lived-
or latently infected cells emerged, or if (ii) the trajectories left
an extinction simplex (ε = 0.0001), meaning that it becomes
unlikely (probability≤ ε) that the virus will eventually be cleared
(details provided in Duwal et al., 2018).

3.6. Prophylactic Efficacy of a Drug
Regimen
Our goal is to estimate the prophylactic efficacy ϕ of a particular
medication regimen SD. The prophylactic efficacy denotes the
reduction in infection risk per contact, with ϕ =100% indicating
complete protection and ϕ =0% indicating no change in
infection risk.

ϕ(Y0, SD) = 1−
PI(Y0|SD)

PI(Y0|∅)
(prophylactic efficacy), (13)

where PI(Y0|SD) and PI(Y0|∅) denote the virus infection
probabilities for a particular prophylactic scheme SD and in
the absence of prophylactic drugs (∅), respectively, for initial
state Y0 = [V , T1, T2]T (number of viral particles, early-
and late infected cells in a replication-enabling compartment).
The probabilities PI(Y0|SD) are approximated by the number
of simulations that were classified as infection events divided
by the total number of hybrid stochastic simulation runs for
each particular prophylaxis scheme SD during PrEP, PrEP “on
demand” and PEP simulations. PI(Y0|∅) can be computed using
the analytical formulas derived in Duwal et al. (2019).

Simulation of Pre- and Post-Exposure
Prophylaxis
Codes were written in MATLAB R2018b (MathWorks, Natick,
MA; v. 9.5, including the statistics toolbox). Individual
pharmacokinetic model parameters were drawn from the

distributions defined by the parameter estimates from the
final efavirenz population pharmacokinetic model (Table 2),
generating 1000 virtual patients (Supplementary Table 1). We
then simulated individual pharmacokinetic profiles for the
prophylactic schedule SD under consideration using ode113 in
MATLAB. To simulate different adherence levels, a sequence of
uniformly distributed random numbers with ri ∼ U(0, 1) was
drawn and the ith dose was missed if ri > adherence level.

The number of viruses to be inoculated was drawn from
the virus exposure model, where we first sampled the viral
load in a potential transmitter (log10 VL ∼ N (4.51, 0.98))
and then used the virus load in the transmitter to determine
the number of viruses V0 entering a replication-competent
compartment in the virus-exposed individual using Equation.
(12). Samples with V0 = 0 were rejected (they do not contribute
to the infection risk). For once-daily PrEP simulations with
different adherence levels, a time of virus exposure was randomly
drawn within a 3 month interval starting at day 31 after PrEP
initiation. The corresponding drug concentrations at this time
and the number of transmitted viruses reaching a target cell
compartment were used as the initial states for EXTRANDE
and simulated until stopping criteria were satisfied (either virus
clearance or infection). For “PrEP on demand” simulations, the
time of virus exposure was fixed as indicated in the corresponding
graphics. In the case of PEP, virus was inoculated as stated
above and the stochastic viral dynamics were simulated in the
absence of drugs until the time of PEP initiation (to determine the
initial condition of the system), and henceforth simulated until a
stopping criterium was reached.

In total, for each prophylactic scenario, 10000 simulations
were run and PI(Y0|SD) was computed as the fraction of
simulations that resulted in infection.

4. RESULTS

4.1. Pharmacokinetics
The standard EFV dose used in treatment is 600 mg once daily
taken orally. However, this dose is associated with neurotoxic
effects (Rakhmanina and van den Anker, 2010; Apostolova
et al., 2015), which could be prohibitive when using EFV
as prophylaxis. Notably, neurotoxicity is associated with
EFV plasma concentrations (and CYP2B6 polymorphism)
(Rakhmanina and van den Anker, 2010). Therefore, a
reduced, 400 mg dose has recently been explored, significantly
reducing the risk of neurotoxicity while maintaining sufficient
antiviral effects (ENCORE1 Study Group, 2014; ENCORE1
Study Group et al., 2015).

In Figures 1A,B we depict simulated pharmacokinetics of
once daily oral EFV with 400 and 600 mg. EFV was quickly
absorbed with a median tmax ≈ 5.90h (95% CI: 4.56–7.88) and
has a long median half life t1/2 ≈ 35.57h (CI: 14.28–125.26)
at day 1 and a median half life t1/2 ≈ 20.77h (CI: 8.34–73.15)
after metabolic autoinduction, in agreement with the literature
(Avery et al., 2011, 2013a; Dickinson et al., 2015). Due to its linear
pharmacokinetics, the dose reduction 600 → 400 mg resulted in
a concentration reduction of≈ 2/3 for the 400mg dosing regime.
In Figures 1C,D, we show the long-term pharmacokinetics after
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FIGURE 1 | Efavirenz Pharmacokinetics. Population plasma pharmacokinetics for the first four days after intake of (A) 400- and (B) 600-mg daily oral EFV. Long-term

pharmacokinetics of (C) 400- and (D) 600-mg daily oral EFV due to metabolic autoinduction. Light gray regions encompass 95% of individual PK predictions,

whereas dark gray areas encompass 50% of the predictions (quartiles). The thick red line marks the median pharmacokinetic profiles.

multiple dosing. Two things come to mind: (i) after an initial
plateau phase (4–5 doses), concentrations tend to decrease,
due to metabolic autoinduction, reaching median trough levels
of ≈ 1.35 and ≈ 2.02 mg/L (95% CI: 0.30–6.55 and 0.45–
9.83mg/L) in the 400- and 600mg dosing regime, respectively.
(ii) The variability in the predicted pharmacokinetic profiles
increases after multiple dosing with some individuals achieving
concentrations > 10 (mg/L) (light grey area indicating the 95%
range). This observation is attributable to genetic polymorphisms
affecting some individuals of our virtual patient cohort that
slowly metabolize EFV. Interestingly, there is clinical evidence
that some individuals, particularly slow metabolisers, achieve
concentrations > 10 (mg/L), and that the proportion of these
individuals is much higher for the 600 mg regimen (Dickinson
et al., 2015). In our simulations, 11.3% in the 600 mg group
eventually exceed concentration of 10 mg/L, whereas it is only
2.5% in the 400 mg group. If EFV toxicity is proportional
to exposure, as suggested by Rakhmanina and van den Anker
(2010), this may indicate that dose reduction could significantly
reduce the risk of adverse effects. But is it also protective
against infection?

4.2. Concentration-prophylaxis Profile
We used the analytical solutions presented in Duwal et al.
(2019) to compute concentration-prophylaxis profiles ϕ(Y0, SD)
assuming a single virus particle enters a replication-enabling
compartment (Y0 = [1, 0, 0]T), see Figure 2A. The reason is
that the virus exposure model (Methods section) predicts that

in most cases only a single virus enters a replication-competent
compartment after (homo-/hetero-)sexual exposure, if a virus
manages at all to pass the various bottlenecking physiological
barriers after sexual exposure. Besides the wild-type virus, we also
show the prophylaxis profile against transmitted drug resistance
with viruses carrying EFV resistance mutations G190S, K103N
and Y181C (Rhee et al., 2003). As a visual guide, the shaded areas
mark the 95% trough (pre-dose) concentration ranges achieved
at plateau and after metabolic autoinduction for once daily 400
mg efavirenz (computed using the POP-PK model).

Figure 2A suggests that once daily EFV (with 400 mg)
provides complete protection against HIV infection after
exposure to wild-type virus and resistant viruses carrying the
Y181C mutation. After exposure to the G190S and K103N
mutants, >>50% protection is provided by once daily 400
mg EFV and >>60% protection by the 600 mg regime. Since
selection of drug resistant variants is a major concern, we
evaluated the relative transmissibility of mutant viruses when
compared with wild-type virus as ϕwt − ϕmut in Figure 2B. The
figure can be interpreted as follows: At low concentrations there
is no reduction in infection if an individual was exposed to
wild-type and/or mutant virus. At an intermediate concentration
range (between 0.001 and 0.1 for Y181C and between 0.001
and 1 mg/L for K103N, G190S, respectively), infections with the
wild type would be prevented, while the prophylaxis cannot, or
only partially reduce the infection risk after exposure to mutant
virus. The maximum corresponds to the maximal difference
in risk reduction, meaning that resistant virus is more likely

Frontiers in Pharmacology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 19977

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology%23articles


Duwal et al. Mathematical Modeling of EFV Prophylaxis

FIGURE 2 | (A) Prophylactic efficacy against different viral genotypes.

Predicted efficacy ranges are depicted as colored shaded areas, with

superimposed mean efficacy estimates as solid lines. Ninety-five percent

confidence intervals of steady-state EFV trough (pre-dose) concentrations

Ctrough,ss for 400 mg EFV after once daily dosing are depicted as light yellow

areas with the vertical black dashed line marking the median trough

concentration. (B) Relative transmissibility ϕwt − ϕmut of mutant viruses.

Colored areas depict the ranges of relative transmissibility and solid lines

indicate the mean relative transmissibility.Yellow shaded areas depict the 95%

CI of EFV trough (pre-dose) concentrations after 400 mg once daily at steady

state. Black dashed vertical lines indicate the corresponding median trough

concentrations. The prophylactic efficacy against a single virus was computed

using the analytical solutions provided in Duwal et al. (2018) (Equation 19–21

therein) for 1000 logarithmically spaced concentrations between 10−4 and 25

mg/L using 1000 sampled values for IC50 and m per viral genotype (Table 2).

For each viral genotype, IC50assay and m were sampled from a log-normal and

normal distribution respectively as stated in the caption of Table 2. IC50assay
were corrected for plasma binding using fu,plasma = 0.2% to obtain

IC50plasma
, as outlined in Supplementary Text 1. Changes in drug sensitivity

for the mutants considered the fold changes stated in Table 2. Fitness defects

of the mutants were considered using β(mut) = f (mut) · β(wt).

transmitted than the wild type. At very high EFV concentrations,
the infection risk with both wild type and mutant is reduced.
Importantly, when inspecting (population) median EFV trough
(pre-dose) concentrations after 400mg once daily dosing (dashed
vertical black line in Figure 2B) , we can see that the relative
transmissibility of the Y181C mutant is zero, while the relative
transmissibilities of the G190S and K103N mutants are less
than 20%. The analysis suggests that the typical concentration
ranges achieved after once daily EFV do not, or just slightly,
favor resistance transmission over wild type for the considered
single-substitution mutants. Note that these mutations decrease
EFV susceptibility by ≈ 90 fold, Table 2. However, clinically

derived isolates may contain multiple substitutions and confer
even higher levels of EFV resistance.

Since poor drug adherence may give rise to lower EFV
concentrations and since it is a major factor confounding the
clinical efficacy of Truvada (Haberer et al., 2015), we next set
out to test whether similar issues are to be expected for 400 mg
oral EFV for pre-exposure prophylaxis, or when EFV is used “on
demand” and post-exposure.

4.3. Once-daily PrEP With 400 mg EFV
The predicted prophylactic efficacy of once daily PrEP with
400 mg is shown in Figure 3A as a function of adherence
after exposure to either wild-type virus or after exposure to
drug resistant mutants. As can be seen, if at least 75% of
doses were taken, complete protection against the wild-type
virus and against the Y181C mutant was achieved. Notably,
for these viral genotypes protection was > 95% if 50% of
the pills were taken and ≈ 90% when ≈25% of the pills were
taken. In contrast, after exposure to resistant viruses carrying
the G190S or K103N mutation, protection was >82% when
at least 75% of the once daily 400 mg EFV pills were taken,
gradually dropping to ≈ 50% protection when every fourth pill
was taken.

We next wanted to assess how quickly the prophylactic
protection vanishes, when consecutive EFV doses were missed
(illustratively depicted in Supplementary Figure 1). In order to
do so, we simulated 400 mg EFV-based once daily PrEP with
100% adherence. Subsequently, we computed how long it will
take for the concentrations to drop below the respective 50%,
or 90% protective levels (EC50, EC90). We computed that a
median of 7 (CI: 2–32) consecutive doses need to be missed
in order to provide less than 50% protection against wild-
type virus. Correspondingly, 5 (CI: 1–26) consecutive doses
need to be missed to provide less than 90% protection against
wild-type virus.

4.4. “PrEP on Demand” With 400 mg EFV
Next, we evaluated whether 400 mg EFV “on demand” would
protect against HIV infection. We tested an “on demand” dosing
scheme similar to the one recently tested for Truvada-based PrEP
(Molina et al. , 2015): The first EFV dose was taken within a
time window of 1–23 h prior to virus exposure and followed
by two more doses, 24- and 48- hours after the initial dose.
Our predictions indicate that EFV-based “PrEP on demand”
provides complete protection against wild-type virus and against
the Y181C single mutant, when initiated 1–23 h prior to virus
exposure. Protection against the single mutants G190S and
K103N was still > 81% for 400 mg “PrEP on demand.” This
surprisingly superior prophylactic efficacy of EFV “on demand”
can be attributed to its rapid uptake and slow elimination.
Particularly the latter ensures that virus gets eliminated when
EFV is taken as “PrEP on demand.” The comparatively higher
efficacy of “PrEP on demand,” when compared to once daily
PrEP with low adherence can be explained as follows: In the
case of once-daily PrEP, several consecutive dose intakes may
be missed, which allows the EFV concentrations to fall below
their respective EC50, EC90. If virus exposure occurs during
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FIGURE 3 | Prophylactic efficacy of EFV against the wild-type and resistant virus using different prophylaxis schemes. (A) Predicted prophylactic efficacies for once

daily 400 mg oral EFV PrEP with different levels of adherence. For example in the 25% adherence scheme, each dosing event was randomly missed with 75%

chance. Colored dots mark the median predicted prophylactic efficacy and error bars mark the 95% confidence interval (computed using Greenwood’s formula),

considering variabilities in pharmacokinetic, as well as pharmacodynamic parameters. (B) Predicted prophylactic efficacy of 400 mg oral EFV during “PrEP on

demand” (3 doses) depending on the time of PrEP initiation with respect to viral encounter, respectively. (C) Predicted prophylactic efficacy of post-exposure

prophylaxis (9 doses) with 400 mg oral EFV as a function of the time of PEP initiation after viral challenge. Simulations were conducted using the hybrid EXTRANDE

method outlined in the Methods section. In total, 10,000 stochastic simulations were performed to estimate prophylactic efficacy for each condition (e.g., viral

challenge with K103N during chronic PrEP with 5% adherence is one condition).

FIGURE 4 | Prophylactic efficacy of PEP against wild type virus depending on both the time of PEP initiation and the number of subsequent 400 mg EFV doses taken.

Error bars denote the 95% confidence intervals, computed using Greenwood’s formula. Prophylactic efficacy was estimated for each condition based on 10,000

hybrid EXTRANDE simulations as outlined in the Methods section.

these time windows of low EFV concentrations, infection may
occur (illustrated in Supplementary Figure 1). In contrast, if
all “PrEP on demand” pills are taken, concentrations will be
above the EC90 at the time of exposure, and, due to the
long half life of EFV remain above this value, until the virus
is eliminated (which typically would happen ≤ 1 week post
exposure Konrad et al., 2017).

4.5. Post-Exposure Prophylaxis With 400
mg EFV
Motivated by the promising predictions regarding the use
of EFV in pre-exposure prophylaxis, we also wanted to
investigate whether EFV could prevent infection, if taken as post-
exposure prophylaxis (PEP). In Figure 4, we show the predicted

prophylactic efficacy of 400 mg oral EFV as a function of both the
delay in PEP initiation and the duration of PEP after challenge
with wild-type virus. In Figure 4 it becomes evident that it is
more critical to initiate PEP early after exposure, than to prolong
PEP duration. For example, when PEP is initiated as late as 72
h post virus exposure and the duration of PEP is three days (3
consecutive doses), the prophylactic efficacy was estimated to
be ≈20%. If the duration of PEP was increased to 9 days, the
prophylactic efficacy increases to only ≈40%. However, if PEP
was initiated shortly after virus exposure (e.g., within 2 h), the
prophylactic efficacy increases to 100%, even if the PEP duration
was only 3 days.

As a midpoint, taking the first PEP dose within 24 h post-
exposure resulted in prophylactic efficacies of > 88,> 94,>
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97 and > 98% against the wild type for 3, 5, 7, and 9 dose
intakes, respectively.

Next, we wanted to investigate in more detail the sensitivity
of PEP efficacy towards the timing of PEP initiation in the wild
type and drug resistant mutants. To simplify interpretation, we
assumed a PEP duration of 9 days (9 doses). Predictions are
shown in Figure 3C. PEP provided > 98% protection against the
wild type and the Y181C mutant when started within 12 h after
virus exposure. Protection against viruses containing the G190S
mutation was > 21% using the same parameters, and > 11%
for the K103N mutant. These simulations indicate that EFV may
potently protect against infection with wild type and the weakly
resistant Y181C virus, when initiated within 24 h post expose.
The prophylactic efficacy against transmitted, highly resistant
viruses carrying the G190S or K103N mutation is insufficient for
post-exposure prophylaxis.

5. DISCUSSION

Truvada-based PrEP is being implemented in a number of
countries (AVAC, 2019), however, there are twomajor limitations
to its optimal use: (i) its costs (Keller and Smith, 2011), and (ii) its
sensitivity to poor medication adherence (Haberer et al., 2015).

Current PrEP research focusses on overcoming adherence-
related concerns, either in terms of promoting drug adherence,
or through the development of novel long-acting drugs/drug
formulations for HIV prophylaxis, that only require monthly
drug administration (McGowan et al., 2016; Markowitz et al.,
2017; McMillan et al., 2017). However, little has been done
to investigate cost-efficient Truvada alternatives that may be
affordable in low- and middle-income countries hit hardest by
the epidemic.

A recent computational screen of the prophylactic potential of
treatment-approved compounds for PrEP repurposing suggested
that darunavir, efavirenz, nevirapine, etravirine and rilpivirine
may more potently prevent HIV infection than Truvada at
clinically relevant concentration ranges (Duwal et al., 2019). Of
these candidates we set out to investigate efavirenz in more
detail, since it is both inexpensive and readily available in most
resource-constrained settings.

However, 600 mg EFV has been associated with neurotoxicity
(Rakhmanina and van den Anker, 2010; Apostolova et al., 2015).
Decloedt and Maartens (2013) and Siccardi et al. (2012) have
previously suggested a connection between EFV metabolism
and toxicity, indicating that slow metabolisers, who have higher
plasma concentrations, also have a higher tendency to experience
adverse effects (associations have been made between the
major EFV metabolite and neurotoxicity). The direct association
between plasma concentrations and CNS side effects has also
been reported in Marzolini et al. (2001). Motivated by these
studies, we explicitly considered genetic polymorphisms affecting
EFV metabolism. Moreover, since EFV pharmacokinetics are
linear, dose reductions would naturally lead to decreased EFV
exposure (and consequently toxicity) as investigated in the
ENCORE 1 trial (ENCORE1 Study Group, 2014; ENCORE1
Study Group et al., 2015), which suggested non-inferiority of the

400 mg EFV regimen with regard to treatment. Motivated by
these results, we set out to investigate the prophylactic potential
of 400 mg EFV.

Our simulations strongly suggest that 400 mg efavirenz can
potently prevent infection with drug susceptible HIV, when used
as once daily PrEP, during “PrEP on demand” and even as PEP,
if initiated early enough after exposure (Figures 3, 4). Overall,
these simulations suggest that EFV provides a good efficacy
margin with respect to incomplete adherence and various event-
driven dosing scenarios. Notably, if the association between EFV
toxicity and metabolism is evident, it could also be envisioned
that individuals that experience adverse effects may even further
reduce EFV dosing. For example, using the POP-PK model,
we predicted that the number of patients experiencing plasma
concentrations of > 10 mg/L following a 200mg once daily
dosing regimen is only 0.1%.

However, our simulations also suggested that EFV-based post-
exposure prophylaxis (PEP) may insufficiently protect against
transmitted, highly resistant strains (K103N, G190S), as depicted
in Figure 3C. We should also note that circulating resistant
viruses may have multiple compensatory mutations that increase
fitness and resistance through epistatic effects (Rath et al., 2013).
Thus, their phenotypic attributes may deviate from laboratory
strains with single point mutations that were evaluated in the
present analysis and by Sampah et al. (2011). A recent study
(Zazzi et al., 2018) highlighted high levels of NNRTI resistance
particularly in South Africa, but it is unclear whether the analyzed
NNRTI resistance mutations also confer high level resistance
against EFV. Regarding high level resistance mutations, the
Stanford database currently reports a prevalence πuntreated <<

5% 1 in the untreated population in South Africa, mainly
conferred by K103N. The prevalence of resistance mutations in
treated individuals πtreated is much higher: K103N≈ 30%, Y181C
≈ 20% and G190A/S ≈ 15% 2, but comparable to Truvada
resistance mutations (M184V: 48–60%; K65R: 4–15%) in treated
individuals. Notably, the overall risk of exposure to resistant
strains would be much smaller than these numbers, as it is both
determined by prevalence, as well as the probability of resistance-
associated treatment failure in the donor at the moment of
virus transmission, e.g., mathematically Prob.{exposure to res.} =
Prob.{untreated.}·πuntreated + Prob.{treated.}· Prob.{failing due
to resistance} ·πtreated. The calculations state that resistance
exposure from treated individuals may only originate from those
treated individuals that fail on the treatment at the time of
exposure, due to resistance emergence (if they are successfully
treated at the time of exposure, they are non-contagious
Cohen et al., 2011).

Another important aspect that is quantified in
Supplementary Text 2 is resistance emergence in the
exposed individual prior to PEP initiation. As can be seen in
Supplementary Text 2, the probability of resistance emergence
increases with the delay between virus exposure and PEP
initiation. For example, we calculated that if PEP is initiated
3 days after exposure (72 h), the virus had either gone extinct

1https://hivdb.stanford.edu/page/surveillance-map/
2https://hivdb.stanford.edu/cgi-bin/MutPrevBySubtypeRx.cgi
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or developed resistance with 38% probability. This de novo
resistance may subsequently be selected by EFV, limiting future
treatment options. On the other hand, if PEP is initiated within
12 hours, the probability of resistance emergence in the exposed
individual prior to PEP is <0.01%. Thus, both in terms of
lack of efficacy (Figure 4), as well as in terms of resistance
(Supplementary Text 2), the window of opportunity with
regards to PEP is short. Based on our simulations, PEP should
be initiated as early as possible and is contraindicated if the
suspected virus exposure occurred more than 3 days ago. The
same considerations also apply for Truvada-based prophylaxis.

Our predictions regarding EFV prophylactic efficacy depend
on (i) parameters of EFV potency (IC50) and (ii) the
concentrations of EFV at the target site.

Regarding EFV potency, one limitation of our work is that
we used parameters determined ex vivo (Shen et al., 2008;
Sampah et al., 2011) using primary human peripheral blood
mononuclear cells (PBMCs). These cell mixtures are commonly
used as surrogate markers to determine drug efficacy, since they
contain a large proportion of CD4+ T-cells (the primary HIV
target cell type). Moreover, utilised parameters are generally in
agreement with published values from other sources (Smith et al.,
2001; Parkin et al., 2004; Avery et al., 2013b; Hu and Kuritzkes,
2014; Schauer et al., 2014) (after correction for protein binding;
Supplementary Text 1).

Regarding the relevant target-site concentrations of EFV,
there has been some debate since the total (protein bound and
unbound) EFV concentrations in tissues have been reported
to be highly heterogeneous (Thompson et al., 2015) and some
studies have suggested associations between drug heterogeneity
and incomplete HIV suppression (Fletcher et al., 2014), whereas
others report high concentrations in tissues related to HIV
exposure (Thompson et al., 2015). There are two main
mechanisms that could explain heterogeneous drug distribution,
which we discuss in detail:

a) Active transport (e.g. P-glycoprotein): In this case, the
expression of transporters in particular cell types may cause
concentration differences between distinct tissues. Notably,
active transport would cause a difference in the unbound
concentrations, which are available to exert an antiviral effect.
As a consequence of active efflux, lower amounts of EFV
may be available in some relevant target cells, giving rise to
pharmacological sanctuaries relevant to EFV prophylaxis. A
detailed analysis of EFV active transport (Burhenne et al.,
2010) however revealed that it does not affect EFV intracellular
concentrations. Moreover, EFV is a small (molecular mass: 315.6
g/mol) and highly lipophilic (LogP ≈ 4) compound that could
rapidly cross biomembranes by passive diffusion. Thus, even
if EFV was a substrate of cellular transporters, the dominating
(i.e. fastest) mechanism mediating cellular uptake and efflux
is probably passive diffusion. Furthermore, passive diffusion
does not imply that the total (protein bound and -unbound)
concentrations on either side of a biomembrane are equal, but
rather implies that the unbound concentrations are equal. I.e.
at each side of a biomembrane, EFV may be (un-)specifically
retained by binding to biomolecules (lipids, proteins, see von
Kleist and Huisinga, 2007 for an overview). However, since

only the unbound concentration is available for drug-target
interaction, EFV concentrations exerting antiviral effects would
be identical in different cell types under passive diffusion.

b) Protein binding: EFV is highly (> 99%) bound to plasma
proteins (Boffito et al., 2003), mainly albumin and α−1-acid
glycoprotein. Naturally, the concentrations of these proteins
are magnitudes lower in tissues, which affects the amount of
protein-bound EFV (and consequently the total concentrations).
Studies that measure unbound drug concentrations lend strong
support to this hypothesis. Avery et al. reported that the
unbound EFV concentrations in plasma and semen (Avery
et al., 2011) and in plasma and cerebrospinal fluid are
nearly identical (Avery et al., 2013a). Importantly, considering
albumin concentrations (calculations in Supplementary Text 1)
in proposed sanctuary sites, we can precisely recover differences
in total EFV concentrations reported, e.g., semen-to-plasma
ratio: 3.4–5 % (Reddy et al., 2002; Avery et al., 2011) and cervical
fluid-to-plasma ratio: 0.4% (Dumond et al., 2007). The fact that
unbound plasma-, cerebrospinal fluid- cervical fluid and semen
concentrations are nearly identical also suggests that EFV can
cross the blood-brain, blood-testis and blood-uterine barrier.

In summary, these combined observations strongly argue
that the distribution of EFV in tissues is governed by passive
diffusion and (un-)specific binding to plasma proteins. In terms
of PK-PDmodeling, this implies that the unbound concentration
in plasma are representative for the unbound concentration
within target cells (CD4+ immune cells/T-cells; derivations
in Supplementary Text 1). When unbound concentrations are
proportionally related to the total concentrations, it also implies
that EFV total plasma concentrations can be used as a marker
of drug efficacy (Marzolini et al., 2001). As a cautionary note
we want to add that there could still be additional unaccounted,
specific barriers lowering EFV unbound concentrations in
physiological sites relevant for establishing the initial infection
upon sexual exposure to HIV-1 (male genital compartment,
female genital compartment and rectum), which warrant further
verification. However, based on the discussions above, we would
strongly disagree with the statement by Dumond et al., that
“agents such as efavirenz that achieve total genital tract exposures
less than 10% of blood plasma are less attractive PrEP/PEP
candidates” (Dumond et al., 2007). This simplistic criterium
of selecting drug candidates ignores the drug’s individual
pharmacology, might only select drugs that are not extensively
protein bound, or select highly protein-bound candidates merely
as a function of genital albumin concentrations. Our simulations
are however in line with a later study from the same group
(Dumond et al., 2012), which find that the concentrations at
the site of virus exposure (in Dumond et al., 2012 the female
genital tract) are proportional to unbound plasma concentrations
during chronic dosing. However, it is unclear after how many
dosing events this equilibrium between plasma and target site
concentrations is achieved. While plasma concentrations rapidly
peak at a tmax of about 5.9 h, there could be a time-delay
in building up concentrations at the site of infection, which
could impair the efficacy of “PrEP on demand” and PEP
(compare Figures 3B,C), in the sense that it becomes more
important to initiate the respective protocols as early as possible.
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Notably, genital tract concentrations measured after the first
dose in Dumond et al. (2007) are in line with our predictions,
arguing for our modeling approach and for the presumed
fast kinetics of cellular uptake by passive diffusion (see also
Supplementary Text 1).

Another limitation of our study is that the parametrization of
the PK model is based on data from HIV-infected individuals,
while prophylaxis is intended for healthy individuals. In fact, it
is unclear whether there are significant differences with respect
to e.g., drug metabolism as a consequence of the infection
status. For example, measured EFV plasma concentrations
(400 mg once daily) in healthy individuals from Burhenne
et al. (2010) are similar to those predicted herein. However,
our model predicts large inter-individual variabilities due to
pharmacogenomics (CYP 450 C2B6 polymorphisms). This hints
toward the fact, that the pharmacokinetic differences between
healthy vs. infected individuals could be small in comparison
to the variability due to CYP polymorphisms. On the other
hand, a study in healthy Ugandan individuals reports EFV
concentrations (Mukonzo et al., 2009) that are considerably
larger than predicted by our model. At the moment it is
unclear whether differences are due to the infection status,
or contributed to differences in ethnicity, weight, or co-
medications: I.e. ethnicity (“black”) has been associated with
lower EFV clearance (Barrett et al., 2002). However, it is
unclear whether concentration differences are due to a higher
proportion of poor metabolisers in Ugandans, as suggested
by Mukonzo et al. (2009), or other factors. It is interesting
to note here that “gender” was a significant co-variate in the
Ugandan study whereas it was not associated with changes
in EFV PK in the ENCORE 1 study (Dickinson et al.,
2015). While the drug’s half life is similar for ENCORE 1
patients (35.57h; CI: 14.28–125.26) and healthy men in the
Ugandan study (Mukonzo et al., 2009) (37.3h in wild type
and 54.7h in slow metabolisers), the drug’s terminal half life
in females in the Ugandan study (Mukonzo et al., 2009) was
twice as large as that for men. For comparison, a meta-
analysis of 16 phase I studies reports a difference of only 10%
(Barrett et al., 2002), warranting further research to clarify
the mechanistic sources of the discrepancy between the results
from the phase I studies (Barrett et al., 2002), the Ugandan
study (Mukonzo et al., 2009) and the data from ENCORE 1
(Dickinson et al., 2015).

Regarding possible co-medications, it is worth mentioning
that efavirenz has a large drug interaction potential. For example,
it has been shown in Fan et al. (2009) that certain herbal
medicines might compete for CYP2B6 metabolisms raising
plasma levels, potentially up to toxic ranges. In any case, toxicity
in the context of EFV-PrEP remains to be elucidated clinically
and it remains to be elucidated if even further dose reductions
would be suitable for PrEP in particular populations. The present
work provides a good starting point to support these decisions,
e.g., based on the concentration-prophylaxis profiles presented
in Figure 2.

Moreover, EFV is an inducer of many CYP
enzymes (Fichtenbaum and Gerber, 2002), possibly

altering the pharmacology of co-medications. Thus,
co-medication with EFV-based PrEP might require
careful monitoring. The Liverpool drug-interaction
database provides an excellent overview over
known effects of EFV on various co-medications
(https://www.hiv-druginteractions.org/).

Overall, this mathematical modelling study argues for the
experimental investigation of EFV as a cost-efficient alternative
PrEP candidate based on its superior prophylactic efficacy and
forgiveness to incomplete adherence and event-driven usage.
However, further analysis emphasising on the safety of EFV in
the context of PrEP/PEP is warranted.
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Abstract

Antiviral pre-exposure prophylaxis (PrEP) through daily drug administration can protect healthy individuals from HIV-1
infection. While PrEP was recently approved by the FDA, the potential long-term consequences of PrEP implementation
remain entirely unclear. The aim of this study is to predict the efficacy of different prophylactic strategies with the pro-drug
tenofovir-disoproxil-fumarate (TDF) and to assess the sensitivity towards timing- and mode of TDF administration (daily- vs.
single dose), adherence and the number of transmitted viruses. We developed a pharmacokinetic model for TDF and its
active anabolite tenofovir-diphosphate (TFV-DP) and validated it with data from 4 different trials, including 4 distinct dosing
regimes. Pharmacokinetics were coupled to an HIV model and viral decay following TDF mono-therapy was predicted,
consistent with available data. Subsequently, a stochastic approach was used to estimate the % infections prevented by (i)
daily TDF-based PrEP, (ii) one week TDF started either shortly before, or -after viral exposure and (iii) a single dose oral TDF
before viral challenge (sd-PrEP). Analytical solutions were derived to assess the relation between intracellular TFV-DP
concentrations and prophylactic efficacy. The predicted efficacy of TDF was limited by a slow accumulation of active
compound (TFV-DP) and variable TFV-DP half-life and decreased with increasing numbers of transmitted viruses. Once daily
TDF-based PrEP yielded ƒ80% protection, if at least 40% of pills were taken. Sd-PrEP with 300 mg or 600 mg TDF could
prevent ƒ50% infections, when given at least before virus exposure. The efficacy dropped to ƒ10%, when given 1 h before
24 h exposure. Efficacy could not be increased with increasing dosage or prolonged administration. Post-exposure
prophylaxis poorly prevented infection. The use of drugs that accumulate more rapidly, or local application of tenofovir gel
may overcome the need for drug administration long before virus exposure.

Citation: Duwal S, Schütte C, von Kleist M (2012) Pharmacokinetics and Pharmacodynamics of the Reverse Transcriptase Inhibitor Tenofovir and Prophylactic
Efficacy against HIV-1 Infection. PLoS ONE 7(7): e40382. doi:10.1371/journal.pone.0040382

Editor: Jianming Tang, University of Alabama at Birmingham, United States of America

Received March 2, 2012; Accepted June 5, 2012; Published July 11, 2012

Copyright: ! 2012 Duwal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: SD and MvK acknowledge funding from the DFG research center MATHEON provided through project A21 "Modeling, Simulation and Therapy
Optimization for Infectious Diseases." The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vkleist@zedat.fu-berlin.de

Introduction

Tenofovir disoproxil fumerate (TDF) is an antiviral pro-drug,
belonging to the class of nucleoside reverse transcriptase inhibitors
(NRTIs) used for the treatment of the human immunodeficiency
virus 1 (HIV-1) [1] and hepatitis B. For HIV-1 treatment, it is
currently recommended as a backbone component in first-line
highly active antiretroviral therapy (HAART) [2]. TDF is
administered orally. After first pass of TDF through the liver,
tenofovir (TFV), an analogue of the endogeneous deoxyadenosine
monophosphate (dAMP) [3], is formed. TFV is also the
predominant circulating form [4,5]. After uptake into HIV target
cells, TFV can become sequentially phosphorylated to form
tenofovir diphosphate (TFV-DP), the active form, which is an
analog of endogeneous deoxyadenosine triphosphate (dATP).
TFV-DP subsequently competes with dATP for incorporation
into nascent viral DNA during HIV-1 reverse transcription (RT),
where it prevents further DNA polymerization during RT, once it
becomes incorporated [6]. TFV-DP thus prevents the production
of pro-viral DNA, which is required for stable host cell infection
and viral replication.

While most studies characterize the pharmacokinetics of TFV in
the blood plasma e.g. [7–10] only a few studies [11,12] focus on
the intracellular pharmacokinetics of the active anabolite, TFV-
DP, or establish a link between the pharmacokinetics of TFV in
plasma and TFV-DP in the intracellular space [13,14], which is
particularly important, since the plasma pharmacokinetics of
NRTIs and the pharmacokinetics of their active intracellular
anabolites are often nonlinearly related and temporally asynchro-
nous e.g. [15,16]. Thus, for establishing the link between dose and
response, the link between plasma- and intracellular pharmaco-
kinetics is essential, and can subsequently be used to predict the
effect of drug administration on virus dynamics. This complete
PK-PD link for NRTIs has only rarely been achieved [17]. For
TDF, no in silico model exists to the authors’ knowledge, which
integrates dosing, pharmacokinetics and antiviral response.

While TDF is an important drug for HIV treatment, it is also
being evaluated as a core component of pre-exposure prophylaxis
regimens (PrEP) to prevent HIV infection [18]. Interim reports
indicate variable outcomes for PrEP strategies: Whereas some
trials report no benefit of PrEP regimens (FEM-PrEP) [19], others
report 44 % to 73 % reduced HIV acquisition [20–22]. While the
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efficacy of TDF-based PrEP may depend on the mode of
transmission (hetero- vs. homosexual, or by needle-stick infection),
it is often argued that prophylactic success could be affected by
how strictly patients adhere to their (TDF-based) regimen [23].
Based on the average half life of TFV-DP in peripheral blood
mononuclear cells (PBMCs) it has been previously stated that TDF
is pharmacologically ‘‘forgiving’’ in the context of poor adherence
[3]. However, TFV-DP pharmacokinetics indicate a large inter-
patient variability [11,14], potentially leading to heterogeneous
protection in patients that equally adhere to their TDF-based
regimen. Also, adherence in some patients in clinical trials may
have been even lower than the pharmacological ‘‘forgiveness’’ of
the drug [24].

The goal of the present study is to provide an in silico model that
consistently predicts intracellular TFV-DP pharmacokinetics
based on different TDF dosing schemes. Subsequently, we use
previously published direct pharmacodynamic models to ultimate-
ly link the pharmacokinetics of oral TDF to its clinical response.
Once this link is established, we use stochastic simulation to
predict the relative infection risk, when TDF-based PrEP or mixed
PrEP/PEP strategies are applied with different levels of adherence
and timing of TDF administration and we point out factors that
may impair TDF-based PrEP. In view of the recent approval of
truvada (300 mg TDF + 200 mg emitricitabine (FTC)) for PrEP
by the FDA, this may raise awareness, encourage experimental
assessment and help to avoid the misuse of TDF-based PrEP.

Materials and Methods

Pharmacokinetic & Pharmacodynamic Data
TFV concentrations in blood plasma following either doses of

75, 150, 300 or 600 mg oral TDF were taken from three
independent clinical trials [7,9,12] and used to verify pharmaco-
kinetic model selection and evaluation (see Table S1). Individual
intracellular elimination of TFV-DP was assessed using the data
from [11], which observe the decline of TFV-DP in PBMCs after
discontinuation of TDF treatment (see Table S2). After successful
development of the pharmacokinetic model, it was coupled to a
model of viral dynamics and used to predict antiviral efficacy of 28
days TDF monotherapy in asymptotically infected individuals
following 75, 150, 300 or 600 mg oral TDF dosing, simultaneously
estimating the PK-PD coupling parameter IC50 (fifty percent
inhibitory concentration) and testing different alternative models
for intracellular uptake and anabolism of TFV. Predicted viral
load kinetics were compared to viral load data from [12]
(pharmacodynamic endpoint) and used for model selection (see
Text S1). The final coupled pharmacokinetic-pharmacodynamic
model was used to predict the prophylactic efficacy of TDF for a
wide range of parameter sets using stochastic simulation
techniques.

Assessment of Alternative Pharmacokinetic Models
We assessed different pharmacokinetic models for TFV in

plasma after 75-, 150- 300- and 600 mg dosing in line with
available trial data [7,9,12] and followed a stepwise model-
building process, in which the following reasonable assumption
was made: We neglected the impact of intracellular TFV-DP
pharmacokinetics on the plasma pharmacokinetics of TFV, since it
can be assumed to marginally influence the overall pharmacoki-
netics of TFV (total mass of TFV-DP in PBMCs is extremely
small: Ccell

:VPBMCƒ0:0008mg; total volume of PBMCs:

ƒ1:10{6L [25,26]; plasma volume &3.5L). This assumption
allowed us to independently develop the plasma pharmacokinetics
model and then subsequently model the influx and conversion of

TFV to intracellular TFV-DP, depending on the actual TFV
concentration in blood plasma.

The pharmacokinetic model building process was guided by
goodness-of-fit and comparative model assessment in terms of
Akaike information. Pharmacokinetic parameters were estimated
by minimizing the weighted residual sum of squared errors
WRSE(j) of the jth model according to.

WRSE(j)~ arg min
Pj

Xnt

i~1

~YY j(ti,Pj){Y (ti)

Y (ti)

! "2

ð1Þ

were Pj is a vector of pharmacokinetic parameters for candidate

model j, ~YYj(ti,Pj) are model-predicted TFV or TFV-DP

concentrations for parameter set Pj at time ti and Y (ti) are the

corresponding observed concentrations. Candidate models j were
then comparatively assessed using Akaike’s information criteria
(AIC), where the AIC-value of the jth model has been computed
according to [27]:

AIC(j)~nt
: log (WRSE(j))z2:nP(j) ð2Þ

where nt denotes the number of observations and nP(j) denotes the
number of parameters required for the jth model. Subsequently,
the model with the best (the lowest) AIC was selected and further
used.

Final Pharmacokinetic Model
Based on predictive performance and Akaike information (see

Table 3) we found that two compartments (plus a dosing
compartment) best described TFV plasma pharmacokinetics, in
line with previous studies [13,14,28]. A third compartment was
used to model the pharmacokinetics of intracellular TFV-DP
[13,14]. Intracellular pharmacokinetics of TFV-DP were linked to
the plasma concentration via saturable uptake and anabolism
(Vmax(i) and Km) with individual maximum velocity of uptake and
anabolism and individual first order elimination kinetics kout(i)
(see Table S2), which best described the available data (see Text
S1). The final model for the TFV plasma- and intracellular TFV-
DP pharmacokinetics is illustrated in Figure 1A. The TFV/TFV-
DP pharmacokinetic model constitutes four compartments: D(t)
represents the mass of tenofovir in the dosing reservoir. C1 is the
central compartment, which represents the plasma concentration
of TFV. The second compartment C2 represents the poorly
perfused (peripheral) tissues and the cellular compartment Ccell

resembles the concentrations of TFV-DP in peripheral blood
mononuclear cells (PBMCs). Parameters k12 and k21 are the rate
constants for influx and outflux to-/from the peripheral compart-
ment C2 and ka and ke are the rates of TFV uptake and
elimination into/out of C1 respectively. All final parameters are
represented in Table 1. The value for ka and the bioavailability

Fbio were fixed to 1 h{1 [28] and 0.32 [12] respectively, while all
other parameters were estimated.

The ordinary differential equations for the final model are
displayed below:

d

dt
C1(t)~

Fbio
:ka
:D(t)

V1
{C1(t):ke{k12

:C1(t)zk21
:C2(t) ð3Þ

d

dt
C2(t)~k12

:C1(t){k21
:C2(t) ð4Þ
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d

dt
Ccell(t,i)~

Vmax(i):C1(t)

KmzC1(t)
{Ccell(t,i):kout(i) ð5Þ

where V1 represents the volume of the central compartment. The
parameters Vmax(i) and Km describe the (saturable) processes of
TFV-uptake and conversion to TFV-DP within PBMCs, while
kout(i) denotes the rate of elimination of TFV-DP from the
PBMCs, which was found to vary between distinct patients (see
Table S2 and model comparison in Text S1). The concentration
in the dosing compartment D(t) was estimated according to:

D(t)~D(ti{1):e{ka
:tzd(t):dose(ti) ð6Þ

where D(ti{1) denotes the mass of TDF in the dosing
compartment at the last dosing event ti{1. The parameter d(t)
denotes a delta dirac function which takes the value 1 at the
discrete dosing events t~ti and is otherwise zero.

Viral Dynamics
In order to predict (i) viral load kinetics following TDF

treatment in HIV-infected patients and (ii) the infection probabil-
ity for uninfected individuals, we adopted the virus dynamics

model from [29,30], which is depicted in Figure 1B. For predicting
viral load kinetics in infected individuals, we used the deterministic
infected (drug-free) fix-point of the model as a starting condition
and then monitored viral dynamics following TDF monotherapy.
For assessing the infection probability, we used the uninfected fix-
point of the model as starting condition and inoculated the
respective number of infectious viruses to simulate viral challenges.

In brief, the virus dynamics model comprises T-cells, macro-
phages, free non-infectious virus (TU,MU,VNI, respectively), free
infectious virus VI, and four types of infected cells: infected T-cells
and macrophages prior to proviral genomic integration (T1 and
M1, respectively) and infected T-cells and macrophages after
proviral genomic integration (T2 and M2, respectively). The
average rates of change of the different species are given by the
following system of ODEs:

d

dt
TU~lTzdPIC,T

:T1{dT
:TU{bT(t):VI

:TU

d

dt
MU~lMzdPIC,M

:M1{dM
:MU{bM(t):VI

:MU

Figure 1. Pharmacokinetic model of TFV and intracellular TFV-DP and model of viral kinetics. A: Pharmacokinetic model. Parameters ka

and ke are the absorption and elimination rate constants of the central compartment C1 (which resembles plasma pharmacokinetics of TFV)
respectively. The parameters k12 and k21 denote the influx and outflux rate constant to-/from the peripheral compartment C2 respectively. Both
compartments (central-/peripheral-) have the same volume of distribution V1 . The dotted line from the central compartment to the intracellular
compartment C3 represents subsumed processes, namely the cellular uptake of TFV and subsequent phosphorylation to TFV-DP, which were related
to the plasma concentration of TFV (C1) by Michaelis-Menten kinetics, with parameters Km and individual parameter Vmax(i). The parameter kout(i) is
the individual, cellular elimination rate constant of TFV-DP. B: Virus dynamics model. T-cell and macrophage target cells (TU , MU) can become
successfully infected by infective virus VI with lumped infection rate constants bT and bM, respectively, creating early infected cells T1 and M1.
Infection can also be unsuccessful after the irreversible step of fusion (rate constant CLT and CLM, dashed lines), eliminating the virus and rendering
the cell uninfected. Early infected cells T1 and M1 can destroy essential viral proteins or DNA prior to integration with rate constants dPIC,T and dPIC,M

(dashed lines) returning the cell to an uninfected stage. The genomic viral DNA can become integrated with rate constants kT and kM creating late

infected cells T2 and M2 , which can release new infectious- and non infectious virus VI and VNI with rate constants NT, cNTNT{NT

# $
and

NM, dNMNM{NM

# $
, respectively. All cellular compartments x can get destroyed by the immune system with respective rate constants dx and the free

virus gets cleared with rate constant CL (thin dashed lines). The pharmacologically active form of tenofovir (tenofovir-diphosphate, TFV-DP, green
box) inhibits successful cell-infection (parameter bT=M) and increases the rate of unsuccessful infection (parameter CLT=M).
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dt
T1~bT(t):VI

:TU{(dT1
zdPIC,TzkT):T1

d

dt
M1~bM(t):VI
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zdPIC,MzkM):M1 ð7Þ

d

dt
T2~kT

:T1{dT2
:T2

d

dt
M2~kM

:M1{dM2
:M2

d

dt
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:M2zNT
:T2

{VI
:½CLz(CLT(t)zbT(t)):TUz(CLM(t)zbM(t)):MU$

d

dt
VNI~½(cNTNT{NT)T2z(dNMNM{NM)M2${CL:VNI,

where lT and lM are the birth rates of uninfected T-cells and
macrophages, and dT and dM denote their death rate constants. The
parameters dPIC,T and dPIC,M refer to the intracellular degradation of
essential components of the pre-integration complex, e.g., by the host
cellproteasome,whichreturnearly infectedT-cellsandmacrophages
to an uninfected stage, respectively. Parameters bT(t) and bM(t)
denote the rate of successful virus infection of T-cells and
macrophages in the presence of TFV-DP, respectively, while the
parametersCLT(t)andCLM(t)denotetheclearanceofvirus through
unsuccessful infection of T-cells and macrophages [29] in the
presence of TFV-DP at the respective time t. Parameters kT and kM

are the rate constants of proviral integration into the host cell’s

genome and cNTNT and dNMNM denote the total number of released
infectious and non-infectious virus from late infected T-cells and
macrophages and NT and NM are the rates of release of infectious
virus. The parameters dT1

,dT2
,dM1

and dM2
are the death rate

constants of T1,T2,M1 and M2 cells, respectively. The free virus
(infectious and non-infectious) gets cleared by the immune system
with rate constant CL.

Pharmacokinetic-Pharmacodynamic Coupling
We have previously shown that the antiviral effect of NRTIs (like

TDF) can be regarded by an inhibition of the rate of successful cell
infection bT=M and a proportional increase in the number of
unsuccessful infection events CLT=M [29]. We can thus write:

bT=M(t)~bT=M(w):(1{g(t)) ð8Þ

CLT=M(t)~
1

rrev

{(1{g(t))

! "
:bT=M(w), ð9Þ

where (1{g(t)) denotes the residual infection, when TFV is applied
and rrev&0:5 [31] is the probability that infection is successful in the
absence of treatment. The efficacy of TFV-DP at time t was
implementedusingthe standardEmax-modelwith slopeparameter1
[32].

1{g(t)~
IC50

IC50zCcell(t)
ð10Þ

where IC50 denotes the intracellular TFV-DP concentration
(compartment Ccell in Fig. 2A), which reduces cell infection by 50%.

Prediction of Relative Infection Risk in the Presence of
TDF

Although per-contact infection probabilities have previously
been estimated for different routes of HIV transmission [33,34]
(e.g. &0.5–4% for homosexual receptive contact), it is not known
how much infectious virus actually reaches a cellular environment
that facilitates its reproduction (further on referred to as ‘inoculum
size’). Moreover, several (unknown) co-factors may alter this
number. It could be possible that virus does not reach a cellular
environment that facilitates its reproduction during the majority of
sexual contacts, as indicated by low per-contact-transmission
probabilities [34]. During those sexual contacts where infection
occurs, the data from [35,36] indicate that a small number of
founder particles (estimated to be of the order 1–5 in the majority
of infections) establish the viral population within the newly
infected individual. However, due to the inherent uncertainties
about the co-factors that potentially alter the number of
transmitted viruses, we will not compute relative per-contact-
infection probabilities under TDF administration, but rather
compute the percentage of infections prevented for distinct
inoculum sizes, relative to the absence of drug. The relative
infection probability is typically assessed in clinical trials from a
cohort of patients, without detailed knowledge of the viral
inoculum sizes and the circumstances of transmission.

In the simulations, infection was irreversible by the time that the
predicted number of viruses exceeded 1 million particles (because
the system behaves deterministically and approaches its infection
fix-point). Therefore, we recorded an infection event during our
simulations, whenever the viral population crossed this threshold
in a previously uninfected ‘virtual patient’ at risk. The percentage
infections prevented, when TDF is taken prophylactically was then
calculated using the following formula:

%infections prevented~100: 1{
P(inf:DVt0

,S)

P(inf :DVt0
,w)

 !
ð11Þ

where P(inf:DVt0
,w) is the probability of infection in the absence of

drugs w, when Vt0
[f1,5,20,100g infectious viruses come into

Table 1. Pharmacokinetic and pharmacodynamic
parameters.

param. value param. value

ke
{10.12 h V1 244 L

k12
{10.2926 h gkoutkout

{10.006%,# [0.002;0.026] h

k21
{10.1537 h ka

z1

IC50
{175.7 mg. L bioF {0.32

Km
{129.3 mg. L gVmaxVmax

{11.44%} [0.5;24] mg. L{1 . h

%median parameter and range. # see Table 4 for individual values. z value set

to 1 [28]. { parameter from [12]. } computed using eq. (S2), Text S1.
doi:10.1371/journal.pone.0040382.t001
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contact with a cellular environment that facilitates their repro-
duction within the susceptible individual. The predicted probabil-
ity of infection in the absence of drugs P(inf :DVt0

,w) was 10+
1:3%, 40+2:1%, 87+1:5% and 100+0%, respectively, when
Vt0

= 1, 5, 20 or 100 viruses were inoculated. P(inf :DVt0
,S) is the

corresponding probability of infection when prophylactic strategy
S is used. We evaluated the following TDF-based prophylactic
strategies: a) 300 mg oral TDF taken once daily when 20, 40, 60,
80 or 100% of pills are ingested, b) TDF is taken around the time
of viral exposure (6, 1 h before exposure or 1, 6, or 48 h after
exposure) and continued for 7 days (1w-PrEP/PEP) or c/d) a
single oral dose of 300 or 600 mg TDF is taken at either 1, 6, 12,
24 or 48 hours before exposure to virus (sd-PrEP).

During strategy a) (once daily oral TDF) adherence was
implemented using a ‘‘roulette-wheel selection’’ technique: A
uniformly distributed random number r on the open interval (0,1)
is drawn at each potential dosing time (each 24 hours of simulated
time). If this random number r is less than or equal to the
adherence level (e.g. rƒ0:4 for adherence level 40%), then a dose
is given to the virtual patient; otherwise not.

Modeling the infection probability requires to regard the
intrinsic stochasticity and discreteness of the infection event:
Either the transmitted virus becomes entirely cleared by the
immune system before establishing stable infection, or the
infection expands and disseminates throughout the body [18].
Reverse transcriptase inhibitors like TDF decrease the probability
of cell infection and therefore increase the probability that HIV

Figure 2. Pharmacokinetics of TFV for different doses of oral TDF at plateau and intracellular TFV-DP concentrations after
treatment cessation. A: Predicted pharmacokinetics of TFV after once daily 75-, 150-, 300- and 600 mg oral TDF (lines) together with data from
[7,9,12] (markers). B: Goodness-of-fit plot for the plasma pharmacokinetics of TFV with data from 3 clinical studies and 4 different dosing schemes
[7,9,12]. The dashed red line indicates the line of unity, whereas the green squares, -diamonds, triangles and filled dots represent the observed TFV
concentrations in [12] following 75-, 150-, 300- or 600 mg once daily administration of TDF. The blue left-pointing triangles and the magenta right-
pointing triangles represent observed TFV concentrations after 300 mg once daily oral administration from [9] and [7] respectively. C: Predicted
pharmacokinetics of intracellular TFV-DP after stopping of 300 mg once daily oral TDF dosing (lines) together with data from [11] (markers). D:
Goodness-of-fit plot for intracellular TFV-DP. The up- and downward pointing filled and open triangles, open- and filled circles, filled squares and
filled diamonds indicate intracellular TFV-DP pharmacokinetics after stopping 300 mg once daily oral TDF dosing in 8 different individuals from [11].
doi:10.1371/journal.pone.0040382.g002
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can become entirely cleared before establishing stable infection
[37]. In order to fully regard the intrinsic stochasticity of rare
events in the utilized model and to predict the impact of PrEP on
HIV transmission, we use the stochastic-deterministic simulation
algorithm presented in [30]. Unless otherwise stated, we ran 2000
stochastic-deterministic simulations for each parameter set to
estimate the infection probabilities with sufficient statistical
confidence.

Results

Plasma & Intracellular Pharmacokinetics
Predicted concentration-time profiles of TFV after 75-, 150-,

300- and 600 mg once daily dosing of TDF using the final
pharmacokinetic model (eqs. (3)-(6)) are shown in Fig. 2A (lines)
together with available data from 3 clinical trials [7,9,12]
(markers). It can be seen that TFV rapidly appears in the plasma
(tmax&2 h) and decays in a bi-phasic manner for all analyzed
dosing schemes. The estimated terminal half life of plasma TFV
was &19 hours, in line with previous estimates [3]. TFV
concentrations increase proportionally with increasing dose,
indicating dose-linear pharmacokinetics. A goodness-of-fit plot
with regard to plasma concentrations is shown in Fig. 2B. The plot
indicates an overall spread around the line of unity, supporting the
predictive power of the model. The predicted decay behavior of
TFV-DP in PBMCs after stopping TDF dosing is shown in Fig. 2C
together with available data [11]. The grey area therein indicates
the predicted range of kinetic behavior, whereas the solid red line
indicates the estimated median TFV-DP decay. Note that the
variation (grey range) is quite large, which is however in line with
other studies [14]. A goodness-of-fit plot with regard to individual
predicted vs. observed intracellular TFV-DP concentrations is
shown in Fig. 2D for the data coming from the distinct patients
(markers). The predicted average half life of TFV-DP was very

large (125h&gt1=2t1=2~ ln (2)=gkoutkout). Overall, the plot indicates a

spread around the line of unity (dashed red line in Fig. 2D),
supporting the approach chosen for estimating individual decay
kinetics of TFV-DP in peripheral blood mononuclear cells
(PMBCs) rather than using an average value for all patients (see
also model comparison in Text S1).

The predicted concentration time profile of TFV-DP after a
single dose of 300 mg oral TDF is shown in Fig. 3A. It can be seen
that TFV-DP reaches its maximal concentrations after a median
time of 85 h (range: 49–113 h) following a single dose of TDF.
The maximally achievable concentrations vary between individ-
uals and are within the range of 7.6 to 163 fmol/106 cells (median

value: 16 fmol/106 cells) in case of a single dosing event.
The accumulation of intracellular TFV-DP in the case of daily

300 mg oral TDF is shown in Fig. 3B. TFV-DP trough
concentrations (concentrations immediately before the next dose)
reach their plateau levels after a median of 21 once daily dosing
events (range 10–36). On the contrary, plateau levels of the parent
compound TFV are reached within 7 dosing events in blood
plasma already (data not shown).

Antiviral Efficacy During Mono-therapy in HIV-infected
Individuals

For further model evaluation and estimation of the remaining
parameters IC50 and Km, we coupled the pharmacokinetics of
intracellular TFV-DP to an established model of the HIV-life cycle
[28,30] (see Methods section) and subsequently predicted the 56
days viral dynamics in asymptomatically HIV infected individuals
following a 28 days mono-therapy (day 0–28) with either 75-, 150-,
300- and 600 mg TDF. Our predictions are shown in Fig. 4A, B,
C, D together with data from the corresponding dose escalation
study [12]. The dashed lines and open circles in Fig. 4A, B, C, D
indicate clinically observed median log10 viral load decay from
[12], whereas the solid lines and filled circles indicate the predicted
median log10 viral decay using our model. The respective weighted
residual sum of squared errors WRSE (see eq. (1)), denoting the

Figure 3. Predicted TFV-DP intracellular pharmacokinetics following a single dose oral 300 mg TDF and accumulation of TFV-DP
after daily 300 mg oral TDF. A: Predicted intracellular pharmacokinetics of TFV-DP in PBMCs after a single 300 mg oral TDF dose. Solid black circle
and horizontal error bar indicate the tmax value and its range. B: Trough levels of TFV-DP in PBMCs following 300 mg oral TDF every 24hours,
indicating the accumulation of active compound. The solid black circle and the horizontal error bar indicate the time until plateau concentrations are
reached and the range for this parameter. Blue cirles, black squares, green diamonds, red downward pointing triangles, magenta upward-pointing
triangles, cyan right-ward pointing triangles, black left-pointing triangles and blue asterisks indicate individual predictions for 8 patients.
doi:10.1371/journal.pone.0040382.g003
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absolute deviation between experimental and predicted viral load
decay is shown in Text S1 (the Table therein) and indicates an
overall good predictive power of the coupled PK-PD model.
Notably, the experimental median viral decay profile for the
300 mg dose group indicated maximally achievable viral decay, as
the 600 mg dosing could not produce steeper viral decay than the
300 mg scheme.

Efficacy of Daily TDF for the Prevention of HIV-1 Infection
The predicted percent infections prevented by continuous once

daily 300 mg TDF PrEP are shown in Fig. 5A. It can be seen that
continuous PrEP can avert &80% infections, under 100%
adherence and with small inoculum sizes (1 infectious virus).
Under a fivefold increase in inoculum size, TDF is still efficacious,
preventing &75% of infections. However, if the inoculum size is
further increased (100 infectious viruses come into contact with
target cells), the efficacy drastically drops to levels of &20%
protection. On the other hand, imperfect adherence above the
level of 40% has only a small impact on the predicted
efficaciousness of TDF, confirming previous pharmacologic
considerations about the pharmacokinetic forgiveness of the drug
[3]. We statistically tested whether adherence and inoculum size
impact on the efficacy of TDF-based PrEP, based on our
simulation results. We found that decreasing adherence has a
small impact of the efficacy of TDF-based PrEP (infection
probabilities are not significantly altered if adherence is as low
as 60%). However, if adherence is below 40%, TDF-based
protection is significantly altered (p v 0.05). Furthermore, when
large numbers of viruses become transmitted, we observe a
stronger impact of adherence (see Fig. 5A). The inoculum size
determined the efficacy of TDF-based PrEP for all conditions
tested (p v 0.01, see Table S3).

In summary, the protective effect of TDF appears to be much
less sensitive to poor adherence (as long as adherence is above
40%), but is dependent on the actual mode of transmission, i.e.
how many viruses become transmitted. Notably, in a substudy of
Partners PrEP (serodiscordant couples in Kenya/Uganda) using
TDF only, an overall efficacy of 62% (confidence interval:
34%;78%) was reported, which corresponds to our predictions
for the case when small numbers of viruses become transmitted
(inoculum size 1–20 in Fig. 5A). The number of distinct founder
viruses was estimated to be rather low (of the order 1–5 for
heterosexual- and homosexual transmission) [35,36], which
stresses the importance of PrEP efficacy at low inoculum sizes
for the prevention of HIV-1 transmission and supports the
predictive power of our model.

Efficacy of One Week extended TDF prophylaxis during
Viral Exposure

We predicted the efficiency of TDF when started either 6 or 1 h
before exposure or 1, 6, or 48 h after exposure and continued for
7 days (1w-PrEdP/PEP). The results (see Fig. 5B) indicate a
maximally achievable efficacy of 1w-PrEP/PEP of &30% when
started 6h before viral challenge for small inoculum sizes. The
maximum achievable efficacy was similar to the sd-PrEP regimen.
The efficacy of 1w-PrEP/PEP was influenced by inoculum size (p
v 0.01, for all tested conditions, see Table 6) and dropped
drastically as the inoculum size increased. 1w-PrEP/PEP efficacy
was also affected by the timing of TDF initiation, particularly for
large inoculum sizes (p v 0.05, see Fig. 5B), with earlier times of
regimen initiation resulting in higher efficacy. Overall, our
predictions indicate that extended (one week) prophylaxis with
TDF initiated shortly before viral exposure offers little benefit

compared to sd-PrEP (Figure 5C, D). If TDF is initiated after viral
exposure, its efficacy is rather limited.

A recent investigation showed that 28 days of a post-exposure
prophylactic triple drug regimen containing TDF [38–40] is safe,
but data indicating the efficiency is missing for TDF alone or TDF
containing regimen in humans. Efficacy of PEP using tenofovir has
to date only been demonstrated in non-human studies, e.g.
[41,42]. The conducted experiments, however, indicate that the
prophylactic efficacy of post-exposure TDF may depend on the
type of virus used [43] and on particular pharmacokinetics,
possibly limiting the translation of these results to TDF-based PEP
in human.

Efficacy of Single Dose TDF Prophylaxis Shortly before
Exposure (sd-PrEP)

We tested the efficacy of single dose 300- and 600 mg oral TDF
given either 1, 6, 12, 24 or 48 h before viral exposure in Fig. 5C, D
respectively. Notably, sd-PrEP could reach a maximum efficacy of
&50% with small inoculum sizes, when given 24 hours prior to
exposure. The efficacy dropped gradually when the inoculum size
increased. In particular, sd-PrEP was completely inefficient when
large inoculum sizes were encountered (if § 100 infectious viruses
come into contact with target cells). The dependency of sd-PrEP
efficacy on inoculum size was significant for all tested conditions at
the p v 0.01 level (Table S5, S6). Despite a dependency on the
inoculum size, sd-PrEP efficacy was also significantly altered by
the timing of drug administration, see Figure 5C, D. Generally
speaking, sd-PrEP efficacy was highest if TDF was taken 12–48 h
before viral exposure and almost completely inefficient when taken
only 1 h before exposure, which limits it’s practical use as a single-
dose prevention drug. The poor efficacy of sd-PrEP, as well as the
dependency on the timing of TDF administration is based on its
pharmacokinetics: TFV-DP, the active moiety, requires approx-
imately 21 (range: 10–36, see Fig. 3B) dosing events to reach
plateau levels and to exert its maximum effect. During single dose
administration, TFV-DP still requires about 85 h hours (range:
49–113, see Fig. 3A) to reach maximum concentrations Cmax.
Therefore, TDF needs to be taken early enough (§ 48 hours) to
allow for intracellular TFV-DP levels to build up. Once TFV-DP
levels have been achieved, they persist in most patients, owing to
the long half life of intracellular TFV-DP.

We also tested whether the effect of single dose TDF PrEP could
be potentiated, if the standard dose was doubled (see Figure 5D).
The prophylactic efficacy was, however, not markedly different for
most conditions tested, see Fig. 5C&D and Table S7 for a
statistical evaluation.

Relation between Intracellular TFV-DP Concentrations
and Prevention of HIV-1 Infection

We have derived an analytical formula in Text S2 to assess the
relation between intracellular TFV-DP concentrations and the %
HIV-1 infections prevented. The percent infections prevented by
distinct intracellular TFV-DP concentrations is shown in Fig. 6
(based on the analytic solution). It can be seen that the EC50 value
(concentrations of intracellular TFV-DP necessary to prevent 50%
of HIV-1 infections) is increasing for larger virus inoculum sizes.

The computed EC50 values were 29, 40, 77 fmol/106 cells for
inoculum size 1, 5 and 20 respectively, which is below the
concentration range achieved when 300 mg TDF is given once
daily in an adherent patient (dark grey area in Fig. 6). On the
contrary, the EC50 for a viral inoculum size of 100 is above the
concentration range typically achieved during once daily PrEP

with 300 mg TDF (EC50~411 fmol/106 cells). TFV-DP concen-
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trations to prevent 90% infections EC90 were 267, 348, 640 and

2866 fmol/106 cells for virus inoculum size 1, 5, 20 and 100
respectively (see Fig. 6).

Discussion

The plasma pharmacokinetics of TFV were best described by a
two compartment model (compartments C1 and C2) with first
order absorption and elimination, based on statistical model
comparison. Similar models were also used by most other groups
to describe the pharmacokinetics of TFV in blood plasma
[14,28,44,45]. Pharmacokinetic parameter estimates (Table 1)
agree well with previous studies [14], indicating a large volume of
distribution, bi-phasic decay with a particularly slow terminal half
life of &19 h, in line with previous estimates [3]. Inter-individual
variations in parameter values characterizing plasma pharmaco-
kinetics were estimated to be small in related studies [14,28,44]
(coefficient of variation less than 50%). We therefore decided to
ignore inter-individual variations in parameters describing the
plasma pharmacokinetics of TFV. To the contrary, parameters
describing the intracellular pharmacokinetics of TFV-DP display a
large inter-individual variability (in our model this affects
parameters kout and Vmax).

NRTIs like tenofovir exert their effects through their intracel-
lular phosphorylated moieties, which are often non-linearly related
to plasma pro-drug concentrations [15,17,46]. As a consequence,
plasma pro-drug concentrations may poorly predict pharmaco-
logical activity [47,48]. For NRTIs it is therefore necessary to
model the pharmacokinetics of the active intracellular form
explicitly. Here, we followed a step-wise model building process
to establish the link between plasma pro-drug and intracellular
TFV-DP pharmacokinetics, where we first independently estimat-
ed intracellular TFV-DP elimination. Statistic model evaluation
using typical- vs. individual estimates of the elimination rate
constant kout indicated that taking intracellular pharmacokinetic
variations into account does not only improve the prediction of
intracellular TFV-DP concentrations (see Fig. 2D), but also
improves the prediction of viral decay following TDF mono-
therapy with different doses (see Text S1). Notably, we predicted a

large variation for the kout parameter (range: 0.002–0.026 h{1),
which is, however, within the confidence interval of previous

estimates (confidence interval: 0.0007–0.0372 h{1) [14]. The
typical half life of TFV-DP was very large

(gt1=2t1=2~ ln (2)=gkoutkout&125h; range: 26–386h), which is in good

agreement with other studies [14,49,50]. Due to the lack of
intracellular TFV-DP pharmacokinetic data illuminating the

Figure 4. Viral load log10 kinetics during- and after 28 days of TDF mono-therapy. Black dashed vertical lines indicate the withdrawal of
TDF dosing. Solid lines represent predicted median viral kinetics using the coupled PK-PD model, whereas dashed lines represent the observed viral
kinetics [12]. Once daily 75mg TDF dosing. B: Once daily 150 mg TDF dosing. C: Once daily 300 mg TDF dosing. D: Once daily 600 mg TDF dosing.
doi:10.1371/journal.pone.0040382.g004
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uptake of this specimen, we estimated the kinetics of influx/
anablism of intracellular TFV-DP (and the IC50 value) by
comparing viral decay kinetics following 28 days of TDF mono-
therapy with different doses. Based on model comparison, we
found that a saturable influx with individual (maximally achiev-
able) influx rates would best describe the pharmacodynamic data.
Notably, others [13,14] also found a saturable uptake based on
pharmacokinetic data alone (without taking viral decay into
account) and found a large variation in the uptake rate [14],
consistent with our findings. The saturable uptake kinetics
translate into maximally achievable TFV-DP concentrations,
which results in maximally achievable viral decay upon increasing
doses of TDF. As can be seen in Fig. 4C & D (dashed lines)
clinically measured viral decay from [12] appears to be greater for
300- vs. 600 mg TDF, which was not reproduced by our model
predictions (solid lines in Fig. 4C & D). The authors of the clinical

report [12] however stated that the difference in viral decay
between the two doses was not significant and may be attributed to
noise and the small size of the population tested (8 individuals for
each dose respectively in [12]) rather than having a mechanistic
reason.

In previous studies, average plateau TFV-DP concentrations
from different studies were in the range 80 to 160 fmol/106cells
[3,14], whereas the individual TFV-DP concentrations varied

between 10.6 to 441 fmol/106cells [14] when 300 mg oral TDF
was administered once daily. Our model predicted average plateau

levels were 130 fmol/106cells (range: 52–327 fmol/106cells; see
Fig. 3B), which is consistent with previous findings. TFV-DP
accumulates very slowly, owing to its long half life. We estimated
that plateau concentrations will be achieved after 21 dosing events
(range: 10–36), which is in the range of previous pharmacologic
considerations [3] (23 once daily dosing events). The slow

Figure 5. Predicted % infections prevented by distinct TDF-based prophylactic strategies for various parameter sets. A: Predicted %
infections prevented by once daily 300 mg TDF taken at different levels of adherence and with distinct virus inoculum sizes. %%,%%% prophylactic
efficacy depends on adherence at the p v 0.05 or p v 0.01 level respectively. B: Predicted % infections prevented by a one week 300 mg TDF (1w-
PrEP/PEP) when started at distinct times before/after exposure with distinct numbers of viruses. %%,%%% prophylactic efficacy depends on the timing of
start of TDF administration at the p v 0.05 or p v 0.01 level respectively. C: Predicted % infections prevented by a single dose 300 mg TDF (sd-PrEP)
when taken at distinct times before exposure with distinct virus inoculum sizes. %%,%%% prophylactic efficacy depends on the timing of TDF single dose
administration at the p v 0.05 or p v 0.01 level respectively. D: Predicted % infections prevented by a single dose 600 mg TDF (sd-PrEP) when taken
at distinct times before exposure with distinct virus inoculum sizes. Error bars represent confidence bounds calculated using Greenwood’s formula.
zzz prophylactic efficacy depends on the inoculum size. The predicted probability of infection in the absence of drugs P(inf :DVt0

,w) was 10+1:3%,
40+2:1%, 87+1:5% and 100+0% when Vt0

= 1, 5, 20 or 100, respectively, viruses were inoculated.
doi:10.1371/journal.pone.0040382.g005
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accumulation of TFV-DP limits its prophylactic use as a single
dose drug, although prophylactically effective concentrations may
already be achieved § 24h after a single dosing event in some
patients (see Fig. 3A). In the absence of data reporting TFV-DP
concentrations in PBMCs after a single 300 mg oral TDF dose we
are, however, not able to directly verify these predictions. Notably,
very similar TFV-DP concentrations in rectal tissue biopsies after a
single 300 mg oral TDF dosing event were observed by Patterson
et al. in a very recent study [51] (discussed later on).

As suggested by Piliero et al. [47], the intracellular half life of
phosphorylated NRTIs is a key determinant of their clinical
efficacy. Often, however, the typical half life from different
individuals is taken as a reference and inter-individual differences
in the pharmacokinetics of activated NRTI anabolites are
neglected. In the case of TDF, large variations in the intracellular
pharmacokinetics may exist, which warrant further investigation
in order to optimize its efficacy both for prophylaxis and
treatment.

We predicted that the long half life of intracellular TFV-DP
translates into desirable properties in the case of continuous PrEP,
which is pharmacologically ‘forgiving’ in the case of poor
adherence, if at least 40% of the pills are ingested (see Fig. 5A).
While these pharmacologic considerations have been previously
discussed [3], we are presenting a quantification of these effects by
combining pharmacokinetics, viral dynamics and stochastic
simulation in a single integrated in silico model.

It was recently suggested that the willingness to take pills may be
a major obstacle for the implementation of PrEP strategies in
practice [24]. In line with this statement, Donnel et al. [52] found
a significant difference in HIV infection between individuals with
detectable vs. undetectable TFV in blood. Of note, for the levels to
drop from 70 ng/mL (median concentrations in [52]) to v0:1 ng/
mL (limit of detection in [52]), patients require to take less than

14% of their drugs (one out of seven doses), as TFV exhibits a long
terminal half life in plasma (&19 h). This indicates that the
willingness to take daily medication for HIV prevention may be
extremely low in some individuals with undetectable drug
(adherence v14%). It also raises concern that willingness to take
PrEP may in fact be a major obstacle for the implementation of
PrEP in practice as considered by Van Damme et al. [24]. The
results by Donnel et al. [52] and Van Damme et al. [24] also
indicate and that the estimates of PrEP efficacy may have been
contaminated by extremely poor adherence of some individuals in
the trials. In agreement with this assumption, clinical outcomes
with TDF-based continuous PrEP indicate highly variable
outcomes: from either being inefficient (FEM-PrEP) [19] to 44–
73% reduced HIV acquisition [20–22]. A sub-study of Partners
PrEP assessed the efficacy of continuous 300 mg daily TDF
administered to the healthy partner in sero-discordant couples in
Kenya and Uganda. The overall efficacy was 62% (confidence
interval: 34%;78%) and may be higher in adherent patients [24].
We predicted a prophylactic efficacy of 65%–80% for inoculum
size 1–5 in patients that take at least 40% of their drugs, see
Fig. 5A. In view of the possible contamination of Partner PrEP
trials results by extremely poor adherence in some individuals, our
slight overprediction of TDF efficacy may be anticipated. Further
analysis is required in order to assess the proportion of individuals
with sufficient adherence.

In the case of short-course pre-exposure TDF, or post-exposure
TDF, prophylactic success is limited by a slow accumulation of the
intracellular active component TFV-DP (only &20% infections
are prevented if TDF is taken 1h before exposure, see Fig. 5B, C,
D and Table S4, S5, S6. Note also that intracellular TFV-DP may
require 21 dosing events on average to reach plateau levels, see
Fig. 0B. In view of the recent approval of Truvada (300 mg TDF
+200 mg emtricitabine) for pre-exposure prophylaxis by the FDA,
prescribers should inform their patients about these potential
shortcomings, in order to avoid HIV-1 infection by inadequate use
of prophylaxis in combination with risk compensation [53]. HIV-
infection in combination with the inadequate use of PrEP may also
select drug resistance, which could limit treatment perspectives for
infected individuals. In terms of short-course pre-exposure
prophylaxis other drugs may be more suitable that accumulate
rapidly, such as nevirapine [37], which is successfully used for
prevention of mother-to-child infection.

Based on the model parameters, the duration of action required
to ensure that virus particles are eliminated with e.g. 99%
probability, Telim(99%) may be computed according to

Telim(99%)~{
ln 1{(0:99)1=Vt0

# $

clV

0

@

1

A, with

clv = CL+bT(t)?TU+bM(t)?MU. For the parameters used
Telim(99%)v3 days would suffice for inoculum sizes
Vt0

[f1,5,20,100g. Taken together, this may indicate that,
pharmacologically, single dose PrEP drugs taken shortly before
potential viral exposure are required to accumulate rapidly in
target cells, but may not have to persist for more than 3 days, in
line with the pharmacological attributes of most NNRTIs.

In contrast to our predictions (Fig. 5B), some non-human studies
found that TDF-based post-exposure prophylaxis may be highly
efficient: Tsai et al. [42] treated macaques for variable durations
after exposure with SIVmne and tested viral markers. In their non-
human model of TDF-based PEP, viral titers remained undetect-
able in some monkeys until week 48 post-exposure, indicating that
some protection was achieved, in particular for longer durations of
PEP (28 days) and timely start of prophylaxis (within 24 hours
post-exposure) [42]. It was however argued [54] that TDF-PEP

Figure 6. Predicted % infections prevented vs. intracellular
TFV-DP concentrations for distinct virus inoculum sizes. The
solid blue-, dash-dotted green, dashed red and dotted black lines show
the concentration-response profile for virus inoculum size 1, 5, 20 and
100 respectively. The thick dashed horizontal black line indicates the
TFV-DP concentration, which prevents 50% of infections (EC50). The
dark grey area indicates the TFV-DP concentration range achieved
during once daily 300 mg oral TDF dosing with 100% adherence,
whereas the light grey extension to the left indicates the range of
concentrations resulting from imperfect adherence. Predictions are
based on the approximate analytic solution derived in Text S2.
doi:10.1371/journal.pone.0040382.g006
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may enhance immune controlled viral replication down to
undetectable levels, rather than actually preventing infection.
Furthermore, the efficacy in the primate model were depending on
the type of virus used [43] (which are SIV strains, not HIV-1) and
may also depend on the particular pharmacokinetics in the
primate model, which may be different to the human. Altogether,
the non-human studies with TDF-based PrEP may not translate
into human.

It is not precisely known how much virus is being transmitted
from an infected to an uninfected individual during e.g. sexual
contact. Moreover, it is not known how many transmitted viruses
actually reach a target cellular environment that allows their
reproduction, and what types of cells are relevant for the initial
infection. Also, the number of transmitted viruses, the availability
of target cells and the subset of viruses that reach a cellular
environment that facilitates their reproduction may be altered by
the circumstances of HIV-1 transmission and several unknown co-
factors. While the earliest stages of mucosal transmission of HIV-1
have not been directly observed in human and are not fully
understood, animal experiments suggest that CD4z T-cells are
probably the principal cell type infected at the portal of entry and
throughout the earliest stages of infection [55]. These cells are
mainly located in the sub-mucosa [56]. Although exposure at the
mucosal surface may be substantial, only a fraction of HIV-
particles may penetrate the intact epithelial layer and reach target
cells [57–59] (denoted as inoculum size throughout the manu-
script). Low per-contact infection probabilities further indicate that
infectious virus may not reach a cellular environment that
facilitates their reproduction during most sexual contacts [33,34]
(per-contact infection probabilities %5%), in contrast to other
routes of transmission such as blood transfusion [34] (per-contact
infection probabilities w95%). Recent studies further showed,
based on genotyping, that most infections (§75%) resulting from
sexual HIV-1 transmission can be traced back to a single founder
virus, or small populations of founder viruses [35,36]. Since the
majority of new infections result from sexual HIV-1 transmission,
PrEP intervention strategies may already effectively curb sexual
HIV-1 transmission by preventing infection with small virus
inoculum sizes. However, in the presence of co-existing infections,
the integrity of the mucosal barrier may be compromised, which
increases inoculum size [60]. Furthermore, co-existing infections
may increase HIV-1 acquisition by increasing the availability of
target cells in the sub-mucosa [60]. While we did not take co-
infections into account, future research is warranted to elucidate
the role of co-infections in the context of PrEP-strategies.

Our predictions revealed that the prophylactic efficacy of TDF
decreases with an increasing number of inoculated viruses (see
Fig. 5A, B, C, D), making TDF more efficient when only a few
viruses reach a target cell environment and less efficient for large
numbers of viruses. This observation can be explained as follows:
a) At clinically relevant concentrations, TDF may only inhibit a
certain proportion of potential target cell infections P. b) Some
minimum number of infectious viruses Vmin may already result in
infection with almost 100% probability. When only a proportion
of potential target cell infections are prevented, some inoculum
size Vt0

exists where P:Vt0
wVmin. Therefore, TDF becomes

inefficient above a certain inoculum size. The effect of TDF is
particularly limiting, if P cannot be decreased by increasing TDF
dosage (TFV uptake & anabolism become saturated, see eq. (5)
and grey range in Fig. 6).

While it has recently been suggested to combine antiviral
strategies for HIV-1 prevention [61], in this work, we predict a
dependency of PrEP efficacy on inoculum size, which could make
combined HIV prevention efforts synergistic: ‘test and treat’/

’treatment as prevention’ strategies [62] aim to reduce the
infectiousness of seropositive individuals by initiating HAART
immediately after diagnosis, which effectively down-sizes their
viral load and therefore the number of viruses transmitted to an
uninfected individual. We predict that PrEP is highly efficient in
the scenario where only few viral particles become transmitted,
which possibly makes the two HIV-prevention efforts synergistic.
This assumption, however, warrants further experimental confir-
mation.

The developed model is based on several assumptions, which we
outline in the following:

a) We used intracellular TFV-DP concentrations in PBMCs as a
marker of efficacy. PBMCs are surrogate markers, which
consist of different cell types of which the majority, however,
is susceptible to HIV-1 infection [26]. Different cell types may
differentially phosphorylate TFV, depending on the expres-
sion of transporters and enzymes relevant to the intracellular
phosphorylation of this drug. In line with this argument,
Patterson et al. [51] recently found higher levels of TFV-DP
in tissue biopsies from the rectum as compared to cervix and
vagina after a single dose of Truvada (300 mg TDF and
200 mg emtricitabine). Remarkably, the median concentra-
tions of TFV-DP in the rectal biopsies (displayed in units
fmol/g tissue in [51]) are within the same range as those
concentrations predicted in Figure 3A after unit conversion
(1 fmol/106 cells &106=180 fmol/mL tissue; 1 mg tissue
&1 mL tissue). However, it is not entirely clear, what
implications the distinct TFV-DP levels detected by Patterson
et al. [51] may have in terms of HIV-1 prophylaxis: Only a
subset of cells in the genital/rectal biopsies may be relevant
for HIV-1 infection (e.g. CD4z lymphocytes [55]). Thus, it is
not entirely clear if e.g. lower TFV-DP concentrations in
these biopsies imply lower concentrations in cells relevant to
HIV-1 infection or only in those not relevant to infection.
Human studies, which analyze TFV-DP levels in purified
CD4z cells, are missing. Purified CD4z cells derived from
rectal biopsies in macaques indicate identical TFV-DP levels
when compared to PBMC levels, which suggests that the
PBMC surrogate marker is a good indicator for TFV-DP
levels in cells relevant to HIV-1 infection.

b) Recent work suggests that the efficacy of NRTIs like TDF is
affected by the levels of endogenous competing nucleotides
dNTP (specifically: dATP for TFV-DP) [6,63]. Although this
is likely to contribute to the efficacy of TFV-DP to prevent
particular routes of infection, we could not take this
information into account, because information concerning
dNTP levels in target cells in different physiologic locations is
lacking for humans. However, once these levels become
available, their impact on the (cell-specific) susceptibility may
be probed by sophisticated models, such as [6].

c) Vaginal TFV gel has been used successfully to prevent
heterosexual HIV-1 infection [64]. Vaginal TFV gel exhibits
entirely different pharmacokinetics compared to oral TDF
dosing. TFV-DP levels in vaginal lymphocytes may be
significantly higher in relation to the systemic levels (TFV-
DP in PBMCs) after local exposure [65,66]. Most impor-
tantly, local exposure may mitigate the need for dosing long
before exposure, which may be the greatest obstacle for the
sucess of oral PrEP in practice. While the current model is
useful in predicting the effects of oral TDF administration on
HIV-1 infection, sophisticated pharmacokinetic modelling of
vaginal TFV gel [67] in combination with stochastic
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modelling may enable to assess its prophylactic efficacy in
silico in the future.

d) In the absence of data elucidating the levels of TFV-DP in
uninfected individuals, we assumed that TFV-DP levels in
PBMCs from infected individuals vs. uninfected individuals
are similar. Since TFV pharmacokinetics (parent compound)
have been reported to be similar in healthy- and HIV-
infected individuals [5], we found it reasonable to assume that
TFV-DP levels are also similar.

e) It has recently been reported that TFV may become
phosphorylated within red blood cells (RBCs) [68]. While
standard procedures for the preparation of PBMC samples
may not prevent their contamination with RBCs, this may
hamper the accuracy of determination of TFV-DP in PBMC
samples. Therefore, differences in RBC contamination may
in part contribute to the variability of TFV-DP levels in
PBMC measurements. The relevance and impact of RBC
contamination on TFV-DP levels is not yet fully understood
and further research is warranted to assess its role.

f) In individuals with established infection, the rates of viral
elimination CL(infected) have been determined in a number
of clinical studies, see e.g. [69,70]. Because of ethical reasons,
the elimination of HIV in uninfected/newly infected
individuals CL(naive) has never been directly observed.
We assumed that viral elimination CL(naive) is lower in
uninfected than in infected individuals, because the immune
system may not recognize HIV readily in the naive patient. In
line with other studies [71,72], we therefore set the parameter
CL(naive) = 2.3 [1/day] (see Table 2), which reproduced
clinical infection probabilities in previous work [37].

The presented modeling approach may be extended to e.g.
assess the consequences of TDF-based PrEP intervention on drug
resistance emergence, or TDF-based PrEP efficacy in the case
when resistant virus becomes transmitted. Also, the combined
effects of emtricitabine (FTC) and TDF remain to be elucidated,
but can be studied by extending the presented model with the
pharmacokinetics of FTC, once data on intracellular FTC-
triphosphate becomes available.

Supporting Information

Table S1 Assessment of alternative models for plasma
TFV pharmacokinetics. Goodness-of-fit in terms of the

weighted residual sum of squared errors (WRSE) of model
predicted vs. experimental data following either doses of 75,
150, 300 or 600 mg oral TDF from three independent clinical
trials [7,9,12] for a one compartment- vs. a two compartment
model. The models were compared by computing the Akaike
information (AIC) and the model with the lowest AIC value was
used subsequently (the two compartment model). Goodness-of-fit
plots are shown in Fig. 2A-B (main article).
(PDF)

Table S2 Predicted individual TFV-DP elimination
kinetics. Estimated individual plateau concentrations C0(i) and
elimination rates kout(i) of TFV-DP from PBMCs (after treatment
cessation). Parameters were estimated assuming first-order decay

kinetics according to: Ccell(i,t)~C0(i):e{t:kout(i) using the data
from [11].
(PDF)

Table S3 Contingency table for infection events during
once daily PrEP with 300 mg TDF. Predictions are based on
2000 ‘virtual patients’ simulations respectively. The first number in
the brackets in columns 2–6 indicates the number of ‘virtual
patients’ that remained uninfected after viral challenge, whereas
the second number indicates the number of patients that became
infected. For example, when 20% of once daily 300 mg TDF pills
are ingested and patients are challenged with inoculum size one
(one virus reaches a target cell environment), 1927 ‘virtual
patients’ remain uninfected, whereas 73 became infected.
(PDF)

Table S4 Contingency table of infection events for one
week of TDF-based PrEP with 300 mg started around
the time of exposure (1w-PrEP/PEP). Predictions are based
on 2000 ‘virtual patients’ simulations respectively. The first
number in the brackets in columns 2–6 indicates the number of
‘virtual patients’ that remained uninfected after viral challenge,
whereas the second number indicates the number of patients that
became infected. For example, when 300 mg TDF is taken 6
hours before viral challenge, continued for one week and patients
are challenged with inoculum size one (one virus reaches a target
cell environment), 1866 ‘virtual patients’ remain uninfected,
whereas 134 became infected.
(PDF)

Table S5 Contingency table of infection events for a
single oral TDF dose 300 mg (sd-PrEP). Predictions are
based on 2000 ‘virtual patients’ simulations respectively. The first
number in the brackets in columns 2–6 indicates the number of
‘virtual patients’ that remained uninfected after viral challenge,
whereas the second number indicates the number of patients that
became infected. For example, when 300 mg TDF are taken
1 hour before viral challenge and patients are challenged with
inoculum size one (one virus reaches a target cell environment),
1818 virtual patients remain uninfected, whereas 182 became
infected.
(PDF)

Table S6 Contingency table of infection events for a
single oral TDF dose 600mg (sd-PrEP). Predictions are
based on 2000 ‘virtual patients’ simulations respectively. The first
number in the brackets in columns 2–6 indicates the number of
‘virtual patients’ that remained uninfected after viral challenge,
whereas the second number indicates the number of patients that
became infected. For example, when 600mg TDF are taken 1hour
before viral challenge and patients are challenged with inoculum
size one (one virus reaches a target cell environment), 1839 virtual
patients remain uninfected, whereas 161 became infected. zzz

Table 2. Parameters used for the viral model.

Param. Value Ref. Param. Value Ref.

lT 2:109 [73] lM 6:9:107 [74]

dT,dT1 0.02 [74] dM,dM1 0.0069 [74]

dT2
1 [69] dM2

0.09 [29]

b:q:rPR 0.67 [29] rrev 0.5 [31]

dPIC,T 0.35 [21,75] dPIC,M 0.0035 [29]

kT 0.35 [31] kM 0.07 [29]

bT(w) 8:10{12 [76] bM(w) 10{14 [29]

bNNT
1000 [74] bNNM

100 [74]

CL(infected) 23 [70] CL(naive) 2.3 [71,72]

All parameters refer to the absence of drug treatment w. All parameters in units

[1/day], except rrev and b:q:rPR (unit less). NT=M~b:q:rPR
:bNNT=M [29].

doi:10.1371/journal.pone.0040382.t002
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Inoculum size has a significant impact on the number of infections

at the pv0.01 level (x2-test).
(PDF)

Table S7 Statistical test of difference of prophylactic
efficacy between 300 mg sd-PrEP and 600 mg sd-PrEP
with TDF. The distinct fields show the p-value for a x2-test
between the prophylactic efficacy between 300 mg and 600 mg
sd-PrEP with TDF. The predicted outcome was significantly
different between the two distinct dosing regimens, if the p-value is
pv0.05, or pv0.01 respectively (yellow- and red-shaded fields).
(PDF)

Text S1 The supplementary text contains the derivation
of the model for intracellular TFV-DP uptake and
anabolism as well as a model evaluation.
(PDF)

Text S2 The supplementary text contains the derivation
of an approximate analytical formula for the computa-
tion of the probability of infection with distinct virus
inoculum sizes in relation to the concentration of TFV-
DP present.
(PDF)
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ORIGINAL ARTICLE

Multiscale Systems-Pharmacology Pipeline to Assess the
Prophylactic Efficacy of NRTIs Against HIV-1

S Duwal1*, V Sunkara1,2 and M von Kleist1*

While HIV-1 continues to spread, the use of antivirals in preexposure prophylaxis (PrEP) has recently been suggested. Here we
present a modular systems pharmacology modeling pipeline, predicting PrEP efficacy of nucleotide reverse transcriptase
inhibitors (NRTIs) at the scale of reverse transcription, target-cell, and systemic infection and after repeated viral exposures,
akin to clinical trials. We use this pipeline to benchmark the prophylactic efficacy of all currently approved NRTIs in wildtype
and mutant viruses. By integrating pharmacokinetic models, we find that intracellular tenofovir-diphosphate builds up too slowly
to halt infection when taken “on demand” and that lamivudine may substitute emtricitabine in PrEP combinations. Lastly, we
delineate factors confounding clinical PrEP efficacy estimates and provide a method to overcome these. The presented
framework is useful to screen and optimize PrEP candidates and strategies and to understand their clinical efficacy by
integrating the diverse scales which determine PrEP efficacy.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 377–387; doi:10.1002/psp4.12095; published online 21 July 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
! Preexposure prophylaxis using tenofovir, with or
without emtricitabine, may reduce HIV infection.
• WHAT QUESTION DID THIS STUDY ADDRESS?
! How do molecular parameters, pharmacokinetics,
virus dynamics, mode of transmission, transmitter virus
loads, and risk behavior influence PrEP-efficacy end-
points against wildtype and resistant viruses? Are other
NRTIs suitable?
• WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
! We present a modular systems pharmacology
modeling pipeline for NRTIs, predicting their effect at

the scale of reverse transcription e, target-cell infection
g, and PrEP efficacy after a single w and repeated viral
exposure xT. Novel aspects include the mechanistic
multiscale integration of these efficacy endpoints, novel
infection, and exposure models (modules III–IV) and
the ability to simulate clinical trials (module V).
• HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
! PK-PD studies for PrEP are unethical, leaving a
knowledge gap when designing phase III studies. Our
framework provides guidance by identifying pharmaco-
logical requirements for PrEP candidates and strategies
and may help planning and evaluating clinical trials.

Despite intensive research, HIV cannot be cured to date,1

necessitating life-long treatment of infected individuals to
contain the virus and prevent immunodeficiency. At the
same time the HIV epidemic continues to spread, with !2.1
million new infections in 2014.2 While an effective vaccine
remains to be developed3 a current way forward lies in the
repurposing of existing antiviral drugs to prevent transmis-
sion, or to develop novel compounds for that purpose.4 Two
strategies have been proposed in this context:

1. Treatment-as-prevention (TasP) involves therapy initiation shortly after
infection.5 As a consequence, the treated individuals’ virus load
decreases, which also decreases the contagiousness originating from
this individual.6,7 A recent study,8 however, indicates that onwards
transmission may occur very soon after infection, when individuals
are unaware of their serologic status and consequently have not yet
initiated TasP, which potentially limits its epidemiologic impact.

2. Preexposure prophylaxis (PrEP) involves antiviral drug administration
to uninfected individuals at risk of acquiring HIV infection.9 Early

studies have investigated chronic administration of the nucleoside
reverse transcriptase inhibitors (NRTI) tenofovir disoproxil fumarate
(TDF) alone or in combination with emtricitabine (FTC), with variable
outcomes.10 Recent studies also investigated PrEP ‘‘on demand,’’
i.e., PrEP administered shortly before or around viral exposure.23

The goal of this work is to develop an integrated mecha-
nistic modeling pipeline to determine PrEP efficacy of
NRTIs, integrating pharmacokinetics (PK) and pharmacody-
namics (PD), as well as parameters related to the mode
and timing of viral challenge. The pipeline has a building
block structure and different parts can be used to assess
the PrEP efficacy of other drug classes as well.

NRTIs are administered as prodrugs, which are taken up
by target cells and successively phosphorylated by cellular
kinases. Their tri-phosphorylated moieties compete with
endogenous nucleotides for incorporation into nascent pro-
viral DNA during reverse transcription,12 effectively halting
the process and thus preventing target cell infection. The
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uptake and intracellular activation of these compounds
causes an asynchrony between plasma prodrug concentra-
tions and the concentrations of the active (triphosphory-
lated) moiety at the target-site, so that prodrug plasma
pharmacokinetics poorly predicts their efficacy.13 Moreover,
due to the competitive mode of inhibition, NRTI efficacy can
be target-cell-dependent.14,15 While only some of these
issues are addressed by most modeling efforts,11,16 we
have recently developed and validated a molecular mecha-
nism of action (MMOA) model17 for this inhibitor class,
allowing to determine the compounds’ effect on reverse
transcription e and target cell infection g. Moreover, we
developed pharmacokinetic models linking prodrug adminis-
tration with effect-site concentrations for the NRTIs TDF,18

FTC and 3TC.17 In this work, we link the MMOA model with
pharmacokinetic models, which allows exploring the impact
of pharmacokinetic attributes, as well as pharmacodynamic
parameters, including drug resistance, on drug efficacy. We
will then take this approach one step further, by extending
the framework to assess the inhibitors’ potential for repur-
posing as PrEP compounds, estimating the compounds’
effect on preventing systemic infection w after a single
exposure with n viruses. The latter allows assessing differ-
ent PrEP schemes (e.g., chronic administration vs. “on
demand”). In a last step, to assess the epidemiologic
impact of these compounds, we derive a statistical model
linking transmitter virology with virus exposure in the indi-
vidual at risk for different modes of transmission. We then
estimate the long-term efficacy of PrEP xT after repeated
viral challenges, akin to a clinical study. The final framework
is readily integrable into epidemiologic models aiming to
assess PrEP or TasP or both. All intermediate steps of this
pipeline have been validated with available data.

METHODS
Pharmacokinetics
We will use previously developed models for TDF, FTC,
and 3TC, which link oral prodrug application with intracellu-
lar tri-phosphate pharmacokinetics.17,18 In brief, the plasma
pharmacokinetics of their dominant circulating forms (teno-
fovir (TFV), FTC, and 3TC) are best described by a two-
compartment model with first-order absorption. Intracellular
uptake and phosphorylation was described by Michaelis-
Menten-type saturable kinetics and elimination was mod-
eled by first-order kinetics. Details and parameterizations
can be found in Supplementary Note 1.

We chose to predict average patients’ pharmacokinetic
profiles, but extensions to virtual patient populations from
Pop-PK models are straightforward. For the modeled NRTI
combinations, we assume no pharmacokinetic interaction at
the level of intracellularly active NRTI-triphosphates (NRTI-
TP), but extensions are possible.19

Molecular mechanism of action
We will utilize a previously developed15 and validated17

MMOA model for NRTIs, which explicitly considers reverse
transcriptase (RT)-mediated polymerization of nascent viral
DNA. NRTI-TPs interfere with polymerization by competing
with endogenous nucleotides for incorporation into viral

DNA. For as long as they are integrated in the primer, they
halt the RT process, which allows the cell to eliminate cru-
cial viral components intracellularly, reducing the virus’
chance to infect the cell by integrating its proviral DNA. The
MMOA model takes in vitro measurable microkinetic param-
eters as input (binding affinity, maximum catalytic rate, exci-
sion efficacy) and computes the inhibition of reverse
transcription e. This measure is subsequently converted
into inhibition of target-cell infection g following a challenge
by a single virus, with corresponding IC50. The MMOA mod-
el, including its parametrization is exemplified in Supple-
mentary Note 2.

For NRTI combinations, we assume that the presence of
one NRTIs does not affect the microkinetic parameters of
the respective other NRTI. The MMOA model readily allows
assessing combinatorial effects and this is outlined in Sup-
plementary Note 2.

Probability of infection after challenge with n viruses
After virus exposure during, e.g., intercourse, viruses need
to overcome several physiological barriers to reach a
target-cell environment. Assuming n viruses reach an
immediate target-cell environment, the probability of infec-
tion is given by:

PðinfjV05nÞ512ð12PðinfjV051ÞÞn ; ðassuming statistical independenceÞ
(1)

where PðinfjV051Þ and PðinfjV05nÞ are the probabilities of
establishing infection if 1 or n50; . . . ;1 virus(es) reach a
target-cell environment, respectively. Thus, 1) the number
of viruses reaching a target-cell environment n (next sec-
tion) and 2) the infection probability given a single virus
(this section) need to be appropriately modeled.

Typically, HIV produces $1,000 daughter viruses for
each virus completing its replication cycle, making its sub-
sequent extinction unlikely. Consequently, for all cases con-
sidered here the probability of the virus completing its first
replication cycle provides a good approximation for the
probability of establishing infection (see Discussion for limi-
tation). To compute the infection probability, we used two
different mathematical approaches, based on the chemical
master equation (CME), and a branching process, which
delivers an analytical solution of the CME for t !1.

The CME can be directly derived from an established
viral dynamics model25 and is detailed in Supplementary
Note 3. The probability of target-cell infection in the pres-
ence of NRTIs g is an integral part of this CME, providing a
link to the MMOA model.

We used the CME, whenever the effect of NRTIs change
on the time-scale of interest, i.e., to simulate the effect of
NRTIs shortly after initiation of prophylaxis (“PrEP on
demand”). When the concentrations of NRTI-TPs are
almost constant over time (e.g., “chronic administration”)
the branching process is sufficient.

PrEP efficacy
The efficacy of PrEP u, defined as the reduction of infection
per challenge with i51; % % % ;1 viruses (e.g., after coitus
with an infected individual) is then readily computed by:
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u512
PSðinfjV05iÞ
P1ðinfjV05iÞ

: (2)

Here, PSðinfjV05iÞ and P1ðinfjV05iÞ denote the infection
probabilities after exposure to i51; . . . ;1 viruses when a
PrEP strategy S was applied vs. PrEP was not applied 1.
The PrEP efficacy per typical exposure w is then defined by:

w512
X1

i51

PðV05i jn > 0Þð12uÞ (3)

which is $ 12"P Sðinf Þ="P1ðinf Þ
! "

, where "P S=1ðinf Þ denote
the infection probabilities for a typical exposure during coitus.
In the equation above, PðV05i jn > 0Þ5PðV05iÞ=ð12PðV05
0ÞÞ is the conditional probability that i51; . . . ;1 viruses reach
a target-site compartment after exposure (e.g., coitus) among
all cases where there was an actual exposure that could have
led to infection (n > 0 viruses reach a replication-relevant
compartment). The exposure probabilities are detailed
next and in Supplementary Note 4.

Viral exposure module
The infection probability after coitus is strongly correlated
with the donor viral load.6 This correlation is likely attributed
to an increased number of transmitted viruses in high viral
load donors. While there is strong evidence that only very
few founder viruses establish infection,21 the distribution of
the number of transmitted viruses and its dependence on the
donor viral load is unclear. Here, we propose a model to
bridge the donor viral load with the distribution of transmitted
viruses in the recipient.

We assume that the number of viruses transmitted and
reaching a target-cell environment n is a binomially distribut-
ed random variable, parameterized by the donor viral load.
The probability of transmitting exactly n viruses to the recipi-
ent when the viral load in the donor is k is then given by:

PðV05njVL5kÞ5
jjkmjj

n

 !
% r n % ð12rÞðjjk

m jj2nÞ (4)

where m is an exponent of the viral load k ; jj % jj is the
next integer function, and r is the success probability.

Figure 1 Modular modeling framework. The virus replication model (module III) can be used to compute the probability of infection of
an exposed person after viral challenge, given a particular drug inhibition (input from module II) and viral exposure (input from
module IV). Model details are elaborated in Supplementary Note 3. Module IV represents a statistical model of the relation between
the viral load in a transmitter, the mode of transmission (e.g., homosexual contact) and the number of viruses entering a target cell
compartment in the exposed person. It is derived in Supplementary Note 4, where the parametrization is also given. The mechanisms
of action model (MMOA) provides the link between intracellular NRTI-TP concentrations, target process inhibition e (reverse
transcriptase-mediated polymerization), and inhibition of target cell infection g. It can be used to quantify effects of all currently
approved NRTIs and NRTI combinations, including inhibition of mutant viruses; see Supplementary Note 2 for details and model
parameters. Pharmacokinetic models (module I), which establish the link between prodrug administration and intracellularly active
NRTI-TPs have been developed for TDF, FTC, and 3TC and allow to evaluate different PrEP strategies (e.g., dosing regimen), related
to these compounds (summarized in Supplementary Note 1). Finally, module V can be used to assess the efficacy of PrEP strategies
in preventing infection after multiple viral challenges xT, akin to clinical trials (see Supplementary Note 5 for derivations).
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The parametrization and model derivations are outlined
in Supplementary Note 4. From here, PðV05nÞ, can
be computed (it is needed in Eq. 3), i.e.,

PðV05nÞ5
Ð1
k50 PðVL5kÞ % PðV05njVL5kÞ, as shown in

Figure 2.

Efficacy against repeated viral challenges
Up to now, we assessed PrEP efficacy per exposure w.
However, clinical trials report the ratio of incidence rates in
the treated and placebo arms as a measure of effica-
cy5,22–24 (see also Supplementary Note 5 for derivations).
The latter may be a consequence of an individual being
repeatedly exposed, and subject to, e.g., risk behavior and
trial follow-up duration making this estimate poorly compa-
rable between trials. The relation between average PrEP
efficacy (per challenge) w and clinical trial efficacy xT is
given by:

ð12xT Þ5
12
$

12"P1ðinf Þ % ð12wÞ
%T %NS

12
$

12"P1ðinf Þ
%T %N1

; (5)

where NS and N1 denote the number of unprotected sex
acts with an infected individual in the PrEP arm S and the
placebo arm 1 per person per month, respectively, and T
denotes the trial duration in months. "P1ðinf Þ denotes the
probability (frequency) of infection in the placebo arm per
challenge and xT denotes the estimated PrEP efficacy from
the incidence rates in a clinical trial of duration T.

Software
We used MatLab R2015a (MathWorks, Natick, MA; v. 8.5,
including optimization and bioinformatics toolbox) and
R (v. 3.1.2, Vienna, Austria) for modeling and simulation.
Sample codes are provided as Online Supplementary
Materials.

RESULTS
Modular modeling framework
We have constructed a modular pipeline to assess the effi-
cacy of different NRTIs in prophylactic regimen. The pipe-
line (Figure 1) consists of five modules that can be
combined, depending on the scientific question. Pharmaco-
kinetic models (module I) for the NRTIs TDF, FTC, and
3TC, linking oral drug administration with the pharmacoki-
netics of the active intracellular moiety (TFV-DP, FTC-TP,
and 3TC-TP), have been developed previously,17,18 allowing
to assess different dosing schedules, adherence, etc. The
intracellular concentrations can be coupled to an MMOA
model15 (module II), which enables quantifying the effect of
NRTIs, alone and in combination, on target cell infection g,
for wildtype and mutant viruses, after exposure to a single
virion as exemplified in Supplementary Note 2. A previ-
ously developed viral replication model25 (module III), that
has also been shown to be predictive in17,18,26 can then be
used to predict the infection probability, given an exposure
to n viruses during, e.g., coitus with an infected person.
The latter can be used to assess PrEP efficacy w per coitus
(see Eq. 3). Module IV simulates viral exposure, depending
on the transmitter viral load. The derivation of module IV
and its parametrization are elaborated in Supplementary
Note 4 and the next section. Module V assesses the long-
term efficacy of PrEP. That is, after repeated viral chal-
lenges, akin to a clinical trial.

Mode of transmission and viral exposure
We analyzed virus load data from the German Sero-converter
cohort, which is a nationwide, multicenter, open, prospective
long-term observational cohort initiated in 1997.8,27 We
restricted the analysis to untreated individuals with a known
seroconversion-date and risk group (N 5 1,213). We found
this data source particularly relevant, since viral load data
from both early as well as chronic infection is included

Figure 2 Virus exposure model (module IV). a: Virus load distribution (log 10 scale) in a representative transmitter population (German
Sero-converter study8,27). b: Estimated distribution of virus exposure in a target cell environment n following unprotected hetero- and
homosexual intercourse (blue and orange bars) with an infected individual. Inset: Probability that & 1 virus enters a replication-relevant
compartment. Derivations are provided in Supplementary Note 4.

PrEP Efficacy of NRTIs
Duwal et al.

380

CPT: Pharmacometrics & Systems Pharmacology

103



(median duration of infection: 18 weeks, IQR: 3–42
weeks), acknowledging that HIV-1 onwards transmission
may preferentially occur rather shortly after infection.8

The viral load in this cohort was log-normal distributed,
with mean llog10VL54:51 and r50:98 (see Figure 2a), in
agreement with other studies.28

Figure 2b shows the probability distribution of viral
exposure following hetero- and homosexual intercourse,
which was computed by combining data depicted in
Figure 2a with Eq. 4. Note that in the majority of cases
no virus enters a replication compartment and subse-
quently infection will not occur, whereas a few viruses
(one to five) may be transmitted occasionally and may
subsequently establish infection. This result is in line with
Keele et al.,21 who report that only very few founder virus-
es establish infection. Overall, our results indicate that
viral exposure is stronger during homosexual than during
heterosexual intercourse (compare blue and orange bars
in Figure 2b).

Concentration vs. risk reduction in wildtype and
mutant viruses
The MMOA model allows assessing the inhibition of tar-
get cell infection g by different NRTIs. We used this infor-
mation as part of our modeling pipeline (see Methods and
Supplementary Note 3) to assess the concentration–
response (percentage of systemic infections prevented w,
Eq. 3) for zidovudine (AZT), TDF, 3TC, FTC, stavudine
(D4T), and abacavir (ABC). The profiles are shown in
Figure 3a and allow for the first assessment of the suit-
ability of these drugs for repurposing as PrEP com-
pounds. For further assessment, toxicity needs to be
included. Note that the solid lines and the background
shading in Figure 3a show the expected efficacy and
interquartile range at clinically relevant concentrations
(see Supplementary Note 3). We predict that AZT can
prevent 14–53% of infections at clinically relevant concen-
trations, followed by TDF (24–89%), D4T (55–95%), ABC
(73–84%), 3TC (64–96%), and FTC (92–99%), with

Figure 3 Target-cell NRTI-TP concentration vs. risk reduction in wildtype and mutant viruses (modules II-IV) w. a: Mean efficacies (%
infections prevented) following viral exposure during a single unprotected homosexual intercourse (Eq. 3) are illustrated by the dotted
lines. Solid thick lines mark the risk reduction profile at clinically relevant ranges for the respective drugs (indicated ranges only provide
a rough guidance as outlined in Supplementary Note 3). Shaded areas indicate the corresponding IQR of the efficacy estimate, taking
variability in microscopic parameters (module II) and virus exposure (module IV, Figure 2b) into account. b–d: Mean efficacies w of
TDF, FTC, and 3TC against the wildtype virus are highlighted by solid lines. Efficacies against mutant viruses combine both drug
effects and inherent fitness defects of the mutants. The relative reduction in infection with the mutant virus in the presence of drug vs.
the wildtype virus in the absence of drugs is evaluated (dashed line: M184V, dash-dotted line: K65R, dotted line M184V/K65R double
mutant), see section “Concentration vs. risk reduction in wildtype and mutant viruses” for details. Vertical black dashed lines indicate
the clinically relevant drug concentrations range after chronic therapy.
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corresponding IC50 values of 0.046, 0.1, 0.025, 0.15,
1.72, and 0.82 [lM] (NRTI-TP concentrations with respect
to preventing target-cell infection following exposure with
a single virion (g)). We further assessed the efficacy of
TDF, FTC, and 3TC in preventing infection due to trans-
mitted drug resistance.29 Resistance to FTC and 3TC is
associated with the M184V mutation, whereas resistance
to TDF is associated with the K65R mutation.30,31 Note
that inhibition of the mutant viruses can readily be
assessed in the MMOA model (see Supplementary

Note 2). Furthermore, the MMOA model allows to assess
the fitness costs associated with these mutations. In line
with ex vivo experiments,32,33 both the M184V and K65R
mutant conferred a fitness disadvantage predicted by the
MMOA model. (f ðmutÞ5 63, 55 and 46% of the wildtype
fitness for M184V, K65R, and the M184V/K65R double
mutant). The predicted PrEP efficacy of TDF, FTC, and
3TC against wildtype (WT) and mutant viruses (M184V,
K65R, and M184V/K65R) is shown in Figure 3b–d. We
assessed the percentage of infections prevented by

Figure 4 Efficacy w of PrEP “on demand” against infection following unprotected homosexual intercourse within 24hours after PrEP ini-
tiation (modules I-IV). a–c: Pharmacokinetic profiles during PrEP “on demand” for the circulating NRTI prodrug (solid lines) and the
intracellular, active NRTI-TP moiety (dashed lines). FTC oral dose was 400 mg at 0 hours, followed by 200 mg at 24 and 48 hours (a),
while TDF or 3TC dosage was 600 mg at 0 hours, followed by 300 mg at 24 and 48 hours, respectively. d–e: Infections averted for
PrEP “on demand” when viral challenge occurred either 1, 3, 6, 12, 18, or 24 hours after PrEP initiation with either FTC (d), TDF (e),
or 3TC (f). Solid lines indicate the mean % infections averted (see Eq. 3), while shaded areas indicate interquartile ranges of this esti-
mate, taking variability in microscopic parameters (module II) and virus exposure during homosexual intercourse (module IV,
Figure 2b) into account. g,h: Infections averted for combinations of TDF1FTC (g) and TDF13TC (h), taken “on demand” (double
doses at day 0, followed by single doses at days 1, 2). Combination predictions assumed that no significant pharmacokinetic interac-
tions occur, pharmacodynamic interactions were modeled as outlined in Supplementary Note 2.
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prophylaxis after exposure to the mutant virus relative to
the wildtype virus in the absence of drugs, i.e.:

12
ð1

k50
PðVL5kÞ %

X1

n50

PðV05njVL5kÞ %
PS;mutðinf jV05nÞ
P1;wtðinf jV05nÞ

 ! !
;

(6)

where “mut” denotes the mutant virus (M184V, K65R or
M184V/K65R) and “wt” denotes the wildtype virus. Thus,

both the effect of the drugs, as well as inherent fitness
costs, are simultaneously evaluated, allowing to assess
whether PrEP fosters the transmission of resistant viruses
(this is the case whenever mutant transmission is more
effective; i.e., whenever the dashed line is below the solid
line in Figure 3b–d). The simulations show that the K65R
mutation may decrease the PrEP efficacy of TDF, while the
M184V-containing virus is hyper-susceptible to TDF. The
M184V/K65R double mutant is almost as susceptible as

Figure 5 Risk reduction profile w for an unprotected homosexual intercourse occurring within 30 days of PrEP or after its discontinua-
tion (modules I-IV). a–e: Mean risk reduction profiles (see Eq. 3) when either oral doses of 200 mg FTC (a), 300 mg TDF (b), 300 mg
3TC (c), 300 mg TDF1200 mg FTC (d), 300 mg TDF1300 mg 3TC (e) were administered daily for 30 days and discontinued thereaf-
ter are illustrated by solid lines. Shaded areas indicate interquartile ranges of this estimate, taking variability in microscopic parameters
(module II) and virus exposure during homosexual intercourse (module IV, Figure 2b) into account. f: The mean risk reduction profile
for the combination 300 mg TDF 1 200 mg FTC (violet solid line) is shown together with the mean risk reduction profiles for the single
drugs FTC (green) and TDF (red). g: The mean risk reduction profile for the combination 300 mg TDF 1 300 mg 3TC (orange solid
line) is shown together with the mean risk reduction profiles for the single drugs 3TC (blue) and TDF (red). Combination predictions
assumed that no significant pharmacokinetic interactions occur, pharmacodynamic interactions were modeled as outlined in Supple-
mentary Note 2.
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the wildtype, but has a profound fitness deficit. In the case
of FTC, both the M184V and K65R mutation, as well as the
double mutant, diminish its PrEP efficacy from 92–99%
(wildtype) to 72–92% (K65R) and 47–71% (M184V). In the
case of 3TC, mutations K65R, M184V, and the double
mutant gradually diminish its efficacy down to complete
resistance (in case of the double mutant). At low drug con-
centrations, the fitness defect of the resistant viruses leads
their reduced transmissibility ($37–54% less likely to be
transmitted than the wildtype in the absence of drugs).

Efficacy shortly after PrEP initiation
Next, we assessed the prophylactic efficacy of TDF, FTC
and 3TC alone, or in combination, when initiated shortly
before exposure (“on demand”), akin to the IPERGAY pro-
tocol.23 In this protocol, individuals initiate PrEP up to 24
hours before viral exposure with a double-dose and then
take two more pills on days 1 and 2. Evaluated pill sizes
were 200 mg (FTC) or 300 mg (3TC or TDF). Based on
previously developed PK models,17,18 we simulated the
(population-average) plasma and intracellular pharmaco-
kinetics for TFV, FTC, and 3TC, respectively TFV-DP,
FTC-TP, and 3TC-TP. As can be seen in Figure 4a–c,
intracellular concentrations (dashed lines) quickly
increase to almost steady state levels for FTC-TP and
3TC-TP after $6–12 hours, but not for TFV-DP, arguing
that TFV-DP may not reach protective levels when applied
“on demand.” For an exposure occurring either 1, 3, 6,
12, 18, or 24 hours after PrEP initiation, Figure 4d–f
shows the prophylactic efficacy w of the different drugs
used in isolation. All tested drugs are more efficiently pre-
venting infection, if the viral challenge occurs late with
respect to PrEP initiation. Emtricitabine seems to be most
efficacious, preventing 73–90% of potential infections, fol-
lowed by 3TC (55–71%). Tenofovir seems to poorly pre-
vent infection when taken “on demand,” only preventing
15–40% of potential infections after virus exposure. The
latter corroborates the hypothesis that protective TFV-DP
levels may build up too slowly in the intracellular compart-
ment to provide sufficient protection.34 The efficacy of the
combination 3TC1TDF was 59–77%, whereas the effica-
cy of the combination FTC1TDF mirrored the efficacy
profile of FTC alone (74–92%, see Figure 4g). The

observed clinical trial efficacy estimate for FTC1TDF in
IPERGAY was 86%.23 Technical details of the drug com-
bination model are elaborated in Supplementary Note 2.

Efficacy after PrEP discontinuation
The prophylactic efficacy of TDF, FTC, and 3TC, alone or
in combination, during chronic PrEP and after its discontin-
uation is assessed in Figure 5a–e, based on (population-
average) pharmacokinetics after oral administration of
200 mg FTC or 300 mg TDF or 300 mg 3TC daily, or com-
binations thereof. Daily administration of FTC, TDF, and
3TC for 30 days prior to viral exposure lead to a prophylac-
tic efficacy w of $95, 74, and 75%, respectively. After dis-
continuation, FTC, TDF, and 3TC remain & 50% effective
for about 7, 10, and 2 days, respectively, with the PrEP effi-
cacy of 3TC declining most rapidly. The combination
FTC1TDF and 3TC1TDF prevent $96% and 87% of infec-
tions, respectively, after 30 days of daily administration.
Corresponding observed clinical trial estimates for high-
level adherence FTC1TDF PrEP are xT 5862100%35 and
58296%.24 We predict that both combinations remain
& 50% effective for about 10 days after discontinuation.
Figure 5f,g shows the efficacy of the combination, with the
efficacy of the single drugs superimposed (note that the
combinatorial effects are not independent, Supplementary
Note 2). The graphic indicates that tenofovir preserves the
prophylactic efficacy after discontinuation of the combina-
tion and thus makes the regimen robust to poor adherence.

Long-term efficacy (against repeated virus challenges)
Table 1 depicts the results of a simulated clinical trial with
untreated/placebo and PrEP-treated arms in men who have
sex with men (MSM) for different levels of risk compensation
and follow-up durations (T 5 6, 12, 18, 24, and 36 months).
The infection probability per unprotected sex act with an
uninfected individual "P1ðinf Þ was fixed to 3%.36,37 We con-
sidered the PrEP strategy to prevent infections per challenge
with probability w570, 80, and 90%, respectively. For each
efficacy, 0, 10, and 20% risk compensation (additional per-
centage of risky sex acts in the treated arm compared to the
untreated/placebo arm) were assessed. The number of risky
sex act per month and individual N1 was set to 1.19, based
on a reported value of seven risky acts38 and assuming a
prevalence of $17% in MSM.39 For all cases, the clinical trial

Table 1 Bias of clinical-trial efficacy estimates xT through risk compensation and follow-up duration

Follow-up
durations
in months T

Trial-based PrEP efficacy estimates xT

w 5 70% w 5 80% w 5 90%

Risk compensation Risk compensation Risk compensation

0% 10% 20% 0% 10% 20% 0% 10% 20%

6 68.01 64.93 61.86 78.48 76.38 74.28 89.14 88.06 86.99

12 65.66 62.46 59.30 76.65 74.42 72.21 88.09 86.93 85.77

18 63.26 59.96 56.73 74.76 72.41 70.09 86.99 85.73 84.49

24 60.83 57.44 54.14 72.82 70.35 67.92 85.84 84.49 83.15

36 55.93 52.39 48.99 68.81 66.11 63.48 83.42 81.88 80.36

Trial-based PrEP efficacy estimates xT (after repeated viral challenges) for different levels of risk compensation (reported as 100 % NS2N1
! "

=N1
! "

and trial dura-
tions T were estimated using Eq. 5 (with verifications provided in Supplementary Note 5). The number of unprotected sex acts per month with an infected indi-
vidual N1 in the untreated arm was set to 1.19. The infection risk per coitus "P infð Þ was set to 3% and the prophylactic efficacy per coitus w was set to 70, 80,
and 90%, respectively.

PrEP Efficacy of NRTIs
Duwal et al.

384

CPT: Pharmacometrics & Systems Pharmacology

107



estimated efficacy xT is lower than the PrEP efficacy per
challenge w and it decreases with increasing follow-up time.
The decrease is more pronounced when the PrEP efficacy
per challenge w is low. At 36 months of follow-up, without
risk compensation, the clinical trial efficacy estimate xT

underestimated the actual PrEP efficacy per challenge w by
14, 11, and 7%, respectively, for w 5 70, 80, and 90%. This
underestimation becomes even more pronounced when risk
compensation occurs.

Taken together, our simulations point to a profound limita-
tion in estimating and comparing PrEP efficacy from inci-
dence rates in clinical trials (as currently done): On the one
hand, a clinical trial has to be long enough to provide a sta-
tistically reasonable estimate of the incidence rate (a con-
siderable number of individuals have to become infected).
On the other hand, the longer the trial, the more confound-
ed will the efficacy estimate xT be in relation to the actual
PrEP efficacy w (see Table 1). For this reason we provide
the following formula, allowing to convert clinical efficacy
estimates xT into unbiased PrEP efficacies per challenge
w, which can be compared between different studies (see
Supplementary Note 5).

ð12wÞ5
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi$
12"P1ðinf Þ

%N1%T
1xT 2xT %

$
12"P1ðinf Þ

%N1 %TT %NS

r

"P1ðinf Þ
;

(7)

where the subscript S, 1 denote the PrEP and untreated/
placebo arms, respectively.

DISCUSSION

In this work, we presented a modular multiscale systems phar-
macology modeling pipeline that can be assembled in a build-
ing block manner to assess the PrEP efficacy of NRTIs at
various levels, ranging from target process inhibition e, inhibi-
tion of target-cell infection g, and systemic infection w, and final-
ly long-term efficacy after multiple viral challenges xT. The
model allows a flexible integration of processes occurring on
different scales: We integrated the microscale interaction
between intracellularly active NRTI-TPs with RT-mediated viral
DNA polymerization, with meso-, macro-, and population-
scale processes, such as the pharmacokinetics, replication
dynamics, viral transfer, up to the long-term infection probabili-
ty after repeated virus exposure, akin to a clinical trial.

Module I (pharmacokinetics) is obviously drug-specific. We
utilized previously developed models17,18 for 3TC, FTC, and
TDF. The module was used to assess the efficacy w of PrEP
“on demand” and after its discontinuation (see Figures 4 and
5). We observed that TFV-DP accumulation may be too slow
for PrEP “on demand,” in agreement with Ref. 40, who put
forward similar concerns. Our analysis also showed, in con-
trast to dominating views, that FTC is more effective than
TDF for PrEP, owing to the fact that higher concentrations
may be achieved in target cells and that effective concentra-
tions build up faster than for TDF. On the other hand, TDF
seems to be less susceptible to imperfect adherence owing

to its long terminal half-life.18 Moreover, FTC’s efficacy is
more profoundly reduced by drug-resistant strains.29 The lat-
ter highlights the complementary roles of the two drugs. The
Partner PrEP study41 compared the efficacy of TDF alone vs.
TDF1FTC, which is partly motivated by cost-effectiveness
considerations. As previously mentioned, our analysis dis-
courages the use of TDF alone for PrEP. In addition, we
showed that the drug combination 3TC1TDF may be a cost-
effective alternative to TDF1FTC.

In a previous study42,43 PrEP efficacy was analyzed in
a TDF1FTC combination and an EC90516 fmol/106cells
($ 0.09 lM) for TFV-DP was estimated (EC50 $ 0:01lM).
This estimate, however, discarded the role of FTC-TP in
the analyzed PrEP combination. In the light of FTC’s effi-
cacy (see Figures 3–5) the previous estimate may vastly
underpredict TFV-DP’s actual EC90. We predicted actual
single-drug potencies (IC50s) of 0.1 and 0.82 lM for TFV-
DP and FTC-TP, respectively.

Module II (molecular mechanism of effect) allows to
translate in vitro measurable microparameters into mea-
sures of ex vivo efficacy (prevention of target cell infection
g). The model is applicable to all currently approved NRTIs
and furthermore allows studying drug efficacy against
mutant viruses and mutation-associated fitness deficits.
The latter is particularly useful, since it is unethical to test
PrEP in individuals exposed to drug-resistant viruses. Fur-
thermore, coupled to modules III–V and embedded into epi-
demiologic models, this allows studying the effect of PrEP
on drug resistance spread. We used module II in conjunc-
tion with modules III–IV to benchmark the PrEP suitability
of various NRTIs. Similar approaches may be used to
benchmark PrEP compounds currently under develop-
ment,4,44 i.e., nonnucleoside reverse transcriptase inhibitors
(NNRTI) or integrase inhibitors, or approved drugs for
repurposing, with NNRTIs possibly being cost-effective
alternatives. Obviously, toxicity endpoints have to be includ-
ed. Note that the MMOA model can in principle predict inhi-
bition of mitochondrial polymerase-c, which is frequently
associated with toxicity after NRTI administration.45 Howev-
er, since uptake and anabolism of NRTI is cell-type-
specific, NRTI-TP concentrations need to be determined in
toxicity-relevant compartments.46

Motivated by the fact that NRTIs are competitive inhibi-
tors,14 a recent work11 aimed to predict PrEP efficacy solely
from the relation of intracellular active TDF and FTC moieties
vs. endogenous nucleotide concentrations dNTP in different
tissue homogenates. Because they found higher TFV-
DP:dATP ratios in rectal vs. female genital tissue homoge-
nates, they concluded that TDF is more effective in males.
The inverse relation was observed for FTC, which was taken
as evidence for higher efficacy in females. However, serious
drawbacks of this work are the use of tissue homogenates,
which may not represent HIV-1 target cells (more below) and
the application of an incomplete and incorrect translational
model: The assumption therein11 is that the ratio of NRTI-TP
vs. dNTP determines its effect and may thus explain different
PrEP efficacy observed in males and females in clinical trials.
This translation of a molecular marker to clinical efficacy
lacks substantiation, given that a mechanistic model that
assesses the potency at each step from its molecular effect
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to its clinical efficacy is missing. Moreover, it is evidently
wrong at the molecular level: Cottrell et al.’s interpretation
would permit that two different active agent concentrations
[NRTI-TP]1 and [NRTI-TP]2 exert the same effect as long as
the ratio NRTI-TP:dNTP remains fixed. This assumption is
incorrect and misleading, since the interactions of NRTIs
and dNTPs with the RT-mediated polymerization process are
inherently nonlinear and saturable. We strongly recommend
the use of an MMOA model instead (i.e., module II) to cap-
ture all involved processes and to translate the consider-
ations mechanistically into clinical effects. In a previous
work15 (the basis of module II), we derived a simple formula,
which allows to roughly assess how the efficacy of NRTI-
TPs against reverse transcription changes with dNTP
concentrations

~IC50 $
rexc

kterm1rexc
% KD;I 11

½dNTP(
KD;dNTP

( )
: (8)

where rexc denotes the (potentially cell-specific) rate of
NRTI excision, KD;I and KD;dNTP denote the dissociation con-
stants of the inhibitor and the competing endogenous sub-
strate to their target, respectively, and kterm denotes the
incorporation/polymerization constant for the considered
NRTI-TP. When substituting realistic dNTP concentrations
from HIV-1 target cells47 and KD;dNTP values from
Table SN2.1 (Supplementary Note 2), one can easily see
that the ratio ½dNTP(

KD;dNTP
) 1 for deoxycytosine-triphosphate

(dCTP). Thus, FTC efficacy is not increased by decreasing
dCTP concentrations, in contrast to Cottrell et al.’s interpre-
tations.11 For TDF, decreasing deoxyadenosine-triphosphate
(dATP) concentrations may increase its potency up to two-
fold. However, differences may also arise through cell-
dependent rates of excision (different amounts of excision
substrates: ATP, PPi), or cell-dependent differences in
NRTI-TP concentrations, all of which warrant further investi-
gation once the cellular compartments responsible for the
early steps of infection for the various routes of transmis-
sion are identified. Besides these molecular factors, differ-
ent clinical PrEP outcomes in the group of women and men
can arise through the magnitude of virus exposure after
contact (inoculum size; compare Figure 2b) or through dif-
ferences in adherence, trial duration, and risk compensation
(compare Eq. 7). Note that the interplay between these
putative factors can be assessed within the presented
framework once the corresponding data are available.

Module III allows computing infection probabilities and
drug efficacies w following viral exposure and is based on a
validated model of the viral replication cycle.25 The module
assumes a “boom or bust” process (see Supplementary
Note 3), where successful completion of the first viral repli-
cation cycle approximates the probability of infection. The
latter assumption is violated whenever subsequent replica-
tion cycles cannot be neglected. Examples include prophy-
laxis with protease inhibitors, which reduce the number of
viral progeny after one replication cycle. Furthermore, if
very large inoculum sizes (>1,000 viruses) coincide with
the application of highly efficient prophylaxis (>99%), the
model assumptions may be violated.

Module IV, which estimates from the transmitter’s viral
load the distribution of viruses entering a target-cell compart-
ment, is obviously not drug-specific. A noteworthy feature is
that the stochastic nature of HIV-1 transmission is explicitly
taken into account. To our knowledge there is currently no
model making this connection and thus there is currently no
model linking TasP in the transmitter population with PrEP in
the exposed population at risk. To this end, the model is
readily integrable into epidemiological models.

We generally assumed, akin to other studies,42 that the
concentrations of NRTI-TP in peripheral mononuclear blood
cells (PBMC) serve as a good surrogate measurement for
HIV target cells after different modes of transmission. While
some authors state concentrations of NRTI-TP in rectal/
mucosal cell homogenates,48 these samples usually contain
a large fraction of HIV insusceptible cells over which the con-
centrations are averaged, in contrast to PBMC consisting
mainly of HIV-1 susceptible cells.49 It is important to acknowl-
edge that NRTI-TP concentrations are likely different in differ-
ent cell types, since they are taken up by active transport
and require intracellular phosphorylation. Due to experimental
difficulties, only few studies have extracted actual target cells
(CD41) from relevant anatomic sites and subsequently mea-
sured NRTI-TP concentrations. These studies40 indicate that
PBMC cells, CD41 cells from relevant anatomical sites and
from the peripheral blood contain similar concentrations of
NRTI-TP after oral administration, arguing that the use of the
PBMC surrogate measurement is justifiable. However, more
research is needed to quantify NRTI-TP concentrations in tar-
get cells derived from anatomical target sites. Note also that
NRTI-TP measurements may depend on the sampling design
and sample processing,50 strongly arguing for standardization
in NRTI-TP quantification.

The success of PrEP with TDF1FTC has delivered a
proof of concept and motivated the exploration of other
PrEP candidates.4 Suitable PrEP compounds require
an excellent safety profile, efficaciousness, and cost-
effectiveness. Moreover, they should not contribute to the
spread of drug resistance and be robust to imperfect adher-
ence. The latter point is currently addressed by the devel-
opment of long-acting injectable compounds and PrEP “on
demand.” The presented modular system pharmacology
pipeline is a useful tool to screen and optimize suitable
PrEP candidates and PrEP strategies by integrating the
diverse scales which determine PrEP efficacy.
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Abstract
An estimated 2.7 million new HIV-1 infections occurred in 2010. `Treatment-for-prevention’
may strongly prevent HIV-1 transmission. The basic idea is that immediate treatment initia-
tion rapidly decreases virus burden, which reduces the number of transmittable viruses and
thereby the probability of infection. However, HIV inevitably develops drug resistance,
which leads to virus rebound and nullifies the effect of `treatment-for-prevention’ for the time
it remains unrecognized. While timely conducted treatment changes may avert periods of
viral rebound, necessary treatment options and diagnostics may be lacking in resource-
constrained settings. Within this work, we provide a mathematical platform for comparing
different treatment paradigms that can be applied to many medical phenomena. We use
this platform to optimize two distinct approaches for the treatment of HIV-1: (i) a diagnostic-
guided treatment strategy, based on infrequent and patient-specific diagnostic schedules
and (ii) a pro-active strategy that allows treatment adaptation prior to diagnostic ascertain-
ment. Both strategies are compared to current clinical protocols (standard of care and the
HPTN052 protocol) in terms of patient health, economic means and reduction in HIV-1 on-
ward transmission exemplarily for South Africa. All therapeutic strategies are assessed
using a coarse-grained stochastic model of within-host HIV dynamics and pseudo-codes for
solving the respective optimal control problems are provided. Our mathematical model sug-
gests that both optimal strategies (i)-(ii) perform better than the current clinical protocols and
no treatment in terms of economic means, life prolongation and reduction of HIV-transmis-
sion. The optimal diagnostic-guided strategy suggests rare diagnostics and performs similar
to the optimal pro-active strategy. Our results suggest that ‘treatment-for-prevention’may
be further improved using either of the two analyzed treatment paradigms.
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Author Summary
HIV-1 continues to spread globally. Antiviral treatment cannot cure patients, but it slows
disease progression and may prevent HIV transmission by decreasing the amount of
transmittable viruses in treated individuals. ‘Treatment-for-prevention’ argues for imme-
diate treatment initiation and may reduce transmission by 96% (CI: 73–99%), according
to the results of a large clinical study (HPTN052). In order to ensure long-lasting treat-
ment success, early therapy initiation demands more sophisticated treatment strategies &
exceeding funds. However, countries facing the highest HIV burden are among the poor-
est. Within this work, we provide a mathematical framework that allows assessing differ-
ent treatment paradigms using optimal control theory together with stochastic modelling
of within-host viral dynamics and drug resistance development. We use this framework to
compute and evaluate two distinct optimal long-term treatment strategies for resource-
constrained settings: (i) a diagnostic-guided and (ii) a pro-active treatment strategy. The
cost of a strategy is evaluated from a national economic perspective, valuating a severe pa-
tient health status in terms of an economic loss. The optimal strategies are compared with
current clinical treatment protocols and no treatment in terms of costs, life expectation
and reduction of secondary cases. Our simulations indicate that the pro-active treatment
strategy performs comparably to the diagnostic-guided treatment strategy. Both strate-
gies perform better than current clinical protocols, suggesting directions for improvement.

Introduction
HIV-1 infection remains one of the major global health challenges with an estimated 33 million
infected and a continuing spread [1]. Currently, an efficient vaccine remains to be developed,
while at the same time the complete elimination of replication-competent virus within the host
can not be achieved due to the persistence of the virus in inducible, latent cellular reservoirs [2,
3], as well as insufficient pharmacological suppression of actively replicating virus in some ana-
tomical/cellular reservoirs [4, 5]. However, the current situation urges for methods that could
bring the epidemic to a halt, or possibly end it. Currently, the most promising strategies are
based on the use of antiviral drugs:

i. Pre-exposure prophylaxis (PrEP) [6–9] aims to protect uninfected individuals ‘at risk’ by de-
creasing the probability of infection upon virus exposure, e.g. [10]. PrEP may however be
too costly to be broadly implemented in resource-poor countries [11].

ii. Currently, the decision to initiate treatment against HIV is largely guided by CD4+ cell lev-
els [12, 13]. However, the viral load, which is the primary determinant of infectiousness [14,
15], may be very high within the time-window between HIV infection and initiation of
treatment. ‘Treatment for prevention’ [16] aims to put infected individuals on therapy as
early as possible. This can reduce the infectiousness of a patient by decreasing within-host
virus levels, which reduces the amount of transmitted viruses per contact and the probabili-
ty of infection upon exposure. Analysis of the only completed clinical study to date,
HPTN052 [16], estimated that ‘treatment for prevention’may reduce the number of linked
HIV-1 transmissions by 96% and the number of totalHIV-1 transmissions by 89% relative
to delayed treatment initiation and subsequently it was nominated as the “breakthrough of
the year 2011” by the Sciencemagazine [17].
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In the aftermath of the HPTN052 trial, the cost-efficacy of ‘treatment for prevention’ was
analyzed by many mathematical modeling approaches (reviewed in [18]). One problem is that
most of these approaches focused solely on the epidemic level and did not model drug resis-
tance development within the hosts, which indirectly assumes that the efficacy of ‘treatment
for prevention’ is constant over time. However, because viral transmission is strongly correlat-
ed with viral levels in the transmitting individual [14, 15, 19–21], it is reasonable to assume
that also the efficacy of ‘treatment for prevention’ is intimately connected with viral suppres-
sion. One major challenge during HIV treatment lies in the virus’ tendency to develop drug re-
sistance [22], which in turn can lead to virus rebound and promote HIV transmission for the
time it remains unrecognized. An earlier treatment initiation may thus demand an improved
therapeutic strategy, that allows long-term control of virus replication (beyond the typical du-
ration of a clinical trial). While sophisticated patient monitoring and timely treatment changes
may allow to minimize windows of unrecognized viral breakthrough, they require significant
monetary funds, good infrastructure, diagnostic facilities and the availability of alternative
treatment options. Only few of these may be available in resource-constrained countries, where
the requirement of resources may strongly dominate the possibility to implement a reasonable
‘treatment for prevention’ strategy. Obviously, scaling ‘treatment for prevention’ requires care-
ful examination of various aspects and a policy maker should strike a proper balance between
societal and individual perspectives [23].

This work addresses the scaling of ‘treatment for prevention’ by suggesting optimal treat-
ment strategies for the long-term control of HIV within its host (as recommended by [24]). Op-
timality will be defined from a national economic perspective, taking into account that a
diseased individual implies an economic loss. By considering the national economic perspec-
tive, we do not evaluate what should be done, but rather what is already worthwhile. However,
we also evaluate the derived optimal strategies from an individual perspective and in terms of
their utility in prevention, i.e. whether a strategy prolongs the life of an infected person and
whether the risk of HIV onward transmission is reduced.

We hereby focus on two distinct approaches to handle treatment decisions: The first as-
sumes that treatment decisions (i.e. when to change therapy) are made on an individual basis,
guided by infrequent diagnostics (referred to as diagnostic-guided strategy). This represents a
medical scenario in which a treating physician decides based on the diagnosed status of the pa-
tient that he encounters. The second approach suggests pro-active treatment decisions (re-
ferred to as pro-active strategy), i.e. does not require diagnostic ascertainment of the patients’
disease status. The two approaches are modeled and solved by two distinct mathematical
frameworks. The former is addressed using the recently developed framework of ‘Markov De-
cision Processes with Rare State Observations’ [25]: For each disease state, it computes the opti-
mal treatment and the next time of medical diagnostics, minimizing viral burden as well as
treatment- and diagnostic costs. The latter approach (the pro-active strategy) is modeled as an
open-loop switched system, where the decision to change the treatment depends on the initial
disease state of the patient and the anticipated, (treatment-)induced stochastic dynamics up to
some time t. The later strategy allows to switch treatment before drug resistance is detectable in
the individual (pro-active) and may be easier to implement in resource-constrained settings,
where poor infrastructure and the costs of diagnostics limit their applicability. By assessing
these two distinct frameworks side-by-side, we can rigorously evaluate the different treatment
paradigms in terms of their optimality. Algorithms to solve these problems were developed
and are stated in the supplementary materials.

Several other groups have suggested optimal [26–28] or sub-optimal [29, 30] treatment
strategies to mitigate drug resistance in HIV-1. All authors treated the underlying system deter-
ministically, which fails to capture the intrinsic stochastic nature of HIV drug resistance
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development [31] and the time-scales on which drug resistance develops. None of the previous
work focused on HIV prevention, and neither work questioned the analyzed treatment philos-
ophy, either focusing on pro-active treatment switching strategies [26–28, 30], or diagnostic-
driven strategies [29]. In contrast, we used a stochastic model of HIV long-term dynamics after
drug application [25] to more realistically capture the underlying dynamics. Also, we evaluate
different assumptions for the controllability of the disease dynamics, by evaluating the two dif-
ferent optimal control frameworks, which allows for an objective assessment of alternative
treatment philosophies.

The manuscript will be organized as follows: We will extend- and parameterize the model
introduced in [25] for our needs. After recapitulating essential theory for the diagnostic-guid-
ed strategy, we introduce the mathematical concepts behind the pro-active strategy, solve
both optimal control problems and evaluate them with respect to monetary costs, patient sur-
vival and reduction of onward transmission. All algorithms that we developed to solve the opti-
mal control problems will be provided in the S1 and S2 Text for the interested reader.

Materials and Methods
Within this work, we investigate optimal treatment strategies in silico by formulating- and solv-
ing two optimal control problems referred to as the optimal diagnostic-guided strategy and
the optimal pro-active strategy. In general, an optimal control problem requires a mathemati-
cal model of the controlled process and a performance- or cost criterion. Likewise, our problem
will be broken down into these ingredients.

Model of Controlled HIV Dynamics
The two addressed optimal control approaches share an identical model (Fig 1) that reflects
the short-term dynamics of viral decay- and rebound (Fig 2), as well as the stochastic HIV
long-term dynamics after drug application, see Fig 3. Within this work, we put a focus on viral
kinetics and will only indirectly relate to the patient’s health. This is because we are interested
in ‘treatment for prevention’ and particularly its efficacy in decreasing onward transmission,
which is correlated with the viral load [19–21] and not necessarily with the immune status of
the HIV infected patient.

State space. HIV can be successfully suppressed if drug resistance does not develop. Thus,
any model that aims to represent the long-term HIV dynamics upon treatment should include
drug resistance development. The process of drug resistance development denotes an intrinsi-
cally stochastic process, which is determined by random mutation events (point mutations, re-
combinations). Long term HIV-dynamics in the context of drug treatment may therefore be
dominated by these intrinsically stochastic events [31], necessitating stochastic modeling ap-
proaches [32–34]. The fundamental evolution equation for intrinsically stochastic kinetics is
the chemical master equation (CME). Each state described by the CME comprises a combina-
tion of discrete numbers of individuals of the respective species (e.g. viral strains), resulting in
state space dimensions N0×N0×. . .×N0, i.e. [35, 36]. A major mathematical drawback is the fact
that the CME cannot be solved directly due to this complexity. Therefore, a modeler can either
approximate the solution of the CME by Monte-Carlo schemes [37], aim at hybrid approaches
[38–40], which can yield particular characteristics of the CME, or perform a state space reduc-
tion (lumping). In this manuscript, we adapt a model [25] that relates to the latter approach.
For this model we can solve the coarse-grained CME directly when computing optimal
control strategies.

In brief, the HIV model contains four lumped viral copy number states for each of the four
virus strains. The set of states S thus has dimension 44 = 256 states + 1 [patient death]: If the
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respective virus type is absent, we denote the respective state by 0, if it is present in low copy
numbers, i.e., for< 50 virus copies/mL blood (detection limit of assays used in the clinic), the
respective state is denoted by ℓ, for medium copy numbers between 50 and 4000 virus copies/
mL blood we denote the lumped states bym and for high copy numbers with more than 4000
virus copies/mL blood, it is h. This coarse graining is in line with the levels of virus produced in
the distinct cellular reservoirs of HIV, see e.g. [34]. The following four viral strainsM are con-
sidered: a strain WT (wild type) that is susceptible to all treatment lines, a strain R1 which is
susceptible to a second treatment line, but unaffected by (resistant to) the first treatment line, a
strain R2 that is susceptible to the first treatment line, but unaffected by the second, and a high-
ly resistant strain HR, which is resistant to all treatments. In order to describe a virologic state
x we choose a compact vector notation of the form

x ¼ ½nCðWTÞ; nCðR1Þ; nCðR2Þ; nCðHRÞ%;

where nC 2 {0, ℓ ,m, h} denotes the viral copy number of each viral strain WT, R1, R2 or HR.
For example, the state x ¼ ‘; m; 0; ‘½ % describes the situation of a ℓow number of wild type
strains, amedium number of R1-mutants, the absence of R2-mutants, and a ℓow number of

Fig 1. Simplified HIV Model. A: Transitions between copy number states nC. B: Transitions in between viral strainsM.

doi:10.1371/journal.pcbi.1004200.g001
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Fig 2. (Short-term) viral dynamics. Left panels (A-C): Viral decay. Right panels (D-F): Viral growth.A: Data used for estimating viral decay parameters δh,
δm. Blue circles indicate viral decay profiles from [41], green upward pointing triangles denote data from [42], black squares denote data from [43] and red
downward pointing triangles denote data from [4]. Horizontal dashed lines and background shading indicates the assignment of the depicted data to the sets
H (> 4000 viral RNA/mL)),M and L (& 50 viral RNA/mL) of our model. B:When assuming 100% effective treatment (η = 1), the model shown in panel B is
derived. This model is used to identify decay parameters δh and δm (circled parameters in panel B). C: Data-derived (error bars, dashed lines) and predicted
(solid lines) probabilities of statesH and L using the model in panel B with estimated parameters δh and δm. D:Data from treatment interruption trials [43–45]
used for estimating viral growth parameters kℓ,;, km,;. Magenta diamonds indicate viral rebound profiles from [44], cyan pentagrams indicate data from [45]
and black left-pointing triangles indicate data from [43]. Horizontal dashed lines and background shading indicates the assignment of the depicted viral
growth data to the setsH,M and L. E:We assumed the absence of treatment (η = 0), such that the model shown in panel E is sufficient to decribe the data
and allows identifying growth parameters kℓ,; and km,; (circled parameters in panel E). F:Data-derived (error bars, dashed lines) and predicted (solid lines)
probabilities of statesH and L using the model in panel E with δh and δm and estimated parameters kℓ,; and km,;. The parameter estimation procedure is
exemplified in theMaterial and Methods section.

doi:10.1371/journal.pcbi.1004200.g002
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highly resistant viruses. Mutations from one strain to another can give rise to novel viral popu-
lations, as shown in Fig 1.

Control actions. The actions describe ‘what the controller can do to influence the system’.
In terms of HIV therapy, a physician can e.g. choose what treatment(-line) to apply and when
to change it. In resource-constrained settings, only few treatment lines are available. In the case
of South Africa these may include a first- and a second-line therapy [13]. Taking these consid-
erations in account, we consider two distinct treatment lines (actions) a1,a2 2A. Each action a

Fig 3. Long-term viral suppression. Long-term data was used to estimate clinical drug efficacy η(a1, {WT, R2}), η(a2, {WT, R1}) and rates of drug
resistance emergence μR1,;, μR2,;, using the model depicted in Fig 1, after parameters for viral growth and decay were estimated from data in Fig 2. A:
Predicted (solid black line) and clinically observed probability of viral suppression (states L;& 50 viral RNA/mL) after treatment with efavirenz (EFV) based
HAART (first line therapy). Clinical data was derived from [46] (red dots), [47] (orange squares), [48] (green diamonds), [49] (magenta upward pointing
triangles) and [50] (blue downward pointing triangles). In all studies, the NRTI backbone consisted of 3TC + AZT. B:Goodness-of-fit plot for first line therapy.
C: Predicted (solid black line) and clinically observed probability of viral suppression (states L;& 50 viral RNA/mL) after treatment with ritonavir boosted
lopinavir (LPV/r) based HAART (second line therapy). Clinical data was derived from [51] (brown right-pointing triangles), [52] (cyan pentagrams) and [52]
(grey left-pointing triangles). In all studies, the NRTI backbone consisted of a deoxycytidine analog + abacavir or tenofovir or stavudine, reflecting clinical
practice (the exact choice of the backbonemay depend on prior exposure [13]). D:Goodness-of-fit plot for second line therapy.

doi:10.1371/journal.pcbi.1004200.g003
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2A induces unique disease dynamics, related to a uniqueMarkov Jump Process that is entirely
determined by its infinitesimal generator La. The entry La[x,y]' 0 represents the rate of transi-
tion from state y 2 S to state x 2 S, y 6¼ x, given an action a and it holds that La[y,y] = −∑x 6¼ y

La[x,y]. We define a probability space O and let p 2 O denote a probability distribution vector
on the state space S with the entry p[x](t) referring to the probability of being in the state x 2 S
at time t, i.e.

p½x%ðtÞ :¼ PðXt ¼ xÞ; ð1Þ

where P is the probability measure. Obviously, the number of components of a probability vec-
tor p is equal to jSj. For a given action a 2A, the dynamics of the probability vector are given
by

dpðtÞ
dt
¼ La ( pðtÞ ð2Þ

The above equation is known as theMaster Equation. We introduce the transpose of the
transition matrix on S for some time lag τ and action a

Ta;t : RjSj 7!RjSj; Ta;tp :¼ eLa (tp; ð3Þ

where e denotes the matrix exponential. The component Ta,τ[x,y] refers to the transition prob-
ability from state y to state x for a time lapse τ under the application of action a and will be
used later in the cost functionals of the closed-loop optimal control problem (diagnostic-guid-
ed strategy) and the open-loop optimal control problem (pro-active strategy).

Generator entries. The distinct treatments a 2A are related to distinct generators La of
our HIV-model. The basic transitions between copy number states for each viral strainM,
nC(M), are shown in Fig 1 and exemplified for the highly resistant strain HR below.

½); ); ); ‘% *
dm

*!
k‘;a

½); ); ); m%; ½); ); ); m% *
dh

*!
km;a

½); ); ); h% ð4Þ

½); ); ); h%*!
dh

✠; ½); ); ); m%*!
dm

✠; ½); ); ); ‘%*!
d‘

✠; ð5Þ

where ) indicates an arbitrary number of the respective virus strain (WT, R1 and R2 in the ex-
ample above). The parameters kℓ,a and km,a denote the reaction propensities of going from
copy number ℓ to copy numberm and from copy numberm to copy number h respectively
(viral growth), which are decreased depending on the treatment a 2 {a1, a2} because treatment
essentially suppresses viral growth. The parameters δm and δh denote the reaction propensities
for going from copy numberm to copy number ℓ and from copy number h to copy numberm
respectively (virus elimination). The parameters dh> dm> dℓ denote the propensity for the
death of the patient. We assume that high viral burden (states h andm respectively) increases
the risk of death, whereas dℓ equals the propensity for “natural death”. The propensity for
death was computed according to d = 1/(residual life expectancy), and is exemplified in [25].

The considered transitions between viral strainsM are depicted in Fig 1. Specifically, transi-
tions between viral strains generate a ℓow number of viral particles from either amedium or
high number of viruses belonging to a distinct strain. Note, that transitions between viral
strains may involve several distinct point mutations (indicated by blue and red bars in Fig 1B).
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Exemplified for the wild type strain WT those are:

½ h; 0; ); ) %*!
mR1; a ½ h; ‘; ); ) %; ½m; 0; ); ) %*!

mR1; a ½m; ‘; ); ) % ð6Þ

½ h; ); 0; ) %*!
mR2; a ½ h; ); ‘; ) %; ½m; ); 0; ) %*!

mR2; a ½m; ); ‘; ) % ð7Þ

½ 0; h; ); ) %*!
mR1; a ½ ‘; h; ); ) %; ½ 0; m; ); ) %*!

mR1; a ½ ‘; m; ); ) % ð8Þ

½ 0; ); h; ) %*!
mR2; a ½ ‘; ); h; ) %; ½ 0; ); m; ) %*!

mR2; a ½ ‘; ); m; ) % ð9Þ

where the first two lines indicate drug resistance arising from the wild type strain and the re-
maining two lines indicate transitions from resistant strains yielding the wild type strain. The
parameters μR1,a and μR2,a denote the propensity for the emergence- and disappearance of drug
resistance to treatment 1 or 2 (a1,a2), respectively, emanating from copy number state h orm.
Note, that we consider only the following transitions: WT$ R1, WT$ R2, R1$HR and R2
$HR, which is motivated by the fact that a direct transition fromWT$HR is very unlikely,
because the genetic distance between the two viral strains is too large to be overcome at once.

The effect of treatments a1 and a2 on the viral growth & transition rates is considered in the
following way:

k‘;a ¼ ð1* Zða;MÞÞk‘;; ð10Þ

km;a ¼ ð1* Zða;MÞÞkm;; ð11Þ

m ~M ;a ¼ ð1* Zða;MÞÞm ~M ;; ð12Þ

whereM 2 {WT, R1, R2, HR} denotes the strain of the reactant virus. ~M 2
fWT;R1;R2;HRg denotes the event related to a particular drug resistance emergence/disap-
pearance, see Fig 1B. The parameter η(a,M) denotes the efficacy of treatment a on the reactant
viral strainM; i.e. if strainM is susceptible to treatment a 2 {a1, a2}, then 0< η(a,M)& 1, and
if the viral strainM is insusceptible to treatment a 2 {a1, a2} then η(a,M) = 0. In the absence of
medical intervention a = a;, η(a,M) = 0. Therefore, the parameters kℓ,;, km,; and m ~M ;; denote
the growth rates and respective transition rates in copy number statesm and h in the absence
of intervention, as shown in Table 1.

Parameter estimation. In order to estimate model parameters, we proceeded in a step-
wise approach: We first estimated parameters related to viral decay (δh, δm) and then used
these estimates in order to estimate parameters related to viral growth in the absence of treat-
ment (kℓ,;, km,;), using data from [4, 41–45]. Finally, we used the estimated decay- and growth
parameters along with data on the long-term (> 2 years) suppression of HIV-1 in order to esti-
mate parameters related to the drug efficacy (η(a1, {WT, R2}), η(a2, {WT, R1})) and to drug re-
sistance development (μR1,;, μR2,;) [46–52].

Parameters were estimated in MATLAB using lsqcurvefit by minimizing the following
weighted least squares criteria, with θ denoting the set of estimable parameters.

y) ¼ argmin
y

X

i

p½x%ðtiÞ * p½x%ðti; yÞ
oi

! "2

ð13Þ

where π[x](ti) denotes the data-derived probability distribution on the model-defined state-
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space (computed using the ecdf function in MATLAB), p[x](ti,θ) defines the solution of Eq (2)
for time ti with parameter set θ and ωi denotes the weight parameter. Parameter estimation was
performed 50 times respectively with random start parameters to verify the convergence to
globally optimal parameter estimates θ

)
.

Viral decay. A total of 311 data points from 31 patients and 4 independent clinical studies
were available from [4, 41–43], which accurately assess the dynamics of viral decay after initia-
tion of treatment (see Fig 2A). For the data analyzed, we assumed 100% effective treatment (η
= 1), as proposed by others who estimated viral decay parameters [41, 53]. The lumped viral
model (see Fig 1) then further reduces to the model shown in Fig 2B, which allows to identify
decay parameters δh and δm. The data-derived probabilities π[x](ti) were computed as 1− the
cumulative probability to leave setH (> 4000 viral RNA/mL) and the cumulative probability
to enter set L (& 50 viral RNA/mL). Error bars were computed using Green’s formula. In line
with the data, we assumed that the initial HIV virologic status is represented by high copy
numbers of susceptible virus.

Viral growth. A total of 89 data points from 17 patients and 3 treatment interruption trials
[43–45], was used to estimate viral growth parameters kℓ,; and km,;. In line with the data, we as-
sumed the absence of treatment (η = 0), such that the model shown in Fig 2E is sufficient to de-
scribe the data. Data-derived probabilities were computed as 1− the cumulative probability to
leave set L and the cumulative probability to enter setH, respectively, and error bars were
computed using Green’s formula.

Drug efficacy and -resistance. Using the full model (Fig 1), we estimated parameters re-
lating to the clinical drug efficacy of both treatment lines η(a1, {WT, R2}) & η(a2, {WT, R1})
and rates of drug resistance emergence μR1,; and μR2,;.

In analogy with the South African treatment guidelines, we assumed that the first-line thera-
py consists of efavirenz (EFV) + zidovudine (AZT) + lamivudine (3TC). Long-term studies
usually evaluate the probability of viral suppression, which is defined in terms of undetectable
virus loads (& 50 viral RNA/mL). Translated to our model, this refers to the condition in
which all viral mutants are in state ℓ or absent; i.e. & ‘; & ‘; & ‘; & ‘½ %, which we denote by
the set of states by L. Probabilities of viral suppression from 5 clinical studies [46–50] were
used for parameter estimation. As a second-line treatment we assumed a ritonavir-boosted
lopinavir (LPV/r) based HAART, see [13]. Since the exact choice of the NRTI backbone may

Table 1. Parameters of the HIV-model.

parameter value parameter value

kℓ,; 0.2027 km,; 0.1308

δm 1.13(10−2 δh 6.62(10−2

dℓ 9.4(10−5 IR(nC = ℓ) 0.2

dm 2.7(10−4 IR(nC = m) 1.85

dh 5.5(10−4 IR(nC = h) 13.18

μR1,; 1.739(10−1 μR2,; 2.54(10−2

η(a1, {WT, R2}) 0.9894 η(a1, {R1, HR}) 0

η(a2, {WT, R1}) 0.9825 η(a2, {R2, HR}) 0

Infection risks IR were derived from data, as explained in S5 Text. Parameters dℓ, dm and dh were estimated from life-expectation data as explained in
[25]. All other parameters were estimated from data shown in Figs 2 and 3 and exemplified in the Material & Methods section. All values are given in units
[1/day] except η [unit less] and IR [per 100 person-years].

doi:10.1371/journal.pcbi.1004200.t001
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depend on the prior exposure of the individual patient, we used data evaluating the long-term
efficacy of LPV/r + an NRTI backbone consisting of a deoxycytidine analog + stavudine [51] or
abacavir [52] or tenofovir [52].

All model parameters are shown in the Table 1. The original data and model predicted dy-
namics of viral decay and -rebound are shown in Fig 2 (A: raw viral decay data; B: model to
evaluate viral decay; C: model-predicted vs. clinical decay profiles; D: raw viral growth data; E:
model to evaluate viral growth; F: model-predicted vs. clinical growth profiles). Data for the
long-term control of HIV-1, predicted dynamics and goodness-of-fit are shown in Fig 3A–3D
for the two treatment lines (a1 and a2). As can be seen in Figs 2 and 3, the model appropriately
captures both the short-term viral dynamics, as well as long-term dynamics of
viral suppression.

Cost assignment. Public health initiatives are often constrained by available funds. The
countries with the highest HIV burdened are also among the poorest and financial commit-
ments from donors have stagnated or decreased [54] in recent years. Thus, the requirement of
resources may strongly dominate the policy making process in a resource-constrained context.
Because of these conditions, we designed the performance criterion from a national
economic perspective.

The performance criterion valuates the induced system dynamics and controls, i.e. the viral
status of the patient and the costs of treatment. We will consider both the direct costs due to
the applied treatments cA and indirect costs due to the virologic/health status of a patient cS.
Our analysis will be conducted from a country’s public health-care/monetary perspective.
Therefore, the costs related to the different states cS will be computed based on the average pro-
ductivity loss pL(nC) times the average daily monetary contribution of one individual (assessed
in terms of the daily per capita GDP), i.e. cS(x) = pL(x)(GDP, with pLðxÞ ¼ maxnC pLðnCÞ,
which implies that the total virus load reflects the cost of the individual infection status at any
point in time. Death is interpreted in terms of a complete loss in productivity. Furthermore, we
take diagnostic costs into account, which applies only in the diagnostic-guided strategy, the
standard of care and theHPTN052 protocol (the latter two are modeled for comparison).
The cost of diagnostics will be set to a fixed value and closely reflect the cost of a drug resistance
test for the diagnostic-guided strategy and the cost of a virus load determination in the case of
the standard of care and theHPTN052 protocol.

The integration of momentary/running costs yields the objective function (performance cri-
terion) for the optimal control problem. While performance criteria generally depend on the
particular application at hand, we decided to consider expected discounted costs on an infinite
time horizon. We chose an infinite time horizon, because HIV treatment does not have a previ-
ously known endpoint (i.e. time of death). At the same time, a differentiated weighting of im-
mediate and later costs is reasonable due to an upper limitation of life expectancy and aspects
of inflation. Costs arising at time t> 0 are thus weighted by a discount factor 0< e−λt< 1. In
this regard, the concrete choice of a discount factor λ will depend on the presumed annual in-
flation in the considered setting. For all calculations, we consider the inflation rate in South Af-
rica as a representative of a resource-constrained country with a large HIV burden, see Table 2.
The discount factor also guarantees convergence of the cost functional and therefore allows the
numerical solution of the optimal control problem.

The costs per unit time comprise both the direct costs due to the applied treatments and in-
direct costs due to the virologic/health status of a patient. Thus, we can write

cðx; aÞ ¼ cSðxÞ þ cAðaÞ ð14Þ
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where cA:A 7! [0,1) is the direct cost of action per unit time and cS:S 7! [0,1) is the indirect
cost produced by the state per unit time with parameters given in Table 2.

We define a cost function

Cðx; a; tÞ :¼Ea
x

Z t

0

e*lscðXs; aÞ ds
! "

; ð15Þ

which denotes the expected discounted costs for the time interval (0,τ] when starting in state
x and choosing an action a 2A for propagation of the stochastic process for the entire interval
τ. Further, we define the cost vectorKa 2 RjSj, where its xth component denotes the direct and
indirect cost per unit time for the state x 2 S as shown below

Ka½x% :¼ cðx; aÞ; ð16Þ

so that it holds that

Cðx; a; tÞ :¼K0a

Z t

0

e*ls ( eLa (s ds
! "

φx; ð17Þ

where the vector φx denotes a point-distribution, i.e. a single realization Xt of the Markov Jump
Process. If the initial state is described by an arbitrary distribution p on the state space S, we get

Cðp; a; tÞ ¼
X

x2S

Cðx; a; tÞ ( p½x%; ð18Þ

where p[x] denotes the probability of the xth state.

Performance Criterion and Bellman Equation
The two optimal control problems that we solve, i.e. the diagnostic-guided strategy and the
pro-active strategy, differ slightly in the underlying assumption on the controllability of the
disease dynamics. Both control strategies will be described in the following, defining in each
case a control policy, a performance criterion and an optimality equation.

Diagnostic-guided strategy (closed-loop optimal control). In the diagnostic-guided
strategy, treatment can only be changed after a (costly) diagnostic test has been made to

Table 2. Cost parameters for South Africa.

parameter value unit reference

cA(a1) 0.3 US$/d [65]

cA(a2) 1.08 US$/d [65]

kdia 200 US$ [57, 59]

GDP 6,620 US$/p.p./y [75]

pL(nC = ℓ) 0 - [76]

pL(nC = m) 0.1 - [76]

pL(nC = h) 0.4 - [76]

pL(✠) 1 - -

λ 1.47(10−4 1/d a

kdia refers to the price for a drug resistance test. The GDP refers to the estimation for the year 2013 by the
International Monetary Fund [75]. The state costs are defined by cSðxÞ ¼ max

nC
pLðnCÞ ( GDP.

a Assuming an annual inflation of 5.4% for South Africa [75].

doi:10.1371/journal.pcbi.1004200.t002
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determine the virologic state of the patient (i.e. the drug resistance profile). This would corre-
spond to the typical scenario in which a treating physician makes a patient-specific decision.
However, instead of considering regular diagnostic intervals, we consider patient-specific diag-
nostic intervals. That is, upon assessing the virologic status of the patient, the physician decides
both on a treatment a and on a time-lag τ until the next diagnosis. This implies that patients,
whose viral status is “critical”may be monitored more closely than those whose status is “un-
critical”. More precisely, a policy for the diagnostic-guided strategy is a function

u : S ! A, ½0;1Þ; x 7!uðxÞ ¼ ðaðxÞ; tðxÞÞ ð19Þ

which prescribes for each disease state x 2 S both a treatment/action a(x) 2A and an examina-
tion lag time τ(x)> 0 that denotes the time until the next diagnostic. Each determination of the
patient’s virologic status incurs a diagnostic cost kdia.

Within this framework, controlling the disease process proceeds as follows: Assuming the
patient is in state X0 = x 2 S at the initial time t0 = 0, a treatment/action a(X0) 2A and an ex-
amination lag time τ(X0)> 0 are recommended. The stochastic process proceeds unobserved
until time t1 = t0+τ(X0) when the next diagnostics are performed, revealing disease state Xt1
and incurring a diagnostic cost kdia. Based on the state Xt1, a (possibly) new treatment/action a
(Xt1) and a time lapse for next examination τ(Xt1) are recommended, etc. . . The resulting exam-
ination times (t0,t1,t2,. . .) depend on the stochastic dynamics of the process and the applied
policy. A switch of actions can only happen at examination times tj, when the physician
changes treatment due to the diagnosed disease status Xtj.

The performance criterion for the corresponding control problem is given by:

Jðx; uÞ ¼ Eu
x

X1

j¼0

e*ltj C Xtj
; aðXtj

Þ; tðXtj
Þ

# $
þ e*ltðXtj Þkdia

# $ !

; ð20Þ

see [25], where Eu
x stands for the expectation value with respect to the measure determined by

the initial state x and the control u. The value function for this problem is given by

VðxÞ :¼ inf
u2U

Jðx; uÞ ð21Þ

with corresponding Bellman Equation:

VðxÞ ¼ min
a2A;t2½0;1Þ

!
Cðx; a; tÞ þ e*lt ðkdia þ ðVtr ( Ta;tÞðxÞÞ

"
; ð22Þ

see [25] for the proof. The Bellman Equation can be used in order to numerically solve this op-
timal control problem, which requires to find an optimal treatment and an optimal examina-
tion lag time for each possible disease state, see S1 Text for a detailed description of
the algorithm.

Pro-active strategy (open-loop optimal control). In the pro-active strategy, no diagnos-
tics are taken. Instead, all possible disease trajectories are anticipated in a probabilistic sense
and decisions depend on the actual probability state p 2 O of a patient; –i.e. the probabilities of
being in either of each possible disease states x 2 S. Given a treatment, this probability state of a
patient evolves in a deterministic way, see Eq (2). By omitting diagnostics, the pro-active strat-
egymay have the advantage of being more easily implementable in settings where resources
and infrastructure would not allow for patient-specific diagnosis and treatment.
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In this context, an optimal policy prescribes an action to each possible probability measure
p 2 O on the (infection) state space S:

u : O! A; p 7!uðpÞ ¼ ðaðpÞÞ

with p[x]: = P(X = x).
We discretize the considered time index and allow treatment changes only for certain times

tj ¼ j ( !t, j 2 N, where !t is a fixed time lag. Within such a time interval of length !t the action re-
mains fixed, i.e. switching a treatment is possible only after a minimum time interval !t. We de-
note by pj ¼ pðj ( !tÞ the probability state at these time points and set Ta :¼ Ta;!t for simplicity.
The state equation is then given by

pjþ1 ¼ Ta ( pj; ð23Þ

where a 2A is the action applied in the jth interval and p0 is a fixed initial state probability vec-
tor. The transition matrix Ta;!t related to the action a and time lag !t is defined in Eq (3). Unlike
the diagnostic-guided strategy where the switching times are also the observation times, for
the pro-active strategy, the disease process is unobserved.

For the pro-active strategy the performance criterion entails only state and action costs but
no diagnostic costs. In analogy to (20), the performance criterion is given by

Jðp0; uÞ ¼ Eu
p0

X1

j¼0

e*ltjCðpj; uj; !tÞ

 !

ð24Þ

with uj = u(pj). The minimization of the performance criterion J(p0,u) for a given initial distri-
bution p0 requires to find a control u of infinite length (an infinite switching signal). In order to
allow for a numerical solution of the above stated equation, we assume that the process is con-
trolled for a large, but finite time horizon ð0;NI ( !t% after which a constant control u1 2A is
applied. In the current work, we used !t ¼ 2 days and NI ( !t ¼ 5000 days for a numerical solu-
tion. Thus, for the pro-active strategy we seek a sequence of NI+1 actions (u0,u1,. . .uNI−1,u1)
for a given initial probability distribution p0. We denote the set of all admissible controls by U.
Obviously, the size of control space is jUj = jAjNI+1.

Assuming that actions can only be changed for the finite time horizon ½0;NI ( !t% and an ac-
tion is maintained afterwards, we derive a Bolza Type of performance criterion from the general
formulation in Eq (24):

Jðp0; uÞ ¼ Eu
p0

XNI*1

j¼0

e*ltjCðpj; uj; !tÞ þ e*ltNI CðpNI
; u1;1Þ

 !

ð25Þ

denoting the expected costs for the infinite time horizon, given an initial distribution p0 2 O
and a control u. The performance criterion Eq (25) for the pro-active strategy contains a ter-
minal cost and a running cost, see S2 Text. Given an initial state vector p0, a control u 2 U and
fixed action u1 after the interval NI, the expression can be simplified to

Jðp0; uÞ ¼
XNI*1

j¼0

q0uj ;j ( pj þ q0u1 ( pNI
ð26Þ

where qu1 2 RjSjþ and quj ;j 2 RjSjþ are the terminal and the running cost vectors respectively.

Optimal Strategies for ‘Treatment for Prevention’ against HIV-1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004200 April 30, 2015 14 / 30
136



Now, the optimal control problem can be defined as:

J)ðp0; u
)Þ ¼ min

u2U

XNI*1

j¼0

q0uj ;j ( pj þ q0u1 ( pNI

w:r:t pjþ1 ¼ Tuj
( pj

p0 ¼ pð0Þ(

ð27Þ

The Hamiltonian function for the jth interval is given by the following equation

Hj ¼ x0jþ1 ( Tuj
( pj þ q0uj;j ( pj ð28Þ

where ξ is the adjoint vector. The adjoint equation and transversal condition are given by

x0j ¼ x0jþ1 ( Tuj
þ q0uj ;j

x0NI
¼ q0u1 (

ð29Þ

The Bellman Equation for the discrete-case [27, 55] is given by

Vðpj; jÞ ¼ min
a2A

q0a;j ( pj þ Vðpjþ1; jþ 1Þ
# $

¼ min
a2A

e*l(tjCðpj; a; !tÞ þ Vðpjþ1; jþ 1Þ
# $

(
ð30Þ

Eq (29) allows to redefine the optimal control problem Eq (27) for anym 2 {0( ( (NI} as
shown below

J)ðp0; u
)Þ ¼ min

u2U
x0m ( pm þ

Xm*1

j¼0

q0uj ;j ( pj

 !

w:r:t piþ1 ¼ Tui
( pi ; p0 ¼ pð0Þ

x0l ¼ x0lþ1 ( Tul
þ q0ul ;l ; x0NI

¼ q0u1

ð31Þ

where i = 0. . .(m−1) and l = (NI − 1). . .m. This formulation shows the similarity of the optimal
control problem to a two point boundary value problem for a continuous case. The boundary
conditions are p0 = p(0) and ξNI

= qu1. Note that the optimal control problem needs to be
solved for all possible boundary conditions for the adjoint vectors, i.e. by iterating over all pos-
sible actions for u1.

Numerical Solution
Solving optimal control problems is generally computation intense and may not always be
achievable. Our two optimal control scenarios require different algorithms for their solution.

For computing the optimal diagnostic-guided strategy, we used an adapted policy iteration
algorithm, see S1 Text for details.

In order to numerically compute the optimal pro-active strategy, we introduce a dynamic
programming technique in S2 Text, which was developed for the considered performance cri-
terion (expected discounted costs over an infinite time horizon). It has some similarity with the
algorithm introduced by Hernandez-Vargas [27], which, however, considers a different perfor-
mance criterion (only terminal cost).
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Both algorithms were implemented in MATLAB Version 8 and parallelized, where applica-
ble. For the dynamic programming technique in S2 Text we used the state of art solver cplex
from the IBM ILOG CPLEX [56] Optimization Studio to solve embedded linear programs.

Results
Optimal Treatment Strategy
The optimal diagnostic-guided strategy is given in S1 Table. In brief, for the considered pa-
rameters (Tables 1 and 2), it is suggested to use the first-line treatment a1 in all states, except
those where the virus is resistant against treatment a1, but susceptible to a2. In the later case
treatment line a2 is suggested. In line with this treatment recommendation, patient monitoring
is only suggested as long as the patient is infected with drug-susceptible (“wild-type”) virus. If
the patient has a high ormedium virus load, the next diagnostic test should be within 25 days,
if the patient has a ℓow/non-detectable virus load, after 152 days.

These results may indicate that the cost for diagnostics is too high in relation to the econom-
ic benefit resulting from more close monitoring and informed treatment adaptation (this will
be discussed later in the Discussion). An exemplary trajectory that highlights the treatment
strategy is shown in Fig 4A. The blue line indicates a patient-specific trajectory. The filled black
marks indicate the times when a diagnostic test is performed and the background shading indi-
cates the applied treatment (white: a1, gray shading: a2). In the example, the patient initially
has a high copy number h of wild type (WT) virus, while none of the drug resistant viruses are
present. This state is represented by the vector notation Xt0

¼ h; 0; 0; 0½ %. For this state, the
optimal treatment policy (see S1 Table) suggests to use treatment a1 and to perform the next

Fig 4. Disease progression for the diagnostic-guided strategy (individual trajectory, panel A) and pro-active strategy (probabilistic measure, panel
B). The white region denotes application of treatment a1 and the gray region denotes the application of treatment a2. We assumed that the initial HIV virologic
status is represented by a treatment-naive patient with high copy number of wild type virus [nC(WT) = h,nC(R1) = 0,nC(R2) = 0,nC(HR) = 0]. In panel A, the
blue line represents a stochastic realization of HIV dynamics in a single individual treated with the diagnostic-guided strategy and black dots indicate
diagnostic assessments. In the y-axis, all states belonging to the set of viral statesH,M and L are indicated. L denotes an undetectable total viral load, i.e.
this is the set of states for which condition nC(M)& ℓ for all possible virus mutantsM holds (½& ‘; & ‘; & ‘; & ‘%). Likewise,H denotes a high total viral load,
i.e. refers to all states for which for at least one viral strainM, nC(M) >m. The remaining viral states belong toM. Only the initial part of the trajectory is
presented (day 0–800 after treatment initiation) and details of transitions to each state are labeled for clarity. In panel B, the black, red, magenta and blue
lines represent the probabilities of states✠ (patient death),H,M and L after application of the pro-active strategy. Note, that for the pro-active strategy, the
x-axis is logarithmically scaled.

doi:10.1371/journal.pcbi.1004200.g004
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diagnostic test in 25 days (the second black marking in panel Fig 4A). At the next diagnostic
test, the patient is in state m; 0; 0; 0½ % for which continuation of treatment a1 is recommended
and the next diagnostic test is scheduled after 25 days (the 3rd–9th black marking in panel Fig
4A). In the following, the virus remains suppressed, with a small detected ‘blip’ after about 500
days. After about 600 days of treatment, during the time lapse between diagnostic tests, the a1
resistant strain R1 emerges. Notice transitions from the state
m; 0; 0; 0½ %! m; ‘; 0; 0½ %! m; m; 0; 0½ %, then ‘; m; 0; 0½ % and finally ‘; h; 0; 0½ % in the Fig
4A, where the copy number of a1 resistant strain R1 increases from a ℓow copy number to a
high copy number (virus rebound after resistance development). At the time point of the next
diagnostic (at around 700 days), the emergence of resistance is identified ‘; h; 0; 0½ % and a
switch to treatment a2 is suggested (marked by gray region in Fig 4A). After the initiation of
treatment a2, a transition to state ‘; ‘; 0; 0½ % can be observed in the trajectory, which implies a
decrease in the a1 resistant strain (viral suppression).

The optimal pro-active strategy depends on the initial probability state of the patient p0.
We assumed that the patient is treatment naive and has high virus copy numbers, i.e.
p h; 0; 0; 0½ %ðt0Þ ¼ 1 and p x½ %ðt0Þ ¼ 0 for x 2 Sn½h; 0; 0; 0%. For this scenario, it is suggested to
start with treatment line a1 and to switch to a2 after 14 days, which is then maintained. The tra-
jectories of the patient probability states are depicted in Fig 4B. For the ease of interpretation,
we illustrate only the sets of viral states L,M,H and patient death✠. L denotes an undetect-
able total viral load. Translated to our model, this is the set of states for which condition nC(M)
& ℓ for all possible virus mutantsM holds, i.e. the current state has to fulfill
& ‘; & ‘; & ‘; & ‘½ % to belong to this set. LikewiseH denotes a high total viral load, i.e. refers
to all states for which for at least one viral strainM, nC(M)>m is fulfilled. The remaining viral
states belong toM. One can nicely see that after approximately 260 days, maximum viral sup-
pression may be achieved in the sense that the probability to have undetectable virus load (L)
is maximal (64.19%), while the patient may have intermediate viral loadsM with 15.57% prob-
ability and high viral loadsH with only 14.40% probability (the probability of death is 5.84%).
After this time, it becomes more likely to fail treatment, as indicated by an increase in statesM
andH relative to L. We also assessed the sensitivity of the optimal pro-active strategy to varia-
tions in parameter values and found it to be fairly insensitive to parameter perturbations, see
S3 Text. For comparison, we also show the dynamics for the case when no treatment switches
were conducted in S4 Text in relation to the optimal pro-active strategy.

Cost of Strategy
In our model, the cost incurred by a treatment strategy can be divided into two types: The di-
rect costs, which include treatment- and diagnostic costs, and indirect costs incurred by the vi-
rologic/health status of a patient (state costs). The pro-active strategy does not comprise
diagnostic tests, whereas the protocol for the current standard of care (S.O.C.), as well as the
protocol used in theHPTN052 [16], which we simulate for comparison, require viral load
measurements. Currently, the expensive resistance tests are not part of the protocol for the
standard of care, nor were they used for treatment decisions inHPTN052. The protocol for S.
O.C. recommends changing treatment, if viral load (which is measured at month 6 and then
every 12 months) is detectable and confirmed in a follow up testing after 2 months. The proto-
col for theHPTN052 trial recommends changing treatment, if two consecutive viral load mea-
surements were greater than 1000 copies/mL, 16 weeks after treatment initiation. Viral load
was measured at week 2, at month 1, 2, 3 after treatment initiation and then every 3 month.
The cost of virologic testing is roughly 30 US$ per test [57, 58]. In contrast to S.O.C. and
HPTN052, the diagnostic-guided strategy requires drug resistance testing. We set the cost of
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the diagnostics for the diagnostic-guided strategy to 200 US$ per test, in line with the recent
literature [57, 59].

Table 3 displays the expected discounted costs for an infinite time horizon for different
strategies and highlights the direct- and indirect costs of each strategy, respectively. This com-
parison shows that the pro-active strategy performs best (83,819 US$), followed closely by the
diagnostic-guided strategy (83,858 US$), theHPTN052 protocol (84,600 US$) and then by
the standard of care (85,641 US$). The total expected discounted costs for the pro-active- and
the diagnostic-guided strategy are 2% less than that of the standard of care. The state costs
(indirect cost related to patient-well being) are the major determinant of the total cost, making
up roughly 98%, 97%, 97% and 93% of total cost for the S.O.C., theHPTN052 protocol, the
pro-active—and the diagnostic-guided strategy respectively. In terms of state costs, the diag-
nostic-guided strategy performs best.

The direct costs (treatment and diagnostic costs) are highest for the diagnostic-guided
strategy (5,539 US$) followed by the pro-active strategy (2,772 US$), theHPTN052 protocol
(2,390 US$) and the standard of care (1,871 US$). The direct costs make up only 2%, 3%, 3%
and 7% of the total costs for S.O.C., theHPTN052 protocol, the pro-active and the diagnos-
tic-guided strategy respectively. The direct costs of the pro-active and the diagnostic-guided
strategy are roughly 48% and 196% more than that of S.O.C.

Patient Survival
Clearly, the primary goal of any treatment strategy is to improve and prolong the life expectan-
cy of the treated individual. We therefore compare the distinct treatment strategies in terms of
patient survival. For that purpose, we define the following term:

PðXs ¼ ✠jstgÞ

which denotes the probability of death✠ at time s given that the patient was treated according
to treatment strategy stg. Given two distinct strategies; stg and a reference treatment strategy
stgref, the term Tþ0!tðstg; stgrefÞ refers to the expected years of life gained (life prolongation)
when the treatment strategy stg is used, relative to the reference treatment stgref at time t after
initiation of treatment:

Tþ0!tðstg; stgref Þ ¼
Z t

s¼0

PðXs ¼ ✠jstgref Þ * PðXs ¼ ✠jstgÞ ds ( ð32Þ

Table 3. Expected discounted costs for an infinite time horizon.

Type of cost Standard of care protocol [US$] HPTN052 protocol [US$] Pro-active strategy [US$] Diagnostic-guided strategy [US$]

Treatment costs 1,725 1,974 2,772 1,307

Diagnostic costs 146 416 – 4,232

Total handling cost 1,871 2,390 2,772 5,539

State costs 83,770 82,210 81,047 78,319

Total cost 85,641 84,600 83,819 83,858

For each treatment strategy, the total expected discounted cost for an infinite time horizon are shown. Further, the total cost is splitted into direct cost
(treatment cost and diagnostic cost) and indirect cost (state costs).

doi:10.1371/journal.pcbi.1004200.t003
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In other words, given a patient is treated with stg and another patient is treated with stgref
for time t, the terms Tþ0!tðstg; stgrefÞ refers to the expected time that a patient treated with stg
will live longer than the patient treated with stgref.

We compared all strategies with the following reference strategies stgref: i) no medical inter-
vention, ii) the standard of care treatment, iii) treatment according to theHPTN052 protocol
and iv) the diagnostic-guided strategy. Fig 5A and 5D show the trajectories of expected life
prolongation by different strategies in relation to i)-iv). Table 4 displays the expected life-years
gained after 1 -, 2 -, 5 -, 8 -, 12—and 13.7 years of treatment respectively, where we additionally
show the expected life prolongation in relation to the uninfected state.

The first five rows of Table 4 show the expected loss-of-life-time of an HIV infected person
treated with distinct strategies in relation to an HIV uninfected person. After 13.7 years, an

Fig 5. Relative expected life prolongation [years] for different treatment strategies. The purple solid lines, green dashed lines, blue dash-dotted lines
and black dots represent the pro-active strategy-, the diagnostic-guided strategy, the current standard of care and theHPTN052 protocol respectively.
The thin black line denotes the line of unity (no improvement/worsening). Panels A-D show the expected life-time prolongation for the distinct treatment
strategies in relation to the no treatment, standard of care, theHPTN052 protocol and the optimal diagnostic-guided strategy respectively.

doi:10.1371/journal.pcbi.1004200.g005
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HIV patient receiving no treatment lives on average 6.2 years less than a healthy person. An
HIV patient receiving treatment according to S.O.C., the pro-active strategy, the diagnostic-
guided strategy or according to theHPTN052 protocol lives on average 3, 2.66, 2.3 and 2.82
years less than a healthy person. Fig 5A shows that all treatment strategies are better than re-
ceiving no treatment at all and prolong the life of an HIV patient by at least 3.2 years in rela-
tion. Fig 5B shows that the diagnostic-guided, pro-active strategy and theHPTN052
protocol are better at increasing patient survival than the standard of care. Further, Fig 5C
shows that the optimal strategies are slightly better than theHPTN052 protocol and Fig 5D
shows that the pro-active strategy and theHPTN052 protocol are slightly worse than the di-
agnostic-guided strategy. Table 4 shows that during the initial 2–3 years of treatment, there is
almost no difference between the diagnostic-guided and the pro-active strategy with regard
to patient survival. After 13.7 years of treatment, the difference between the two optimal strate-
gies is less than 5 month (0.358 years).

Expected Reduction in Secondary Cases
Besides the primary goal of improving the life of the HIV patient, ‘treatment for prevention’
has gained interest in recent years. ‘Treatment for prevention’ strategies reduce onward trans-
mission of the virus by reducing the infectiousness of HIV positive individuals. In order to
measure the efficacy of the treatment strategies in preventing HIV-1 transmission, we estimat-
ed the incidence rate per 100 person-years associated with each HIV lumped state (ℓ,m, h)
from a meta-analysis by Attia et al [14] (see S5 Text). The meta-analysis summarizes the out-
come of 11 clinical studies on HIV-1 transmission in heterosexual sero-discordant couples, pri-
marily from Africa.

Table 4. Expected relative life-time gained using different strategies.

Expected life prolongation [years] after

Ref. Strategy Test Strategy 1 yr 2 yrs 5 yrs 8 yrs 12 yrs 13.7 yrs

No disease Diag-guided strategy -0.020 -0.070 -0.360 -0.870 -1.830 -2.300

No disease Pro-active strategy -0.020 -0.070 -0.400 -0.990 -2.110 -2.660

No disease HPTN052 protocol -0.030 -0.080 -0.450 -1.080 -2.250 -2.820

No disease Standard of care -0.030 -0.090 -0.470 -1.150 -2.400 -3.010

No disease No treatment -0.070 -0.280 -1.420 -2.980 -5.260 -6.220

No treatment Diag-guided strategy 0.051 0.206 1.058 2.115 3.427 3.912

No treatment Pro-active strategy 0.051 0.206 1.020 1.993 3.150 3.554

No treatment HPTN052 protocol 0.050 0.200 0.970 1.900 3.000 3.390

No treatment Standard of care 0.050 0.190 0.940 1.830 2.850 3.210

Standard of care Diag-guided strategy 0.003 0.014 0.110 0.284 0.569 0.704

Standard of care Pro-active strategy 0.004 0.014 0.072 0.163 0.292 0.345

Standard of care HPTN052 protocol 0.002 0.007 0.026 0.070 0.149 0.184

HPTN052 protocol Diag-guided strategy 0.002 0.007 0.084 0.214 0.420 0.520

HPTN052 protocol Pro-active strategy 0.002 0.007 0.047 0.092 0.144 0.162

The table shows the relative expected gain in life-time for the distinct treatment strategies in comparison to a reference strategy. The reference strategies
are i) no infection ii) no treatment iii) standard of care and iv) the HPTN052 protocol. Values were computed using Eq (32).

doi:10.1371/journal.pcbi.1004200.t004
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For a strategy stg applied for a time t, the following equation gives a measure of the expected
number of secondary cases/transmissions per survivor

E0!tðtransm:jstg ^ :✠Þ ¼
Z t

s¼0

P
xPðXs ¼ xjstgÞ ( IRðxÞ

1* PðXs ¼ ✠Þ
ds ð33Þ

where IR(x) is the incidence rate per 100 person-years for a state x in our virus dynamics
model, as explained in S5 Text and given in Table 1. Given two strategies, stg1 and stgref, the
percentage of potential infections prevented by strategy stg1 in comparison to the reference
strategy stgref is given by the quotient:

%transmissions prevented until t ¼ 100 ( 1* E0!tðtransm ( jstg1 ^ :✠Þ
E0!tðtransm ( jstgref ^ :✠Þ

! "
ð34Þ

We computed the expected reduction of secondary cases for different strategies taking either
no treatment or the current standard of care as the reference strategy. In comparison to no
treatment, the maximal reduction of secondary cases for the pro-active -, the diagnostic-guid-
ed strategy, theHPTN052 protocol and S.O.C. are achieved roughly 1.5–3 years after treat-
ment initiation with values of 86%, 87%, 82% and 79% respectively, see Fig 6A. The relative
reduction of secondary cases per survivor for the diagnostic-guided and the pro-active strate-
gy are very similar, with an increase for the first 2 years, followed by a slow decline (see Fig 6A
and Table 5). The relative reduction of secondary cases per survivor for theHPTN052 proto-
col is slightly better than that of S.O.C, with a tendency to decline over time, see Table 5. Note,
that the computed relative reduction of secondary cases with theHPTN052 protocol was 82%
(Table 5), which is slightly lower than the reported relative reduction of transmission events in
the actual HPTN052 study [16] (reduction of 96% of linked and 89% of total transmission
events). We have discussed reasons for this apparent under-prediction later in the manuscript.
The difference between the optimal strategies (diagnostic-guided and the pro-active strategy)
and S.O.C. becomes evident, when looking at the relative risk reduction by the optimal treat-
ment strategies in relation to S.O.C. in Fig 6B. The reduction in secondary cases per survivor

Fig 6. Comparison of the relative reduction of secondary cases per survivor. The purple solid, green dashed, blue dash-dotted lines and black dots
represent the expected relative reduction of secondary cases per survivor by the pro-active-, the diagnostic-guided strategy, S.O.C. and in the HPTN052
protocol. In panel A, the reference strategy is no treatment and in panel B it is S.O.C.

doi:10.1371/journal.pcbi.1004200.g006
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by the optimal strategies in comparison to S.O.C. is highest at the beginning and then slowly
decreases over time.

Discussion
The main aim of this work was to develop a rigorous mathematical framework that allows to
compare different treatment paradigms in terms of monetary costs, treatment benefit and effi-
cacy for ‘treatment for prevention’. It was previously stated [60], that the durability of ‘treat-
ment for prevention’ should be assessed. Our simulations over a long time horizon (up to 5000
days/13.7 years) indicate that the effect of ‘treatment for prevention’ is significant and remains
relatively stable beyond the time horizon typically assessed in clinical studies, see Fig 6A and
Table 5, and that it may even be improved. We estimated that a standard of care therapy in
e.g. South Africa can achieve a 66–79% reduction of HIV-1 onward transmission, in compari-
son to delivering no treatment. We also implemented theHPTN052 protocol, as stated in
[16] and predicted that it would achieve up to 82% reduction of HIV-1 transmission, being
more effective than the current standard of care, as shown in Fig 6B.

Statistical assessment of the actual HPTN052 trial [16] yielded estimates for the relative re-
duction of transmission of 96% for linked transmission and 89% for any transmission. Our
simulatedHPTN052 protocol yielded a 82% reduction of onwards transmission, which is
within the confidence range of the reported estimates (CI: 73–99% for linked transmission and
CI: 68–96% for any transmission) [16]. Note, that only one linked transmission event (1/1585
person-years) was observed in the early therapy arm of HPTN052 [16], giving rise to the statis-
tical uncertainty in the reported estimate. Nevertheless, our simulations may under-predict the
efficacy of HPTN052 due to several factors:

i. The reported treatment efficacy in the HPTN052 study was higher than predicted by our
model: Virologic failure was only observed in 5% of participants in the early-therapy group
of HPTN052, possibly explaining the difference between the outcome of the simulation vs.
the clinical trial.

ii. Despite only 5% failing to suppress the virus in the HPTN052 study, 66% initiated a second
line therapy [16], meaning that a significant proportion of patients switched treatment be-
fore/without virologic failure. In our simulations of theHPTN052 protocol, patients only

Table 5. Expected relative reduction of secondary cases per survivor using different treatment strategies after different treatment durations.

relative reduction in secondary cases [%]

Ref. strategy Test strategy 1 yr 2 yrs 3.5 yrs 5 yrs 8 yrs 13.7 yrs

No treatment Diagnostic-guided strategy 85.52 86.76 85.42 83.71 80.33 75.72

No treatment Pro-active strategy 84.72 85.72 84.34 82.41 78.54 72.35

No treatment HPTN052 protocol 81.01 81.32 79.61 77.66 74.29 69.25

No treatment Standard of care 78.77 78.55 76.31 74.08 70.50 65.50

Standard of care Diagnostic-guided strategy 31.79 38.29 37.45 37.15 33.31 29.61

Standard of care Pro-active strategy 28.04 33.45 33.88 32.11 27.25 19.85

Standard of care HPTN052 protocol 10.83 12.94 13.93 13.79 12.83 10.85

The table shows the expected relative reduction in secondary cases for different strategies in comparison to no treatment and S.O.C. after different
treatment durations. Values were computed using Eq (34).

doi:10.1371/journal.pcbi.1004200.t005
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switched treatment when they showed signs of virologic failure. However, one may specu-
late that these treatment switches before/without virologic failure may have an impact on
the long-term viral suppression that could be similar to a pro-active treatment switch.

iii. The primary measurable endpoint of the HPTN052 study was the infection of the sero-dis-
cordant partner. Onward transmissions to other individuals could not be quantified for
obvious reasons.

While a number of trials are now underway to confirm the results of HPTN052, see e.g. [61,
62], our in silico approach specifically addresses the need for an improved treatment strategy,
particularly taking affordability into account, which suggests strategies that are suitable for
scaling up.

Our work may indicate that if ‘treatment for prevention’ is scaled up and implemented
using the current standard of care treatment strategy, its efficacy may not be as high as ex-
pected from HPTN052. Unlike in HPTN052, where monitoring of treatment success (viral
suppression) and timely execution of treatment changes were realized, in resource-constrained
countries close patient monitoring is currently not implemented in a routine setting and may
be difficult to realize due to infrastructural and economic requirements.

Two alternative strategies for the immediate initiation of therapy were assessed in our work
that take into account the mentioned limitations. Both suggested strategies (the diagnostic-
guided strategy and the pro-active strategy) yielded better results in our simulations in terms
of the reduction of onward transmission (see Table 5) at a lower price (Table 3). Both optimal
strategies could yield a 72–87% reduction in HIV onward transmission in comparison to no
treatment, see Fig 6A and Table 5. In comparison to the standard of care, we estimated that
the diagnostic-guided strategy and the pro-active strategy could yield another 33–38% reduc-
tion of onward transmission after 2 years of treatment, but the advantages of the diagnostic-
guided strategy and the pro-active strategy over the standard of care slowly declined over
time, see Fig 6B. This indicates that both optimal strategies have a particular strength in reduc-
ing early transmissions (shortly after treatment initiation) in comparison to the current stan-
dard of care. This may be of particular utility, if transmission occurred primarily during early
infection [63, 64]. In our work, we did not take behavioral factors into account, which would
lead to a time-dependency of the infection rate. Rather, we assumed that the infection rate
IR(x) is constant over time, but dependent on the total virus load as reported earlier [14, 15,
19–21]. If transmission would primarily take place during an early infection, the advantages of
the diagnostic-guided strategy and the pro-active strategy over the standard of care would
be even more pronounced than indicated in Fig 6B.

The optimal diagnostic-guided strategy suggested patient-specific diagnostics, i.e. depen-
dent on the patient’s virologic status (see S1 Table), unlike fixed intervals as in S.O.C, or the
protocol stated in [16]. In summary, the optimal diagnostic-guided strategy suggests to take
frequent diagnostics (- every month) if the patient is infected with a high ormedium number
of treatment-susceptible virus and less frequent (- every 5 month) diagnostics if the patient is
infected with a ℓow/undetectable number of virus. No diagnostics are recommended for the re-
maining virologic states. Altogether, a very sparse diagnostic schedule for individual patients is
suggested. Previous work [25] indicated that price reductions for the diagnostic tests would
yield a better patient-outcome, which indicates that available drugs may not be utilized opti-
mally in resource-poor settings, because diagnostics are currently too expensive. Of note is the
fact that albeit treatment being available at very low expense (due to negotiations by the Clin-
ton Foundation [65]), diagnostics may not be.

Furthermore, we suspected that allowing treatment change only after diagnostic confirma-
tion of treatment failure (i.e. some time after drug resistance has occurred) may limit future
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treatment options [34]. Since the optimal diagnostic-guided strategy suggested rare diagnos-
tics, and because it only allows to change treatment after resistance is detectable, we evaluated
pro-active switching strategies. Note, that pro-active treatment switching strategies tested in
the clinic increased virologic suppression and lowered rates of drug resistance emergence in
HIV-1, when compared to conventional strategies [66, 67]. Similar strategies are also used
against bacterial infections and cancers.

The computed pro-active strategy suggests a single treatment change without prior ascer-
tainment of the viral status within a treated patient. Surprisingly, this strategy could yield com-
parable outcomes in terms of monetary costs, patient health and reduction of onward
transmission, see Tables 3–5 and Figs 5 and 6. Our work thus indicates that pro-active strate-
gies, may be as effective as diagnostically-driven ones, when diagnostics are expensive or inac-
cessible. Note, that unlike other optimal control approaches, i.e. [28] that suggest infinitely fast
switching between regimens to mitigate drug resistance emergence, our predicted pro-active
strategy actually only recommends a single treatment change, which is clinically more realistic.
We also analyzed the sensitivity of the pro-active strategies with respect to the timing of this
switch (see Fig 7). The graphic illustrates, that the switch is optimal after 14 days, however the
difference in the performance measure is marginal, as long as the treatment switch is per-
formed before- 30 days (1 month) after treatment initiation.

Obviously, pragmatic and clinical considerations need to be taken into account to translate
our results into practice. Also, several assumptions have been made, which require careful eval-
uation. For example, we used a very coarse-grained model of HIV within-host dynamics,
which was required to enable the numerical computation of optimal controls, particularly for

Fig 7. Sensitivity of the pro-active strategy with respect to timing of the treatment switch. The purple
solid line represents the total expected discounted costs for the pro-active strategywith respect to the
switching time (shown on the x-axis). The horizontal green dashed, blue dash-dotted lines and black dots
represent the total expected discounted costs for the optimal diagnostic-guided strategy, S.O.C. and in the
HPTN052 protocol. The inset shows a zoom into the first 30 days after treatment initiation.

doi:10.1371/journal.pcbi.1004200.g007
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the closed-loop system employed in the diagnostic-guided strategy. Most models of viral dy-
namics, e.g. [33, 68, 69], were developed to accurately predict short-term viral dynamics after
drug application and are unable to predict virologic failure after long time intervals, in contrast
to our coarse-grained model, which was developed and parameterized in order to predict
short-term viral dynamics as well as virologic failure after very long time-intervals, see e.g. Figs
2 and 3. It is therefore more suitable than existing models in estimating the long-term response
to antiviral treatment. However, in the future we will focus on developing more elaborated
HIV-models and on algorithms to solve the control problem for the chemical master equation
directly, without state-space lumping. Note, that other computationally efficient numerical ap-
proaches, such as model predictive control [30], could be used to approximate the optimal
treatment strategies. However, there is no guarantee that the computed control using these ap-
proaches will be optimal.

In our approach, we modeled treatment change as a switched system, which neglects the
pharmacokinetics of the distinct drugs [10, 70–72] and may only indirectly reflect drug adher-
ence in an average population (drug efficacy η is a constant term in our model). Neglecting
pharmacokinetics may, however, be a justifiable step in this modeling exercise, because of the
considered time-scales (on the order of years), and also because optimizing e.g. drug adherence
was not an objective of this study. However, if the main interest is for example in optimizing
the switch between two treatment lines by optimal dosing in order to prevent time frames of in-
sufficient viral suppression or drug over-exposure, or to include patient-specific or time-depen-
dent drug adherence, we advise to consider a different control system, for example [73].
Within such a framework, monitoring (e.g. viral load assessment) may also be incorporated as
a tool to assess individual drug adherence and to allocate resources to improve it.

We did not explicitly consider costs related to contraindications caused by the treatment.
For example, the second treatment line a2 may be less tolerable. Mathematically, this can be
modeled in terms of increased treatment costs for a2, in comparison to the first treatment line
a1. In order to test the sensitivity of the optimal pro-active strategy to this parameter, we con-
ducted the necessary computations in S3 Text and found that the computed strategy was fairly
insensitive to changes in treatment costs. This may indicate that the benefits of the treatment
switch outweigh these potential shortcomings.

Also, we did not include screening costs or the costs of the initial virologic assessment, thus
our calculations refer to the public health costs that accrue from the start of HIV treatment.
These costs will, however, only enter as a constant to each of the tested strategies and will not
change the results beyond the addition of this constant to the values stated in Table 3. Addi-
tional costs (personnel, infrastructure, transportation) may come along with diagnostic assess-
ments. It is likely that hidden costs for diagnostics are substantial. With a higher cost of
diagnosis, the pro-active strategymay outperform the diagnostic-guided strategy, which may
suggest an even less frequent diagnostic schedule, supporting our claim that current diagnostics
may be too expensive to be appropriately used.

We used the price of a drug resistance test (kdia- 200 US$ [57, 59]) to account for diagnos-
tics in the diagnostic-guided strategy. This had the following reason: Current guidelines rec-
ommend to measure the total virus load [13] and to switch treatment, if, based on this partial
information, virologic failure is anticipated. As reported by others [57], this may lead to unnec-
essary treatment switches. In contrast, a resistance test directly informs the physician about the
necessity of treatment change. Mathematically, partial information, i.e. the total virus load,
would lead to a distinct control framework, namely Partially Observable Markov Decision Pro-
cesses (POMDP) [74], which are extremely challenging to solve, particularly for larger models
like the one used herein (Fig 1). In POMDPs, partial information may be mapped into a ‘be-
lieved’ full virologic status, for example observing a high total virus loadmay be due to some
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resistance development, e.g. the viral state ‘; h; 0; 0½ % with some probability. However, it is
hard for us formalize the physicians intuition (i.e. the relation between observation, belief and
truth) regarding this ‘mapping’ of partial measurements to viral states x.

As a primary outcome of our modeling exercise, we estimated the expected relative number
of secondary infections prevented (Table 5 and Fig 6); -unlike many other approaches (sum-
marized in [18]), which take the absolute number of secondary cases into account. Estimating
absolute numbers of secondary cases would require to model complex behaviors, i.e. sexual re-
lationships, etc. over time, for which we do not have data for validation, nor was it the main
focus of the current work. This also prevents us from predicting the course of the epidemic or
deriving its reproductive number R0 in relation to distinct treatment strategies. However, the
primary aim of this study was to compare the efficacy of different treatment strategies, which is
nicely quantified in terms of the expected relative number of secondary infections prevented.
Note, that this relative estimate requires no assumptions on the underlying transmission dy-
namics, except that it assumes that these dynamics are similar for a tested strategy versus
its comparator.

In addition to insights in HIV ‘treatment for prevention’ strategies, the developed mathe-
matical/control theoretic framework may already be applicable to many medical phenomena.
Further developments may improve its applicability to even more complex processes, which
can be accurately described by intrinsically stochastic dynamics. For example, the open-loop
optimal control approach (used to determine the optimal pro-active strategy) may be turned
into a closed-loop system, if diagnostics are taken from time-to-time to determine the viral
state of a patient, i.e. p[x](tj). Also, the closed-loop system that requires state determination
(the diagnostic-guided strategy) may be combined with the open-loop system in order to
allow for pro-active treatment changes in between diagnostic assessments.
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loop control system, as well as the pseudo-code.
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ABSTRACT

Non-coding RNA regulatory elements are important
for viral replication, making them promising tar-
gets for therapeutic intervention. However, regula-
tory RNA is challenging to detect and characterise
using classical structure-function assays. Here, we
present in cell Mutational Interference Mapping Ex-
periment (in cell MIME) as a way to define RNA regula-
tory landscapes at single nucleotide resolution under
native conditions. In cell MIME is based on (i) random
mutation of an RNA target, (ii) expression of mutated
RNA in cells, (iii) physical separation of RNA into
functional and non-functional populations, and (iv)
high-throughput sequencing to identify mutations af-
fecting function. We used in cell MIME to define RNA
elements within the 5′ region of the HIV-1 genomic
RNA (gRNA) that are important for viral replication
in cells. We identified three distinct RNA motifs con-
trolling intracellular gRNA production, and two dis-
tinct motifs required for gRNA packaging into virions.
Our analysis reveals the 73AAUAAA78 polyadenyla-
tion motif within the 5′ PolyA domain as a dual regu-
lator of gRNA production and gRNA packaging, and
demonstrates that a functional polyadenylation sig-

nal is required for viral packaging even though it neg-
atively affects gRNA production.

INTRODUCTION

Once thought to be a passive carrier of genetic information
between the DNA and the protein world, RNA is now ap-
preciated to play a central role in the regulation of almost
all cellular activity (1). RNA is unique in that it encodes
information in both its sequence and its structure. Like its
counterpart DNA, the order of nucleotides in RNA repre-
sents the sequence of amino acids during protein synthesis.
However, unlike the regular double stranded DNA helix,
RNA molecules can fold into complex and elaborate three-
dimensional structures that impart functionality by serving
as recognition sites for proteins, small molecules, and other
nucleic acids.

RNA viruses, with their compact and ef!ciently encoded
genomes, are perfect models of complex RNA function. The
genomic RNA (gRNA) of HIV-1 encodes nine proteins:
the major structural proteins, Gag, Pol and Env; the reg-
ulatory proteins Tat and Rev; and the accessory proteins
Vpu, Vpr, Vif and Nef. In addition to its coding capacity,
the HIV-1 gRNA is replete with cis-acting regulatory se-
quences that interact in complex ways to modulate gene ex-
pression through effects on RNA processing, stability, ex-
port and translation. These regulatory sequences are espe-
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cially concentrated within the 5′ untranslated region (UTR)
and the beginning of the Gag coding sequence (2–7). This
region of the gRNA is highly structured, and folds into a
series of relatively independent functional domains (Figure
1A): the Trans-Activating Response (TAR) for transcrip-
tion; PolyA for polyadenylation; the primer binding site
(PBS) for reverse transcription; SL1 or the dimerization ini-
tiation site (DIS) for gRNA dimerization; SL2 contains the
major splice donor (SD) site; and SL3 is historically consid-
ered the major packaging signal (Psi). Together, these func-
tional domains regulate key steps of the HIV-1 life cycle (8–
11), and serve to highlight the fact that the gRNA sustains
not only protein synthesis, but is an active participant in the
viral infection process.

Because regulatory elements are essential for viral repli-
cation, they represent promising, yet still underexplored an-
tiviral targets (12). Indeed, pioneering work in Hepatitis
C virus (HCV) demonstrates that non-coding RNA can
be targeted therapeutically with high barriers to resistance,
providing impetus for the systematic discovery of functional
RNA motifs in viral genomes (13). To date, regulatory RNA
is most often identi!ed using truncation or deletion mu-
tants in individual assays to de!ne regions of functional-
ity. However, regulatory regions often overlap in complex
RNAs, making these laborious experiments dif!cult to in-
terpret. Indeed, attempts to de!ne the minimal HIV-1 pack-
aging signal have led to largely con"icting results, and evi-
dence can be found in the literature that almost all regions of
the 5′UTR are required for packaging (14), including TAR
(15,16), the poly-A stem loop (17,18), PBS (14,18), SL1
(14,19–21), SL2 (22), SL3 (23–25), as well as the !rst nu-
cleotides of gag (6,26,27). Many of these studies used large
and imprecise deletions that likely compromised the global
folding of the RNA, and some of these studies may not be
correctly interpreted. For example, TAR was once consid-
ered part of the HIV-1 packaging signal, until work by the
Berkhout lab revealed that packaging defects were caused
by TAR mutation induced misfolding of the HIV-1 leader
RNA (28–30). Finally, truncation and deletion mutagenesis
experiments are rarely able to de!ne regions of functionality
at single nucleotide resolution, nor do they provide enough
information to mechanistically understand RNA function.
Thus, there is an urgent need for new high-resolution and
quantitative methods to analyse RNA function, especially
within the native cellular environment.

We have recently developed Mutational Interference
Mapping Experiment (MIME) as a powerful and high res-
olution method to identify functional regions within long
RNA molecules in vitro (31). We previously used MIME to
precisely map the binding site of the HIV-1 Pr55Gag protein
on the viral gRNA in vitro, !nding that Pr55Gag recognises
the region encompassing nucleotides 227 to 337 (31). Whilst
Pr55Gag binding to the gRNA is presumed to be the major
determinant of gRNA packaging into viral particles, it is
currently unclear whether Pr55Gag recognises this same site
within cells (32), nor whether there are additional regula-
tory or packaging signals that may de!ne binding sites for
cellular (33) and viral proteins, or even nucleic acids (34).
Additionally, the minimal signal required to direct HIV-
1 gRNA into viral particles has yet to be precisely deter-

mined, with the packaging signal possibly comprising the
entire 5′UTR and up to half of the Gag coding sequence
(35,36). How such an extended packaging signal intercon-
nects with other regulatory motifs situated in the same re-
gion is an open question, whose answer would undoubtedly
help with the engineering of safe HIV-1 lentiviral vectors for
gene therapy purposes.

Here, we have adapted MIME to identify RNA regula-
tory sequences within the HIV-1 genome during its repli-
cation in cells (in cell MIME) (Figure 1B). By varying the
functional selection criteria, we obtained two distinct and
high-resolution maps of regulatory RNA controlling intra-
cellular gRNA production and gRNA packaging, respec-
tively. We found three RNA motifs regulating intracellular
gRNA production and two motifs regulating genome pack-
aging. Strikingly, a 73AAUAAA78 hexamer sequence within
5′ PolyA regulated both gRNA production and packaging,
revealing the cellular polyadenylation machinery as a dual
regulator of HIV-1 replication.

MATERIALS AND METHODS

Molecular clones

Mutant libraries were cloned into pDRNL43 NotI AT-
Gaag Tat(–) !Env which is a derivative of pDRNL43!Env
(37) modi!ed to contain (i) NotI 431GCgGCcGC439 and
NgoMIV 958GccGgC964 restriction sites for the cloning
of the mutant library (positions based on pNL43 provi-
ral DNA), (ii) a substitution in the initiation codon of
gag to prevent Gag expression (27), (iii) a stop codon
preventing Tat protein expression, (iv) a deletion in env
(for biosafety). Gag and GagPol, and accessory proteins
Tat and Rev, were expressed from the packaging vector
pCMV!R8.9 (38). PolyA and SL2 mutants were intro-
duced into pDRNL43!Env. Site directed mutagenesis was
carried out utilising standard molecular biology techniques
using the oligonucleotides listed in Supplementary Table S1.

Cell culture

Human embryonic kidney 293 (HEK 293T) cells were main-
tained at 37◦C in Dulbecco’s modi!ed Eagle’s medium
(DMEM) supplemented with glutamine, penicillin, strepto-
mycin and 10% (v/v) heat-inactivated fetal calf serum.

In cell mutational interference mapping experiment (MIME)

Mutagenesis. RNA expression vector (pDRNL43 NotI
ATGaag NgoMIV Tat(–) !Env) was mutated by error-
prone PCR using the Mutazyme II DNA polymerase (Ag-
ilent) and the primers NL43 NotI Fw and NgoMIV Rv
(Supplementary Table S1). We chose Mutazyme II as it is
reported to produce a more uniform mutational spectrum
than traditional error-prone PCR. The PCR reaction vol-
ume was 50 !l and consisted of 100 ng of template DNA,
1× buffer, 200 !M dNTPs, 0.5 !M of each primer, 2.5 U
of Mutazyme II DNA polymerase. PCR cycling conditions
were 95◦C for 2 min followed by 35 cycles of 95◦C for 30 s,
55◦C for 30 s and 72◦C for 1 min. We performed two or three
rounds of PCR mutagenesis in duplicate. Mutated amplicon
libraries were further ampli!ed with the same primers used
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Figure 1. (A) The HIV-1 5′UTR folds into a series of structural domains that control key steps of the HIV-1 life cycle including transcription, translation,
export, packaging and reverse transcription. From 5′ to 3′ these structural domains are: transactivation response (TAR) for transcription; PolyA stem loop
for polyadenylation; the primer binding site (PBS) for reverse transcription; SL1 promotes gRNA dimerization; SL2 contains the major splice donor (SD)
site; SL3 has historically been considered the major packaging signal (Psi); the sequences surrounding the AUG start codon are thought to be involved in
a base-pairing interaction with the upstream U5 region. (B) In cell Mutational Interference Mapping Experiment (in cell MIME). The proviral genome
is randomly mutated using error prone PCR, and subsequently cloned into a gRNA expression vector. The structural and enzymatic proteins, Gag and
Gag-Pol are expressed from a separate expression plasmid. Co-transfection of the mutant library and Gag/Gag-Pol expression plasmid into 293T cells
leads to the transcription of mutant RNAs and subsequent sorting of functional and non-functional RNA populations by the viral and cellular machinery.
Viral RNA present in cells and virus is reverse transcribed. Viral cDNA and the input DNA plasmid is ampli!ed, fragmented, barcoded, sequenced on an
Illumina HiSeq2500, and analysed using the MIMEAnTo software.

for mutagenesis using Phusion polymerase (NEB). PCR re-
action volume was 50 !l and consisted of ∼50 ng of mu-
tated DNA, 1× HF buffer, 200 !M dNTPs, 0.5 !M of each
primer, 1 U of Phusion polymerase. Eight PCR ampli!-
cations were performed using the PCR cycling conditions
98◦C for 30 s, followed by 30 cycles of 98◦C for 10 s and
72◦C for 1 min. Ampli!ed libraries were column puri!ed
(Macherey-Nagel) and stored at –20◦C until further use.

Cloning of library. Column puri!ed amplicon libraries
and the RNA expression vector pDRNL43 NotI NgoMIV
Tat(–) !Env were digested with NotI and NgoMIV. Vector
and inserts were gel puri!ed on a 1% agarose gel, and lig-
ated overnight at an approximate molar ratio of 1 (vector):5
(insert) using a temperature cycling protocol of 30 s at 10◦C
followed by 30 s at 30◦C. Overnight ligations were column
puri!ed using Nucleospin Gel and PCR Clean-up columns
(Macherey-Nagel) and stored at –20◦C until further use.

Transfection. Transfections of HEK 293T cells were car-
ried out using the X-tremeGENE-9 DNA Transfection
Reagent (Roche) according to the manufacturer’s instruc-
tions. Brie"y, cells were seeded at 70% con"uence in 100 mm
cell culture dishes and co-transfected with 2.5 !g mutant
library, 2.5 !g of pCMV!R8.9 packaging vector, 1 !g of
pCMV RFP with 1 !l of X-tremeGENE-9 per !g DNA. 36
h post-transfection, virus containing media was harvested
for storage at 4◦C and cells were replenished with fresh me-
dia to allow for a second virus harvest 24 h later. Virus con-
taining supernatant was pooled and clari!ed by centrifuga-
tion at 1462 g for 30 min, then passed through a 0.22 !m
!lter to remove cellular debris. Puri!ed virus was concen-

trated by ultracentrifugation at 100 000 g through a 20%
sucrose cushion.

RNA extraction. RNA was extracted from viral or cellular
pellets using TriReagent (MRC) according to the manufac-
turer’s instructions. Brie"y, cells or virions were lysed in 1
ml of TriReagent and incubated at room temperature for 5
min. 0.2 ml of chloroform was added, followed by vigor-
ous mixing, and a further incubation at room temperature
for 15 min. After centrifugation at 12 000 g for 15 min at
4◦C, the upper aqueous phase was transferred into a new
tube. RNA was precipitated by the addition of 0.5 ml of iso-
propanol and 1 !g of glycogen followed by centrifugation
at 12 000 g for 15 min at 4◦C. RNA pellets were washed once
in 500 !l of 70% EtOH, air dried, and resuspended in 200
!l of RNase free H2O. Viral and cellular RNA was then
treated to remove contaminating plasmid DNA with 5 !l
of RNase free DNase I (Roche), 5 !l RNasin (Promega) in
1× buffer (40 mM Tris–HCl, 10 mM NaCl, 6 mM MgCl2,
1 mM CaCl2, pH 7.9) for 2 h at 37◦C. RNA was then ex-
tracted with phenol–chloroform, chloroform and precipi-
tated with EtOH, washed with 70% EtOH and dissolved in
ultra-pure water. Cellular and viral RNA pellets were dis-
solved in 200 !l and 20 !l of RNase free H2O, respectively.

Reverse transcription. Four microliter of RNA was mixed
with 1 !l of a 10 !M stock of primer NL43 544 Rv (Sup-
plementary Table S1), denatured at 90◦C for 2 min and then
chilled on ice. Reverse transcription was carried out in a
total volume of 10 !l by adding 1× buffer (50 mM Tris–
HCl pH 8.3, 6 mM MgCl2, 40 mM KCl), 200 nM dNTPs
and 2 U of RNasin (Promega) and 2 U of AMV RT (MP
Biomedicals). Samples were incubated for 5 min at 42◦C,
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30 min at 50◦C and 10 min at 60◦C and diluted 1/10 with
90 !l H2O before use. Negative reverse transcription con-
trols were carried out in the absence of AMV RT to check
for the absence of contaminating plasmid DNA. cDNA
was quanti!ed by qPCR using primers NL43 C1 seq and
NL43 NgoMIV seq (Supplementary Table S1) and Bril-
liant II SYBR master mix (Agilent). cDNA was nor-
malized and ampli!ed with primers NL43 C1 seq and
NL43 NgoMIV Seq (Supplementary Table S1) using Phu-
sion polymerase. PCR reaction volume was 50 !l and con-
sisted of 105 copies of DNA, 1× HF buffer, 200 !M dNTPs,
0.5 !M of each primer, 1 U of Phusion polymerase. PCR
ampli!cations were performed in duplicate using the PCR
cycling conditions 98◦C for 10 s, followed by 30 cycles of
98◦C for 10 s, 55◦C for 15 s and 72◦C for 1 min. Pooled
PCR products were isolated on a 1% agarose gel and pu-
ri!ed using Nucleospin Gel and PCR Clean-up columns
(Macherey-Nagel).

Fragmentation. As 2 × 100 nt Illumina sequencing does
not completely cover the ∼500 bp fragment analysed in this
study, we randomly fragmented 500 ng of gel puri!ed ds-
DNA with 2.5 !l 10× buffer, 2.5 !l of 10× BSA and 2.5
!l of NEBNext dsDNA fragmentase in a total volume of
25 !l for 45 min at 37◦C. Samples were veri!ed on a 1%
agarose gel, and digestion was con!rmed as a smear on the
gel. Fragmented samples were puri!ed using Nucleospin
Gel and PCR Clean-up columns, according to the manu-
facturer’s instructions (Macherey-Nagel).

Library preparation. Fragmented DNA was !rst repaired
using 1× T4 DNA ligase buffer (NEB), 0.4 mM each
dNTPs, 1 mM ATP, 0.5 !l of Escherichia coli DNA lig-
ase (from NEB NEBNext dsDNA fragmentase kit), 4.5 U
of T4 DNA polymerase (NEB) and 25 U of T4 polynu-
cleotide kinase (NEB) in 50 !l total volume for 1 h at 20◦C.
Enzymes were then heat inactivated by incubating samples
for 30 min at 75◦C. DNA was A-tailed by adding 12.5 U
of Klenow fragment (3′-5′ Exo-) and 1.25 !l of 100 !M
dATP and incubating for 45 min at 37◦C. Following a sec-
ond round of enzyme heat inactivation for 30 min at 75◦C,
adaptor ligation was performed by adding 9 !l of fresh 10×
T4 DNA ligase buffer (NEB), 28 !l of 24% PEG 600 (NEB),
1 !l of 12.5 !M pre-annealed adaptors, and 2.5 !l of T4
DNA ligase (NEB) followed by incubation at 20◦C for 1 h.
Adaptor sequences IlluminaMAs and IlluminaMAa (Sup-
plementary Table S1) were annealed by mixing in 1× lig-
ase buffer (NEB), heating to 95◦C for 1 min and slow cool-
ing to room temperature. Samples were puri!ed using Nu-
cleospin Gel and PCR Clean-up columns. Y-shaped Illu-
mina adaptors were converted into dsDNA using the PCR
cycling conditions 98◦C for 30 s followed by 5 cycles of
98◦C for 15 s, 63◦C for 30 s and 72◦C for 30 s using the
Illumina 1.0 and Illumina Index (Supplementary Table S1)
with Phusion polymerase. PCR reaction volume was 50 !l
and consisted of adaptor ligated DNA, 1× HF buffer, 200
!M dNTPs, 0.5 !M of each primer, 1 U of Phusion poly-
merase. Samples were then run on a 1% agarose gel and the
range corresponding to 200–600 bp range was isolated, and
puri!ed using Nucleospin Gel and PCR Clean-up columns.
DNA libraries were quanti!ed by qPCR using Illumina PE

PCR primer 1.0 and one of the Illumina Index primers (for
multiplexing) with Brilliant II SYBR master mix. Samples
were normalized and then re-ampli!ed by PCR Illumina PE
PCR primer 1.0 and one of the Illumina Index primers us-
ing the PCR cycling conditions 98◦C for 30 s; followed by
6 cycles of 98◦C for 15 s, 63◦C for 30 s and 72◦C for 30 s
with Phusion polymerase. Samples were then pooled, and
a !nal size selection was performed on a 1% agarose gel to
re-isolate the range 200–600 bp ensuring the removal of Il-
lumina adaptor dimers. Samples were sequenced on a single
lane of a HiSeq 2500 instrument in 100 bp paired end mode,
according to established procedures (IGBMC sequencing
platform, Strasbourg, France).

RT-qPCR

Packaging ef!ciency of wild-type and mutant HIV-1 were
carried out by transfecting 106 293T cells with 250 ng of
plasmid using 4.5 !l of polyethylenimine per !g of DNA
(1 mg/ml; Polysciences). Thirty six hours post-transfection,
viral supernatant was clari!ed by centrifugation, syringe
!ltered through 0.22 !m pores, and pelleted through a
20% sucrose cushion, as outlined above. 293T cells were
washed once in PBS. Viral and cellular RNA was then ex-
tracted using TriReagent (MRC), treated with DNase I,
phenol/chloroform extracted, chloroform extracted, and
EtOH precipitated as outlined above. Cellular and viral
RNA pellets were dissolved in 200 !l and 20 !l of RNase
free H2O, respectively. Three microliters of RNA were
mixed with 2 !l of a 5× mix of random hexamer and an-
chored oligodT (5× mix; 12.5 !M dT20VN; 17.5 !M N6)
denatured at 90◦C for 2 min and then chilled on ice. Re-
verse transcription was carried out in a total volume of 10
!l by adding 1× buffer (50 mM Tris–HCl pH 8.3, 6 mM
MgCl2, 40 mM KCl), 200 nM dNTPs and 2 U of RNasin
and 2 U of AMV RT (MP Biomedicals). Samples were in-
cubated for 5 min at 42◦C, 30 min at 50◦C and 10 min at
60◦C and diluted 1/10 with 90 !l H2O before use. Nega-
tive reverse transcription controls were carried out in the ab-
sence of AMV RT to check for the absence of contaminat-
ing plasmid DNA. gRNA, spliced viral RNA, and GAPDH
mRNA were quanti!ed by TaqMan qPCR assay using the
primers listed in Supplementary Table S1. A standard curve
was generated from 109 to 103 copies of plasmid contain-
ing the relevant target. Negative controls demonstrated the
DNA contamination levels were present at <1% in all sam-
ples. Packaging ef!ciency was determined by calculating the
ratio of the total amount of each RNA present in the super-
natant by the amount present in the cells.

Analysis of in cell MIME data

Relation between nucleotide frequencies and the effect on
intracellular gRNA production. Employing the derivation
outlined in the Supplementary Text Equations (S1)–(S12),
we can deduce the effect of a mutation m at position i in
the RNA from the frequency of that mutation in the DNA
library relative to the frequency in the cells c, i.e.

Km
prod (i ) =

kw
prod · δm

u

km
prod · δw

u
(i ) ≈ Sm

DNA

Sw
DNA

· Sw
c (t)

Sm
c (t)

(i ) , (1)
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where kw
prod(i ), km

prod(i ) denote the rate of intracellular pro-
duction of the wild type viral RNA and the viral RNA that
carries a particular mutation (i.e. A→C, A→G, A→U, if
the wild type base is adenosine) at position i and δw

u , δm
u

are the corresponding rates of RNA degradation. The ra-
tios Sm

DNA
Sw

DNA
(i ) and Sw

c (t)
Sm

c (t) (i ) denote the frequency of mutations
in the DNA library and in the pool of viral RNA located
in the cell. Whenever the measure above is larger than 1,
mutations decrease HIV-1 RNA levels. In order to identify
regions that are important for gRNA production, one may
also depict the impact of the mutation mmax(i) that has a
maximal impact at position i only, as shown in Figure 2A;
where mmax (i ) = argmax

m
|log2(Km

prod(i ))| and where m de-

notes all those mutations that have a signi!cant impact on
binding at nucleotide position i (if any), or all possible mu-
tations otherwise.

Relation between nucleotide frequencies and the effect on
packaging. Similarly, using derivations (S1–S6) and (S13–
S19) in the Supplementary Text, we can deduce the effect
of any mutation m at position i in the RNA on packaging
from the frequency of mutation m in the cell c relative to the
frequency in the virions v, i.e.

Km
pack (i ) = kw

on

kw
of f + krel

·
km

of f + krel

km
on

(i ) ≈ Sm
c (t)

Sw
c (t)

· Sw
v (t)

Sm
v (t)

(i ) , (2)

where kw
on , km

on, kw
of f , km

of f denote the binding- and dissocia-
tion rate of the RNA to/from the packaging complex and
the rate krel denotes the rate at which RNA bound to the
packaging complex is released from the cell after packing
into nascent virions. In order to identify regions that are
important for packaging, one may also depict the impact of
the mutation mmax(i) that has a maximal impact at position
i only, as shown in Figure 3A.

Error correction. The mutation frequencies Sm/Sw needed
to evaluate Equations (1) and (2) are not known exactly,
however, next generation sequencing (NGS) of the distinct
RNA pools (DNA library, cellular RNA and RNA in viri-
ons) gives their frequencies in the NGS reads Rm/Rw. These
reads however contain substantial sequencing errors, which
we have to correct for, akin to the method presented in the
Supplementary Notes of (31,39). Error correction allows us
then to directly estimate the effects of each mutation m for
all position i from the nucleotide frequencies observed in
the NGS reads, provided we have a suf!cient signal-to-noise
ratio (see Supplementary Text):

Km
prod (i ) ≈

Rm
DNA

Rw
DNA

− κw→m
DNA

Rm
c

Rw
c

− κw→m
c

(i ) , (3)

where κw→m(i ) denotes the probability to falsely detect a
wild type nucleotide w as some mutant m at position i.
κw→m(i ) is computed from experiments with wild type li-
braries for each type of mutation m and for each position
i, akin to (31,39) and as exempli!ed in the Supplementary
Text.

Similarly, for packaging, we derive

Km
pack (i ) ≈

Rm
c

Rw
c

− κw→m
c

Rm
v

Rw
v

− κw→m
v

(i ) , (4)

Statistical assessment of effects. The above described
method provides a single estimate of the relative effect for
each nucleotide position and for each possible mutation, but
it does not assess the con!dence range of this estimate, or
whether a mutation at position i has a signi!cant impact on
binding. In the following, we make use of a jacknife-like re-
sampling procedure to estimate the con!dence of each rel-
ative effect estimate, analogous to the methods in (31,39):
In brief, if we are interested in the effect of a mutation m at
position i, then for each pair of nucleotide positions (i,j), we
can re-compute Km,w

prod(i, j ), respectively Km,w
pack(i, j ), N times

(i.e. for each j )= i). Each of these estimates can be computed
according to:

Km,w
prod (i, j ) ≈

Rm,w
DNA

Rw,w
DNA

− κw→m,w
DNA

Rm,w
c

Rw,w
c

− κw→m,w
c

(i, j ) , (5)

and analogously,

Km,w
pack (i, j ) ≈

Rm,w
c

Rw,w
c

− κw→m,w
c

Rm,w
v

Rw,w
v

− κw→m,w
v

(i, j ) , (6)

where κw→m,w(i, j ) denotes the probability to falsely de-
tect a wild type nucleotide w at position i as some mu-
tant m and to correctly detect the wild type at position j
)= i as wild type, with derivations provided in the Supple-
mentary Text. To test whether a mutation at position i sig-
ni!cantly increases/decreases gRNA production, i.e. H0 :
log2(Km

prod(i )) ≤ c, H1 : log2(Km
prod(i )) > c, the raw P-value

can be computed according to

Pm
− (i ) =

#log2

(

Km,w
prod (i, j )

)

≤ c

#Km,w
prod (i, ∗)

, (7)

where ‘#’ denotes the ‘number of estimates’ and * indicates
that all positions j are evaluated. To test whether a mutation
at position i signi!cantly decreases Kprod,

Pm
+ (i ) =

#log2

(

Km,w
prod (i, j )

)

≥ −c

#Km,w
prod (i, ∗)

(8)

We used P < 0.05 to detect signi!cance. Note,
that one can test any threshold c ≥ 0 (e.g. 2-fold
increase/decrease, etc.). Throughout the manuscript
we chose c = |N−1 ∑

i log2(K̃m
prod(ı))| i.e. the average over

all positions i, i.e. c = 0.42. An analogous scheme can
be used to assess the effects on packaging, where we
determined threshold c = 0.41. All reported P-values
were corrected by the false discovery rate (FDR)-based
method of Benjamini-Hochberg.

Quality criteria. For each pair of reads Rm,w(i,j) / Rw,w(i,j),
we assessed its respective signal-to-noise ratio in the corre-
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Figure 2. In cell Mutational Interference Mapping Experiment (in cell MIME) discovery of RNA motifs regulating HIV-1 gRNA production (A) Log2
Kprod showing the maximal effect of mutations on RNA production in cells with the HIV-1 5′ UTR and Gag coding region (smoothed with a linear,
two-sided convolution !lter of width 2). Functional domains are indicated with coloured boxes below the graph. Positions with signi!cant effects on RNA
production are indicated by black triangles above the graph. Three regions with signi!cant (P < 0.05) and strong (log2 Kprod ≥ 1 or ≤ –1; gray dotted line)
effects on gRNA production are highlighted with red circles. (B to D) Mutations with maximal effect on log2 Kprod mapped on RNA structure. Positions
impairing RNA production are shown in red. Positions improving RNA production shown in blue. Box and whisker plots show effect of each class of
mutation on log2 Kprod. Black dot shows median, box shows quartiles (25% and 75%) and whiskers show extremes (excluding outliers beyond 1.5× IQR).
Mutation classes are colour coded: red mutated to A; green mutated to C; blue mutated to G; yellow mutated to U. (B) Effect of mutations on gRNA
production (log2 Kprod) mapped to TAR. (C) Effect of mutations on gRNA production (log2 Kprod) mapped to 5′ PolyA. All mutations to AAUAAA
sequence improve gRNA production except for a single A to U mutation. (D) Effect of mutations on gRNA production (log2 Kprod) mapped to SL2.
Mutations impairing gRNA production cluster to the U1 snRNA binding site.

sponding RNA pool (DNA, cell and virion) according to:

Dm,w (i, j ) ≈ Rm,w (i, j )
Rw,w (i, j ) · κw→m,w (i, j )

. (9)

If the ratio was below the user-supplied threshold of 2
in both samples (DNA library versus cell and cell versus
virion), the corresponding estimates in Equations (5) and
(6) were discarded. If the signal was below the threshold in

only one of the samples, the respective estimate was tagged
as either being a lower- or upper estimate of the mutations’
effect and assigned the value of the median effect estimate
on RNA production or packaging respectively. This has
the following reason: if a mutation strongly decreases RNA
production, the frequency of that mutation in the cellular
RNA may fall below the required signal-to-noise ratio (a
multiple of the sequencing error) and the (negative) effect
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Figure 3. In cell Mutational Interference Mapping Experiment (in cell MIME) discovery of RNA motifs regulating HIV-1 gRNA packaging. (A) Log2
Kpack showing the maximal effect of mutations on RNA packaging with the HIV-1 5′ UTR and Gag coding region (smoothed with a linear, two-sided
convolution !lter of width 2). Functional domains are indicated with coloured boxes. Positions with signi!cant effects on gRNA packaging are indicated
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on RNA production may actually be higher than estimable.
Conversely, if the frequency of that mutation was below
the minimum signal-to-noise ratio in the DNA library, but
HIV-1 RNA levels increase in the cellular RNA above the
threshold, the (positive) effect on RNA production may
actually be higher than estimable. Likewise, if a mutation
strongly decreases packaging, the frequency of that muta-
tion in the virions may also fall below the sequencing error,
while the signal within the cells is suf!cient. Again, the ac-
tual (negative) effect on packaging may be larger than es-
timable. We only evaluated Equations (5) and (6) for posi-
tions j where the total number of sequence fragments cover-
ing both i and j was at least 50% of the maximum coverage.
For determining P-values, at least 300 estimates had to ful!l
the quality criteria.

RESULTS

Mutational interference mapping experiment (MIME) in
cells

The 5′UTR folds into a series of functional domains that
regulate almost every stage of the HIV-1 life cycle (2,3,5),
including intracellular gRNA production and packaging
into viral particles. For the most part, the RNA sequences
regulating these processes have been mapped to individual
stem loops, but a complete nucleotide level understanding
of their function is largely lacking. We recently developed
Mutational Interference Mapping Experiment (MIME) for
dissecting RNA structure and function at single nucleotide
resolution (31). This technique is based on (i) the random
mutation of the RNA of interest (ii) the physical separa-
tion of RNA into functional and non-functional popula-
tions and (iii) high-throughput sequencing to identify mu-
tations affecting function. In theory, MIME can be applied
to any process where functional and non-functional RNAs
can be physically separated, including within cells during
a native viral replication cycle. We reasoned that during
replication, mutated viral RNA would be naturally segre-
gated into functional and non-functional populations. That
is, correctly transcribed and processed viral RNAs will ac-
cumulate in the cytoplasm over RNAs that are poorly tran-
scribed or degraded due to defective processing. Similarly,
viral RNAs that are ef!ciently selected for packaging will
be more abundant in virions compared to packaging de-
fective RNAs. By physically isolating and sequencing these
mutant populations, regulatory RNA controlling two dif-
ferent stages of viral replication can be dissected in cells at
unprecedented detail.

The entire 5′UTR and the beginning of the Gag cod-
ing region (6,26,27) is thought to contain RNA sequences

regulating HIV-1 replication, therefore we targeted the !rst
∼500 nucleotides of the gRNA for functional analysis. Be-
cause mutating the Gag coding region could complicate the
identi!cation of non-coding regulatory RNA i.e. by intro-
ducing mutations that interfere with viral assembly, we !rst
designed a conditional co-transfection system to separate
the production of mutated gRNA from the expression of
the viral structural proteins. gRNA was expressed from the
lab adapted pNL4.3 HIV-1 vector modi!ed to include (i) re-
striction sites for cloning of the mutant library, (ii) a substi-
tution in the gag ATG start codon preventing Gag/Gag-Pol
expression, (iii) a stop codon preventing Tat expression and
(iv) a deletion in env for biosafety purposes. Unaltered viral
proteins Pr55Gag, Pr160GagPol and the accessory proteins Tat
and Rev were expressed from a separate packaging vector.
In this experimental setup, only co-transfected cells produce
gRNA, ensuring that all gRNA is produced in the presence
of the viral assembly machinery. The inclusion of restric-
tion sites did not affect viral replication in single round as-
says (Supplementary Figure S1), and the ATG start codon
mutation prevents Gag expression without signi!cantly af-
fecting encapsidation (27).

We performed in cell MIME (Figure 1B) using six mu-
tant libraries tested in three independent experiments (two
mutant libraries per experiment). Mutations were intro-
duced using commercial PCR based mutagenesis technol-
ogy. These libraries were then cloned into the gRNA ex-
pression vector and co-transfected into 293T cells together
with the packaging vector. Viral and cellular gRNA were
harvested, reverse transcribed, randomly fragmented, and
sequenced using the Illumina HiSeq 2500 platform in 100
nt paired end mode. We also sequenced DNA derived from
both the wild-type and mutant DNA libraries, with the non-
mutated WT sequences used to control for errors intro-
duced during library preparation and sequencing.

Altogether, we aligned 180 million sequences to the ref-
erence genome, !nding 1.08 × 108 mutations from 2.15 ×
1010 base pairs (Supplementary Table S2). Raw substitu-
tion rates were found to be signi!cantly higher in the mu-
tant library compared to the WT controls (Supplementary
Figure S2), demonstrating that biologically relevant muta-
tions could be clearly distinguished from the background
errors introduced during library preparation and sequenc-
ing (P-value < 0.01). Importantly, we were able to use the
substitution frequencies in the wild-type control to obtain
error-corrected mutation frequencies, thus eliminating any
biases from errors introduced during library preparation
and sequencing (Materials and Methods section and Sup-
plementary Text) (31,39). Error-corrected mutation rates
were similar across all six independent libraries from the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
by black triangles. Two regions with signi!cant (P < 0.05) and strong (log2 Kpack ≥ 1; gray dotted line) effects on gRNA packaging are highlighted with
dot red line/circle. (B and C) Mutations with maximal effect on log2 Kpack represented on RNA structure. Positions impairing gRNA packaging are shown
in red. Positions improving gRNA packaging are shown in blue. Box and whisker plots show effect of each class of mutation on log2 Kpack. Black dot
shows median, box shows quartiles and whiskers show extremes (excluding outliers beyond 1.5× IQR). Mutation classes are colour coded: red mutated
to A; green mutated to C; blue mutated to G; yellow mutated to U. (B) Effect of mutations on gRNA packaging expressed as Log2 Kpack mapped to 5’
PolyA. All mutations to AAUAAA sequence impair gRNA packaging except for a single A to U mutation. (C) Effect of mutations on gRNA packaging
expressed as log2 Kpack mapped to RNA structure in the region SL1–SL3. (D) Qualitative comparison between the signi!cant effects of mutations on
Pr55Gag binding determined by in vitro MIME (upper portion, green) and the effects of mutations on gRNA packaging by in cell MIME (lower portion,
blue). Sites signi!cantly affecting both are pictured red. Color-coded arrows below (for in cell) and above (for in vitro) indicate the affected functional
domain (colored boxes on the bottom). Filled arrows show signi!cant effects at sites in both in vitro and in cell.
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three independent experiments (Supplementary Figure S3)
and were highly reproducible for all classes of mutations
(Supplementary Figures S4 and S5). Importantly, error cor-
rected mutation rates steadily decreased from DNA (me-
dian = 4.8 × 10−3), cellular gRNA (median = 4.2 × 10−3)
to virion gRNA (median = 3.3 × 10−3) providing evidence
for purifying selection as the viral life-cycle proceeds (Sup-
plementary Figure S3). Interestingly, A–G mutations were
found to be consistently more abundant in cellular gRNA
(Supplementary Figure S6) compared to the input DNA (P-
value < 0.01). These cellular A–G mutations were enriched
at 5′AA3′ and 5′UA3′ dinucleotides and seemed to cluster
at unpaired adenines near regions of double stranded RNA
structure (Supplementary Figure S7). Although the biolog-
ical basis for these abundant A-G mutations is unclear, their
nature is suggestive of an editing activity by the dsRNA
adenosine deaminases, ADAR1 or ADAR2 (40,41) (Sup-
plementary Figure S7). Whilst intriguing, this phenomenon
is likely unrelated to the processes of gRNA production and
packaging investigated here, so we ignored this class of mu-
tation in the following analysis.

Regulation of intracellular gRNA production

We !rst focused on identifying RNA sequences regulating
gRNA production in infected cells by comparing the muta-
tion rate in the DNA library with mutations found in the
gRNA in cells. Intuitively, mutations impairing gRNA pro-
duction should be depleted in cells compared to the input
DNA. Conversely, mutations improving RNA production
should be enriched in the cellular gRNA compared to the
input DNA library. Indeed, formal modelling of this bio-
logical process revealed a direct relation between mutation
frequency and effect on gRNA production (Supplementary
Text). In other words, the frequency of a mutation m at
position i in the DNA library Sm

DNA/Sw
DNA (i ), divided by

the mutation frequency in the cellular RNA Sm
c /Sw

c (i ) is di-
rectly proportional to the decrease/increase of intracellular
viral RNA production caused by that mutation. By adapt-
ing a previously developed analytical framework (31,39),
we were able to infer the mechanistic effects of all muta-
tions m at all positions i on gRNA production and stability
simultaneously, summarized as Km

prod(i ) (see Equation (1)
in Materials and Methods and Supplementary text). More-
over, we were also able to statistically ascertain mutation ef-
fects at each position. Km

prod(i ) > 1 means that the mutation
(m) at position (i ) decreases gRNA production and stabil-
ity. Conversely, Km

prod(i ) < 1 identi!es mutations (m) at posi-
tion (i ) that increase gRNA production and stability. Upon
performing this analysis, we found three distinct regulatory
regions that strongly and signi!cantly affected gRNA pro-
duction, both positively and negatively (Figure 2A, Supple-
mentary Data Files). These regions mapped to the domains
TAR, PolyA and SL2, respectively.

Unsurprisingly, TAR was identi!ed as a positive regu-
lator of gRNA production, consistent with its crucial role
in enhancing viral transcription (42,43). This was seen as a
strong depletion of mutations in TAR in the cellular gRNA
when compared to the input DNA library (Figure 2A, 2B).
Although we were not able to analyse the extreme 5′ part of

the TAR (due to the binding of a speci!c primer to this re-
gion during sequencing library preparation), it was notable
that mutations to the apical portion were more strongly de-
pleted in cells compared to the distal portion of the stem-
loop (Figure 2B). This apical region is known to be impor-
tant for gRNA production by assembling with the HIV-1
Trans-Activator of Transcription (Tat) protein and the cel-
lular factor P-TEFb (42–47). Furthermore, these results are
in agreement with detailed mutant-revertant and phyloge-
netic studies showing that the distal portion of TAR is less
important for gene expression compared to the apical por-
tion (48,49). Altogether, these data evidence the ability of
in cell MIME to discover regulatory RNA in an unbiased
fashion.

The second regulatory motif was found to reside within
the 5′ PolyA. Unexpectedly, mutations in the 5′ PolyA were
enriched in cells compared to the input DNA, indicating
that this motif plays a negative role in gRNA production.
Strikingly, mutations improving gRNA production mapped
precisely to the 73AAUAAA78 hexamer within the 5′ PolyA
apical loop (Figure 2A, 2C). All mutations to this hexamer
were enriched in cellular gRNA compared to DNA, except
for a single 73AAUAAA78 to 73AUUAAA78 substitution
(Figure 2C). As AAUAAA and AUUAAA are the most
abundant cellular polyadenylation signals (50), these data
imply a role for the cellular polyadenylation machinery in
regulating intracellular gRNA levels.

The third regulatory motif mapped to the splice donor
site within SL2. Here, mutations were strongly depleted in
cellular gRNA compared to DNA (Figure 2A, D) demon-
strating that sequences within SL2 are required for gRNA
production. Interestingly, mutations disrupting gRNA pro-
duction mapped precisely to the U1snRNA binding site
289GGUGAGU295 (Figure 2D), and all classes of mutation
to this region disrupted gRNA production. This was some-
what surprising, as one might expect that disrupting the
splice donor site would increase unspliced gRNA produc-
tion by eliminating the splicing of viral RNAs. Nevertheless,
the opposite effect is observed here, and our data argue that
an interaction between U1snRNA and the splice donor site
is required for gRNA production.

Regulation of gRNA packaging

We next searched for RNA motifs regulating gRNA pack-
aging into virions by comparing the mutation rate in the
cellular RNA with that found in RNA extracted from vi-
ral particles. In cells, gRNA packaging comprises multi-
ple molecular events, including the formation of a pro-
tein : RNA packaging complex, its transport to the cell
surface, and its assembly into viral particles. Modelling of
this process demonstrates that the frequency of a muta-
tion m at position i in the cells Sm

c /Sw
c (i ) divided by the

mutation frequency in the virion RNA Sm
v /Sw

v (i ) is pro-
portional to the mutation’s effect on packaging (see Equa-
tion (2) in Methods and Supplementary Text). We derived
the term Km

pack(i ) that summarizes the underlying processes
(Equation 2). When Km

pack(i ) > 1, the mutation m at po-
sition i decreases gRNA packaging, when Km

pack(i ) < 1, it
increases packaging. Analogous to the analysis of in cell
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MIME data for RNA production, we adopted the previ-
ously developed analytical framework for error correction
and statistical analysis (31,39) (Materials and Methods sec-
tion and Supplementary Text). Upon analysis, we identi!ed
two distinct regions that strongly and signi!cantly affected
gRNA packaging (Figure 3 A, Supplementary Data Files).
These regulatory sequences mapped to the 5′ PolyA and the
region SL1-SL3, respectively.

Strikingly, the packaging signal within 5′ PolyA mapped
precisely to the same 5′ PolyA sequence 73AAUAAA78

that we identi!ed as a strong regulator of gRNA produc-
tion (Figure 3A and 3B). Indeed, mutations to this se-
quence have similar effects on gRNA packaging as mu-
tations to the Psi region (Figure 3A). Like their effect
on gRNA production, all mutations to this hexamer se-
quence impaired gRNA packaging into virions, except for
a single 73AAUAAA78 to 73AUUAAA78 substitution (Fig-
ure 3B). Again, because 73AAUAAA78 and 73AUUAAA78

sequences function as canonical polyadenylation signals,
our data provide evidence that the cellular polyadenylation
machinery plays an important role in regulating not only
gRNA production, but also its incorporation into viral par-
ticles (50).

The second packaging signal overlapped the domains
SL1 to SL3 (Figure 3C) that we have previously identi-
!ed as the Pr55Gag binding site in vitro (31). These data
therefore con!rm the idea that Pr55Gag is a central player
in the selection of the gRNA (Figure 3D). However, we
did !nd some differences between the sequences required
for Pr55Gag binding in vitro and those directing gRNA
packaging into virions. First, and most remarkably, the
257GCGCGC262 palindromic sequence within the SL1 api-
cal loop seen as crucial for Pr55Gag binding to gRNA in
vitro, was not required for gRNA packaging in cells (Fig-
ure 3C and 3D, Supplementary Figure S8). Second, SL2
was slightly more important for gRNA packaging in cells
compared to Pr55Gag binding in vitro. However, it remained
relatively minor when compared to SL1 and SL3 (Figure
3D). Finally, mutations to the stem of SL1 had compara-
ble effects on packaging in cells as mutations to the stem of
SL3, in contrast to the situation in vitro where SL1 stem mu-
tations were much more deleterious than mutations to the
SL3 stem (Supplementary Figure S8) (4,31). Altogether, the
region SL1-SL3 is a major gRNA packaging determinant,
with SL1 shown to be the most important stem-loop given
that is over 2.5 times larger than SL3 (2,3).

Role of the AAUAAA PolyA motif in gRNA production and
packaging

To con!rm the role of the 5′ PolyA and the U1snRNA bind-
ing site on gRNA production, we introduced mutants into
these two regions and tested their impact on viral repli-
cation in transfected cells by reverse transcription quanti-
tative PCR (RT-qPCR). We inhibited the 5′ polyadenyla-
tion signal either by its complete deletion (73!AAUAAA78)
or its mutation to 73AAUGAA78 (Figure 4A). We also in-
cluded a 73AUUAAA78 mutation to serve as a canonical
polyadenylation control (Figure 4A). Whilst disruption of
5′ polyadenylation did not lead to a detectible increase
in the quantity of gRNA in the cell compared to wild-

type (99.0% 73!AAUAAA78; 100.2% 73AAUGAA78), we
did observe a signi!cant increase in the quantity of spliced
RNA produced in the 5′polyadenylation defective mutants
compared to wild-type (266.4% 73!AAUAAA78 P<0.05;
292.8% 73AAUGAA78 P < 0.01) (Figure 4B). On the other
hand, the 73AUUAAA78 mutant produced both gRNA and
spliced RNA at levels comparable to wild-type (107.6%
gRNA; 131.7% spliced RNA) (Figure 4B). Together, these
data con!rm that the 5′PolyA canonical polyadenylation
signal regulates gRNA production.

We next assessed the role of the 289GGUGAGU295

U1snRNA binding site by designing a mutation predicted
to disrupt 289UACGAGU295 U1snRNA binding (Figure
4A). Disruption of this binding site led to a thousand-fold
reduction in cellular levels of gRNA and spliced RNA (0.3%
genomic; 0.15% spliced) (Figure 4B) whereas combining the
U1snRNA binding site mutant 289UACGAGU295 with a
deletion of the 5′ PolyA 73!AAUAAA78 signal caused lev-
els of gRNA to return to wild-type (110.9%). These data
demonstrate a functional interaction between the 5′PolyA
and the U1snRNA binding site in gRNA production in
agreement with a model that U1snRNA binding is required
to inhibit 5′ premature polyadenylation (51,52). To our sur-
prise, spliced viral RNA could also be detected at nearly
wild-type levels in this double mutant (118.3%) despite dis-
ruption of the U1snRNA binding site. Sequencing of the
PCR products revealed that splicing still occurred within
SL2, even in the absence of a canonical splice donor se-
quence, but the splice site was shifted by four nucleotides
in the 3′ direction (Supplementary Figure S9). Activation
of cryptic splice donor sites has been observed upon muta-
tion of the HIV-1 gRNA (52,53). This highlights that splice
site selection is extremely complex, and likely balanced by
RNA structure (54,55) as well as interactions between pos-
itive and negative splicing elements (53).

To further assess the role of the PolyA sequence on
gRNA packaging, we next quanti!ed by RT-qPCR the
relative packaging ef!ciency of gRNA and spliced vi-
ral RNAs into viral particles expressed as the ratio of
RNA found in cells compared to virus (56). We found
a signi!cant reduction (P<0.05) in packaging ef!ciency
to 43% and 48% of wild-type, for the 73!AAUAAA78

and 73AAUGAA78 mutants respectively, whereas the pack-
aging ef!ciency of the 78AUUAAA78 mutant remained at
92% of wild-type (Figure 4C). Conversely, we found that
spliced viral RNA was incorporated with much greater ef!-
ciency in the 73!AAUAAA78 and 73AAUGAA78 mutant, at
266% and 293% of wild-type, respectively (Figure 4C). This
compared to a non-signi!cant 131% of wild-type spliced
gRNA incorporation for the 73AUUAAA78 mutant (Fig-
ure 4C). Altogether our results demonstrate that a canon-
ical polyadenylation motif in the 5′ PolyA is required for
ef!cient gRNA packaging, even though it is ordinarily re-
pressed during HIV-1 replication.

DISCUSSION

RNA molecules are important regulators of biological ac-
tivity (1). They play key roles in bacterial (57) or viral infec-
tion processes (58,59), and defects in RNA regulation have
been implicated in human disease (60). Although this makes
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Figure 4. Role of the AAUAAA polyA motif in gRNA production and packaging. (A) 5′PolyA mutants contain point mutations or deletions to the
AAUAAA sequence. SL2 mutant containing substitutions within the U1snRNA binding site. (B) Production of gRNA and spliced viral RNA (mRNA
Tat) for 5′ polyA and SL2 mutants. Bar charts represent six independent experiments. (C) Relative packaging ef!ciency of gRNA and spliced viral RNA
into viral particles, expressed as a virus/cellular RNA (36). Bar charts represent 3 independent experiments. Statistical tests were carried out using ANOVA
corrected for multiple comparisons.
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RNA an extremely attractive medical target, RNA-based
treatments have so far been challenging to develop.

The !rst step in exploiting RNA as a drug target is to
identify RNA motifs with the most potential for thera-
peutic intervention. Unfortunately, the functional "exibil-
ity of RNA means that the same stretches of RNA of-
ten perform multiple roles, which greatly complicates the
identi!cation of regulatory RNA by traditional truncation
and deletion mutagenesis. This problem is especially evident
within RNA viral genomes, where !erce evolutionary pres-
sure for ‘data compression’ means that regulatory and cod-
ing regions overlap in complex ways that impede the un-
derstanding of their function. Here, we have implemented
in cell MIME to pinpoint regulatory RNA in an unbiased
fashion at single nucleotide resolution (31,39). Using differ-
ent methods of functional selection, we could dissect a com-
plex regulatory network controlling gRNA production and
packaging into virions (Figure 5). Surprisingly, a common
sequence within 5′ PolyA both negatively and positively reg-
ulated these respective processes.

With regards to gRNA production, we were able to iden-
tify three distinct RNA motifs (Figure 2). Reassuringly, mu-
tations to TAR impaired gRNA production, with the api-
cal portion proving to be more important for gRNA pro-
duction than the distal portion. These results are in agree-
ment with the deletion and mutagenesis studies pointing
to the minimal sequences required for transactivation as
spanning residues 19 to 43 (61,62). Although we were not
able to analyse the U-rich bulge (nucleotides 23–25) con-
stituting the binding site for the viral Tat protein (63,64),
we could see the importance of the loop sequence (nu-
cleotides 29–34) serving as the binding site for P-TEFb
(65,66). Interestingly, TAR is assumed to be the most im-
portant motif for gRNA production, but we were able to
identify several point mutations that were more detrimen-
tal to viral RNA levels in cells than those mapping to TAR.
These mutations clustered within the U1 snRNA binding
site within SL2 suggesting a crucial role for the splicing
factor U1snRNA in gRNA production. Indeed, binding
of U1 snRNP, and in particular the U1 snRNP protein
70K, to the HIV-1 gRNA is important for the repression
of polyadenylation at the 5′ PolyA site (51,52,67). Without
this repression, only short prematurely polyadenylated tran-
scripts would be generated, preventing production of the
full-length gRNA. In agreement, our mutations designed
to impair U1 snRNA binding strongly repress gRNA pro-
duction, and that this phenotype could be counteracted by
deletion of the 73AAUAAA78 (Figure 4). We also observed
that individual mutants to 73AAUAAA78 were enriched in
cells compared to the wild-type sequence. Presumably, dis-
ruption of the 5′ canonical polyadenylation signal enhances
viral RNA production by eliminating low levels of prema-
ture cleavage and polyadenylation. The general assumption
is that 5′ PolyA is ef!ciently repressed in wild-type HIV-
1 through inhibitory RNA structure (68–71), proximity to
the 5′ cap (72,73), the presence of downstream inhibitory
sequences (51,52), and the absence of upstream activating
sequences that are only present at the 3′ end of the gRNA
(72,73). Our data argue that some level of cleavage and
polyadenylation still occurs within the wild-type 5′ PolyA
despite these inhibitory mechanisms (71).

With regards to gRNA packaging, we identi!ed two dis-
tinct regions required for incorporation of gRNA into viral
particles (Figure 3). The central packaging signal spanned
SL1 to SL3 and closely corresponds to the Pr55Gag binding
site previously de!ned in vitro (4,31) and a region found to
bind Pr55Gag in PAR-CLIP crosslinking experiments in cells
(32). Mutations to the 257GCGCGC262 sequence within
the apical loop of SL1 did not impair gRNA packaging
in cells. This palindromic sequence initiates gRNA dimer-
ization via a kissing loop interaction – a conserved phe-
nomenon within the retroviridae family (10,74,75). gRNA
dimerization is required for viral replication (19,20,76–78)
and presumed to be mechanistically linked to gRNA pack-
aging (20,21,79). Given that identical mutations severely
compromised Pr55Gag binding in a similar MIME assay
conducted in vitro (31), it was surprising to see that mu-
tations to this sequence did not impair gRNA packaging.
Nevertheless, our in cell data is consistent with modest ef-
fects on gRNA packaging seen with SL1 apical loop mu-
tants in a variety of studies (19,21,76,80,81). For example,
in one study a single G to U mutation 257GCGCUC262 lead
to a roughly two fold reduction in gRNA packaging (82),
whereas our in cell MIME data shows that this same mu-
tation packages 76% of wild-type (68–86% are the 5 and 95
percent con!dence intervals) (Supplementary Data Files).
SL1 apical loop mutants may also have less impact in cells
compared to Pr55Gag binding assays conducted in vitro (76)
due to the presence of yet unidenti!ed redundant dimeriza-
tion sites within the full length HIV-1 genome that were not
present on the short RNA fragment tested in vitro. Alterna-
tively, primary T-lymphocytes can partially rescue defects
in reverse transcription induced by deletion or mutation of
SL1, implying that cellular factors can also compensate for
SL1 defects (76). Regardless of the role of the SL1 apical
loop sequence, the SL1 stem and internal loop itself is a
bona !de packaging signal, consistent with the fact that its
deletion leads to severe packaging defects (18,56,80).

Finally, we make the discovery that 73AAUAAA78 within
the 5′PolyA is an exceptionally strong packaging signal in
cells. Previous studies have shown that destabilizing the
PolyA hairpin decreases gRNA packaging (83,84) and that
complete deletion of PolyA reduces gRNA packaging by
70% (18,84), similar to a combined deletion of SL1 and
SL3 (56). Until now, the best explanation for why PolyA
acts as a packaging determinant is that it binds to Pr55Gag

directly during viral assembly (56). Although a truncated
version of the Gag protein bound 5′ PolyA in an in vitro
footprinting assay (85), this binding site was not seen by
in vitro MIME using full length Pr55Gag protein (31). Fur-
thermore, PAR-CLIP experiments conducted in cells also
did not identify 5′ PolyA as a Pr55Gag binding site (32).
We therefore !nd a mechanism involving the direct bind-
ing of Pr55Gag to the 5′ PolyA unlikely. Instead, our data
suggests that the cellular polyadenylation machinery and
gRNA packaging are mechanistically linked. Our evidence
is two-fold: !rst, we localized the 5′ PolyA packaging sig-
nal, at single nucleotide resolution, to the 73AAUAAA78

canonical polyadenylation signal; second, we showed that
all mutations to this sequence impair gRNA packaging ex-
cept for a single A to U mutation (73AUUAAA78) form-
ing the second most frequent polyadenylation signal found
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Figure 5. Five regulatory elements controlling HIV-1 replication. gRNA production is positively regulated by sequences within TAR and by the U1snRNP
binding site within SL2. gRNA production is negatively regulated by the AAUAAA motif in 5′ polyA. The U1snRNP binding site is required for repression
of 5′ polyadenylation. gRNA packaging into virions requires both the Pr55Gag binding site (SL1-SL3), and the AAUAAA motif in 5′ PolyA. Positive
regulatory elements are highlighted in green. Negative regulatory elements are highlighted in red.

in mammalian cells (86). Together, these facts argue that
a functional polyadenylation signal is required for gRNA
packaging into virions. This would explain why HIV-1 con-
serves the 5′ polyadenylation signal, even though its pres-
ence is detrimental for gRNA production. Other retro-
viruses, such as mouse mammary tumor virus (MMTV) and
avian leukosis-sarcoma virus (ALSV), encode a single copy
of the AAUAAA polyadenylation signal in the 3′ end of the
gRNA, demonstrating that different (seemingly more logi-
cal) gRNA organisations are possible.

How might polyadenylation facilitate gRNA packaging?
Given that the gRNA packaging is thought to be mainly
determined by Pr55Gag, one simple explanation could be
that there exists a direct or indirect interaction between
Pr55Gag and the cellular polyadenylation machinery. This
interaction could help recruit or stabilize Pr55Gag on the
gRNA to ensure that viral assembly occurs preferentially
on the gRNA, rather than cellular RNAs. Interestingly, cel-
lular RNAs that are preferentially packaged into viral par-
ticles exhibit particularly long 3′UTRs (87), possibly be-
cause these mRNAs are more likely to contain inhibited up-
stream polyadenylation sequences than the equivalent cel-
lular RNAs with short UTRs. Which component(s) of the
polyadenylation machinery are involved in gRNA pack-
aging? The polyadenylation machinery comprises cleav-
age polyadenylation speci!city factor (CPSF), cleavage fac-
tors Im and IIm (CFIm and CFIIm), cleavage stimula-
tory factor (CstF), poly(A) polymerase (PAP), and poly(A)
binding protein II (88). At least some of these cellular
polyadenylation factors bind to the 5′ polyadenylation sig-
nal even when cleavage and polyadenylation is repressed
(51,52,68). Amongst these factors, CPSF6––a subunit of
CFIm––stands out. Although it does not directly recognize
the AAUAAA sequence (88,89), it is a key player in mRNA
3′ end processing and is involved in the repression of 5′ prox-
imal polyadenylation sites (90,91). It also interacts with the
CA domain of Pr55Gag providing a possible link between
polyadenylation and HIV-1 biology (92–96). Delineating
the mechanistic contributions of the cellular polyadenyla-
tion machinery to gRNA packaging could provide a new
window of therapeutic opportunity not currently exploited
by antiretroviral therapy. However, further work will be re-

quired to de!ne its potential role in HIV-1 gRNA packag-
ing.

In summary, we have used in cell MIME to identify at
single nucleotide resolution RNA motifs regulating gRNA
production and packaging into HIV-1 virions. One of the
major advantages of the in cell MIME method is that low
level random mutagenesis can pinpoint functional RNA
motifs whilst reducing the risk of RNA misfolding that of-
ten occurs when large and imprecise deletion mutants are
used. Although we have not done so here, in principle, in
cell MIME data can also be used to identify RNA sec-
ondary structure important for regulatory function through
the identi!cation of compatible co-varying nucleotide posi-
tions. Thus, in cell MIME is a "exible and powerful method-
ology should help to identify novel regulatory RNA motifs
in a wide range of pathogens, as well as lead to a better un-
derstanding of non-coding RNA molecules in eukaryotic
cells.
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Abstract

Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development
process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in
vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of
efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is
imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral
dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late
clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract
important determinants of drug efficacy in vivo. The analysis is based on a new quantity—the reproductive capacity—that
represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class
specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-)target half life,
dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of
resistance as well as the in vitro–in vivo correlation of efficacy measures in HIV treatment. We found that protease- and
maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of
resistance most efficiently.

Citation: von Kleist M, Menz S, Huisinga W (2010) Drug-Class Specific Impact of Antivirals on the Reproductive Capacity of HIV. PLoS Comput Biol 6(3): e1000720.
doi:10.1371/journal.pcbi.1000720

Editor: Niko Beerenwinkel, ETH Zurich, Switzerland

Received September 2, 2009; Accepted February 23, 2010; Published March 26, 2010

Copyright: ! 2010 von Kleist et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MvK and WH acknowledge funding from National University of Ireland and the DFG Research Center Matheon. SM acknowledges financial support by
DFG funding, provided through the Dahlem Research School of Freie Universität Berlin. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vkleist@zedat.fu-berlin.de

Introduction

Since 1996, human immunodeficiency virus (HIV) infection
is treated with a combination therapy, known as highly active
anti-retroviral therapy (HAART) [1,2], which has substantially
improved the clinical management of HIV [3]. Despite the success
of HAART, eradication of HIV can currently not be achieved
[4,5], most likely due to the persistence of virus in very long lived,
latently infected cells [6,7]. For HIV-infected individuals, life-long
therapy is therefore required to prevent progression to the
acquired immunodeficiency syndrome (AIDS) and death.

During therapy, plasma viral load (HIV RNA per mL blood
plasma) is recommended by the National Institute of Health
as a marker of therapy success [8], whereas measurement of
the CD4 cell count is the most important clinical marker of
disease progression [9]. The in vivo potency of novel antivirals is
usually assessed by viral load decline in small clinical trials of
monotherapy, e.g., [10,11], and later evaluated utilizing the
novel agent in combination with an optimized background
therapy, e.g., [12]. The in vitro potency of antivirals is typically
assessed by using phenotypic/single-round infectivity assays
[13–16], which measure the number of offspring after one round
of virus replication.

Investigation of novel drug targets for the treatment of HIV
infection resulted in the development of new drug classes. In 2003

and 2007, the fusion inhibitor (FI) enfuvirtide [17], the CCR5-
antagonist maraviroc [18] and the integrase inhibitor raltegravir
[19] were approved for the treatment of HIV infection. Many
more drugs are in late clinical development [20]. With the
introduction of new drug classes, in particular integrase inhibitors,
a huge discrepancy between the efficacy measured in vitro, using
phenotypic/single-round infectivity assays, and in vivo, using viral
load decline, was observed [14,21]. Although integrase inhibitors
cause a steep initial decline of plasma viral load [21–26], the in vitro
efficacy is amongst the lowest [14].

Mathematical modelling of viral dynamics has lead to many
insights into the pathogenesis and treatment of HIV. It is a
valuable tool to interpret the time course of virological markers
(e.g. viral load) during HIV treatment [27–31] and contributes
much to our current understanding of the in vivo dynamics of HIV.
Sedaghat et al. [32,33] used a mathematical modelling approach
to analyze the rapid decay of plasma viral load after application of
integrase inhibitors. They infer that this characteristic viral decay
is a result of the inhibited stage within the viral life cycle rather
than superior in vivo potency.

Consequently, viral load decay may be misleading for assessing
the potency of integrase inhibitors (and other novel inhibitors) in
comparison to existing drug classes. However, an alternative, more
appropriate measure of drug efficacy, which allows to directly
compare drugs from different drug classes is still missing.
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The objectives of this article are (i) to develop a novel, generic
measure of drug potency that facilitates comparison across
different drug classes; (ii) to develop a novel mathematical model
of the viral replication cycle that incorporates the action of
established and novel drugs in a mechanistic way; and (iii) to analyze
determinants of drug efficacy critical for drug discovery and
development. The proposed measure of drug efficacy, termed
reproductive capacity, extends the established in vivo marker,
plasma viral load, by incorporating additional infectious viral
stages, and the in vitro phenotypic/single-round infectivity assays
by taking into account host specific defense mechanisms. This

enables us to understand the observed discrepancies between
in vitro and in vivo efficacy for integrase inhibitors, and to elucidate
and quantify the role of immune-system related clearance
mechanisms in drug action. The results presented herein are of
particular value to categorize different molecular targets in the
HIV life cycle and are expected to be of significance for guiding
future HIV drug discovery and development.

Results

Development of a detailed model of viral life cycle and
action of anti-retroviral drugs

We derived a detailed virus-target cell interaction model as
depicted in Fig. 1. The model incorporates the mechanisms of
action of all currently approved drugs and some drugs in late
clinical development.

Target cells are produced by the immune system with some
constant rate lT. An infectious virus VI reversibly binds (with effective
rate constants kon and koff ) to a target cell TU, forming a complex
VI : TU. After binding, the virus irreversibly fuses (with rate constant
kfus) with the target cell and the viral capsid containing the viral
genomic RNA is released; this state is denoted by TRNA. During
reverse transcription (with effective rate constant krev), genomic viral
RNA is irreversibly transformed into a more stable DNA. Viral DNA
and viral proteins form the pre-integration complex (PIC), denoted by
T1. In the next step, viral DNA of the PIC is irreversibly integrated
into the DNA of the target cell (with rate constant kT), forming the
provirus T2. After integration, the infected cell cannot return to
an uninfected stage. From the proviral DNA, viral proteins are
amplified and new viruses are released (with effective rate constant
bNNT½1=(cells:day)"). Only a given percentage pw0 of the released
viruses are correctly assembled immature viruses VIM, while the
remaining percentage (1{p) are defective virions VD that might e.g.
lack the (gag-pol-polyprotein contained) enzymes. During the final
step, the viral protease, which is packed into the correctly assembled,
immature virions VIM, is responsible for the maturation of the virus.

Author Summary

To guide drug discovery and development, measures of
drug efficacy that are linked to clinical outcome are of key
importance. In HIV treatment, decay of plasma viral load is
typically used as an in vivo measure of drug efficacy,
whereas phenotypic assays are used to assess drug efficacy
in vitro. The recent development of novel HIV drugs
resulted in a huge discrepancy between viral load decay
and in vitro predictions of drug efficacy. We used a
mathematical modelling approach to resolve this discrep-
ancy by introducing a new quantity, the reproductive
capacity, that allows a transfer of the in vitro drug efficacy
measure into the in vivo context, enabling a direct
comparison. We developed a novel model of viral
dynamics that incorporates the mechanism of action of
all established and novel antivirals. Based on the model,
we analyzed the ability of the viral infection to replicate
under different drug treatments, and estimated class-
specific times until virological failure. We conclude that the
half life of the targeted viral stage is an important class-
specific attribute that impacts on the overall success of a
drug in vivo. Our findings have direct implication for the
drug discovery and development process.

Figure 1. Detailed structural model of the viral life cycle and the mechanisms of action of different anti-retroviral drug classes.
doi:10.1371/journal.pcbi.1000720.g001

Drug-Class Specific Impact on HIV
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The maturation of HIV virions has been shown to be dependent on
the highly ordered cascade of cleavages, governed by differences in
the inherent processing rates at each cleavage site [34,35]. We assume
that a fraction (1{q) of the released virus matures abnormally,
contributing to the pool of defective virions VD. Successful
maturation eventually leads to new infectious virus particles VI (with
rate constant kmat and probability q).

Depending on the stage of the life cycle, the host organism has
different abilities to clear the virus. It was assumed that infectious,
immature and defective virions VI, VIM, and VD, respectively, are
cleared with rate constant CL by the host. The uninfected target
cells TU, the TRNA stage and the early infected stage T1 are
assumed to be cleared with rate constant dT, since none of these
stages express viral proteins, while the virus-producing late infected
cell T2 is assumed to be cleared with rate constant dT2&dT. In
addition to cell death, the target cell may fend-off the viral infection
by degrading the viral RNA or parts of the PIC, rendering the cell
uninfected. RNA is very unstable with a half life ranging from
seconds to a maximum of two hours [36,37]. Therefore, through
degradation or, e.g., by hypermutation through APOBEC3G [38],
the viral RNA can be cleared with rate constant dRNA. The cell
might also destroy essential components of the PIC (with rate
constant dPIC,T) to clear the virus.

The system of ordinary differential equations (ODEs) describing
the rate of change of the different viral species and target cells in
the detailed model (depicted in Fig. 1) is given in Supplementary
Text S1, Eqs. (S1)–(S8). As typically done in kinetic studies,
complex aspects of the viral dynamics are subsumed by ‘lumped’
parameters in the model. For instance, the rate constant of the
reverse transcription krev contains all the steps necessary to
transform the viral RNA into a double stranded DNA. The
mechanisms of action of the seven drug classes are based on
interfering with the viral life cycle at different stages. We assumed
that the effect of a drug on the targeted process is specified by
some parameter e(t)[½0,1", i.e.,

(1{e)~
1

1z
C

IC50

! "n

0

BB@

1

CCA (conc: dependent efficacy), ð1Þ

assuming some underlying averaged drug concentration C~bCC,
see [39], some fifty percent inhibitory concentration IC50, and
some drug specific Hill coefficient n, see [14]. For the purpose of
the study, this rough approximation is sufficient, however, it is
possible to also use time-varying drug concentration C~C(t)
resulting from some pharmacokinetic model, or to use more
mechanistic effects models [40,41].

The actions of the different drug classes within the viral life cycle
are shown in Fig. 1. CCR5 antagonists inhibit the association of
HIV with the CCR5 receptor in CCR5-tropic virus. They thus
affect the association constant kon. Fusion inhibitors (FI) inhibit the
process of HIV fusion, affecting kfus. Activated nucleoside reverse
transcriptase inhibitors (NRTI) compete with endogenous deox-
ynucleoside triphosphates for prolongation of the growing DNA
chain, while non-nucleoside reverse transcriptase inhibitors
(NNRTI) allosterically inhibit the function of the reverse transcrip-
tase. The effects of both drug classes result in a reduced rate at
which the RNA is reversely transcribed into DNA. Integration
inhibitors affect the integration of viral DNA into the host genome
catalytically [42–45]. In the proposed model, this alters the
transition rate constant kT from early infected cells T1 to the late
infected cells T2. Protease inhibitors (PI) bind to the catalytic pocket

of the viral protease enzyme, which is responsible for the processing
of the viral precursor polyproteins and thus the maturation of viral
particles. In the proposed model (Fig. 1), PIs therefore inhibit
maturation by decreasing the maturation constant kmat. Maturation
inhibitors (MI) bind to the substrate of the viral protease (Gag-
polyprotein) [46] at a specific site. This binding perturbs the ordered
sequence of cleavages that is necessary for proper maturation
[47,48], resulting in defective virus morphology [49]. In the
proposed model (Fig. 1), MIs therefore decrease the probability q
that immature virus matures normally, increasing the proportion of
abnormally matured, defective viruses VD.

Impact of antiviral drugs on relative abundance of
infectious viral stages

We used the detailed virus-target cell interaction model to
predict the effect of the different drug classes on the distinct stages
of the viral life cycle. In order to enable a direct comparison
between the different drug classes, we artificially eliminated the
feedback by keeping the uninfected target cell TU and the
infective virions VI that ‘enter’ the infection cycle constant (the two
leftmost species in Fig. 1), resulting in ‘downstream’ quasi-steady
state numbers T1,ss, T2,ss, VIM,ss, VI,ss, and VD,ss. For a given drug
class and inhibition of the targeted molecular process e, the effect
of the drug on the life cycle was quantified by the four ratios

T1,ss

TU0
,

T2,ss

T1ss
,

VI,ss

VIM,ss
,

VI,ss

VD,ss
ð2Þ

as shown in Fig. 2. As expected, the drugs perturb the ratios of
viral states that encompass their site of action within the viral life
cycle. In the present example, all states that lie downstream of the
drugs’ target site are affected, while the states that lie upstream are
usually not affected. The exception are InIs, which increase the
abundance of the preceding stage T1 (Fig. 2A), while decreasing
the number of the subsequent infectious stage T2 (Fig. 2B).
Interestingly, the effect on the ratios is not always a linear function
of drug efficacy. PIs and MIs also show a different behavior
(Fig. 2D): PIs affect the ratio of infectious-to-defective virions by
decreasing the maturation rate kmat, which lowers the number of
infective virions VI, but also lowers the number of virions that
mature abnormally (contributing to VD). MIs increase the
proportion of virus that matures abnormally and decrease the
proportion of virus that matures normally, thus decreasing VI and
increasing VD, without affecting kmat.

Development of a simplified two stage virus dynamics
model

The detailed model (Fig. 1) contains parameters that are difficult
to measure and currently not available. We therefore reduced the
detailed model based on reasonable quasi-steady state assumptions
to obtain a simplified model of virus-target cell interaction
dynamics that is parameterizable in terms of established and
validated parameter values (see Supplementary Text S1). In
particular, we have eliminated the intermediate stages of the cell-
virus complex TU : VI, the infected cells prior to reverse
transcription TRNA and the immature virus VIM in the original
model (Fig. 1). As a consequence, we derived a lumped infection
rate constant b, which describes the infection of a susceptible cell
towards the stage, where the viral RNA has been successfully
transformed into DNA. We also derived a virus clearance CLT

that is associated with the loss of virus during the intermediate
stages before reverse transcription and the release rate constant of
infectious virus N.

Drug-Class Specific Impact on HIV
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The infection rate constant is given by

b~
kfus

KD

:rrev,w, ð3Þ

where kfus denotes the fusion rate constant, KD the dissociation con-
stant of the virus-target cell complex, and rrev,w denotes the probability

that reverse transcription is successfully completed (see Supplementary
Text S1). The lumped virus clearance (loss of virus by, e.g., genome
destruction) in the intermediate stages is given by the parameter

CLT~
1

rrev,w

{1

 !
:b: ð4Þ

The number of released, infectious viruses is given by

N~q:p:rPR,w
:bNN, ð5Þ

where p and q are the probabilities that the released virus is correctly
assembled and matures normally, and rPR,w is the probability that the

released virus matures before being cleared by the immune system
(see Supplementary Text S1). The lumped model can be parame-

terized in terms of six unknown parameters (b,bNN,lT,dT,dT2
,CL),

which equals the number of estimated parameters using standard
models [28]. For the remaining parameters, we have provided values
from the literature (see Supplementary Text S1).

In the following, we considered two types of target cells (T-Cells
and a longer lived cell population, which we refer to as macrophages)
and finally incorporated the viral mutation process (resulting from
erroneous reverse transcription) into the overall model. Whether the
longer lived cell population consists solely of macrophages in vivo
remains unknown. There is, however, some evidence that the kinetic
characteristics of the longer lived cell population are similar to those
of the macrophage population [33]. The proposed simplified two-
stage virus dynamics model is shown in Fig. 3. It comprises T-cells,
macrophages, free non-infectious virus (TU,MU,VNI, respectively),
free infectious virus of mutant strain i,VI(i), and four types of
infected cells belonging to mutant strain i: infected T-cells and
macrophages prior to proviral genomic integration (T1(i) and M1(i),
respectively) and infected T-cells and macrophages after proviral
genomic integration (T2(i) and M2(i), respectively). The rates of

Figure 2. Mechanistic effects of drug classes on viral infective compartments. Ratios are affected through treatment with different drug
classes. Predictions are based on the detailed model (see Fig. 1) and mechanistic effect e varying from 0–1. Chosen parameter values:
CL~23, dT~0:02, dT2

~1, kT~0:35, dPIC,T~0:35, dRNA~1440, koff~106, rfusion~1440, rRT~48, rmat~12 in ½1=day"; N~1000 in ½1=(cells :day)";
l~2:109 in ½cells=day"; KD~1000 in ½cells" and q~p~0:99 (unit less):
doi:10.1371/journal.pcbi.1000720.g002
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change of the different species in the reduced two-stage HIV model
are given by the following system of ODEs:

d

dt
TU~lTzdPIC,T

:T1(i){dT
:TU{

X

i

bT(i):V(i):TU

d

dt
MU~lMzdPIC,M

:M1(i){dM
:MU{

X

i

bM(i):V(i):MU

d

dt
T1(i)~bT(i):V(i):TU{(dT1

zdPIC,TzkT(i)):T1(i)

d

dt
M1(i)~bM(i):V(i):MU{(dM1

zdPIC,MzkM(i)):M1(i)

d

dt
T2(i)~

X

k

kT(k)T1(k):pk?i{dT2
:T2(i)

d

dt
M2(i)~

X

k

kM(k)M1(k):pk?i{dM2
:M2(i)

d

dt
VI(i)~NM(i):M2(i)zNT(i):T2(i)

{½CLz(CLT(i)zbT(i))TUz(CLM(i)zbM(i))MU":V(i)

d

dt
VNI~

X

i

½(bNNT(i){NT(i))T2(i)z(bNNM(i){NM(i))M2(i)"{CL:VNI,

ð6Þ

where lT and lM are the birth rates of uninfected T-cells and
macrophages, and dT and dM are their death rate constants. The
parameters kT(k) and kM(k) are the integration rate constants of
mutant strain k. The parameters dT1

,dT2
,dM1

and dM2
are the

death rate constants of T1,T2,M1 and M2 cells. The parameters
dPIC,T and dPIC,M refer to the intracellular degradation of essential
components of the pre-integration complex, e.g., by the host cell
proteasome within early infected T-cells and macrophages respec-

tively. bNNT(i) and bNNM(i) denote the total number of released
infectious and non-infectious virus from late infected T-cells and
macrophages of mutant strain i and NT(i) and NM(i) are the rates of
release of infective virus (see Eq (5)). The parameters CLT(i) and
CLM(i) denote the clearance of mutant virus i through unsuccessful
infection of T-cells and macrophages respectively (see Eq. (4)) and
the parameters bT(i) and bM(i) denote the successful infection rate
constants of mutant virus i for T-cells and macrophages respectively.
The parameter pk?i denotes the probability to mutate from strain k
to strain i (to be defined below).

The model enabled us to mechanistically incorporate the action
of all drugs that are approved or in late clinical trial. The impact of
a compound on a corresponding (lumped) parameter in the model
is specified by g:

Figure 3. Simplified two stage virus dynamics model. Species (red cycles), reactions (black arrows), drugs and their interference in the life cycle
of HIV (blue dashed box). Target cells (TU,MU) can become successfully infected by infective virus VI with lumped infection rate constants bT and
bM, respectively, creating early infected cells T1 and M1 . Infection can also be unsuccessful after the irreversible step of fusion (rate constant CLT

and CLM), eliminating the virus and rendering the cell uninfected. Early infected cells T1 and M1 can destroy essential viral proteins or DNA prior to
integration with rate constants dPIC,T and dPIC,M returning the cell to an uninfected stage. The genomic viral DNA can become integrated with rate
constants kT and kM creating late infected cells T2 and M2 , which can release new infectious- and non infectious virus VI and VNI with rate
constants NT, cNTNT{NT

# $
and NM, dNMNM{NM

# $
, respectively. Phenotypic mutation occurs at the stage of viral genomic integration kT,kM (see

section ‘Development of a simplified two stage virus dynamics model’). All cellular compartments x can get destroyed by the immune system with
respective rate constants dx and the free virus gets cleared with rate constant CL.
doi:10.1371/journal.pcbi.1000720.g003

ð6Þ
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bT,(CCR5,FI,RTI)~(1{gCCR5):(1{gFI):(1{gRTI(rrev,w)):bT ð7Þ

CLT,(CCR5,FI,RTI)~(1{gCCR5):(1{gFI):
1

rrev,w

{(1{gRTI)

 !
:bTð8Þ

kT,(InI)~(1{gInI)
:kT ð9Þ

NT,(PI,MI)~(1{gMI):(1{gPI(rPR,w)):NT: ð10Þ

The same quantities are defined for macrophages by replacing
the subscript T by M; see Supplementary Text S1 for details. The
overall viral dynamics model comprises a complete mutagenic
graph. In HIV infection, genomic mutation occurs during the
reverse transcription process [50]. The reverse transcriptase of
HIV lacks a proof reading mechanism in contrast to host
polymerase enzymatic reactions. However, viral proteins from
newly mutated viral genomes are only produced after integration
of the viral genome into the host cell DNA. The proteins required
for the stable integration of the newly mutated viral genome
originate from the founder virus. Therefore, phenotypically, drug
resistance of new mutants will only be observed after integration,
i.e., in the infectious stages T2 and M2. In total, the model includes

2L different viral strains i that contain point mutations in any
pattern of the modelled L possible mutations. For two distinct
mutations L~2, the mutagenic graph is shown in Fig. 4A. Each
mutant i can mutate into every other mutant k in one step. The
probability pk?i to mutate from a strain k into another strain i can
be directly derived from the mutagenic pathways in Fig. 4A, i.e.,

pk?i~mh(i,k):(1{m)L{h(i,k), ð11Þ

where m denotes the mutation probability per base and reverse

transcription process (m&2:16:10{5 [50]), h(i,k) denotes the
hamming distance between strain k and strain i, and L is the total
number of different positions that are considered in our model.
The phenotype of each mutant strain i is modelled by introducing
a selective disadvantage s(i), which denotes the loss of functionality
(e.g., in the activity of some viral enzyme that is affected by the
mutation) relative to the wild type, and a strain specific inhibitory
activity (g(i,j)) of treatment j against the mutant strain i. For
example, the strain specific infection rate i under a certain
treatment j is given by b(i,j)~(1{g(i,j)):(1{s(i)):b(wt,w), where

b(wt,w) denotes the infection rate constant of the wild type wt in
the absence of drug w (given in Table 1). Since some viral strains
are present only in very low copy numbers, we used a hybrid
stochastic deterministic approach [51] to model the overall virus
dynamics model (see Materials and Methods section for details).

Reproductive capacity for predicting drug–specific
impact on viral replication

The production of infectious offspring is crucial for the survival of
a viral population. The phenotypic single-round infectivity assay
measures the amount of infectious offspring after one round of
replication. For a given drug, the assay quantifies the drug’s efficacy
by measuring the reduction in viral offspring relative to the drug-
free situation. We defined a new quantity—termed the reproductive
capacity Rcap—, which transfers the principle of the phenotypic
single-round infectivity assay into a mathematical term. Its
definition involves the quasi-species distribution and the basic
reproductive numbers of all pathogenic sub-stages. The reproduc-
tive capacity characterizes the fitness of a given state of the infection
from the perspective of a potential treatment j by quantifying the
expected total number of offspring under the treatment j.

The basic reproductive number R0 is a well characterized
quantity in epidemiology that denotes the expected number of

Figure 4. Fitness and possible mutational pathways. A: General transition pathways between wild type (00) and a fully drug resistant strain
(11) that involves two partly-resistant intermediates (10,01). B: Fitness in the presence of a drug. C: Fitness in the absence of drugs. Dashed line:
critical fitness that allows the strain to survive, i.e, R0(i)w1.
doi:10.1371/journal.pcbi.1000720.g004

Table 1. Model parameters generally used in simulations.

Parameter Value Reference Parameter Value Reference

lT 2:109 [57] lM 6:9:107 [33]

bT 8:10{12 [32] bM 1:10{14 }

bNNT
1000 [33] bNNM

100 [33]

dT,dT1
0.02 [33] dM,dM1

0.0069 [33]

dT2
1 [73] dM2

0.09 }

CL 23 [73] p:q:rPR,w 0.67 {

rrev,w 0.33 [74,75] m 2:16:10{5 [50]

kT 0.35 [75] kM 0.07 }

dPIC,T 0.35 [75,76] dPIC,M 0.0035 }

kmat 12 [34] - - -

All parameters in units [1/day], except p:q:rPR,w (unit less) and m in
½1=(rev:trans::base)". } parameters chosen to reproduce clinical data. { chosen
according to the assumption that p~q~1 and utilizing parameters kmat and
CL to determine rPR,w~kmat=(kmatzCL)~0:67.
doi:10.1371/journal.pcbi.1000720.t001
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secondary infections caused by a single infected cell/virus [52]. If
R0w1 then the infection will spread, while for R0v1 the infection
will die out. The strain associated reproductive number R0(i,j)
characterizes the fitness of a viral strain i in a pharmacologically
modified environment, specified by a drug treatment j. We used
the ‘survival function’ approach [53] to calculate the reproductive
numbers for mutant strains i under treatment j. In our context, the
survival function is of particular value, since it captures the
possible event of mutation for all infective classes.

Based on the two-stage virus dynamics model, the basic
reproductive number RV(i,j) of a single virus of strain i under
treatment j is given by

RV(i,j)~
bT(i,j)TU:kT(i,j):NT(i,j)

ru(i,j):rT (i,j):dT2

z
bM(i,j)MU:kM(i,j):NM(i,j)

ru(i,j):rM (i,j):dM2

ð12Þ

with constants

ru(i,j)~CLz CLT(i,j)zbT(i,j)½ "TUz CLM(i,j)zbM(i,j)½ "MUð13Þ

rT (i,j)~dTzdPIC,TzkT(i,j) ð14Þ

rM (i,j)~dMzdPIC,MzkM(i,j): ð15Þ

Since infected cells are also pathogens, which can lead to a
rebound of the disease even in the absence of any virus, we also
determined their basic reproductive numbers under a given
treatment j. The basic reproductive numbers RT1

(i,j) and

RM1
(i,j) of the infectious stages T1 and M1, associated with the

viral strain i, are given by

RT1
(i,j)~

kT(i,j):NT(i,j)

rT (i,j):dT2

: bT(i,j)TUzbM(i,j)MU

ru(i,j)
ð16Þ

RM1
(i,j)~

kM(i,j):NM(i,j)

rM (i,j):dM2

: bT(i,j)TUzbM(i,j)MU

ru(i,j)
: ð17Þ

Finally, the reproductive numbers RT2
(i,j) and RM2

(i,j) of the infec-

tious stages T2 and M2, associated with the viral strain i, are given by

RT2
(i,j)~

NT(i,j)

dT2

: kT(i,j)TU:bT(i,j)

ru(i,j):rT (i,j)
z

kM(i,j)MU:bM(i,j)

ru(i,j):rM (i,j)

% &
ð18Þ

RM2
(i,j)~

NM(i,j)

dM2

: kT(i,j)TU:bT(i,j)

ru(i,j):rT (i,j)
z

kM(i,j)MU:bM(i,j)

ru(i,j):rM (i,j)

% &
:ð19Þ

We defined the reproductive capacity Rcap(j) of the entire quasi-

species ensemble under treatment j as the weighted sum of the basic
reproductive numbers of all pathogenic stages of mutant strain i,
i.e., free virus, infected T-cells and infected macrophages, where the
weights are the abundance of the corresponding pathogenic stage:

Rcap(j)~
X

i

½VI(i)RV(i,j)zT1(i)RT1
(i,j)zM1(i)RM1

(i,j)

zT2(i)RT2
(i,j)zM2(i)RM2

(i,j)":
ð20Þ

The reproductive capacity Rcap(j) can be interpreted as the
expected total number of infectious offspring that the infection
produces in one round of replication under a certain treatment j,
given the current state of the infection.

Relation to viral load and phenotypic/single-round
infectivity assay. The viral load considers the total
concentration of free virus, consisting of non-infectious virus VNI

and infectious virus VI(i), belonging to all mutant strains i. In
contrast to the reproductive capacity, viral load does not assess the
ability of distinct viral strains i to replicate (in terms of RV). In
mathematical terms, the viral load is given by

Vload~
X

i

VI(i)zVNI: ð21Þ

The in vitro reproductive capacity, corresponding to the read-out of
the phenotypic assay RpA(j) (under treatment j) is conceptionally
similar to Eq. (20). However, in comparison to the above defined in
vivo measure, the in vitro measure would not take into account: (i)
the clearance of any infective stage by the immune system (relating
to the parameters CL,CLT(i,j),CLM(i,j),dT,dM,dT2

, and dM2
),

and (ii) the abundance of the different infected cell types (e.g., T-
cells and macrophages). The assay measures one round of

replication, denoted by R̂RT̂T2
, starting from a late stage infected

cell T̂T2. Mathematically expressed, the primary output is given by

RpA(j)~
X

i

T̂T2(i):R̂RT̂T2
(i,j): ð22Þ

Drug-class specific decay of viral load and reproductive
capacity

Application of drugs/drug classes changes the total size and the
composition of the viral population. The impact of this change is
typically evaluated in terms of the decay of the viral load over
time. We used the reproductive capacity Rcap(j) to also evaluate
viral replication under various hypothetical treatments j. In Fig. 5,
we predicted the impact of the different drug classes on the decay
of the plasma viral load and the reproductive capacity Rcap(w), i.e.,
the fitness of the whole virus population, evaluated in the absence
of drugs. As typically done, we assumed 100% drug efficacy g.

In terms of the plasma viral load decay (Fig. 5A), we observe a
faster initial decay for InIs in comparison to all other compound
classes, in agreement with clinical data [21] and theoretical
analysis [32,33]. The onset of viral load decay is delayed for all
other compound classes as observed clinically [12,27], see also
Figure S1. In agreement with clinical data [21], in the case of InI
treatment, the second phase of viral decay starts earlier after
treatment initiation and exhibits &70% less viremia in compar-
ison to other drug classes, but shows the same decay. Notably, the
change of the ratio of infective virus-to-total virus (see Fig. 5, inset)
upon PI or MI administration is not reflected by the total viral
decay in the blood plasma.

Most noticeable, the reproductive capacity (Fig. 5B) discrimi-
nates between RTIs, FIs and CCR5-antagonists vs. InI vs. PIs and
MIs. It can be seen, that protease and maturation inhibitors
reduce Rcap most efficiently initially and shift it to an overall lower
level. Integrase inhibitors cause a slightly faster initial decay in
Rcap, in comparison to RTIs, FIs and CCR5-antagonists, which
consistent with the rapid decay in viral load (Fig. 5A). However, in
contrast to viral load decay, the initial fast decay of Rcap levels off
and the second phase decay is flatter for InIs in comparison to

ð12Þ
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RTIs, FIs, CCR5-antagonists, PIs and MIs. The effect of NRTIs,
NNRTIs, CCR5 inhibitors and FIs on Rcap is comparable
(Fig. 5B). Remarkably, these inhibitors induce an initial increase
in Rcap (see next section for details), followed by a slow first phase
decay, followed by a second phase decay that is parallel to the
decay of Rcap in the case of PI- and MI-treatment, sustaining
overall higher levels of Rcap in comparison to PIs and MIs. In the
next section, we further elucidate the reasons for these class-
specific differences.

Immune-system related clearance is critical determinant
of drug-class specific decay

In view of the analysis performed in Fig. 5B, Rcap is
directly correlated to the overall abundance of viral infectives
(VI,T1,T2,M1,M2).

PIs and MIs primarily act on infectious virus VI (see Fig. 5, inset),
by reducing the proportionality factor (NT=CL and NM=CL) that
determines the abundance of infectious virus in the first- and second
phase decay (see Eq. (10)). The infectious virus VI is rapidly cleared
by the immune system [54]. Therefore, application of highly efficient
PIs and MIs leads to a rapid reduction of infectious virus VI, as
illustrated in Fig. 6D and Fig. 5 (inset). This reduction is also reflected
by the initial drop of Rcap in Fig. 5B. In the case of PI and MI
treatment, infected T-cells are quickly becoming the most abundant
infectious compartment (Fig. 6D) and subsequently dominate the
decay characteristics of Rcap in Fig. 5B. In the final phase, late
infected macrophages (M2) are becoming the most abundant
compartment and thus dominate the decay of Rcap in the final phase.

Integrase inhibitors prevent the integration of the viral genome
and thus prevent the transition of early infected cells (pre-integration,
T1 and M1) to late infected cells (post-integration, T2 and M2), see

Fig. 3. By inhibiting the transition from early to late infectious cells,
integrase inhibitors increase the decay of late infected T2-cells (see
Fig. 6C). In the case of InI treatment, infectious virus VI is initially
proportional to T2, explaining the observed more rapid first-phase
decline in Rcap in Fig. 5B. However, blocking the transition from T1

to T2 can also slow the decay of the T1-compartment, which might
become more abundant than VI after the initial decay. In the final
phase both T1 and VI become proportional to- and remain more
abundant than M2, which explains the overall higher levels of Rcap

in the final phase (see Fig. 5B).
The effects of NRTIs, NNRTIs, CCR5 inhibitors and FIs on

Rcap are comparable (Fig. 5B), as they primarily act on pre-
integrative early infected cells (T1 and M1). The difference between
entry inhibitors and reverse transcriptase inhibitors is marginal,
because the clearance of virus by infection is negligible compared to
the clearance by the immune system (CLTvCL and CLMvCL). A
positive result of entry inhibitors (FI/CCR5) and RTIs (NRTIs/
NNRTIs) is an increased number of uninfected cells, which also
results in an initial increase in the reproductive capacity Rcap (see
Fig. 5B). During treatment with NRTIs, NNRTIs, CCR5 inhibitors
and FIs, infective virus VI is the most abundant compartment. The
decay in the first phase is proportional to the decay of the late
infected cells, T2. Once the abundance of T2 falls below M2, the
decay of VI and thus Rcap in Fig. 5B is proportional to the decay of
late infected macrophages M2.

The pattern of virological removal influences the time to
virological rebound after treatment application

In the following, we predict how the distinct viral dynamics after
drug application affect drug efficacy in vivo. The long-term in vivo
efficacy of an antiviral drug depends on many different factors,

Figure 5. Decay of viral load and reproductive capacity after treatment initiation. A: Plasma virus load decay after treatment initiation.
Integrase inhibitors (InI) produce a faster decay of virus load than all other compound classes. Red solid-, black dotted-, green dash-dotted- and blue
dashed lines indicate simulation results with different inhibitor classes and parameters from Table 1. Black diamonds indicate median viral load data
from [27] (PI monotherapy), numerically available in [70]. Black squares and black bullets indicate median viral load data from [21] (NRTI + background
therapy and InI+background therapy, respectively). The horizontal dashed black line indicates the limit of detection of current assays (50 copies of
HIV RNA per mL). Inset: Protease- and maturation inhibitors (PI and MI) change the ratio of infectious to total virus (VI : Vtot). B: The evolution of the
reproductive capacity (evaluated at the drug free state Rcap(w)) after treatment with different drug classes. Model parameters are as indicated in
Table 1. The initial infection was assumed to consist of wild type only. Drug efficacy g was assumed to be 100%. Total body virus has been converted
to plasma viral load by assuming that the virus distributes into the plasma (Vplas:~3:1 liters, which surrounds 2% of infected cells) and the interstitial
space (Vint:~9:6 liters [71], which surrounds 98% of infected cells). The volume of distribution with reference to the plasma concentration has been
calculated using the well-known formula vol. distr ~Kint::plas:

:Vint:zVplas:, see e.g. [72], where Kint::plas:~98%=2%~50. Finally, we assume that on
average each virus contains 2 viral RNAs (which are measured [viral RNA/mL] plasma).
doi:10.1371/journal.pcbi.1000720.g005
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including the ability of the virus to adapt to the pharmacological
challenge by developing resistance mutations. The ability to
develop drug resistance is strongly dependent on the induced
pattern of resistance mutations against a particular drug, but also
on the velocity at which replication competent compartments
(VI,T1,T2,M1,M2) are removed from the body. Since anti-
retroviral drug classes target different stages in the viral life cycle,
they are likely to induce different patterns by which viral
compartments are removed from the body (see Fig. 6) and might
therefore exhibit different long-term in vivo efficacies.

To illustrate the sole impact of virological removal
(VI,T1,T2,M1,M2) on resistance development and therefore on
drug efficacy, we have intentionally chosen a simplistic, unified
mutational landscape and considered the time to viral rebound as
a long-term measure of efficacy. We denoted virological rebound,
if the viral load reaches 90% of the pre-treatment viral load. We
assumed that the drugs inhibited their targeted (lumped)
parameter (see Eqs. (7)–(10)) by 90% in the wild type (g~0:9),
by 45% in a one-mutation strain (g~0:45) and are entirely
inefficient in the double-mutant (g~0). Drug-specific and more
realistic mutational landscapes are possible, but in view of the
current analysis (elucidating the impact of class-specific virological
removal), they would blur the results.

In Table 2, the time to virological rebound for the different drug
classes based on the above simplistic mutation model is reported.

The virus generally rebounds to 90% of pre-treatment levels after
1–2 month of monotherapy, which is in the same order of
magnitude as clinically observed rebound times [55–57]. Although
inhibition g was assumed to be identical across all drug classes, the

Figure 6. Decay of infective compartments after initiation of drug treatment. A: Decay of infective compartments after treatment with FI
and CCR5-antagonists. B: Decay of infective compartments after treatment with NRTIs and NNRTIs. C: Decay of infective compartments after
treatment with InIs. D: Decay of infective compartments after treatment with PIs.
doi:10.1371/journal.pcbi.1000720.g006

Table 2. Virological rebound times resulting from distinct
virological removal.

Drug/Selec.
Disadvantage 30% 25% 20% 15% 10% 5% 1%

InI 48.13 44.44 41.33 38.70 36.43 34.65 33.25

FI/CCR5-antag. 53.71 47.81 43.09 39.57 36.47 33.77 32.06

NRTI/NNRTI 55.51 48.76 43.86 39.99 36.61 33.94 32.11

PI/MI 55.28 49.03 43.74 39.84 36.66 33.95 32.15

The time to virological rebound depends on both the cost of resistance
(‘selective disadvantage’, s) and the choice of drugs. Each table entry shows the
time to virological rebound in [days] in an ensemble of 1000 hybrid stochastic
deterministic simulations, where we assumed that the efficacy of the drugs
against the wild type was 90%. The drug was 45% effective against an one-
mutation strain and completely inefficient against the double-mutant. The
fraction of non-infectious viruses (1{p:q:rPR,w) was set to one-third and the

initial population was assumed to be all wild type. The viral load was said to be

rebounded, if the viral load reached 90% of the pre-treatment viral load.
doi:10.1371/journal.pcbi.1000720.t002
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times to virological rebound differed. In particular, when
resistance confers a marked loss in fitness (i.e. selective disadvan-
tage = 30%), PIs show the longest time to virologically rebound,
and the InIs the shortest.

For integrase inhibitors, the difference between the decay of
plasma viral load and their predicted long-term efficacy is quite
pronounced. Their comparably shorter times to virological
rebound are in strong contrast to their steep initial decrease of
plasma viral load (see Fig. 5A), but consistent with the decay
pattern of the reproductive capacity (Fig. 5B). For the EIs, RTIs,
PIs and MIs, the predicted time to virological rebound is also
much more consistent with the decay characteristics of the
reproductive capacity (Fig. 5B) than with the decay pattern of
total viral load (see Fig. 5A).

Discussion

In clinical studies, the first approved integrase inhibitor,
raltegravir, induced an extremely rapid decline in viral load when
applied both as monotherapy [10] and in combination with an
optimized NRTI background therapy [21–24]. While it was
initially speculated that the observed decline might be a result of
superior potency of raltegravir, it is now emerging that the viral
decline in InI-based therapy could be a class-specific phenomenon
[25,26]. Moreover, superior potency of InIs (in terms of g) was not
confirmed by single-round infectivity assays [14]. The mechanisms
underlying the decay dynamics are still not clear [58] and
controversially discussed [21,32].

In [32], a two stage model of the viral replication cycle is presented,
which explains the differences between the decay of viral load
between RTIs and InIs based on the stage at which the drugs affect
the dynamics of viral replication. The model explicitly distinguishes
two viral stages, early-stage infected cells and late-stage infected target
cells, which are specifically defined for a pair of drugs under
examination. The authors further conclude that the viral dynamics
produced by drugs from different anti-retroviral classes should not be
directly compared to infer drug potency [33]. An alternative measure,
as it is imperative for guiding drug discovery and prioritizing drug
candidates in later development stages, is still lacking.

All currently approved antivirals exert their effect by inhibiting
the replication of HIV. The extent at which replication is
inhibited, is therefore a unifying indicator for drug efficacy across
all drug classes. Replication assays, e.g., phenotypic assays [15] or
replication capacity assays [59], analyze drug efficacy in terms of
viral replication in vitro. The replicative fitness of HIV in vivo,
however, depends on the interaction of a multitude of viral and
host factors. Replication assays represent the dynamics of HIV
under the assay conditions, which lack many host factors, in
particular the immune responses to the infection. However, since it
is particularly useful to compare compounds in terms of replication
inhibition, we adopt the dynamic approach of replication assays to
define the reproductive capacity Rcap. In silico, we are able to
consider the host response to the viral infection and can thus
extrapolate the replication approach from in vitro to in vivo. In [60],
the authors used a similar approach to compare the effect of
distinct antiviral classes utilizing age-structured models.

We derived a single detailed model of the viral replication cycle
and deduced a reduced two stage model, which incorporates the
action of all approved HIV drugs. Our two-stage model allows to
predict the action of any number of drugs simultaneously, including
common HAART cocktails, potentially belonging to different drug
classes. In contrast, in [32], the stages of the two-stage model of
viral replication are not specified a priori and have to be
determined by the two drugs that are analyzed and compared.

Based on the proposed detailed and reduced model, we identify
the following effects of currently approved drugs: EI and RTIs
decrease the infection rate and thus the number of new infections.
The impact on the release of new virus (and virus decline) is
therefore delayed by the viral life cycle. MIs and PIs do not
interfere with the total amount of virus that is being released, but
rather shift the ratio of infective to total virus, VI : Vtot (see Fig. 5,
inset), which is not directly reflected by total plasma viral load.
Since the kinetics of the free virus are rapid [54], this has an
immediate impact on the number of new infections. Subsequently,
this impact on the number of new infections affects the total viral
release (and thus total plasma virus load) in a similar manner as
EIs and RTIs, creating a ‘shoulder’ phase. Hence, we obtain

new infections~ b
z}|{EI,RTI

:TU: VI|{z}
PI,MI

{?
life{cycle

total virus release:ð23Þ

In our model, EIs, RTIs, PIs and MIs produce an identical decay
of plasma viral load (see Fig. 5A), when assuming 100% inhibition,
respectively. In particular, the onset of viral load decay is similarly
delayed (‘shoulder phase’) with these inhibitors (see Figure S1), in
agreement with clinical observations [12,27]. Previously discussed
theoretical differences in the viral response between RTIs and PIs
(see Eq. (5.7) vs. Eq. (5.16) in [61]) yield similar dynamics when
more recent (higher) estimates of viral clearance are used [54].

In contrast to other inhibitor classes, InIs decrease the amount
of late infected cells (T2,M2) (see Fig. 2), which has an immediate
impact on total virus release, i.e.,

total virus release~bNN: T2|{z}
InI

: ð24Þ

The impact of InIs on viral load decay is immediate and not
delayed by the viral replication cycle as in the case of all other
compounds [12,27]. Thus, the onset of observed total viral decay
is faster for InIs than for other compounds, irrespective of their
potency (which was set equal for all compounds in Fig. 5A).
Furthermore, the decay of viral load in the first phase is steeper for
InIs in comparison to other inhibitor classes (see Fig. 5A). The
viral load decline in the first phase is proportional to the decay of
the late infected T-cells T2 (see Fig. 6). Sedaghat et al. [32] derived
analytical solutions for the viral decay dynamics after InI and RTI
treatment (see Eqs. (9) and (10) in [32]), which demonstrate that
the viral decay after InI treatment is determined by the death rate
of late infected cells (dT2

), while in the case of RTI treatment, the

decay is determined by the ‘‘flushing-out’’ of the early infected
cells (T1) and the death rate of the late infected cells dT2

, leading to

overall faster viral declines in the case of InI treatment in the first
phase.

The long-term in vivo efficacy of an antiviral drug depends on
many different factors, particularly the ability of the virus to adapt
to the pharmacological challenge by developing resistance
mutations. The ability to develop drug resistance is strongly
dependent on the induced pattern of resistance mutations against a
particular drug, but might also be influenced by the velocity at
which replication competent compartments are removed from the
body. However, viral load decay focusses on only one single
variable, namely the total output of virus, whereas other infectious
stages (e.g. T1,T2,M1,M2) remain ‘hidden’. Furthermore, the ratio
of infective virus-to-total virus (VI=Vtot) is not resolved, which
might underestimate the long-term efficacy of PIs and MIs that
target this ratio (see Table 2 in relation to Fig. 5A). In the section
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‘The pattern of virological removal influences the time to
virological rebound after treatment application’, we have com-
pared the impact of drug-class specific removal patterns on the
long-term efficacy of antivirals (in terms of resistance develop-
ment). We showed that although inhibition g was assumed to be
identical across all drug classes, the times to virological rebound
(used as a measure of long-term efficacy) differed, with PIs showing
the longest time to virologically rebound, and InIs the shortest.

The reproductive capacity has been monitored over time in
Fig. 5B to depict class-specific long-term efficacy of antivirals
based on the hosts’ ability to clear the targeted infectant in the
viral life cycle. The main conclusion is that the long-term efficacy
is larger for compounds that target viral life-stages that are cleared
at a fast rate. It is generally assumed that the free virus is cleared at
the fastest rate [27,54]. Since MIs and PIs reduce the production
of infective virus VI (see Fig. 2), they reduce the virus’ ability to
produce offspring faster than all other drug classes. Furthermore,
since resistance development is correlated with the extent of
replication, we infer that PIs and MIs, based on their viral target,
are the most efficient drug classes in terms of reducing the
probability of resistance development. This assumption correlates
well with the observed rebound times in Table 2 and is also
supported by the fact that the introduction of PIs marked the
success of HAART [1].

During drug discovery, the pre-clinical- and the clinical
development process, in vitro surrogate measures or in vivo drug
efficacy measures are important to prioritize drug candidates.

The mechanistic mode of action of a compound at its target site
can be elucidated by cell free assays that use purified viral protein,
e.g. reverse transcriptase for RTIs. The influence of viral
mutation, the immune system and pharmacokinetics are absent
in this type of assay. However, it is possible to deduce the
pharmacodynamic mode (e.g. Eq. (1), see also [41]) and thus the
parameter e from these types of assays, which denotes the extent of
inhibition of the molecular process by the compound. Mathemat-
ical models of HIV dynamics use a minimal number of
parameters, making them suitable for parameter fitting and
comparison with clinical data. The parameters used in the models
are often lumped, summarizing many viral processes. For
example, binding, fusion and reverse transcription are part of
the infection rate b (see Eq. (3)). Inhibition of lumped model
parameters (denoted by g) might therefore differ from inhibition of
the molecular process e, which is measured by cell-free in vitro
assays. We have provided equations (Eqs. (S24) and (S31),
Supplementary Text S1) that enable the use of pharmacodynamic
information e, derived from cell free assays (inhibition of the
targeted molecular process), in a (lumped) mathematical model of
HIV dynamics (utilizing g).

The presented model can be extended to incorporate drug-
specific escape pathways [62,63] or realistic time-varying drug
pharmacokinetics [41]. If in vivo pharmacokinetic data is available
(in terms of time-varying concentrations C(t) in Eq. (1)), then
extrapolation from in vitro to in vivo is possible and the mechanistic
understanding of drug effects, its parametrization and extrapola-
tion is facilitated. For RTIs and PIs, we found a nonlinear
relationship between e and g (see Eqs. (S24) and (S31),
Supplementary Text S1). Utilization of Eqs. (S24) and (S31)
allows to simulate drug effects based on their mechanistic
understanding in a lumped model, that can be compared with
clinical data.

The model can also be extended to include latently infected cells
(very long lived infected cells). We did not consider them in this
study, since they are expected to contribute little to the dynamics
analyzed herein (the first and the second decay phase).

The reproductive capacity is a useful concept to analyze and
monitor drug efficacy in silico. In its current form, the reproductive
capacity requires detailed knowledge about (i) the composition of
the viral population, and (ii) the fitness of the different viral strains
under a given treatment (reproductive numbers, Eqs. (12) and
(16)–(19)).

The fitness of certain viral strains can be assessed in vitro, e.g., by
phenotypic assays. We model strain specific fitness i under
treatment j, in terms of two parameters: the selective disadvantage
s(i), which denotes the loss in replication of mutant i, relative to
the wild type; and the efficacy of treatment j against mutant i in
terms of the parameter g(i,j). The selective disadvantage can, e.g.,
be estimated by performing a phenotypic assay with a certain
mutant virus i in the absence of drug and then comparing it to the
assay with the wild type. The parameter g(i,j) is already being
assessed in practice (e.g., [15]), usually in terms of a fold increase in
IC50.

Acquisition of detailed knowledge about the composition of the
viral population might, due to recent advances in sequencing
technology [64–67], become feasible in the future. However, novel
sequencing technology requires large amounts of viral RNA,
which cannot be derived when the viral load is below the limits of
detection.

Materials and Methods

Realization of hybrid simulations
The overall virus dynamics in our model comprise different viral

strains with copy numbers that can vary over several orders of
magnitude. For this reason we have chosen a hybrid (stochastic
deterministic) setting for numerical simulation. This approach (i)
takes stochastic fluctuations in the slow reaction processes into
account; and (ii) reduces the computational costs for the simulation
of the fast (deterministic) system dynamics. We used the direct
hybrid method proposed in [51]. Elementary reactions were
treated stochastically whenever their propensity function or the
quantity of at least one of their reactants was below a certain
threshold (for all numerical simulations this threshold was set to 5).
For the numerical integration of the deterministic part of the
system, we implemented a solver in C++ that is based on
numerical differentiation formulas [68] and uses strategies for
error control and step size control comparable to ode15s in Matlab
[69]. To generate the data for Table 2, we performed 1000 hybrid
simulations for each condition. With realization start (t = 0), the
effects of the drug treatment were simulated until the viral
population size reached 90% of its pre-treatment value, i.e.,
virological rebound occurred. During a simulation, the stochastic
partitioning of the reaction system was dynamically updated and
stochastic reaction events were realized accordingly. Every
numerical calculation was computed with a relative error tolerance
of 10{6 and an absolute error tolerance of 10{9. The hybrid
simulations for Table 2 were performed on two Intel Quad-Core
Xeon E5345 processors with 2.33 GHz and 32 GB RAM, which
took nearly 46 hours in total or approximately 6 seconds per
simulation, respectively.

Supporting Information

Text S1 This file contains the derivation of the simplified model
(Fig. 3) from the detailed model (Fig. 1).
Found at: doi:10.1371/journal.pcbi.1000720.s001 (0.30 MB PDF)

Figure S1 Delay in the onset of viral load decay, exemplified for
PI treatment. Simulation results (red line) using the novel two stage
virus dynamics model and simulating 100% effective PI treatment
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are shown together with median clinical data (black diamonds)
from PI (RTV) monotherapy.
Found at: doi:10.1371/journal.pcbi.1000720.s002 (0.91 MB EPS)
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(2005) Learning multiple evolutionary pathways from cross-sectional data.
J Comput Biol 12: 584–598.
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Abstract

Nucleoside analogs (NAs) are used to treat numerous viral infections and cancer. They compete with endogenous
nucleotides (dNTP/NTP) for incorporation into nascent DNA/RNA and inhibit replication by preventing subsequent primer
extension. To date, an integrated mathematical model that could allow the analysis of their mechanism of action, of the
various resistance mechanisms, and their effect on viral fitness is still lacking. We present the first mechanistic mathematical
model of polymerase inhibition by NAs that takes into account the reversibility of polymerase inhibition. Analytical solutions
for the model point out the cellular- and kinetic aspects of inhibition. Our model correctly predicts for HIV-1 that resistance
against nucleoside analog reverse transcriptase inhibitors (NRTIs) can be conferred by decreasing their incorporation rate,
increasing their excision rate, or decreasing their affinity for the polymerase enzyme. For all analyzed NRTIs and their
combinations, model-predicted macroscopic parameters (efficacy, fitness and toxicity) were consistent with observations.
NRTI efficacy was found to greatly vary between distinct target cells. Surprisingly, target cells with low dNTP/NTP levels may
not confer hyper-susceptibility to inhibition, whereas cells with high dNTP/NTP contents are likely to confer natural
resistance. Our model also allows quantification of the selective advantage of mutations by integrating their effects on viral
fitness and drug susceptibility. For zidovudine triphosphate (AZT-TP), we predict that this selective advantage, as well as the
minimal concentration required to select thymidine-associated mutations (TAMs) are highly cell-dependent. The developed
model allows studying various resistance mechanisms, inherent fitness effects, selection forces and epistasis based on
microscopic kinetic data. It can readily be embedded in extended models of the complete HIV-1 reverse transcription
process, or analogous processes in other viruses and help to guide drug development and improve our understanding of
the mechanisms of resistance development during treatment.
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Introduction

Viral encoded polymerases perform essential enzymatic steps
through amplification- or transformation of the viral genome
during the viral life cycle [1]. As such, viral encoded polymerases
constitute an attractive drug target for the treatment of many viral
infections [2]. Nucleoside analogs (NAs) were among the first
polymerase inhibitors that showed clinical efficacy [3–5] and are
nowadays broadly used to treat hepatitis B-, herpes simplex- and
HIV-1 infection [2], where they constitute the typical backbone
components of modern highly active antiretroviral treatment
(HAART). Nucleoside analogs are typically formulated as pro-
drugs, which require intracellular phosphorylation to form an
analog of (deoxy-) nucleoside-triphosphate (NA-TP; mimicking
either adenosine, thymidine, guanine, cytosine or uracil), which
can be incorporated into nascent viral DNA by the viral
polymerase. After incorporation, nucleoside analogs bring the
polymerization machinery to a halt, as they lack the chemical

group that is necessary to attach the next incoming nucleotide [6].
Incorporated NAs can, however, be selectively excised by some
viral polymerases, rescuing the nascent viral DNA and inducing a
transient-, rather than permanent mode of inhibition. Inhibition of
the crucial step of viral DNA polymerization can lower the
probability by which circulating virus can successfully infect host
cells [7] and the number of viral progeny produced per unit time,
shifting the balance between viral clearance by the immune system
and viral replication in favor of the immune system. For the ease of
notation, we will subsequently only refer to the active (tri-
phosphorylated) nucleoside analog moiety.

Inhibition of DNA polymerization by NAs is not restricted to
viral polymerase, but can also affect cellular polymerases, leading
to unwanted side-effects [8,9]. The therapeutic window of NAs
largely depends on molecular kinetic properties of the respective
enzymes with regard to a particular inhibitor [10,11]. NAs
therefore require high specificity for the targeted viral enzyme to
allow for a clinical benefit. Viral resistance development can revert
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this specificity by changing the kinetic properties of the viral
enzyme [12,13]. While a number of enzymatic studies have
revealed crucial insights into the mechanisms of polymerase
inhibition by NAs and the kinetic consequences of resistance
development, an integrated mathematical insight into these
mechanisms has rarely been achieved. In this study, we aim to
mathematically formulate a model of polymerase inhibition by
NAs, by integrating available enzymatic knowledge. The derived
mathematical model should subsequently allow us to assess the
impact of distinct cellular- and molecular determinants of NA
inhibition and to achieve a greater understanding of viral
resistance development and epistatic interactions. Results will be
exemplified for inhibition of DNA polymerization during reverse
transcription (RT) of HIV-1 by nucleoside analog reverse
transcriptase inhibitors (NRTIs).

Initial mathematical modelling efforts in the context of RT
inhibition by NRTIs of HIV-1 were based on the assumption that
incorporation of chain-terminating nucleoside analogs is perma-
nent [14]. The effect of NRTIs was therefore solely explained by
their incorporation probability. In subsequent years after the
introduction of ziduvudine (AZT; the first NRTI against HIV-1),
resistant strains were detected which displayed increased removal
kinetics of AZT from terminated primers [15–17], rather than
discriminating between the natural nucleotide and AZT [18]. This
indicated that nucleoside analog removal is very significant and
constitutes a major resistance pathway against thymidine analogs
(like AZT) and many other NRTIs [13]. The particular
mechanism of resistance to AZT indicated that chain termination
by nucleoside analogs may not be permanent. Hence, a distinct
view on polymerase inhibition by NRTIs is necessary, which
departs from the assumption of permanent chain termination.
Subsequent modeling work [19] used lumped kinetic expressions
and Monte-Carlo simulations instead of deriving analytical
expressions, which precludes the identification of key molecular
determinants of efficacy and drug resistance. Both previous
mathematical modeling efforts were not able to compute the
fitness loss associated with mutations in the RT enzyme, an

important determinant in clinical settings and for studying epistatic
interactions [20–23].

In this work, we present a distinct view of viral polymerase
inhibition by NRTIs, which departs from the assumption of
permanent chain termination. We propose that NRTIs delay the
process of DNA polymerization, rather than permanently
terminating it, simultaneously keeping in mind that any delay of
the process decreases the number of viral progeny and the
likelihood of target cell infection by the virus. The developed
mathematical formulation allows us to study viral polymerase
inhibition by NRTIs as well as fitness effects related to drug
resistance development. By integrating fitness effects and drug
susceptibility, it is further possible to quantify the selective pressure
exerted by NRTIs and to study epistasis. The derived analytical
expressions can be used to study the effects of single- and multiple
NRTIs on DNA polymerization in the absence and presence of
resistance mutations and can be useful for drug design. Chain
termination by NAs may also be reversible in other viruses [24–
26], against which NAs are being developed. Hence, the model
may also be applicable to study NA inhibition of these viruses.

Results

Mechanism of action of nucleoside analogs on DNA
polymerization

A schematic view of the process of viral DNA polymerization in
the presence of NAs is illustrated in Fig. 1. We interpret the
process of DNA polymerization as a Markov jump process with
2:N{1 states (Fig. 1A), where each state in the model corresponds
to the number of incorporated nucleosides: state ‘0’ corresponds to
the initiation of polymerization, states i~1:::N in the model
correspond to the condition in which i nucleosides have been
attached and state 0N 0 corresponds to the final polymerization
product. States ~ii correspond to the condition, in which the DNA-
chain consists of i{1 natural nucleosides, but where the last (ith)
molecule in the chain is a chain-terminating nucleoside analog.

At each state i, the nascent DNA-chain can either be shortened
(pyrophosphorolysis reaction rpyro), -prolonged with a nucleoside
(polymerase reaction rpol) or -terminated by a nucleoside analog
(reaction rterm). If the chain has been terminated (state giz1iz1), it can
get released with rate rexc (excision reaction) to produce a chain of
length i. The kinetics of these reactions will be detailed later.

Taking into account the mode of action of chain terminating
nucleoside analogs, we conclude that polymerization will be
decelerated in the presence of these inhibitors, because the overall
time required to go from state ‘0’ (initiation of polymerization) to
state 0N 0 (final polymerization product) in Fig. 1 will be prolonged
in their presence by introducing ‘waiting states’ ~ii. The residual
polymerase activity of the wildtype enzyme in the presence of
activated (tri-phosphorylated) nucleoside analogs (1{e(NA,wt))
can thus be expressed as:

1{e(NA,wt)~
T0?N (w,wt)

T0?N (NA,wt)
inhibition of wildtypeð Þ, ð1Þ

where T0?N (w,wt) and T0?N (NA,wt) denote the expected time
to finalize DNA polymerization in the wildtype 0wt0 in the absence

of drugs 0w0 and in the presence of active nucleoside analogs NA
respectively.

Analogously, we can define the effect of chain terminating
nucleoside analogs on some viral mutant, 1{e(NA,mut) and the
fitness loss associated with some mutant in the absence of
treatment w, f (mut):

Author Summary

Nucleoside analogs (NAs) represent an important drug
class for the treatment of viral infections and cancer. They
inhibit DNA/RNA polymerization after being incorporated
into nascent DNA/RNA, which prevents primer extension.
Viruses are particularly versatile and frequently develop
mutations enabling them to avert the effects of NAs. The
mechanisms of resistance development are, however, still
poorly understood. Through mathematical modeling, we
assess the mechanisms by which HIV-1 can develop
resistance against nucleoside analog reverse transcriptase
inhibitors (NRTI). We quantify the effects of treatment and
estimate the fitness of drug resistant mutants. We correctly
predict that HIV-1 can develop resistance by decreasing
NRTI incorporation rate, increasing its excision rate, or
decreasing its affinity for the viral polymerase enzyme. Our
model also allows quantification of the cell specific factors
affecting NRTI efficacy. Resistance development also
changes drug susceptibility distinctly and we show, for
the first time, that selection of drug resistance can occur in
particular target cells. This finding could provide an
explanation of how clinically observed resistant viral
mutants may arise. It also pin-points important parameters
that may impact clinical efficacy of NAs used to treat other
viruses.

HIV-1 Polymerase Inhibition by Nucleoside Analogs

PLoS Computational Biology | www.ploscompbiol.org 2 January 2012 | Volume 8 | Issue 1 | e1002359206



1{e(NA,mut)~
T0?N (w,mut)

T0?N (NA,mut)
inhibition of mutantð Þ ð2Þ

f (mut)~
T0?N (w,wt)

T0?N (w,mut)
fitness of mutantð Þ: ð3Þ

These constituents can be seen as building blocks for describing
the fitness landscape of any arbitrary viral mutant 0mut0 in the
absence- and presence of inhibitors, see e.g. [7,27].

Based on the definitions above, we can also assess the combined
effects of selection and drug pressure for any viral strain, i.e.
f (mut):(1{e(NA,mut)). This allows us to assess the selective
advantage Smut=wt(NA) of a mutant viral strain over the wild type
in an environment that is pharmacologically modified by NAs.

Smut=wt(NA)~
f (mut):(1{e(NA,mut))

(1{e(NA,wt))

~
T0?N (NA,wt)

T0?N (NA,mut)
selective advantageð Þ

ð4Þ

This parameter integrates the (usually opposed) effects of
mutations on resistance and viral fitness. If Smut=wt(NA)v1, the

wild type virus is selected over the mutant strain, whereas
Smut=wt(NA)w1 indicates selection of a mutant virus over the wild

type. Since Smut=wt(NA) depends on the concentration of NAs, a

critical concentration of nucleoside analog NA#(mut) can exist,
above which the selection of a particular viral strain over the wild

type is favored. Smut1=mut2(NA)~
T0?N (NA,mut2)

T0?N (NA,mut1)
can also be

used to assess selection between two arbitrary mutant strains mut1
and mut1 in a pharmacologically modified environment.

Finally, we can assess epistatic interactions for combinations of
mutations with regard to viral replication. Briefly, in a two-locus-
two-allele model, epistasis is positive if some double mutant m12
replicates better than expected from the single mutants m1 and m2,
normalized by the replication of the wild type wt (background).
Epistasis is negative if the replication of the double mutant is less
than expected from the single mutants. Along the same lines,
epistasis has been used to study interactions of mutations in the
absence of drugs [22] and for escalating drug concentrations [23].
Using the definitions above, in the presence of NAs, we derive:

ERep:(NA)~ log ((1{e(NA,mut12):f (mut12):(1{e(NA,wt)):f (wt))

{ log ((1{e(NA,mut1)):f (mut1):(1{e(NA,mut2)):f (mut2)): ð5Þ

The equation above becomes positive if the first term is greater that
the second, i.e. the double mutant replicates better than expected
from the single mutants, in agreement with the definition of epistasis
[22,23]. The epistasis term ERep:(NA) defined above regards both

fitness effects and drug resistance. In the absence of drugs,
(1{e)~1, see eqs. (1)–(2) above, we get the fitness epistasis:

Ef (w)~ log (f (mut12):f (wt)){ log (:f (mut1)

:f (mut2)) fitness epistasisð Þ
ð6Þ

It is also possible to only analyze epistatic effects on resistance:

ERes:(NA)~ log ((1{e(NA,mut12):(1{e(NA,wt)))

{ log ((1{e(NA,mut1)):(1{e(NA,mut2)))

resistance epistasisð Þ:

ð7Þ

Note, that the defined terms are additive, i.e. ERep:(NA)~
Ef (w)zERes:(NA).

Figure 1. DNA-polymerization in the presence of chain terminating nucleoside analogs. A: The mathematical model defines a Markov
jump process: Each state in the model corresponds to the number of incorporated nucleotides: state ‘0’ corresponds to the polymerase enzyme
binding to the template, prior to polymerization, states i~1:::N in the model correspond to the condition in which i nucleosides have been attached
and state 0N 0 corresponds to full-length product, after which the enzyme dissociates from the template/primer. States giz1iz1 correspond to the
condition, in which a DNA-chain consisting of i natural nucleosides has been produced, but where the last (iz1th) nucleoside in the chain is a chain-
terminating NA. At each state i, the nascent DNA-chain can either be shortened (pyrophosphorolysis rpyro), -prolonged with a nucleoside
(polymerase reaction rpol) or -terminated by a nucleoside analog (reaction rterm). If the chain has been terminated (state giz1iz1), it can get released with
rate rexc (excision reaction) to produce a chain of length i. B: Sequence context. The reaction rates rpol , rpyro, rterm and rexc depend on the nucleoside
sequence of the template. In the illustration, the next incoming nucleoside could be either a thymidine or a thymidine-analog (corresponding to
position iz1 in the template sequence). Therefore, rpol(iz1) and rterm(iz1) would refer to thymidine- and thymidine-analog incorporation. The
pyrophosphorolysis reaction, on the other hand, would refer to cytosine removal (position i in the primer sequence).
doi:10.1371/journal.pcbi.1002359.g001
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Polymerization of Hetero-Polymeric sequences
The process of DNA polymerization (Fig. 1) defines a birth-

death process. We are interested in the derivation of an explicit
formula for the mean first passage time T0?N (the average time
required to finalize DNA polymerization). Let Ti?iz1 denote the
expected time required to extend the DNA-chain by one
nucleoside (going from state i to state iz1, derivation see eq
(22)–(28); Methods section)

Ti?iz1~(tfiz1iz1
:r

i?fiz1iz1
ztizri?i{1Ti{1?i)

1

ri?iz1

: ð8Þ

where ti,tfiz1iz1
are the waiting times in states i and giz1iz1 respectively

and ri?iz1,ri?i{1 are the probabilities to jump from state i to
state iz1 and to state i{1 respectively. The parameter r

i?fiz1iz1

denotes the probability that the chain of length i gets terminated

by incorporation of a nucleoside analog (state giz1iz1). The waiting
times t and jump-probabilities r are defined as follows:

ti~
1

rpol(iz1)zrpyro(i)zrterm(iz1)
, tfiz1iz1

~
1

rexc(iz1)
,

ri?iz1~rpol(iz1):ti, ri?i{1~rpyro(i):ti, r
i?fiz1iz1

~rterm(iz1):ti,

ð9Þ

where rpol(iz1) and rterm(iz1) denote the polymerase- and chain

terminating reactions (attachment of the next incoming nucleoside
or its analog), which depend on the efficacy of incorporation of the
respective types of nucleosides (deoxyadenosine, -thymidine,
-guanine or -cytosine triphosphate) or their respective analogs at
position iz1 in the primer, see Fig. 1B. The parameter rexc(iz1)
denotes the rate of release (excision reaction) of a primer that has
been terminated at position iz1 by NA. The parameter rpyro(i)
denotes the pyrophosphorolysis reaction, i.e. the rate at which a
nucleoside is removed from the end of the primer. Note, that t and
r depend on the sequence context because the rates of nucleoside
attachment and -removal depend on the types of nucleosides (and -
analogs) to be incorporated and -removed respectively (see e.g.
Fig. 1B). Eq. (8) allows us to calculate the time to finalize
polymerization recursively, using the relation:

T0?N~
XN{1

i~0

Ti?iz1: ð10Þ

If i~0 corresponds to the unextended primer, we have rpyro(0)~0
in eq. (9) and therefore eq. (8) simplifies to

T0?1~(t~11
:r0?~11zt0)

1

r0?1

, ð11Þ

with t0~
1

rpol(1)zrterm(1)
,t~11~

1

rexc(1)
and r0?1~rpol(1):t0,

r0?~11~rterm(1):t0, which can be used as a recursion start to

compute the polymerization time.
In the case where no chain-terminating inhibitor is applied, we

have rterm(i)~0 for all i in eq. (9) and therefore eq. (8), and eqs.
(10)–(11) simplify accordingly.

Eq. (8)–(10) can subsequently be used to estimate the residual
polymerase activity in the presence of NAs in the wild type and
any mutant enzyme, using eq. (1) and eq. (2) respectively, to
estimate the fitness of some mutant with regard to polymerization,
using eq. (3), or to estimate the selective advantage of a viral strain

against a competitor, using eq. (4). This will be exemplified in the
next section.

Sequence dependent DNA-polymerization in the presence
of NAs. Using eq. (10), it is possible to compute the average
polymerization time (T0?i) in the absence- and presence of NAs
for any arbitrary sequence to be polymerized. In this section, we
motivate the use of this approach and show how key phenotypic
characteristics can be derived from this simple mathematical
model.

NAs compete with the natural nucleoside substrates for the
same binding site on the polymerase enzyme. We therefore take
into account competitive inhibition for the kinetics of nucleoside-
and nucleoside analog incorporation.

rterm~
kterm

:½NA%

KD,NA 1z
½dNTP%
KD,dNTP

! "
z½NA%

ð12Þ

rpol~
kpol

:½dNTP%

KD,dNTP 1z
½NA%

KD,NA

! "
z½dNTP%

ð13Þ

where ½dNTP% is the concentration of the deoxynucleoside
triphosphates (adenosine-, thymidine-, cytidine- and guanosine-)
of which the NA is an analog of. The variable ½NA% denotes the
concentrations of activated (tri-phosphorylated) nucleoside analog
that competes with its natural nucleoside counterpart for
incorporation into the nascent viral DNA. The parameters kterm

and kpol denote the catalytic rate constants for incorporation of the

NA and the dNTP respectively. KD,NA and KD,dNTP denote the
dissociation constants for NA and dNTP binding to the
polymerase respectively. In the absence of inhibitors w, we have
½NA%= 0 and therefore eq. (13) and eq. (12) simplify accordingly:

rpol(w)~
kpol

:½dNTP%
KD,dNTPz½dNTP%

, ð14Þ

rterm(w)~0: ð15Þ

Physiological dNTP concentrations for the most important target
cell types of HIV-1 are indicated in Table 1. Parameters for
natural nucleoside DNA- and RNA- dependent polymerization by
wild type HIV-1 reverse transcriptase (RT) are indicated in Table
S1 (supplementary material). In the forthcoming example, we will
analyze the effect of a chain-terminating adenosine analog
(ddATP, the active metabolite of didanosine, ddI) at a fixed
concentration on both single nucleotide incorporation Ti?iz1 (see
eq. (8)) and on cumulative nucleoside polymerization T0?i (see eq.
(10)) for physiological dNTP concentrations in resting CD4z T-
cells (Table 1). Furthermore, we will assess how polymerization is
impaired by the (clinically relevant) ‘K65R’ mutation in reverse
transcriptase in the absence- and presence of ddATP.

In Fig. 2 we have computed the average polymerization time for
a short sequence (indicated on the x-axis in Fig. 2) and typical
parameters for DNA-dependent polymerization for HIV-1 RT,
see Table 1 and Table S1 (supplementary material). In this
example, we have assumed that rpyro~rexc~0:0016s{1 [17] for
all dNTP and for ddATP respectively. We examine polymeriza-
tion in the absence- or the presence of 1:45mM intracellular
ddATP. The solid black line denotes the polymerization time in
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the wild type RT in the absence of ddATP, whereas the blue
dashed- and the red dotted lines indicate the polymerization time
in the presence of ddATP in the wild type and drug-resistant
mutant enzyme (bearing the ‘K65R’ mutation) respectively. The
fold changes in the kinetic parameters, induced by the ‘K65R’
mutation, are stated in Table S2 (supplementary material). In the
wild type enzyme the predicted incorporation probability r

i?fiz1iz1

for ddATP over dATP is 9.4% in the presence of 1:45mM ddATP.
For the ‘K65R’ mutant r

i?fiz1iz1
it is 3.2%. In Fig. 2A one can see

the cumulative time to form the polymerization product T0?i. In
the presence of ddATP, the cumulative polymerization time is
substantially increased (dashed blue line), which is partly
compensated in the drug resistant enzyme bearing the ‘K65R’
mutation (dotted red line). In Fig. 2B we show the single
nucleoside polymerization time Ti?iz1. It can be seen, that in
the presence of ddATP the single nucleoside polymerization time

Ti?iz1 is substantially elevated, in relation to the wild type,
whenever the respective natural nucleoside (here adenosine) needs
to be incorporated (the solid black line vs. the dashed blue line). In
the ‘K65R’ mutant (red dotted line), this is partially compensated
for. However, in the mutant, the single nucleoside polymerization
time Ti?iz1 for incorporation of other nucleosides is also
increased, which indicates, that the ‘K65R’ mutant might decrease
the fitness of the enzyme. We have calculated the fitness of the
mutant enzyme, the residual polymerase activity in the wild type
enzyme -and the ‘K65R’ mutant and the selective advantage of
the ‘K65R’ mutant over the wild type for the presented example,
using eqs (1)–(4). The derived values are stated in Table 2. It can
be seen that the ‘K65R’ mutant decreases ddATP inhibition of
DNA dependent polymerization substantially (the residual poly-
merization is increased from 3.3% to 22.3%). However, the
predicted fitness of the enzyme (in terms of DNA-dependent
polymerization) is reduced to 37.9%. The predicted selective
advantage of the ‘K65R’ mutant is 2.55, indicating that the
‘K65R’ resistance would be selected over the wild type in the
presence of 1:45mM ddATP.

Note, that in this section, we have exemplified the effects of a
particular NA on polymerization, given a specific concentration of
the respective NA and certain kinetic attributes of the polymerase
enzyme (wild type RT vs. ‘K65R’ mutant RT). In the next
sections, we will assess the general impact of certain resistance
mechanisms, by analyzing a range of kinetic parameters and we
will also study the efficacy of NAs for different concentration
ranges.

Molecular determinants of inhibition
While in a hetero-polymeric sequence context, polymerase

inhibition by NAs depends on the particular succession of the

Table 1. Physiological dNTP levels in different cell types.

activated
CD4zz -cells

resting
CD4zz -cells macrophages ref.

dATP 5.1 1.7 0.023 [34]

dTTP 7.9 1.5 0.019 [34]

dCTP 5.9 1.9 0.03 [34]

dGTP 4.5 1.7 0.032 [34]

PPi 79 8 7 [35]

ATP 1400 2200 1600 [35]

All values are expressed in mM.
doi:10.1371/journal.pcbi.1002359.t001

Figure 2. DNA-dependent polymerization of a hetero-polymeric sequence by HIV-1 RT in the presence- and absence of a chain
terminating adenosine analog (ddATP). A: Cumulative time for polymerization of a hetero-polymeric sequence in the presence of a chain-
terminating nucleoside analog (ddATP). The solid black line (filled dots) indicates the cumulative polymerization time up to sequence position i (the
sequence position is indicated at the x-axis) in the absence of inhibitors in the wild type enzyme (calculated using eq. (10)). The dashed blue line
(open squares) indicates the time required for polymerization in the presence of 1:45mM ddATP. The dotted red- and green lines (upward and
downward pointing triangles) show the time required for polymerization in the ‘K65R’ mutant RT enzyme in the presence- and absence of 1:45mM
ddATP. Kinetic parameters are presented in Table 1 and Table S1, S2 (supplementary material) for the wild type and the ‘K65R’ mutant. B: Single
nucleoside incorporation time Ti?iz1 in the absence of ddATP in the wildtype and the ‘K65R’ mutant (solid black and dashed green lines
respectively) and in the presence of ddATP in the wild type enzyme (dashed blue line) and in the mutant enzyme (dotted red line), calculated using
equation eq. (8).
doi:10.1371/journal.pcbi.1002359.g002
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nucleosides, see e.g. Fig. 2B, this is not the case for homo-
polymeric sequences, which consist of only one type of nucleoside,
e.g. poly-adenosine; ‘Poly-A’. This allows us to derive a general,
analytical expression for polymerase inhibition by NAs, which is
valid for any homo-polymeric sequence. We will make use of this
fact to highlight key determinants of inhibition. For assessing the
impact of nucleoside analogs in a particular hetero-polymeric
sequence context, we advice to use eqs. (8)–(11). In a homo-
polymeric sequence, we have rpol(i):rpol,rpyro(i):rpyro,
rterm(i):rterm and rexc(i):rexc for all i. In this particular case,
the explicit solution for the mean first passage time T0?N reads (see
eq. (31)–(32); Methods section)

T0?N (NA)~
rtermzrexc

rexc

! "
(rpolzrpyro)N{1zrN{1

pol
:(N{1)

rN
pol

:ð16Þ

When no inhibitor is present (w), we have rterm~0 and thus eq.
(16) simplifies accordingly:

T0?N (w)~
(rpol(w)zrpyro)N{1zrpol(w)N{1:(N{1)

rpol(w)N
, ð17Þ

where rpol and rpol(w) are the polymerization rates in the presence-

and absence (w) of a competing NA, given in eq. (13) and eq. (14).
Recalling the effect of NAs on polymerization, see eq. (1), we can
derive the residual polymerase activity during NA treatment

on a homo-polymeric sequence, 1{gð Þ~ T0?N (w)

T0?N (NA)
:

1{gð Þ~ rexc

rtermzrexc

rN
pol

rpol(w)N

(rpol(w)zrpyro)N{1zrpol(w)N{1:(N{1)

(rpolzrpyro)N{1zrN{1
pol

:(N{1)

 ! ð18Þ

The above expression simplifies further, if the pyrophosphorolysis
reaction is very inefficient relative to polymerization, which is the
case for most viral polymerase enzymes; e.g. rpyro%rpolƒrpol(w).

1{gð Þ& rexc

rtermzrexc|fflfflfflfflfflffl{zfflfflfflfflfflffl}
incorporation & termination

: rpol

rpol wð Þ
|fflfflffl{zfflfflffl}

binding competition

ð19Þ

Eq. (19) highlights the two distinct mechanisms by which
inhibition can be conferred, namely a) inhibitor incorporation (and
subsequent quasi-termination of the polymerization reaction) and

b) competition for binding with natural nucleoside substrates. The
efficacy of quasi-termination of the nascent DNA chain depends
on the efficacy of inhibitor incorporation rterm and the duration of
the chain termination, determined by rexc. Binding competition is
solely determined by the fractional decrease of the natural
polymerization reaction (relative to the absence of inhibitor), see
eq. (13).

After substituting the enzymatic rate expressions eqs. (12)–(14)
into equation (19), we can solve for the fifty percent inhibitory
concentration IC50 (see eqs. (33)–(35); Methods section), which
refers to polymerase inhibition in a homo-polymeric sequence (e.g.
‘Poly-A’) and to the intracellular concentration of activated
(triphosphorylated) NA.

IC50&
rexc

ktermzrexc

:KD,NA 1z
½dNTP%
KD,dNTP

! "
ð20Þ

The above equation highlights the processes, which determine the
efficacy of a chain-terminating nucleoside analog, namely the
kinetic constants kterm,KD,NA and KD,dNTP, the concentration of
natural nucleoside ½dNTP% and the excision rate of the inhibitor
rexc.

Cell-specific susceptibility to chain-terminating
nucleoside analogs. Viruses can infect numerous activated-
and resting cells. HIV-1, for example, has been shown to infect
activated- and resting CD4z T-cells, macrophages, dendric cells,
natural killer cells and microglial cells [28–32], and possibly many
more. It is important to understand- and take into account
heterogeneous- or cell specific drug efficacy, as it may be a primary
source of residual viral replication and subsequent resistance
development during treatment [33].

In the context of nucleoside analog efficacy, the major cell-
specific factors (apart from pharmacokinetics), are cell type-, or cell
stage specific dNTP pools (see Table 1) and possibly cell specific
rates of excision rexc. In Fig. 3A, we predicted the impact of cell-
specific ½dNTP% contents on DNA-dependent polymerization
during HIV-1 reverse transcription in the presence of ddATP,
using typical kinetic parameters (see Table S1, supplementary
material).

Under the parameters used, a 100 fold increase in dNTP
concentrations would result in a 19 fold increase in the IC50 value
(2:8:10{3 vs. 5:3:10{2mM), whereas a 100-fold decrease in the
dNTP concentrations would only result in a 1.2 fold reduction in
the IC50 value. This is an important observation, because it
indicates that cells that contain high concentrations of dNTP can
confer natural resistance against NRTIs, whereas cells with low
dNTP content, like macrophages [34], do not necessarily confer
hypersusceptibility to NRTIs. This phenomenon can be explained
from eq. (20): The IC50 value does not decrease, if
½dNTP%%KD,dNTP.

Resting cells on the other hand might insufficiently phosphor-
ylate NRTIs and subsequently contain lower levels of activated
compound. However, these cells do not simultaneously require
smaller NRTI concentrations for inhibition (IC50 value in Fig. 3A
does not decrease with decreasing dNTP levels). Therefore, resting
cells could constitute reservoirs for residual replication during
antiviral treatment, if NRTI phosphorylation/activation is affect-
ed.

Excision of nucleoside reverse transcriptase inhibitors (NRTIs)
of HIV-1 from terminated primers has been shown to be mediated
by pyrophosphate (PPi) and ATP dependent mechanisms [35].
Whereas ATP concentrations are fairly similar in activated- and
resting lymphocytes, as well as macrophages and monocytes [34–
38] (1 to 5 mM), PPi levels have been shown to vary substantially

Table 2. Efficacy & fitness.

1{e(ddATP,wt) 3.31%

1{e(ddATP,0K65R’) 22.3%

f (0K65R’) 37.9%

SK65R=wt(ddATP) 2.55

Residual DNA-dependent polymerase activity (1{e) of HIV’s RT in resting
CD4z T-cells in the presence of 1:45mM ddATP and fitness (f ) and selective
advantage SK65R=wt with regard to DNA polymerization for the ‘K65R’ mutant.
Calculations are based on formulas (1)–(4).
doi:10.1371/journal.pcbi.1002359.t002
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[35] (8{80mM), see also Table 1. This indicates that IC50 values
for polymerase inhibition by NAs might be cell-specific and may
in some cells lead to incomplete suppression. Here, we did not
analyze the effect of cell-specific PPi and ATP contents, as the
kinetic parameters were not readily available for ddATP. We
however discuss their impact on polymerase inhibition by
zidovudine (AZT) in a subsequent section.

Molecular mechanisms of viral drug resistance against
chain-terminating nucleoside analogs. The enzymatic
properties of a viral polymerase can be adapted in an
evolutionary process to counteract inhibition by NAs. Eq. (20)
indicates that the following three distinct molecular mechanisms
are likely to induce selective resistance against chain-terminating
NAs, and indeed these three mechanisms of resistance have been
described for HIV-1 RT [13].

N selective attrition of inhibitor incorporation (;kterm)

N selective attrition of inhibitor binding to the primer-template
(:KD,NA)

N enhanced excision of the NA from the terminated primer
(:rexc, by e.g. increasing the catalytic efficacy of removal or by
increasing phosphate-donor, e.g. PPi- or ATP- binding).

The consequences of mutational modification of inhibitor
incorporation (kterm) and -binding (KD,NA) with regard to the
predicted efficacy of ddATP are illustrated in Fig. 3B, where we
have used typical parameters for DNA-dependent polymerization
during HIV-1 reverse transcription (see Table S1, supplementary
material). Under the utilized parameters a 100-fold change in the
respective parameter kterm or KD,NRTI leads to a 100-fold change
in the compounds IC50 value. We did not analyze the effect of
enhanced NA excision in Fig. 3B, as the kinetic parameters were
not readily available for ddATP. These effects will be discussed in

the context of polymerase inhibition by zidovudine (AZT) in the
next section.

Mechanism of zidovudine (AZT) resistance by thymidine
analog mutations (TAMs)

It has been argued [17], that the main mechanism of AZT
resistance is due to increased excision of AZT-MP from the
terminated primer. In particular, this process has been shown to
be both pyrophosphate- (PPi) and ATP- dependent in vivo [35]. For
the rate of excision rexc we can therefore write

rexc~
kATP

:½ATP%
KD,ATPz½ATP%z

kPPi
:½PPi%

KD,PPiz½PPi% : ð21Þ

The variables ½ATP% and ½PPi% in the above equation refer to the
concentration of adenosine triphosphate and pyrophosphate and
the parameters kATP and kPPi denote the catalytic rate constants
for (ATP- and PPi dependent) excision. Parameters KD,ATP and
KD,PPi denote the corresponding dissociation constants. The
respective concentrations of PPi and ATP in various cell types
are shown in Table 1 and kinetic parameters for AZT-MP excision
during DNA- and RNA dependent polymerization by HIV-1 RT
(wild type and AZT-resistant mutant) are indicated in Table S3
(supplementary material).

Residual polymerization in the presence of AZT. In
Fig. 4, we have illustrated the predicted concentration-response
relationship for intracellular AZT triphosphate and RNA- and
DNA dependent polymerization of homo-polymeric- (panels A &
B) and hetero-polymeric sequences in unstimulated CD4z T-cells
for the wild type enzyme (solid blue lines) and an AZT-resistant
quadruple mutant (‘D67N/K70R/T215Y/K219Q’; dashed lines),
respectively. From Fig. 4, several conclusions can be drawn: First,

Figure 3. Factors that modify inhibition of DNA polymerization by nucleoside analogs. A: Cell-specific factors: Concentration response
curve of ddATP for wild type RT during DNA-dependent polymerization (homo-polymeric sequence) in unstimulated CD4z T-cells (solid line) and the
impact of a 100-fold variation of the the intracellular nucleoside concentrations (dotted line). The illustration was generated by evaluating eq. (19)
and typical parameters for DNA-dependent polymerization during HIV-1 reverse transcription and its inhibition by ddATP (all parameters are
indicated in Table 1 and Table S1, supplementary material). The corresponding IC50 is depicted by a green filled circle. B: Molecular mechanisms of
drug resistance and hyper-susceptibility (dashed lines). Impact of (i) selective attrition of inhibitor incorporation (;kterm) and (ii) selective attrition of
inhibitor binding to the primer-template (:KD,NA) on drug susceptibility. Hypersusceptibility is conferred by the opposite change in the indicated
parameters. In order to generate the dashed lines, the respective parameters have been increased/decreased by a factor of 100.
doi:10.1371/journal.pcbi.1002359.g003
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as expected, polymerase inhibition by intracellular AZT is more
efficient in homo-polymeric sequences that contain only thymidine
versus hetero-polymeric sequences that contain a mixture of all
four nucleosides (panel A & B vs. C & D). Second, AZT inhibition
of RNA-dependent polymerization is more efficient than
inhibition of DNA-dependent polymerization (panels A & C vs.
panels B & D). Predicted inhibition of RNA-dependent
polymerization of hetero-polymeric sequences is nearly complete
for the wild type and under in vivo intracellular AZT-TP
concentrations (residual activity is ƒ20%, solid blue line and
grey area in Fig. 4C). For DNA-dependent polymerization, we
predict residual activity under in vivo AZT-TP concentrations
(§20%, solid blue line and grey shaded area in Fig. 4D). Third,
the resistance mutations ‘D67N/K70R/T215Y/K219Q’ (dotted
lines) increase the fifty percent inhibitory AZT-TP concentrations.

For DNA-dependent polymerization, the IC50 is shifted to
concentrations that lie beyond clinically achieved concentrations
(see Fig. 4B & Fig. 4D), almost completely diminishing inhibition
by AZT (Fig. 4D). RNA-dependent polymerization is still partially
inhibited in the ‘D67N/K70R/T215Y/K219Q’ mutant in
unstimulated CD4z T-cells (§20% residual polymerization,
Fig. 4A & Fig. 4C).

Cell type specific susceptibility to AZT and impact of
resistance. In Table 3, we have calculated the cell-specific IC50

values for RNA- and DNA dependent polymerization of homo-
polymeric (Poly-‘T’) sequences. Our results indicate that AZT is
much more potent in resting cells (unstimulated CD4z T-cells and
macrophages), as suggested by the smaller IC50 values for the
wildtype in Table 3 (second- and fifth column). This cell-specific
property is mainly due to lower PPi concentrations in resting cells

Figure 4. RNA- and DNA-dependent polymerization in the presence of intracellular AZT triphosphate in unstimulated CD4zz T-cells.
The solid blue curves indicate the level of residual polymerization with the wild type enzyme, whereas the dashed lines indicate the residual
polymerization with the ‘D67N/K70R/T215Y/K219Q’ mutant. Panels A & B: Residual RNA- and DNA dependent polymerization of a homo-polymeric
thymidine sequence (Poly-‘T’). Calculations were obtained by solving eq. (19). Panels C & D: RNA- and DNA polymerization of a hetero-polymeric
random sequence of length 500 with 25% respective dNTP content. The illustration was generated using eq. (10). The light grey area indicates the in
vivo concentrations range of AZT in purified circulating CD4z T-cells from [71], converted to units mM by assuming a cell volume of 180mm3 for
resting CD4z T-cells [72]. All utilized parameters are indicated in Tables 1, S1, S2, S3 (supplementary material).
doi:10.1371/journal.pcbi.1002359.g004
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(see Table 1) and subsequently lesser pyrophosphorolysis of AZT-
MP terminated primers in resting cells (see eqs. (20)–(21)) as
discussed previously (section Cell-specific susceptibility to chain-
terminating nucleoside analogs), and is only marginally affected by
lower dNTP levels in resting cells, as decreasing dNTP levels may
not induce hyper-susceptibility as shown in Fig. 3A. The greatest
kinetic change induced by the ‘D67N/K70R/T215Y/K219Q’
affects the catalytic rate of ATP-mediated excision of AZT-MP
from the terminated primer kATP (see Table S3, supplementary
material). This change increases the predicted IC50 of AZT in
unstimulated CD4z cells and macrophages in a much more
pronounced way than in activated CD4z T-cells (fold resistance
w15 in unstimulated CD4z T-cells and macrophages vs. v5 in
activated CD4z T-cells; fourth and seventh columns in Table 3).
In activated T-cells PPi-mediated excision of AZT-MP from the
terminated primer is likely the dominant mechanism, as a
consequence of the much higher PPi concentrations in these
cells (see Table 1). Therefore, increasing kATP will only have a
strong effect once ATP-mediated excision becomes the dominant
mechanism of AZT-removal. Therefore, further increase of kATP

might turn ATP-mediated excision into the main removal
pathway and subsequently impact on resistance in a more
pronounced way in activated CD4z cells as well. Overall, the
IC50 for polymerase inhibition in the ‘D67N/K70R/T215Y/
K219Q’ mutant is probably shifted into concentration ranges
which are rarely achieved in vivo.

Molecular mechanism of AZT-resistance by ATP-
mediated excision. Excision of AZT-MP from the
terminated primer is the major mechanism by which AZT
resistance is thought to be mediated [17]. In particular, ATP-
mediated excision has been discussed as the major in vivo
mechanism of AZT resistance [15,16]. However, at the
molecular level, it is unclear, if the mechanism by which
enhanced excision is achieved is due to an increased removal
rate (parameter kATP in eq. (21)) or increased binding affinity of
ATP to the primer-template (affected parameter: KD,ATP in eq.
(21)). In particular, in a recent paper [39], it was argued, based on
crystal structures of resistant RT, that the main mechanism of
AZT-resistance could be conferred by increasing ATP’s binding
affinity to the resistant RT enzyme. In Fig. 5, we analyze the
impact of the two potential AZT-resistance mechanisms (increased
removal rate kATP vs. decreased KD,ATP). Our predictions show
that increasing the affinity for ATP binding KD,ATP (dashed red
line) does not lead to resistance development under the parameters
used, because ATP binding to the wild type enzyme is already

saturated (KD,ATPv½ATP%) at physiological conditions and further
decrease of KD,ATP enhances the saturation effect. However,
increasing the removal rate kATP (dashed blue line) desensitizes
reverse transcriptase-mediated polymerization to AZT inhibition
since rexc&kATP, in cells with low PPi contents and under
saturation conditions (see Table 1 and eq. (21)).

Selection of resistance
Selection of drug resistance depends on the competitive

advantage of some resistant mutant over its competitors (either
the wild type or some competing viral mutant) in a particular
environment. In order to quantify whether drug resistant mutants
become selected in an environment that is modified by NAs, we
have previously defined the selective advantage S in eq. (4) (and
paragraph below).

Selection of thymidine associated mutations (TAMs) by
AZT in different cell-types. In Fig. 6A and Fig. 6B, the
selective advantage of TAMs over the wild type
STAM=wt(AZT-TP) is shown for RNA-dependent polymerization
(panel A) and DNA-dependent polymerization (panel B)
respectively in distinct cell-types relevant to HIV-1 infection
(solid green-, blue and red lines indicate STAM=wt(AZT-TP) for
activated CD4z T-cells, resting CD4z T-cells and macrophages,
respectively). The respective threshold concentrations AZT#

(TAM) above which resistance becomes selected, STAM=wt

(AZT-TP)w1, are 5:4:10{4mM (resting CD4z cells)
v6:3:10{4mM (macrophages) v7:3:10{3mM (activated CD4z

cells) for RNA-dependent polymerization. For DNA-dependent
polymerization, the corresponding thresholds are 6:2:10{3mM
(macrophages) v0:01mM (resting CD4z cells) v0:36mM
(activated CD4z cells).

Table 3. Cell-specific IC50 values of AZT-TP for ‘poly-
thymidine’ polymerization and susceptibility change by
resistance development.

RNA/DNA DNA/DNA

cell type ‘wt’ ‘res’*
fold
res. ‘wt’ ‘res’*

fold
res.

act. CD4z 2:4:10{3 1:10{2 4.5 6:6:10{2 2:7:10{1 4.1

rest. CD4z 2:7:10{4 4:2:10{3 15.7 6:8:10{3 1:5:10{1 22.6

macr. 2:3:10{4 3:9:10{3 17.2 5:4:10{3 1:2:10{1 22.5

IC50 values, expressed in mM, were calculated using eqs. (20)–(21). Cell-specific
parameters were taken from Table 1. All kinetic parameters were taken from
Table 1 and Tables S1, S2, S3 (supplementary material).
*‘res’ = D67N/K70R/T215Y/K219Q mutant.
doi:10.1371/journal.pcbi.1002359.t003

Figure 5. Molecular mechanisms of HIV-1 resistance develop-
ment against AZT by ATP-mediated excision. Potential mecha-
nisms for resistance development against AZT through increasing its
excision rate rexc via an ATP-mediated mechanism (see eq. (21)). We
calculated residual DNA-dependent polymerization of a Poly-T
sequence in unstimulated CD4z T-cells using eq. (19) with parameters
from Tables 1, S1 and S3 (supplementary material). The solid black line
shows residual DNA polymerization (1{g) in the wild type virus,
whereas the dotted red line and the dashed blue line refer to residual
polymerization if KD,ATP and kATP were decreased- and increased 100-
fold respectively.
doi:10.1371/journal.pcbi.1002359.g005
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Two major findings can be derived from Fig. 6: Firstly, it can be
seen that in the case of RNA-dependent polymerization, the
‘D67N/K70R/T215Y/K219Q’ mutation becomes selected
(STAM=wt(AZT-TP§1; dashed horizontal black line) at lower
intracellular AZT-TP concentrations (below clinically achieved
concentrations in resting CD4z T-cells and macrophages; light
grey area) compared to DNA-dependent polymerization. During
DNA-dependent polymerization, ‘D67N/K70R/T215Y/K219Q’
is only selected at clinically relevant levels of AZT-TP (resting
CD4z T-cells and macrophages) or far above (activated CD4z

T-cells). We have shown previously in Fig. 4C & D that inhibition
of RNA-dependent polymerization by AZT-TP is much more
efficient compared with inhibition of DNA-dependent polymeri-
zation (see also Table 3), explaining the higher selective pressure
exerted at lower AZT-TP concentrations during RNA-dependent
polymerization. Therefore, we would expect that resistance is
favored at lower concentrations during RNA-dependent polymer-
ization, when compared to DNA-dependent polymerization.

Secondly, and quite surprisingly, Fig. 6A & B indicate that
resistance to AZT may not become selected over the wildtype in
activated CD4z cells as it only confers a very small selective
advantage in these cell types during RNA-dependent polymeriza-
tion and at clinically relevant concentrations of AZT-TP (solid
green line and grey area in Fig. 6A). For DNA-dependent
polymerization the selection parameter indicates a disadvantage
(STAM=wt(AZT-TP)v1) of the ‘D67N/K70R/T215Y/K219Q’
mutant at clinically relevant AZT-TP concentrations. In resting
CD4z T-cells and macrophages on the other hand, resistance
selection is favored at clinically relevant AZT-TP concentrations
(DNA-dependent polymerization) and below (RNA-dependent
polymerization). These results indicate, that selection of the
‘D67N/K70R/T215Y/K219Q’ mutation by AZT is cell-specific
and may preferably occur within resting CD4z T-cells and
macrophages, whereas resistance selection in activated CD4z T-

cells is less likely. This finding, however, warrants further
investigation of the intermediate strains in the TAM resistance
pathway, once kinetic data becomes available.

Subsequent selection of Q151M-complex mutations by
TDF. The selective advantages of intermediate viral strains of
the Q151M-complex (multi-drug) resistance pathway (Q151M,
A62V/V75I/F77L/F116Y/Q151M (Q151Mc) and Q151Mc/
K70Q ) with respect to increasing tenofovir diphosphate (TFV-
DP) concentrations are shown in Fig. 7 for DNA-dependent
polymerization in resting CD4z T-cells. Panel A shows the
selective advantage of the respective mutant in relation to the wild
type, i.e. SQ151M=wt(TFV-DP) (dashed blue line), SQ151Mc=wt

(TFV-DP) (solid green line) and SQ151MczK70Q=wt(TFV-DP)
(dotted magenta line). At in vivo concentrations ranges of TFV-DP
(light grey area) the selective pressure towards the Q151M and the
Q151Mc strains is relatively weak (1vSQ151M=wt(TFV-DP)ƒ
SQ151Mc=wt(TFV-DP)v3), whereas it is strong for the Q151Mc/
K70Q mutant (4vSQ151MczK70Q=wt(TFV-DP)v10). It can be
seen that the selective advantage is of the order SQ151M=wt(TFV-
DP)ƒSQ151Mc=wt(TFV-DP)vSQ151MczK70Q=wt(TFV-DP), indi-
cating a distinctly graded ‘selection landscape’ from the wild type
towards the Q151Mc/K70Q mutant. A graded landscape would
imply that the presence of TFV-DP favors subsequent resistance
mutations in the resistance pathway. We therefore further
analyzed the form of the ‘selection landscape’ in panel B, where
we have plotted the selective advantage of the respective mutants
in relation to their progenitors in the resistance pathway, i.e.
SQ151M=wt(TFV-DP), SQ151Mc=Q151M(TFV-DP), SQ151MczK70Q=

Q151Mc(TFV-DP). It can be seen that the Q151M single
mutation has a weak selective advantage over the wild type (S&2
dashed blue line). The Q151M-complex (Q151Mc) has an even
weaker selective advantage over the Q151M single mutation in the
presence TFV-DP (Sv1:5, solid green line). However, the
subsequent mutation, Q151Mc?Q151Mc=K70Q has a strong

Figure 6. Selective advantage of the ‘D67N/K70R/T215Y/K219Q’ mutant against the wild type during RNA- and DNA-dependent
polymerization in the presence of AZT-TP. The solid lines (green = activated CD4z cells, blue = unstimulated CD4z cells, red = macrophages)
indicate the selection parameter STAM=wt(AZT-TP), defined in eq. (4), for different levels of intracellular ATZ-TP during RNA- and DNA dependent
polymerization (Panels A & B) of a random sequence of length 500 with 25% respective dNTP content. The light grey area indicates the in vivo
concentrations range of AZT in purified circulating CD4z T-cells from [71], converted to units mM by assuming a cell volume of 180mm3 for resting
CD4z T-cells [72]. The dashed horizontal line indicates the threshold for resistance selection, i.e. S~1. All utilized parameters are indicated in Table 1
and Tables S1, S2, S3 (supplementary material).
doi:10.1371/journal.pcbi.1002359.g006
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selective advantage in the presence of TFV-DP (Sw2). The
selection landscape therefore exhibits a slight increase
(wt?Q151M), followed by a plateau (Q151M?Q151Mc),
followed by a steep increase (Q151Mc?Q151Mc=K70Q). Our
analysis indicates that TDF treatment slightly favors Q151M over
the wild type, it, however, does not favor the Q151M-complex
SQ151Mc=Q151M(TFV-DP)&1. Once the Q151M-complex has
arisen (due to co-administered drugs), TDF could select for the
K70Q mutation.

Epistasis
Epistasis has been used to describe the phenomenon where the

phenotype of one mutation is modified by one or several other
mutations [22,23]. In a two-locus-two allele model, epistasis is said
to be positive when the combined effects of a double mutant result
in greater replication than expected if the effects on replication
coming from the two single mutations were independent.
Conversely, epistasis is said to be negative, when the combined
effects of a double mutant result in lesser than expected
replication. Resistance mutations against NRTIs of HIV-1 are
located within the same gene (the Pol gene). It is therefore likely,
that the combination of mutations produce a phenotype that has
unexpected/novel properties. The intention of this analysis is to
elucidate how epistasis depends on the environment in which the
virus replicates (and which is altered by NAs), analogously to [23].
In Fig. 8, we assessed epistasis with regard to replication (solid blue
line), fitness (solid red line) and resistance (solid green line), based
on eqs. (5)–(7) for the K65R/M184V mutant and varying TFV-
DP concentrations for DNA-dependent polymerization in resting
CD4z T-cells.

It can be seen that epistasis in the absence of drugs Ef (w) (fitness
epistasis) is positive (solid red line). This result is based on the fact

that the predicted fitness of the double mutant fM184V=K65R~30%
is larger than expected if the fitness effects coming from the
respective single mutants fM184V~46% and fK65R~38% were
independent. Resistance epistasis ERes:(NA) (green line) on the
other hand is negative at clinically relevant TFV-DP concentra-
tions (light grey area). Whereas the M184V mutation is slightly
hypersusceptible (predicted fold resistance relative to the wild type:
0.76 see also [40]), the K65R mutation confers &5:3-fold
resistance in relation to the wild type, mainly by decreasing
TFV-DP’s incorporation rate kterm, see Table S2 (supplementary
information). We predicted that the double mutant ‘M184V/
K65R’ is &2-fold resistant in relation to the wildtype. Resistance
epistasis ERes:(NA) thus reduces replication of the double mutant
in the presence of TFV-DP and is negative. The combined effects
of fitness and drug resistance are indicated by the blue line in
Fig. 8. Our predictions indicate that epistasis is positive at clinically
relevant TFV-DP concentrations (light grey area), because the
(positive) fitness epistasis overweighs the negative resistance
epistasis in the clinically relevant range of TFV-DP concentra-
tions. At higher TFV-DP concentrations, however, the negative
resistance epistasis overweighs.

Residual DNA-dependent polymerization of mutant
reverse transcriptase (RT) of HIV-1 in the presence of
distinct nucleoside reverse transcriptase inhibitors
(NRTIs)

Viral fitness is an important determinant for the pre-treatment
abundance of drug resistant mutants and their persistence in
circulating virus after withdrawal of drugs. Moreover, it has also
important implications for the therapeutic strategy and on disease
progression [20,21]. For these reasons, we assessed viral fitness of
the distinct mutants in the absence of drugs. We estimated viral

Figure 7. Selective advantage S of intermediate viral mutants of the Q151M-complex during DNA-dependent polymerization in the
presence of TFV-DP. Dashed blue-, solid green- and dotted magenta line indicate the selective advantage of the Q151M, the multi-drug resistant
Q151M-complex (Q151Mc: A62V/V75I/F77L/F116Y/Q151M) and the Q151Mc+K70Q mutation during DNA-dependent polymerization of a random
sequence of length 500 with 25% respective dNTP content in unstimulated CD4z cells. The light grey area indicates the in vivo concentrations range
of TFV-DP from [56,71,73], converted to units mM by assuming a cell volume of 180mm3 for resting CD4z T-cells [72]. The dashed horizontal line
indicates the threshold for resistance selection, i.e. S~1. Panel A: Selective advantage of the respective mutants with regard to wild type
Smut=wt(TFV-DP). B: Selective advantage of a succeeding mutants with regard to progenitor in Q151M complex formation Smut1=mut2(TFV-DP). All
utilized parameters are indicated in Table 1 and Tables S1, S2 (supplementary material).
doi:10.1371/journal.pcbi.1002359.g007
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fitness on the basis of the relative decrease in polymerization time,
see eq. (3), for a hetero-polymeric sequence context and based on
DNA-dependent polymerization during reverse transcription. The
results are presented in Table 4 (bottom row). The fitness of the
viral mutants was of the order K65R=M184VvK65Rƒ
M184VvQ151M&wildtype and is in general agreement with
published data on viral fitness [21,41]. Notably, the K65R and
M184V mutants conferred substantial fitness losses, which
explains the low prevalence of K65R even in treatment
experienced patients [21], and M184V reversion to wild type
when 3TC, ABC or FTC are eliminated from second or third-line
anti-retroviral regimens [42].

Estimated residual DNA-dependent polymerization for mutant
and wild type RT under in vivo concentration ranges of tripho-
sphorylated NRTIs in resting CD4z T-cells and on a hetero-
polymeric sequence context (using eqs. (1)–(2)) are presented in
Table 4. Utilized kinetic parameters for nucleoside incorporation
are provided in Table S2 (supplementary material). We predicted
that most inhibitors decreased DNA-dependent polymerization to
values of 2–25% in the wildtype enzyme. However, 3TC displayed
superior efficacy (only 1.5–5% residual polymerization) and AZT
only poorly inhibited DNA-dependent polymerization. However,
as discussed in section Residual polymerization in the presence of AZT,
AZT is likely to exert its main effect through inhibition of RNA-
dependent polymerization. The Q151M mutation decreased the
efficacy of carbovir triphosphate (CBV-TP) markedly (8 fold) and
had only marginal impact on tenofovir diphosphate (TFV-DP),
whereas lamivudine triphosphate (3TC-TP) and emtricitabine
triphosphate (FTC-TP) were unaffected (see also [40,43]).
Combination treatment with 3TC-TP+CBV-TP could, however,
restore inhibition of polymerization and combination treatment
FTC-TP+TFV-DP was very efficient, however not markedly

different from FTC-TP alone. The M184V mutation decreased
susceptibility to 3TC-TP (&20 fold) and CBV-TP (8 fold), having
marginal impact on stavudine triphosphate (d4T-TP) and no effect
on TFV-DP, which is consistent with phenotypic measurements
[40,43]. Susceptibility to the combination of d4T-TP+3TC-TP
was comparable to d4T-TP alone. The efficacy of 3TC-TP+CBV-
TP was strongly reduced. We predicted that the K65R mutation
reduced the impact of 3TC-TP, FTC-TP and TFV-DP (7-, 4 and
3-fold respectively) and also reduced the susceptibility to the
combination FTC-TP+TFV-DP (5-fold), consistent with pheno-
typic measurements [40,43]. The double mutation K65R/M184V
conferred complete resistance to 3TC-TP and near complete
resistance to FTC-TP and partly restored susceptibility to TFV-
DP or TFV-DP+FTC-TP, compared to K65R alone, in
agreement with phenotypic measurements [40,43].

Inhibition of human mitochondrial polymerase{c by
various NRTIs

Despite their antiviral activity, NRTIs have been reported to
cause severe mitochondrial toxicity [9,44], limiting their thera-
peutic use. A dominant hypothesis for the manifestation of
mitochondrial toxicity by NRTIs is that NRTIs inhibit polymer-
ase-c (pol{c) function, which is necessary to duplicate the
mitochondrial genome, thereby leading to mtDNA depletion and
subsequent mitochondrial abnormalities. The anticipated mecha-
nism of pol{c inhibition is highly similar to inhibition of
polymerization during reverse transcription: tri-phosphorylated
NRTIs compete with endogenous dNTPs for incorporation into
the nascent mtDNA, and, once incorporated, lead to quasi-chain

Figure 8. Epistatic interactions for DNA-dependent polymeri-
zation in the presence of TFV-DP. Solid blue-, green- and red line
indicate epistasis with regard to replication ERep:(NA), resistance
ERes:(NA) and fitness Ef (w) as defined in eqs. (5)–(7) for the double
mutant ‘K65R/M184V’. The black dashed horizontal line indicates the
value, where no epistatic interactions occur. The light grey area
indicates the in vivo concentrations range of TFV-DP from [56,71,73],
converted to units mM by assuming a cell volume of 180mm3 for
unstimulated CD4z T-cells [72]. All utilized parameters are indicated in
Table 1 and Tables S1, S2 (supplementary material).
doi:10.1371/journal.pcbi.1002359.g008

Table 4. Estimated in vivo % residual DNA-dependent
polymerization (1{e) for distinct mutants and drug
combinations.

wt Q151M M184V K65R
M184V/
K65R

TFV-DP 4.16–24.11 9.20–42.55 3.32–20.05 19.11–63.34 8.72–41.14

AZT-TP 29.47–80.69 - - - -

d4T-TP 2.08–25.95 - 7.44–56.97 - -

FTC-TP 2.07–21.45 1.24–14.00 - 21.28–77.76 47.37–92.09

3TC-TP 1.54–4.95 0.86–2.81 51.22–77.71 12.29–31.77 86.19–95.40

CBV-TP 7.63–14.18 82.27–90.27 45.49–62.53 - -

FTC-TP 1.39–12.69 1.11–11.75 - 11.02–53.12 7.80–39.22

+TFV-DP

d4T-TP 0.91–4.40 - 7.01–49.20 -

+3TC-TP

CBV-TP 1.33–3.89 0.87–2.84 32.20–53.53 - -

+3TC-TP

CBV-TP 1.27–3.81 - - - -

+3TC-TP

+AZT-TP

fitness 100 100 46 38 30

In vivo concentration ranges were 3TC-TP = 12.2–40.5; FTC-TP = 1.5–19.4; TFV-
DP = 0.16–1.17; CBV-TP = 0.44–0.88; d4T-TP = 0.034–0.56; and AZT-TP = 0.0056–
0.056 mM respectively [56,71,73–75], assuming an average cell volume of
180mm3 for resting CD4z T-cells [72].
doi:10.1371/journal.pcbi.1002359.t004
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termination [9]. Polymerase-c can perform two crucial catalytic
functions, namely DNA polymerization and exonuclease activity;
the later enabling the removal of incorporated NRTIs. The
mechanism of action of NRTIs on pol{c leads us to believe that
our mathematical model of polymerase inhibition by NAs can be
useful in predicting NRTI-induced inhibition of pol{c.

Utilizing pre-steady state kinetic data for the incorporation of
dNTPs and various NRTIs (see Table S4, supplementary material),
we estimated the residual pol{c function in a hetero-polymeric
sequence context and under concentration ranges of NRTI-TPs
typically observed in vivo. The results are stated in Table 5. For
simulation purposes we utilized eqs. (1) and assumed dNTP levels
typically observed in unstimulated CD4z cells (see Table 1). Under
the parameters used, we found that mtDNA polymerization is
substantially inhibited in the presence of d4T-TP and moderately
inhibited by 3TC-TP for in vivo -triphosphate concentration ranges.
Similarly, combinations 3TC-TP+D4T-TP reduced pol{c activity
substantially and 3TC-TP+CBV-TP or 3TC-TP+AZT-TP+CBV-
TP reduced pol{c activity moderately. We found the following
order of inhibition of polymerase-c : d4T{TPw3TC{TPw
TFV{DP§FTC{TP§AZT{TP§CBV{TP, which agrees
with experimental findings [9]. The mitochondrial toxicity of AZT
is likely not due to pol{c inhibition. Instead, it has been explained
in terms of various other mechanisms, which are exemplified in the
Discussion section.

We subsequently defined a therapeutic index as the ratio of the
mean inhibition of pol{c and wild type RT respectively. The
therapeutic index indicated the following order for the inhibitors and
their combinations: d4T{TPvd4T{TPz3TC{TPvTFV{
DPvFTC{TPƒCBV{TPvFTC{TPzTFV{DPv3TC{
TPvCBV{TPz3TC{TP. Note, that AZT has been excluded
from this assessment, because its mitochondrial toxicity has been
contributed to mechanisms other than pol{c inhibition (see
Discussion section).

Discussion

We presented a novel mechanistic mathematical model of HIV-
1 polymerase inhibition by NAs that, for the first time, focussed on
the transient aspect of this inhibition. This is an important
characteristic, as HIV-1 can exploit the transient nature of
inhibition by reducing the residence time of the apparent chain
terminator (the incorporated NA) in the nascent viral DNA to
achieve drug resistance (summarized in [13]). NA removal from
quasi-terminated RNA/DNA chains has also been described for
hepatitis B & C viruses [24–26]. Hence, the developed model may
also be applicable to study polymerase inhibition by NAs in these
viruses. In contrast to previous mathematical approaches [14,19],
we therefore describe the effects of nucleoside analogs on DNA-
polymerization in terms of an increase in the average polymer-
ization time, which is analogous to a reduction of the overall
polymerization rate, i.e. !nnpoly(w)~1=T0?N (w). This mathematical
approach not only allows to study various resistance mechanisms,
but also allows for the first time to estimate the inherent fitness of
drug resistant mutants, resulting from microscopic changes in the
polymerization rate constants (e.g. kpol, KD,dNTP) of the mutant
viral enzyme (see eqs. (1)–(3)). The derived model can readily be
used to assess the probability to successfully finish polymerization.
In supplementary Text S1 we have given an example for HIV-1
reverse transcription. It is also explained therein how the model
can be integrated in larger (systems biology) models of the viral life
cycle in order to study the effects of NAs.

The developed model can be parameterized in terms of
physiological parameters (such as dNTP concentrations) and
microscopic kinetic rates (e.g. kpol, kterm, KD), typically derived
from cell-free in vitro assays. These parameters can usually be
precisely determined with standard errors v20%. We demon-
strated the applicability of the model for various distinct
polymerization processes, in particular for polymerase inhibition
during HIV-1 RT and mitochondrial pol{c by NRTIs,
respectively. Adaptation to distinct polymerization processes was
achieved by utilizing the kinetic constants for the respective
processes, while the model remained unchanged. Notably, model-
predicted macroscopic predictions (viral fitness, drug efficacy and
toxicity) were consistent with various experimental macroscopic
findings and thus underline the usefulness of the proposed model.

Based on the developed model of polymerization and its
inhibition by NAs, we derived two sets of mathematical solutions:
Eqs. (1)–(11) can be used to compute the average effect of NAs and
combinations of NAs on polymerization of arbitrary (hetero-
polymeric) DNA sequences. Analogously, these equations can be
used to determine the deceleration of polymerization resulting
from resistance mutations in the absence of any NA, as an
indicator of their inherent fitness cost. On the other hand, eqs.
(16)–(20) represent analytical solutions for polymerase inhibition
by NAs in a simplified homo-polymeric sequence context. The
resulting equations (19)–(20) immediately highlight key determi-
nants of NA inhibition and resistance development in this context.
These equations can also be used to determine the model’s
sensitivity for different combinations of kinetic- and physiological
parameters, see Fig. 3 and Fig. 5. Based on eqs. (19)–(20), we
found that factors impacting on NA inhibition can generally be
divided into two categories: (i) kinetic- and (ii) cellular factors.

Eq. (20) revealed that the rate of NA incorporation kterm, its
binding affinity KD,NA and the catalytic rate of NA removal rexc

are key molecular kinetic determinants for the efficacy of NAs. All
indicated molecular kinetic determinants (kterm, KD,NA and rexc)
depend on the viral polymerase enzyme and are thus prone to
resistance development. The impact of alterations in these

Table 5. Estimated in vivo % residual human mitochondrial
polymerase-c activity in resting CD4z cells.

(1{{etox) ther. Index*

TFV-DP 63.54–92.72% 5.5

AZT-TP 98.74–99.87% {

d4T-TP 0.15–2.40% 0.1

FTC-TP 94.05–99.51% 8.2

3TC-TP 25.69–53.43% 12.2

CBV-TP 98.78–99.38% 9.1

FTC-TP/TFV-DP 61.96–92.55% 11

3TC-TP/d4T-TP 0.16–2.48% 0.5

CBV-TP/3TC-TP 25.18–52.70 14.9

CBV-TP/3TC-TP/AZT-TP 26.22–54.13% {

In vivo concentration ranges were 3TC-TP = 12.2–40.5; FTC-TP = 1.5–19.4; TFV-
DP = 0.16–1.17; CBV-TP = 0.44–0.88; d4T-TP = 0.034–0.56; and AZT-TP = 0.0056–
0.056 mM, respectively [56,71,73–75], assuming an average cell volume of
180mm3 for resting CD4z T-cells [72].
*calculated as the ratio of average effect on polymerase-c and wildtype reverse
transcriptase of HIV-1: (1{etox)=(1{eRT{wt).
{mitochondrial toxicity of AZT has been attributed to mechanisms other than
pol{c inhibition (see Discussion section).

doi:10.1371/journal.pcbi.1002359.t005
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parameters is illustrated in Fig. 3B for ddATP and in Fig. 4 & 5 for
AZT-TP.

Various reports indicate cell-specific differences in NA efficacy
against HIV-1 [45–47]. Differences in efficacy were often
brought in association with intracellular NA-TP:dNTP ratios
[48,49]. Utilizing the derived model, we elucidated the impact of
cellular factors on HIV-1 RT polymerase inhibition by NRTIs.
Quite surprisingly, we found that cells that contain low dNTP
content do not necessarily confer hypersusceptibility to NRTIs if
½dNTP%%KD,dNTP (see Fig 3A). For AZT, we predicted that
alteration of PPi and ATP levels can have a strong impact on its
efficacy (see Table 3). In summary, we demonstrated that the
concurrence of multiple kinetic- and physiological factors, rather
than a single parameter, can determine the susceptibility of an
infected cell towards NAs, see eq. (20)–(21). In addition to cells
that contain an unfavorable NA-TP:dNTP ratio [48,49], cells
that contain high levels of PPi or ATP and low levels of NA
(regardless of their dNTP content) could be resistant to NRTI
treatment and residual viral replication despite treatment could
persist in these cells as well. This finding can have important
consequences for HIV-1 treatment with NRTIs, as HIV-1
exhibits a broad cell tropism [28–32]: While some evidence for
low-level ongoing replication in the context of apparently
suppressive antiviral therapy has been reported [50], the cellular
source remains to be determined [51]. Whereas it has been
shown previously [33], that heterogeneous viral inhibition
facilitates drug resistance development, we show evidence for
cell-specific (thus heterogeneous) inhibition by NRTIs. Thus, a
possible mechanism for the emergence of drug resistance against
could be explained on the basis of the mechanism of action of
these compounds. However, further evidence is required to
confirm this hypothesis.

We analyzed the specific mechanisms of AZT resistance
through TAMs. It is well known, that TAMs induce resistance
through increasing the excision of incorporated NAs from nascent
viral DNA. However, the precise mechanism that increases
excision is controversial. A recent crystal structure of resistant
RT [39], showed that the orientation of ATP is altered in the
mutant enzyme. Based on this structure [39], the authors argued
that ATP, which serves as an excision substrate for incorporated
AZT, would bind with higher affinity to the quasi-terminated
nascent viral DNA, accelerating the removal of incorporated AZT.
To the contrary, our kinetic model indicated that increasing the
affinity for ATP binding KD,ATP does not lead to resistance
development (see Fig. 5), because ATP binding to the wild type
enzyme is already saturated (KD,ATPv½ATP%) at physiological
conditions, and further decrease of KD,ATP enhances the
saturation effect. Increasing the removal rate kATP desensitizes
reverse transcriptase-mediated polymerization to AZT inhibition
since rexc&kATP, in cells with low PPi contents and under
saturation conditions (see Table 1 and eq. (21)). We therefore
propose that the main kinetic resistance effect of the altered
orientation of ATP in mutant RT is mediated by an increased
removal rate kATP, in agreement with a pre-steady state kinetic
analysis [17], although binding could be affected. In particular, the
crystal structure showed that the resistance mutations affect the
positioning of ATP in the RT catalytic site [39], which must
translate into an effect on kATP.

We quantified the inhibitory effects of AZT during RNA- and
DNA dependent polymerization and we analyzed how TAMs
(‘D67N/K70R/T215Y/K219Q’) induce susceptibility changes.
We found that AZT inhibition during HIV-1 reverse transcription
is more efficient during RNA-dependent polymerization than
during DNA-dependent polymerization, see Fig. 4. Moreover,

inhibition, as well as susceptibility changes induced by TAMs were
found to be cell-specific (see Table 3).

While the emergence of a particular viral strains depends on a)
the probability that the mutant is generated (related to residual
replication and genetic distance), it also critically depends on the
likelihood that the generated mutant becomes selected subse-
quently. However, if inhibition- and selection forces are different
in distinct target cells (see Table 3 and Fig. 6), then the processes of
mutant strain generation and subsequent selection might also we
divided among target cells. We therefore further looked at the
selective advantage STAM=wt of the ‘D67N/K70R/T215Y/
K219Q’ mutant in distinct cell types. Specifically, we predicted
that the selective advantage of the ‘D67N/K70R/T215Y/
K219Q’ mutation in the presence of AZT at clinically relevant
concentrations is quite distinct in activated CD4z cells, resting
CD4z cells and macrophages (see Fig. 6). We found that the
‘D67N/K70R/T215Y/K219Q’ mutation is less likely selected
over the wild type in activated CD4z cells, whereas this mutation
is preferred in resting CD4z cells and macrophages (see Fig. 6) at
clinically relevant concentrations. While these results indicate, for
the first time, that selection forces against NA treatment can be
quite distinct for diverse target cells, a detailed analysis of the
various intermediate mutants in the TAM resistance pathway is
required, in particular a construction of the ‘selection landscape’
for particular mutants in the resistance pathway and for different
cell types infected with HIV-1 in the presence of combinations of
drugs to fully understand resistance dynamics in vivo. The
developed model can be used to facilitate such an analysis: In
Fig. 7, we started to reconstruction the ‘selection landscape’ for
intermediate mutants of the Q151M-complex during TDF
treatment in unstimulated CD4z cells. We found for this cell
type, that TDF alone is unlikely to select the Q151M-complex
over the Q151M single mutation. Once the Q151M-complex has
arisen, however, TDF would select for the additional K70Q
mutation. An extended analysis of the resistance pathways in the
case where particularly large genetic barriers are involved may in
the future help to understand and influence the dynamics of
resistance emergence for e.g. TAMs and the Q151M complex.

Epistasis has been suggested as a method to study evolutionary
dynamics of virus populations [52]. It describes the phenomenon
where the replicative fitness of one mutation is modified by one or
several other mutations [22,23]. Epistasis is said to be positive
when the combined effects of two-or-more mutations result in
greater replication than expected if the effects coming from the
two single mutations were independent. Since resistance mutations
against NRTIs of HIV-1 are located within the same enzyme
(RT), several mutations could modify the enzyme in unexpected
ways, i.e. result in epistatic interactions with regard to fitness and
resistance. We have shown in Fig. 8 that our model can be used to
analyze different aspects of epistasis (fitness, resistance and
replication). In the presented example, we detected positive fitness
epistasis Ef of the ‘M184V/K65R’ double mutant and negative
resistance epistasis ERes(NA) with increasing TFV-DP concentra-
tions in comparison with the single mutations. The combined
effects of fitness- and resistance were positive at relevant
concentration ranges of TFV-DP. The major conclusion from
this analysis is that the combination of mutations can alter the RT
enzyme in unexpected ways. The phenotypic attributes of a
multiple mutated strain may not be intuitively related to the
attributes of the single mutants. It is thus required to view each
multiple mutated strain as an independent entity with regard to
resistance and fitness. For deriving information about intermediate
viral mutants in a resistance pathway (e.g. the Q151M-complex, or
TAMs), it is therefore necessary to measure the attributes of each
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intermediate strain independently. Related experimental work
[23] indicated that replication ranking, rather than epistasis
predicts dynamics of resistance emergence, in line with our
analysis in section ‘‘Selection of Resistance’’.

Based on the developed model, we predicted that the ‘D67N/
K70R/T215Y/K219Q’ mutation induces a 4.1 to 22.6 fold
increase in the IC50 value for poly-thymidine polymerization,
depending on the cell type and the template (RNA or DNA). In
cellular assays, the ‘D67N/K70R/T215Y/K219Q’ mutant can
induce a 120–150 fold increase in the fifty percent inhibitory
(extracellular) concentration when measured in CD4z HeLa-cells
[46] and a 8000 fold increase in MT-4 human T-lymphoid cells
[47], respectively, while at the same time resistance at the
enzymatic level was observed to be far more moderate [47]. This
indicates that a direct quantitative comparison of susceptibility
changes observed in different cell-based assays and changes
computed at the enzymatic level, e.g. on the basis of DNA-
dependent polymerization in resting CD4z cells (see Table 3)
might not be possible. Here, we summarize a few mechanisms,
which could contribute to this difference: (i) Firstly, the cell types
utilized in distinct cell-based assays differ, which can results in
distinct susceptibility changes to NRTIs. We discussed- and
illustrated the impact of these cell-specific differences in Cell type
specific susceptibility to AZT and impact of resistance and in Table 3 for
AZT. For AZT, these cell-specific differences were attributed to
different contents of PPi and dTTP. (ii) Secondly, two different
outputs are measured by the two methods: In contrast to RT
activity, phenotypic assays measure the production of viral
proteins, which denotes a step in the viral life cycle following
polymerization and reverse transcription of the viral genome. (iii)
Thirdly, and most importantly, the IC50 values based on
enzymatic activity (as computed in this work) refer to intracellular
concentrations of AZT-triphosphate, while the fold change
derived by cell-based assays refers to the concentrations of
extracellular pro-drug (AZT) added to the medium surrounding
the cells. This has important consequences: AZT phosphorylation
is known to be non-linear and might be saturated at the
bottlenecking step of thymidilate kinase (monophosphate?
diphosphate) [53,54]. We have shown previously that the in vivo
maximally achievable AZT-TP concentration is close to the
clinically achieved AZT-TP concentration in peripheral blood
mononuclear cells (PBMCs), when 300 mg AZT is given twice
daily, see [53]. In order to disproportionately increase the
IC50(AZT) value several hundred-fold, as observed with some
mutants e.g. ‘M41L/D67N/K70R/T210W/Y215F’, at the enzy-
matic level all that is required is a minor fold change in the IC50

(for AZT-TP), that shifts the fifty percent inhibitory concentration
of intracellular AZT-TP beyond the maximally achievable levels.
Thus, by adding more extracellular AZT, sufficient concentrations
of AZT-TP may never be reached. In the case of saturating
intracellular AZT monophosphate (AZT-MP) concentrations, the
cell-specific levels of thymidilate kinase enzyme will ultimately
determine the maximally achievable AZT-TP concentration,
which are therefore also cell-specific [55].

In Table 4 we analyzed, based on the developed model, how
different mutations can specifically alter the efficacy of distinct
NRTIs and their combinations on DNA-directed polymerization
and at physiological concentrations. Estimated susceptibility
changes resulting from distinct mutations were qualitatively in good
agreement with results from cell culture assays (see [40]), although,
as mentioned earlier, it should be noted that a direct quantitative
comparison of our estimations with results from cell-culture assays
may not be possible. While estimating the effect of combinations of
NAs on DNA polymerization is straightforward using eq. (1)–(11),

we did not assess clinically relevant pharmacokinetic interactions
between different NAs. Pharmacokinetic interactions between
NRTIs of HIV-1 have mainly been attributed to interactions
during the cellular activation cascade [56]. For our estimations in
Table 4 we therefore assessed only drug combinations that use
distinct enzymes in their phosphorylation cascade and which
therefore bear lesser potential for pharmacokinetic interaction than
drugs which utilize the same intracellular phosphorylation pathway.

Inhibition of mitochondrial polymerase-c by NRTIs has been
proposed as a central process for their clinical toxicity [9]. We
therefore studied inhibition of polymerase-c by distinct NRTIs at
physiologically relevant triphosphate concentrations. The ranking
of polymerase-c inhibition by the analyzed NRTIs was in good
agreement with published results [9], indicating a strong inhibition
of pol{c by d4T and moderate inhibition by 3TC at
physiological intracellular triphosphate concentrations. However,
it should also be noted, that mitochondria in different tissues might
contain different levels of dNTP and NRTI-TPs and might
therefore be differentially prone to pol{c inhibition, potentially
contributing to site-specific toxicities of some NRTIs [9].
Mitochondrial toxicity of AZT has been explained by other
mechanisms than pol{c inhibition. In particular, AZT might
deplete dNTP pools in the mitochondria, rather than quasi-
terminate nascent mtDNA by its incorporation [57,58].

Although we demonstrated the use of the developed model on
nucleoside reverse transcriptase inhibitors of HIV-1 throughout
the article, we did not construct a mathematical model of the
complete reverse transcription process, but rather focussed on the
sub-process of polymerization, which is primarily targeted by
NRTIs and other NAs. The aim was to point out general
principles of inhibition and resistance development, rather than
establishing customized models for the respective targeted viral
processes. Therefore, the presented model can be used to also
assess effects on distinct polymerase enzymes, or as demonstrated
in Table 5 to assess off-target effects of NAs. Furthermore, the
model can readily be used to assess inhibition of polymerization by
NcRTIs, a novel class of pre-marketed nucleoside inhibitors which
compete with natural dNTPs for binding to the polymerase
enzyme, without becoming incorporated [59–61].

In the future, the developed model could be extended for the
‘‘dead-end complex’’-mechanism observed during inhibition of
HIV-1 RT [13], if respective kinetic parameters become available.
Extension of the model is straightforward, as it only requires the
introduction of an additional state in the mathematical model
(
*
i /? { in Fig. 1) and the subsequent derivation of the corresponding

equations, analogously to the derivations in this article.
Recent in vitro experiments with single-molecules of HIV-1 RT

indicated that additional complexities might occur during the
reverse transcription process, such as enzyme-template dissocia-
tion and association and reversal of orientation to perform distinct
tasks, such as RNAse H cleavage of the viral RNA template
[62,63]. While these results warrant further investigation, it has
been shown that in vivo an excess of RT (50–200 enzymes/virion)
in comparison to RNA template may be present [64], such that
different enzymes could perform different tasks (polymerization/
RNAse H) at the same time in vivo. The cooperativity of multiple
RT enzymes can also explain the distinct shape of the dose-
response curve observed in primary human cells with inhibitors
that directly target the enzyme, such as non-nucleoside reverse
transcriptase inhibitors (NNRTIs), in contrast to inhibitors that
target the RNA/DNA template (NRTIs) [65,66]. The develop-
ment of models of reverse transcription that also incorporate the
effects of non-nucleoside reverse transcriptase inhibitors (NNRTIs)
[67,68] warrants further mechanistic understanding of the
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complex overall process of reverse transcription and will be left for
future research. The developed model can however be readily be
used to model the effects of NAs and will be further extended to
model e.g. the complete reverse transcription process of HIV-1
genomic RNA, or analogous processes in other viruses (see also
supplementary Text S1).

Methods

Derivation of a recursive solution for the polymerization
times on arbitrary hetero-polymeric sequences

In this section we will derive the analytical solution for the
polymerization time given in eq. (10), which is based on ideas
given in [69]. Recall that the proposed model is a Markov jump
process and that the polymerization time T0?N is given by the
mean first passage time (MFPT) to go from state ‘0’ (initiation of
polymerization) to the state 0N 0 (final polymerization product).

Starting point for the derivation are the MFPT-equations
(i~0, . . . ,N{1) [70],

{1~{(rpol(iz1)zrpyro(i)zrterm(iz1))Ti?N

zrpol(iz1):Tiz1?Nzrpyro(i):Ti{1?Nzrterm(iz1):Tfiz1iz1?N
,
ð22Þ

{1~{rexc(iz1):Tfiz1iz1?N
zrexc(iz1):Ti?N : ð23Þ

Eq. (23) yields

Tfiz1iz1?N
~

1

rexc(iz1)
zTi?N

such that eq. (22) simplifies to

{1~{Ti?N (rpol(iz1)zrpyro(i)zrterm(iz1))zrpol(iz1):Tiz1?N

zrpyro(i):Ti{1?Nz
rterm(iz1)

rexc(iz1)
zrterm(iz1):Ti?N :

Further algebraic rearrangements yield

{1~{Ti?N (rpol(iz1)zrpyro(i))zrpol(iz1):Tiz1?N

zrpyro(i):Ti{1?Nz
rterm(iz1)

rexc(iz1)
,

and finally

Ti?N~
1

rpol(iz1)zrpyro(i)

1z
rterm(iz1)

rexc(iz1)
zrpol(iz1):Tiz1?Nzrpyro(i):Ti{1?N

$ %
:

ð24Þ

We define the general relation

Ti?iz1~Ti?N{Tiz1?N , ð25Þ

which allows us to express T0?N as a telescope sum (TN?N~0), i.e.,

T0?N~
XN{1

i~0

Ti?iz1: ð26Þ

From the general relation (25), we can derive Tiz1?N~
Ti?N{Ti?iz1 and Ti{1?N~Ti?NzTi{1?i, which were substi-
tuted into equation (24). Rearrangement produces the recursion

Ti?iz1~
1

rpol(iz1)
1z

rterm(iz1)

rexc(iz1)
zrpyro(i):Ti{1?i

! "
, ð27Þ

which equals

Ti?iz1~(tfiz1iz1
:r

i?fiz1iz1
ztizri?i{1Ti{1?i)

1

ri?iz1

, ð28Þ

with parameter definitions given in eq. (9) of the main text.
Equation (27) is satisfied by

Ti?iz1~
Xiz1

k~1

rterm(k)zrexc(k)

rpol(k):rexc(k)
P
i

j~k

rpyro(j)

rpol(jz1)

! "
ð29Þ

such that the initial condition holds, i.e.,

T0?1~
1

rpol(1)

rterm(1)zrexc(1)

rexc(1)

! "
:

Finally, inserting (29) into (26) results in the analytical expression
for T0?N ,

T0?N~
XN{1

i~0

Xiz1

k~1

rterm(k)zrexc(k)

rpol(k):rexc(k)
P
i

j~k

rpyro(j)

rpol(jz1)

! "" #

: ð30Þ

Derivation of an analytic solution for polymerization
times of homo-polymeric sequences

In case where the sequence to be polymerized is homo-
polymeric, e.g. ‘Poly-A’, all rates are uniform, i.e., rpol(i):
rpol,rpyro(i):rpyro,rterm(i):rterm and rexc(i):rexc for any i. Then
by exploiting twice the identity

Xi

k~0

rpol

rpyro

! "k

~
riz1

pyro{riz1
pol

(rpyro{rpol):ri
pyro

ð31Þ

the polymerization time from eq. (30) simplifies to

T0?N~
rtermzrexc

rpol
:rexc

! "XN{1

i~0

rpyro

rpol

! "iXi

k~0

rpol

rpyro

! "k

~
rtermzrexc

rpol
:rexc

! "
1

rpol{rpyro

! "XN{1

i~0

rpol{
rpyro

rpol

! "i

rpyro

 !

~
rtermzrexc

rexc
:(rpol{rpyro)2

 !

rpyro
rpyro

rpol

! "N

{N{1

 !

zrpol
:N

 !

T0?N~
rtermzrexc

rexc

! "
(rpolzrpyro)N{1zrN{1

pol
:(N{1)

rN
pol

,

ð32Þ

which is displayed in eq. (16) of the main article.
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Determination of the fifty percent inhibitory
concentration (IC50)

Starting point for calculating the fifty percent inhibitory
concentration (for polymerization of uniform sequences) is
equation (19). We set

0:5~
rexc

rtermzrexc

: rpol

rpol(w)
u

2

rpol(w)
~

rtermzrexc

rexc
:rpol

, ð33Þ

substitute eqs. (12)–(14) and solve for the NA concentration (that
yields 50% inhibition, the IC50 value). After rearranging, we get
the quadratic formula

a:IC50
2zb:IC50zc:~0 ð34Þ

with

a~
KD,dNTP

KD,NA
(rexczkterm), b~kterm(KD,dNTPzdNTP)

c~{rexc
KD,NA

KD,dNTP
(KD,dNTPzdNTP)2,

which yields

IC50~
rexc

ktermzrexc

KD,NA(KD,dNTPz½dNTP%)
KD,dNTP

ð35Þ
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Table S1 Pre-steady state kinetic constants for nucleo-
side incorporation by wild type HIV-1 reverse transcrip-
tase. Indicated parameters are average values from the respective
literature sources.
(PDF)

Table S2 Fold change of kinetic parameters for DNA-
dependent polymerization in various HIV-1 reverse
transcriptase mutants, relative to wildtype RT. rexc(wt)
was set to the value of 0.0016 [1/s] in resting CD4z T-cells for
thymidine- and adenosine analogs respectively, see Table S3

(supplementary material) and eq. (18) (main article) and to the
value of 0.00053 [1/s] for guanine- and cytosine analogs, see [76].
b excision of TFV-TP from terminated templates was assumed to
be 100%, 50%, 100% and 40% of the wild type excision rate for
the M184V, the K65R, the Q151M and the K65R/M184V
mutant, see [77]. } CBV-TP excision in the Q151M mutant was
set to 5300% of wild type excision, see [76]. D4T-TP excision in
the M184V mutant was set to 83% of the wild type excision,
assuming a similar effect of M184V on D4T-TP and AZT-TP
[77]. If no other information was available, excisions of nucleoside
analogs in the mutant enzymes were assumed to be equal to the
wild type excision rate. # Q151Mc denotes the ‘A62V/V75I/
F77L/F116Y/Q151M’ mutant. ## 4-TAM denotes the ‘D67N/
K70R/T215Y/K219Q’ mutant. { set to the value of 1, because of
insufficient information. { set equal to the rate in Q151Mc.
(PDF)

Table S3 Pre-steady state kinetic constants for AZT
excision by HIV-1 reverse transcriptase wildtype and
‘D67N/K70R/T215Y/K219Q’ mutant. # Parameter could
not be accurately determined in the respective study [17].
(PDF)

Table S4 Pre-steady state kinetic constants for nucleo-
side incorporation by human mitochondrial polymer-
ase-c. #rpyro was set to value zero because of insufficient
information.
(PDF)

Text S1 The supplementary text contains the modelling
required to compute the probability to successfully
complete reverse transcription (RT) in HIV-1, based
on the parameters presented in the main manuscript.
(PDF)
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quasispecies dynamics during pro-active treatment switching: Impact on multi-
drug resistance and resistance archiving in latent reservoirs. PloS One 6: e18204.

28. Klatzmann D, Barr-Sinoussi F, Nugeyre MT, Danquet C, Vilmer E, et al. (1984)
Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer
T lymphocytes. Science 225: 59–63.

29. Koenig S, Gendelman HE, Orenstein JM, Canto MCD, Pezeshkpour GH, et al.
(1986) Detection of AIDS virus in macrophages in brain tissue from AIDS
patients with encephalopathy. Science 233: 1089–1093.

30. Patterson S, Rae A, Hockey N, Gilmour J, Gotch F (2001) Plasmacytoid
dendritic cells are highly susceptible to human immunodeficiency virus type 1
infection and release infectious virus. J Virol 75: 6710–6713.

31. Valentin A, Rosati M, Patenaude DJ, Hatzakis A, Kostrikis LG, et al. (2002)
Persistent HIV-1 infection of natural killer cells in patients receiving highly active
antiretroviral therapy. Proc Natl Acad Sci U S A 99: 7015–7020.

32. Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, et al.
(1996) Localization of HIV-1 in human brain using polymerase chain reaction/
in situ hybridization and immunocytochemistry. Ann Neurol 39: 705–711.

33. Kepler TB, Perelson AS (1998) Drug concentration heterogeneity facilitates the
evolution of drug resistance. Proc Natl Acad Sci U S A 95: 11514–11519.

34. Smith AJ, Scott WA (2006) The influence of natural substrates and inhibitors on
the nucleotide-dependent excision activity of HIV-1 reverse transcriptase in the
infected cell. Curr Pharm Des 12: 1827–1841.

35. Smith AJ, Meyer PR, Asthana D, Ashman MR, Scott WA (2005) Intracellular
substrates for the primer-unblocking reaction by human immunodeficiency virus
type 1 reverse transcriptase: detection and quantitation in extracts from
quiescent- and activated-lymphocyte subpopulations. Antimicrob Agents Che-
mother 49: 1761–1769.

36. Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol
Cell Biochem 140: 1–22.

37. Goday A, Simmonds HA, Webster DR, Levinsky RJ, Watson AR, et al. (1983)
Importance of platelet-free preparations for evaluating lymphocyte nucleotide
levels in inherited or acquired immunodeficiency syndromes. Clin Sci (Lond) 65:
635–643.

38. Goday A, Webster DR, Simmonds HA, Levinsky RJ, Perrett D, et al. (1984)
Nu1-cleotide levels in peripheral blood mononuclear cells of immunodeficient
children: problems of measurement. Adv Exp Med Biol 165 Pt B: 179–182.

39. Tu X, Das K, Han Q, Bauman JD, Clark AD, et al. (2010) Structural basis of
HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 17: 1202–1209.

40. Stanford University (2011) HIV drug resistance database. URL http://hivdb.
stanford.edu/pages/phenoSummary/Pheno.NRTI.Simple.html.

41. Frankel FA, Invernizzi CF, Oliveira M, Wainberg MA (2007) Diminished
efficiency of HIV-1 reverse transcriptase containing the K65R and M184V drug
resistance muta-tions. AIDS 21: 665–675.

42. Svedhem V, Lindkvist A, Lidman K, Snnerborg A (2002) Persistence of earlier
HIV-1 drug resistance mutations at new treatment failure. J Med Virol 68:
473–478.

43. Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wrin T, et al. (2000) A novel
pheno- typic drug susceptibility assay for human immunodeficiency virus type 1.
Antimicrob Agents Chemother 44: 920–928.

44. Kakuda TN (2000) Pharmacology of nucleoside and nucleotide reverse
transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 22: 685–708.

45. Aquaro S, Perno CF, Balestra E, Balzarini J, Cenci A, et al. (1997) Inhibition of
replication of HIV in primary monocyte/macrophages by different antiviral
drugs and comparative efficacy in lymphocytes. J Leukoc Biol 62: 138–143.

46. Kellam P, Boucher CA, Larder BA (1992) Fifth mutation in human
immunodefi-ciency virus type 1 reverse transcriptase contributes to the

development of high-level resistance to zidovudine. Proc Natl Acad Sci U S A
89: 1934–1938.

47. Byrnes VW, Emini EA, Schleif WA, Condra JH, Schneider CL, et al. (1994)
Suscepti- bilities of human immunodeficiency virus type 1 enzyme and viral
variants expressing multiple resistance-engendering amino acid substitutions to
reserve transcriptase in- hibitors. Antimicrob Agents Chemother 38: 1404–1407.

48. Garca-Lerma JG, Aung W, er Cong M, Zheng Q, Youngpairoj AS, et al. (2011)
Natural substrate concentrations can modulate the prophylactic efficacy of
nucleotide hiv reverse transcriptase inhibitors. J Virol 85: 6610–6617.

49. Perez-Bercoff D, Wurtzer S, Compain S, Benech H, Clavel F (2007) Human
immun- odeficiency virus type 1: resistance to nucleoside analogues and
replicative capacity in primary human macrophages. J Virol 81: 4540–4550.

50. Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, et al. (2010) HIV-1
replication and immune dynamics are affected by raltegravir intensification of
HAART-suppressed subjects. Nat Med 16: 460–465.

51. Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, et al. (2009)
Anal- ysis of human immunodeficiency virus type 1 viremia and provirus in
resting CD4+ T cells reveals a novel source of residual viremia in patients on
antiretroviral therapy. J Virol 83: 8470–8481.

52. Elena SF, Sol RV, Sardanys J (2010) Simple genomes, complex interactions:
epistasis in rna virus. Chaos 20: 026106.

53. von Kleist M, Huisinga W (2009) Pharmacokinetic-pharmacodynamic relation-
ship of NRTIs and its connection to viral escape: an example based on
zidovudine. Eur J Pharm Sci 36: 532–543.

54. Lavie A, Schlichting I, Vetter IR, Konrad M, Reinstein J, et al. (1997) The
bottleneck in AZT activation. Nat Med 3: 922–924.

55. Lavie A, Su Y, Ghassemi M, Novak RM, Caffrey M, et al. (2008) Restoration of
the antiviral activity of 39-azido-39-deoxythymidine (AZT) against AZT-resistant
human immunodeficiency virus by delivery of engineered thymidylate kinase to
T cells. J Gen Virol 89: 1672–1679.

56. Ray AS (2005) Intracellular interactions between nucleos(t)ide inhibitors of HIV
re-verse transcriptase. AIDS Rev 7: 113–125.

57. McKee EE, Bentley AT, Hatch M, Gingerich J, Susan-Resiga D (2004)
Phosphoryla- tion of thymidine and AZT in heart mitochondria: elucidation of a
novel mechanism of AZT cardiotoxicity. Cardiovasc Toxicol 4: 155–167.

58. Bradshaw PC, Li J, Samuels DC (2005) A computational model of
mitochondrial AZT metabolism. Biochem J 392: 363–373.

59. Freisz S, Bec G, Radi M, Wolff P, Crespan E, et al. (2010) Crystal structure of
HIV-1 reverse transcriptase bound to a non-nucleoside inhibitor with a novel
mechanism of action. Angew Chem Int Ed Engl 49: 1805–1808.

60. Radi M, Maga G, Alongi M, Angeli L, Samuele A, et al. (2009) Discovery of
chiral cyclopropyl dihydro-alkylthio-benzyl-oxopyrimidine (S-DABO) deriva-
tives as potent HIV-1 reverse transcriptase inhibitors with high activity against
clinically relevant mutants. J Med Chem 52: 840–851.

61. Jochmans D, Deval J, Kesteleyn B, Marck HV, Bettens E, et al. (2006)
Indolopyri- dones inhibit human immunodeficiency virus reverse transcriptase
with a novel mech- anism of action. J Virol 80: 12283–12292.

62. Liu S, Harada BT, Miller JT, Grice SFJL, Zhuang X (2010) Initiation complex
dy- namics direct the transitions between distinct phases of early hiv reverse
transcription. Nat Struct Mol Biol 17: 1453–1460.

63. Liu S, Abbondanzieri EA, Rausch JW, Grice SFJL, Zhuang X (2008) Slide into
action: dynamic shuttling of hiv reverse transcriptase on nucleic acid substrates.
Science 322: 1092–1097.

64. Thomas DC, Voronin YA, Nikolenko GN, Chen J, Hu WS, et al. (2007)
Determination of the ex vivo rates of human immunodeficiency virus type 1
reverse transcription by using novel strand-specific amplification analysis. J Virol
81: 4798–4807.

65. Shen L, Peterson S, Sedaghat AR, McMahon MA, Callender M, et al. (2008)
Dose- response curve slope sets class-specific limits on inhibitory potential of
anti-HIV drugs. Nat Med 14: 762–766.

66. Shen L, Rabi SA, Sedaghat AR, Shan L, Lai J, et al. (2011) A critical subset
model provides a conceptual basis for the high antiviral activity of major hiv
drugs. Sci Transl Med 3: 91ra63.

67. Xia Q, Radzio J, Anderson KS, Sluis-Cremer N (2007) Probing nonnucleoside
inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by
transient kinetic analyses. Protein Sci 16: 1728–1737.

68. Sluis-Cremer N, Tachedjian G (2008) Mechanisms of inhibition of HIV
replication by non-nucleoside reverse transcriptase inhibitors. Virus Res 134:
147–156.

69. Karlin S, Taylor HM (1975) A first course in stochastic processes. London:
Academic Press.

70. Norris JR (1998) Markov chains. Cambridge, UK: Cambridge University Press.
71. Anderson PL, Zheng JH, King T, Bushman LR, Predhomme J, et al. (2007)

Concen- trations of zidovudine- and lamivudine-triphosphate according to cell
type in HIV-seronegative adults. AIDS 21: 1849–1854.

72. Chapman EH, Kurec AS, Davey FR (1981) Cell volumes of normal and
malignant mononuclear cells. J Clin Pathol 34: 1083–1090.

73. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, et al. (2008)
Clinical and genetic determinants of intracellular tenofovir diphosphate
concentrations in HIV- infected patients. J Acquir Immune Defic Syndr 47:
298–303.

74. Anderson PL, Kiser JJ, Gardner EM, Rower JE, Meditz A, et al. (2011) Pharma-
cological considerations for tenofovir and emtricitabine to prevent HIV
infection. J Antimicrob Chemother 66: 240–250.

HIV-1 Polymerase Inhibition by Nucleoside Analogs

PLoS Computational Biology | www.ploscompbiol.org 18 January 2012 | Volume 8 | Issue 1 | e1002359222



75. Becher F, Landman R, Mboup S, Kane CNT, Canestri A, et al. (2004)
Monitoring of didanosine and stavudine intracellular trisphosphorylated
anabolite concentrations in HIV-infected patients. AIDS 18: 181–187.

76. Ray AS, Basavapathruni A, Anderson KS (2002) Mechanistic studies to
understand the progressive development of resistance in human immunodefi-

ciency virus type 1 reverse transcriptase to abacavir. J Biol Chem 277:
40479–40490.

77. Ly JK, Margot NA, MacArthur HL, Hung M, Miller MD, et al. (2007) The
balance between NRTI discrimination and excision drives the susceptibility of
HIV-1 RT mu- tants K65R, M184V and K65R+M184V. Antivir Chem
Chemother 18: 307–316.

HIV-1 Polymerase Inhibition by Nucleoside Analogs

PLoS Computational Biology | www.ploscompbiol.org 19 January 2012 | Volume 8 | Issue 1 | e1002359223



HIV Quasispecies Dynamics during Pro-Active Treatment
Switching: Impact on Multi-Drug Resistance and
Resistance Archiving in Latent Reservoirs
Max von Kleist1*, Stephan Menz1, Hartmut Stocker2, Keikawus Arasteh2, Christof Schütte1, Wilhelm
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Abstract

The human immunodeficiency virus (HIV) can be suppressed by highly active anti-retroviral therapy (HAART) in the majority
of infected patients. Nevertheless, treatment interruptions inevitably result in viral rebounds from persistent, latently
infected cells, necessitating lifelong treatment. Virological failure due to resistance development is a frequent event and the
major threat to treatment success. Currently, it is recommended to change treatment after the confirmation of virological
failure. However, at the moment virological failure is detected, drug resistant mutants already replicate in great numbers.
They infect numerous cells, many of which will turn into latently infected cells. This pool of cells represents an archive of
resistance, which has the potential of limiting future treatment options. The objective of this study was to design a
treatment strategy for treatment-naive patients that decreases the likelihood of early treatment failure and preserves future
treatment options. We propose to apply a single, pro-active treatment switch, following a period of treatment with an
induction regimen. The main goal of the induction regimen is to decrease the abundance of randomly generated mutants
that confer resistance to the maintenance regimen, thereby increasing subsequent treatment success. Treatment is switched
before the overgrowth and archiving of mutant strains that carry resistance against the induction regimen and would limit its
future re-use. In silico modelling shows that an optimal trade-off is achieved by switching treatment at &80 days after the
initiation of antiviral therapy. Evaluation of the proposed treatment strategy demonstrated significant improvements in
terms of resistance archiving and virological response, as compared to conventional HAART. While continuous pro-active
treatment alternation improved the clinical outcome in a randomized trial, our results indicate that a similar improvement
might also be reached after a single pro-active treatment switch. The clinical validity of this finding, however, remains to be
shown by a corresponding trial.
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Introduction

In 1996, the tremendous clinical success of highly active
antiretroviral therapy had led many researchers to believe that the
eradication of HIV would be feasible. However, it was soon
realized that inducible pro-virus persists in latently infected cells
despite ongoing therapy and that the latent reservoir prevents HIV
eradication within the patients lifetime [1]–[6].

Latent infection is established when CD4z T-lymphoblasts
containing integrated provirus [5,7] escape both immune effector
mechanisms and the cytopathic effects of the virus and revert to a
resting memory state [8]. Besides preventing eradication of HIV,
the latent reservoir also serves as a memory of any virus species
replicating during the course of HIV infection [9,10], including
drug resistant variants. The contents of this archive of resistance
are strong predictors of future treatment failure [9,11].

Despite the impressive improvement of antiviral therapy, many
patients still experience virological failure caused by the selection

of drug resistant virus populations. Current guidelines recommend
changing treatment after the confirmation of virological failure.
However, in the face of the rapid viral turnover this approach
could be sub-optimal [12]. Changing therapy after the appearance
of drug resistant mutants will (i) allow the resistant viral population
size to expand and evolve and (ii) lead to an archivation of resistant
viral strains. An optimal treatment strategy should therefore
prevent viral relapse with drug resistant strains and, more
importantly, prevent drug resistant mutants from establishing
latent infection.

Induction-maintenance (IM) approaches are used for the
treatment of a growing number of infectious- and neoplastic
diseases [13–15]. Typically, patients start with an intensified
induction regimen (composed of a number of potent and
potentially toxic drugs), which will subsequently be replaced by a
maintenance regimen (composed of a smaller number of less toxic
drugs) [16]. However, patients treated with a large number of
drugs are particularly vulnerable to drug interactions [17] and
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adverse side effects that complicate HIV therapy and seriously
undermine the success of clinical management [18].

Another approach to overcome the development of resistance is
to alternate antiretroviral therapy [19]. This strategy has been
shown to significantly delay virological failure [20,21], yet it is
flawed by its high psychological and physical burden [22].

We propose an approach that combines the advantages of
conventional IM- and treatment alternation strategies, but
minimizes their inherent disadvantages. We suggest a single,
pro-active treatment switch from an inducer drug combination to
a maintenance combination. The inducer drug combination
should rapidly lower the viral population size and eliminate
resistant mutants. Subsequently, it will be replaced by a
maintenance drug regimen with a completely different resistance
profile, before drug resistant strains are archived.

We have previously introduced a novel model of virus dynamics
and adaptation [23], which allows us to consider the distinct
molecular effects of all novel (and some developmental) HIV
drugs. In this article, we present a novel mathematical concept,
which prevents the emergence of drug resistance in each
individual realization (virtual patient) of the model by switching
between therapies. Utilizing this concept, we deduce a distribution
of (individual) switching-times, which we use to determine a single
fixed duration for the induction therapy, which increases the
treatment success probability in the whole virtual patient

population and which minimizes the risk for resistance to become
archived in the latent reservoir. Finally, the performance of this
novel induction-maintenance-strategy is evaluated against con-
ventional HAART therapy.

Results

Virus dynamics model
We have extended the existing viral dynamics model, described

in [23], for the compartment of very long lived, latently infected T-
cells TL (Fig. 1 and Materials and Methods section), which are
believed to prevent eradication of HIV [24] and to lead to the
archiving of drug resistance [9,10].

Briefly, the virus dynamics model (Fig. 1) comprises T-cells,
macrophages, free non-infectious virus (TU,MU,VNI, respectively),
free infectious virus of mutant strain i,VI(i), and five types of
infected cells belonging to mutant strain i: infected T-cells and
macrophages prior to proviral genomic integration (T1(i) and
M1(i), respectively) and infected T-cells and macrophages after
proviral genomic integration (T2(i),TL(i) and M2(i), respectively).
The latently infected cell type TL does not express viral genes, but
can become activated with rate a, transforming this cell into a
virus producing post-integration infected T-cell T2. The average
rates of change of the different species are displayed in the Materials
and Methods section. All parameter values have been chosen

Figure 1. Extended virus dynamics-, mutation- and drug interference model. Target cells (TU,MU) can become successfully infected by
infective virus VI with infection rate constants bT and bM, respectively, creating early infected cells T1 and M1 . Infection can also be unsuccessful
after the step of viral fusion (rate constant CLT and CLM), eliminating the virus and rendering the cell uninfected. Early infected cells T1 and M1 can
also destroy essential viral proteins or DNA prior to integration, returning the cell to an uninfected stage. The genomic viral DNA can become
integrated with rate constants kT and kM creating post-integration, infected cells T2,TL and M2 . The latently infected cell type TL does not express
viral genes, but can become activated with rate a, transforming this cell into a productively infected T-cell T2 . Virus producing cells T2,M2 release

new infectious- and non infectious virus VI and VNI with rate constants NT, cNTNT{NT

! "
and NM, dNMNM{NM

! "
, respectively. Phenotypic mutation

occurs at the stage of viral genomic integration kT,kM (see [23]). All cellular compartments x can get destroyed by the immune system with
respective rate constants dx and the free virus (infectious and non-infectious) gets cleared with rate constant CL (not shown in the illustration). The
site of drug interference with the replicative cycle of HIV is indicated by blue bars for the respective drug classes (NRTIs, NNRTIs, FIs, CCR5-inhibitors,
INIs, PIs, and maturation inhibitors).
doi:10.1371/journal.pone.0018204.g001
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according to previous studies and are displayed in Table 1. Since
some viral strains are present only in very low copy numbers, we
used a hybrid stochastic-deterministic approach [25] to perform
simulations (see Materials and Methods section for details).

Treatment change before virological failure
Currently, changes of antiretroviral treatment regimes are

largely triggered by virological failure or toxicity. In Fig. 2A, we
show the simulated viral load in the case of first line treatment
failure. The corresponding population dynamics of HIV are
shown in Fig. 2B. During first line treatment failure, resistant
mutants (green- and cyan colored lines in Fig. 2B) are selected
from the quasi-species population and quickly evolve into the
dominant virus population, leading to viral rebound. While the
total virus population is temporarily shrinking, mutants that confer
resistance against a potential follow-up treatment (red line, dark
grey shaded area in Fig. 2B) are depleted (possibly eradicated).
However, during viral rebound the total viral population re-
expands and consequently erroneous reverse transcription gener-
ates novel mutants that can confer resistance against a second line
therapy. Once the viral population size has been restored, the
second line therapy, although composed of entirely different drugs,
is as likely to fail as before the initiation of first line therapy.
Furthermore, it is likely that drug resistant viral strains become
archived while they dominate the viral population (light grey
shaded area in Fig. 2B).

In Fig. 2C, we show the viral load dynamics during the
proposed induction-maintenance therapy. The corresponding
population dynamics of HIV are shown in Fig. 2D. The inducer
combination reduces the viral load (see Fig. 2C). However,
treatment is changed (vertical dashed black line) to the
maintenance combination, before resistant strains (green and cyan
line in Fig. 2D) can become more abundant than the wildtype
(magenta line in Fig. 2D). Therefore, at the time of treatment
change (vertical dashed black line in Fig. 2D), total virus has been
decreased and mutants that confer resistance to the maintenance
therapy (red line, dark grey shaded area in Fig. 2D) are likely to be
eradicated, which improves the probability to achieve durable
virological suppression with the maintenance therapy. With this

strategy, the abundance of the wildtype is larger than the
abundance of drug-resistant mutants, which lowers the probability
that drug resistance enters the latent reservoir (light grey shaded
area is absent in Fig. 2D).

In order to determine the optimal time point for switching from
inducer- to maintenance- drug combinations, tswitch, we first
determined relevant sets of parameters for (i) the in vivo efficacy
g(wt,j) of each utilized drug j against the wildtype wt and (ii) the in
vivo fitness loss that is associated with resistance development s(i)
(shown in Table S1), since the corresponding in vivo parameters are
known to vary substantially between different patients, e.g. [26]. For
simulation purposes, we assumed that a single point mutation is
sufficient to create high-level resistance (99%) to a single drug. This
is somewhat a worst-case assumption, but is justified for a number of
drugs, see e.g. [27,28]. Relevant clinical failure rates after one year
in previously treatment-naive patients, who receive HAART in a
clinical trial setting, are &15{25% [29], (see Table S1).

We then use an algorithm that automatically switches from
inducer- to maintenance drug combination, minimizing virological
failure for each realization (virtual patient), respectively. A
histogram of the derived (individual) switching times from a total
of 6000 simulations is shown in Fig. 3. Based on the histogram, we
finally chose a fixed time tswitch for changing from induction- to
maintenance therapy. In the sequel, we evaluate, if the chosen
time tswitch to change from inducer- to maintenance combination
leads to a general improvement compared to conventional
HAART therapy, in terms of treatment success and drug
resistance archiving.

Determination of treatment changing time
In [23] we introduced the ‘reproductive capacity’ Rcap(j). For

the extended model used herein, we have provided the derivation
of Rcap(j) in the Materials and Methods section. The reproductive
capacity Rcap(j) can be envisaged as the amount of offspring that
the whole viral population is expected to produce under some
treatment j during one round of replication. It can be calculated
from any model simulation and enables to evaluate each state of
the infection from the perspective of any potential treatment j. As
the viral population adapts to some currently applied treatment,
Rcap(j) changes accordingly: Rcap(j) is large initially and decreases
subsequently until drug resistant strains develop and render the
treatment j inefficient. We want to assess the point in time, when
some inducer- drug combination stops to provide any benefits (in
terms of the viral population) for the next drug combination
(maintenance combination). We therefore evaluate Rcap(j) for
j~maintenance combination while the induction combination is
applied and change from the induction- to the maintenance
therapy when Rcap(j) reaches its minimum;

switch if :
d

dt
Rcap(j)~0: ð1Þ

The derived switch-times are displayed in Fig. 3. We chose the
0.5th percentile at tswitch~80 days as a fixed time for treatment
change in the forthcoming evaluation of the proposed induction-
maintenance-strategy.

Implementation of conventional vs. proposed induction-
maintenance-strategy

In order to reflect the clinical practice of HIV care, we have
implemented the following routine for assessing the efficacy of the
applied treatment combinations.

Table 1. Model parameters generally used in simulations.

Param. Value Ref. Param. Value Ref.

lT 2:109 [64] lM 6:9:107 [65]

dT,dT1
0.02 [65] dM,dM1

0.0069 [65]

dT2
1 [36] dM2

0.09 [23]

CL 23 [36] dL 10{4 [16,66]

dPIC,T 0.35 [67,68] dPIC,M 0.0035 [23]

a 10{3 [66] p 8:10{6 [66]

m 2:2:10{5 [42] rrev 0.33 [68,69]

kT(wt,w) 0.35 [68] kM(wt,w) 0.07 [23]

bT(wt,w) 8:10{12 [49] bM(wt,w) 10{14 [23]

bNNT
1000 [65] bNNM

100 [65]

b:q:rPR 0.67 [23] - - -

All parameters refer to the wildtype 0wt’ in the absence of drug treatment w. All
parameters in units [1/day], except p, rrev , b:q:rPR (unit less) and m in

½1=(rev:trans::base)$. CLT=M(wt,w)~
1

rrev

{1

# $
:bT=M(wt,w),

NT=M(wt,w)~b:q:rPR
:bNNT=M [23].

doi:10.1371/journal.pone.0018204.t001
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Our virtual patients are monitored every month for efficacy
assessment until virus levels fall below the limit of detection (50 HIV
RNA/mL plasma). Thereafter, they are monitored every other
month. Virological failure has been defined according to treatment
guidelines [24]: At the first efficacy assessment (one month after
treatment initiation), viral load should have fallen by at least 2 logs
[HIV RNA/mL plasma]. Each consecutive measurement should be
below the previous assessment. By month 4, viral load should be
below the level of detection (50 HIV RNA/mL plasma). After that,
detectable virus is defined as virological failure.

We implemented conventional HAART in the following way:
The virtual patients are initially treated with a drug combination
consisting of two nucleoside reverse transcriptase inhibitors
(NRTIs) and one non-nucleoside reverse transcriptase inhibitor
(NNRTI) (e.g. tenofovir (TDF) + emtricitabine (FTC) + efavirenz
(EFV)), until virological failure is detected, in which case treatment
is changed to a second line regimen consisting of a protease
inhibitor (PI), an integrase inhibitor (InI) and an entry inhibitor
(EI) (e.g. ritonavir (RTV) -boosted PI + raltegravir (RLV) +
maraviroc (MVR)).

In the proposed induction-maintenance-strategy, patients are
initially treated with a combination consisting of a PI, an InI and
an EI, until tswitch~80 days. After that, a treatment consisting of
two NRTIs and one NNRTI is applied. If failure is detected at any
efficacy assessment time point, treatment change is applied.

In the following, we performed 1000 hybrid stochastic-determin-
istic simulations for each relevant parameter set (deduced from Table
S1) and counted the number of realizations, in which virological
failure occurred. Furthermore, we assessed, if the number of drug
resistant mutants in the very long-lived infected cells TL was higher
at the end of the simulation than upon initiation of treatment. In this
case we recorded ‘‘archiving’’ of drug resistance. The results of our
simulations are discussed in the next section.

Proposed induction-maintenance-strategy improves
success rate and minimizes archiving of drug-resistance

Fig. 4A shows that the proposed induction-maintenance-
strategy (blue line) with a fixed treatment switch time of
tswitch~80 days leads to a significant reduction in the probability
to experience virological failure compared to the conventional
treatment strategy (red line). This observation holds true for a wide
range of parameters (see Table 2, second column). In only two
cases, where failure rarely occurs during conventional therapy, we
do not get significant differences at the p = 0.05 level.

Fig. 4B shows that virological failure and the average number of
archived drug resistance mutations are strongly correlated (spearman’s
correlation coefficient rSw0:99, pv0:001). This indicates that vi-
rological failure is a strong predictor for drug resistance archiving.

Tables 2 (third–fifth column) show the number of cases in which
archiving of multi-drug resistant viral strains (with §2, §3 and

Figure 2. Abundance of viral mutants during first-line treatment failure and during proposed induction-maintenance strategy.
A: Plasma virus load during first line treatment failure (blue line). B: Total abundance of distinct viral mutants during first-line treatment failure.
C: Plasma virus load (blue line) during proposed induction-maintenance strategy with switch between induction- and maintenance treatment at 80
days (vertical dashed line). D: Total abundance of distinct viral mutants during proposed induction-maintenance strategy. The magenta line denotes
the abundance of wildtype virus. Green- and cyan lines denote the abundance of mutants that are part-resistant against the first line regimen
(resistant against two out of three drugs) and mutants that are fully resistant against the first line regimen, respectively. The red lines denote the
abundance of all mutants, which are part-resistant against a second line treatment. The area under the red line is highlighted by the dark grey shaded
area, to stress the negative impact of these mutants on the success of a second line regimen. The light shaded area in panel B indicates that resistant
mutants are more abundant than the wildtype and therefore highlights when drug resistance archiving in latently infected cells takes place. The
simulations were performed by assuming 70% drug efficacy g(wt,j) and a fitness loss s of 20% per drug resistance mutation. Furthermore, it was
assumed that a single point mutation can confer absolute resistance to a single drug.
doi:10.1371/journal.pone.0018204.g002
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§5 drug resistance mutations) occurred in the latent reservoir,
under the proposed induction-maintenance strategy and conven-
tional HAART, respectively. It can be seen that the proposed
treatment strategy leads to a significant reduction in multi-drug
resistance archiving for the majority of parameters evaluated. This
indicates, that although two treatment lines have been used for the
novel therapy, more therapeutic options are on average available
in the follow-up period, compared to conventional therapy.

Discussion

We have presented and tested (in terms of a mathematical
model) a very simple treatment strategy that can lead to significant
reductions in virological failure in comparison to conventional
HAART treatment. A unique drug combination (inducer
combination) is used for a short time (80 days) and pro-actively
switched to a maintenance combination. The purpose of the
inducer combination is to decrease viral population size and
thereby increase the likelihood that the subsequent therapy
(maintenance) will achieve durable suppression. Clinical imple-
mentation of this novel treatment strategy requires only one
additional clinical visit at 80 days in comparison with the
conventional HAART therapy. The important finding of our
study is, that although two drug combinations are always utilized
during the proposed induction-maintenance strategy, less archiv-
ing of drug resistance occurs in comparison with a conventional
treatment strategy, where a second treatment line would be
applied only in the case of virological failure or toxicity. Less drug
resistance archiving implies that more treatment options will be
available for the follow-up and long-term management of HIV-
infected patients when the proposed induction-maintenance
treatment strategy is used (see Table 2, third–fifth column).

Fig. S1 shows that only a few archiving events (§40 fully
resistant mutants) are sufficient to eliminate treatment options
permanently. The number of circulating latently infected cells is
small [2,7,30,31]. Detecting a small subset of mutants within the
circulating latently infected cells is experimentally not feasible,
because standard sequencing technology will detect the major
strains [32], while novel, second generation methods require large
samples [33]. Hence, mathematical modelling is a reasonable tool
to investigate drug resistance archiving following treatment
application.

The time for switching between combinations tswitch ( = 80 days)
is the most critical parameter for the success of the proposed
strategy. The following two considerations have to be taken into
account: (i) The inducer combination should be applied only for a

Figure 3. Histogram of optimal, individual treatment switching
times. Switching times for changing from inducer- to maintenance
therapy were automatically determined and carried out (using eq. (1)).
The 0.5th percentile, marked by the red line, was determined and the
corresponding time tswitch~80 days was used as a fixed value in the
suggested strategy to switch from inducer- to maintenance therapy.
Hybrid deterministic-stochastic simulations were performed at clinically
relevant parameter sets (see Table S1). Drug switches occurred in a total
of 5478 out of 6000 simulations.
doi:10.1371/journal.pone.0018204.g003

Figure 4. Kaplan-Meier estimates for treatment success, and correlation between virological failure and archiving of drug
resistance. The plots summarize the results trough the whole simulated parameter space from Table 2 (12000 simulations in total). A: Probability of
no virological failure (%) for the IM-strategy (blue line) and the conventional therapy (red line), respectively. Dashed lines are the 95% confidence
ranges, calculated using Greenwood’s formula. Virological failure was defined according to [24] and is summarized in section ‘‘Implementation of
conventional vs. proposed induction-maintenance-strategy’’. B: The probability to virological failure vs. the average number of drug resistance
archiving in the latent reservoir. A strong positive correlation (pv0:001) between virological failure and drug resistance archiving exists, as indicated
by spearman’s non-parametric rank correlation coefficient rSw0:99.
doi:10.1371/journal.pone.0018204.g004
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short time, to prevent the selection and archiving of mutants,
which are resistant to the current drug combination and would limit
the further use of this drug combination (risk of the strategy), (ii)
while at the same time, it has to be applied long enough to possibly
eradicate viral mutants, which are resistant to the next drug
combination (the benefit of the strategy).

The time required for resistant mutants to emerge, depends on
their abundance before the initiation of therapy (if they pre-exist
and are selected from the population) and also on their genetic
distance to the wildtype (if resistance is de novo developed). As
discussed above, we determine the abundance of mutants at the
time of therapy initiation by utilizing the deterministic fix-point as
starting condition for our simulations. We have shown the non-
inferiority of our approach in Fig. 5, if drug resistant mutants are
more abundant than expected. We have assumed the shortest
genetic distance possible between wildtype and fully drug resistant
mutants (one mutation is sufficient to create full resistance against
a single drug, three distinct mutations are required for full
resistance against a triple-drug combination). For some drugs,
however, subsequent accumulation of mutations creates fully drug
resistant mutants [34]. In our model, drug resistance might
therefore develop more rapidly than in vivo for drugs with a large
genetic barrier [35]. This implies that in vivo the inducer
combination could possibly be applied for a longer time frame
than the 80 days utilized in our model, if the genetic distance
between wildtype and fully drug resistant mutant was greater than
considered here (greater than one point mutation). However, our
results demonstrate that even a very short time (80 days) in which
the inducer combination is applied, can improve the clinical
outcome significantly (see Fig. 4 and Table 2). This short time
already minimizes the probability that drug resistance emerges
and can, in that sense, be considered safer than a longer induction
phase.

Eradication of viral mutants depends critically on their
abundance prior to the initiation of therapy and on the rate at
which viral compartments (and therefore resistant mutants) are
cleared in vivo. The elimination of viral compartments in vivo has
been quantified and validated in a number of clinical studies [36–
38]. We used the expected abundance of viral mutants (the
deterministic fix-point of the model) to estimate the abundance of
different viral mutants at the time of treatment initiation. In Fig. 5
we show non-inferiority of our approach in the case, where an
unexpectedly high abundance of drug resistant mutants is present
(1% of the wildtype; detection limit of second generation
sequencing technologies [33,39,40]), which would require longer
time for eradication.

One limitation of the proposed induction-maintenance strategy
is the potential inability to eliminate viral strains, that carry
resistance to the maintenance therapy. This is particularly the
case, if viral mutants, which carry resistance against all (or at least
the majority of) drugs in the maintenance combination, are
archived in the latent reservoir prior to treatment initiation. In Fig.
S1B, we have quantified that § 40 fully resistant viral mutants in
the latent reservoir eliminate treatment options permanently.
However, the likelihood for fully resistant archival copies (resistant
against all drugs in the maintenance regimen) in the treatment
naive patient, who was infected with wildtype 0wt’ virus, is
relatively small. Based on quasi-species theory, Ribero et al. [41]
calculated the pre-treatment frequency of viral mutants. According
to [41], the frequency of double mutants (part-resistant) relative to
the wildtype equals

Fdbl::wt~
m2

sdbl:

: 1

s1
z

1

s2
{1

# $
, ð2Þ

where s1,s2 and sdbl: are the selective disadvantages of the strain

Table 2. Probability of virological failure and -archivation of multi-drug resistant virus during suggested induction-maintenance-
(IM) vs. conventional HAART strategy.

Parameter set Failure rate Probability of multi-drug resistance archivation

ID (1{g; s) IM, HAART $2 mutations $3 mutations $5 mutations

R1 (0:7; 0:3) 1.7, 4.8%%% 1.8,4.8%%% 1.7,4.8%%% 0,0.1%

R2 (0:7; 0:25) 4.2, 14.2%%% 4.8,14.2%%% 4.2,13.9%%% 0.1,0.2%

R3 (0:7; 0:2) 6.6, 41.8%%% 18.5,42.2%%% 9.6,41.6%%% 0.1,2.9%%%

R4 (0:75; 0:25) 0.9, 2.8%% 0.9,2.9%% 0.9,2.8%% 0,0%

R5 (0:75; 0:2) 1.8, 12.5%%% 2.2,12.6%%% 1.8,12.5%%% 0,0.4%

R6 (0:8; 0:2) 0.7, 2.2%% 0.8,2.3%% 0.7,2.2%% 0,0.2%

R7 (0:8; 0:15) 3.1, 21.9% %% 2.8,22.1% %% 3.1,21.9% %% 0.2,0.9% %

R8 (0:8; 0:1) 7.9, 44% %% 9.3,44% %% 8.3,44% %% 0.7,14.6% %%

R9 (0:85; 0:15) 0.6, 0.6% 0.9,1.3% 0.6,0.6% 0,0%

R10 (0:85; 0:1) 2.4,7.1% %% 2.7,8.1% %% 2.4,7.2% %% 0.3,0.4%

R11 (0:85; 0:05) 33.7, 59.1% %% 34.7,59.5% %% 34,59.3% %% 3.4,17.2% %%

R12 (0:9; 0:05) 1.2, 1.8% 2.3,2.5% 1.3,1.8% 0.1,0.1%

Columns 2–5 show the distinct treatment outcome for the suggested induction-maintenance strategy (left entry) and a conventional HAART strategy (right entry) for
different parameter sets R1–R12 in terms of mutation-associated reproductive fitness losses s and different levels of drug efficacy (1{g) (indicated in column 1),
following 1000 simulations respectively. Relevant parameter combinations had been identified beforehand, see Table S1 and section ‘‘Treatment change before
virological failure’’. Column 2: Percentage of virological failure after 2 years of therapy according to the HIV treatment guidelines (summarized in section
‘‘Implementation of conventional vs. suggested induction-maintenance strategy’’). Column 3–5: Probability of multi-drug resistance archiving during the proposed
strategy and during conventional HAART strategy. Cross tab x2 tests of independence between treatment strategy (suggested vs. conventional strategy) and outcome
(virological failure or archivation of multi-drug resistance) are stated. A small p-value indicates that the distinct outcome depends on the treatment strategy and is not
due to random effects (** pv0:001, * pv0:05).
doi:10.1371/journal.pone.0018204.t002
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carrying the first-, the second- and the both drug-resistance

mutations and m~2:16:10{5 is the single point mutation rate [42].
It is reasonable to assume that resistant mutants are, at best, as
likely to enter the latent reservoir as the wildtype in the absence of
any drugs, due to their inherent fitness loss, i.e. P(dbl:jTL)
ƒFdbl::wt. Considering a maintenance combination consisting of
efavirenz (EFV), tenofovir (TDF) and emtricitabine (FTC), with
primary resistance mutations K103N, K65R and M184V and
respective selective disadvantages for the single-point mutants
sK103N~0:125,sK65R§0:8 and sM184V§0:9 [43] and additive
fitness losses in the double mutants sK103N=K65R,sK103N=M184V,

sK65R=M184V (i.e. sdbl:~1{(1{s1):(1{s2)), the probability that

mutants, resistant against two out of three maintenance drugs,

enter the latent reservoir are P(K103N=K65RjTL)ƒ5:10{9,

P(K103N=M184VjTL)ƒ4:10{9 and P(K65R=M184VjTL)ƒ
6:5:10{10 respectively. Using in vivo data, Chun et al. [7]
estimated the average number of latently infected cells with

replication-competent provirus to be TL&1:4:106 cells, so that
the expected number of partly-resistant mutants E(dbl:,TL)~
TL
:P(dbl:jTL) that are archived prior to treatment initiation

is E(K103N=K65R,TL)ƒ0:007,E(K103N=M184V,TL)ƒ0:006
and E(K65R=M184V,TL)ƒ0:0009. In other words, it is very
unlikely that part-resistant mutants are archived in patients prior
to treatment, since E(dbl:,TL)%1. Furthermore, part-resistant
mutants are still susceptible to one out of the three drugs in the
maintenance combination. For triple-drug (fully) resistant strains,
the likelihood of archival copies is even smaller.

Infection with drug resistant strains, mainly against established
drug classes, is a major, growing health concern [44]. During
infection with drug-resistant viral strains, archivation in the latent
reservoir is likely, since this reservoir is established early in the
infection [45]. If the circulating viral population reverses to a drug-
susceptible type, archived resistant mutants from the time of
infection might remain undetected and can complicate subsequent

treatment (see Fig. S1). This particular circumstance applies
equally to the proposed induction-maintenance therapy and
conventional HAART.

For our strategy, we have chosen drugs from novel classes (e.g.
InI, EI) for the inducer-combination, while we selected drugs from
well-established classes for the maintenance combination (NNRTI,
NRTI). This has the following rationale: The inducer combination
will only be applied for a short time (80 days), while the
maintenance combination could possibly be applied for much
longer periods of time (until it fails, or toxicological events occur).
Second or third generation drugs within the established drug-
classes are often more convenient to apply (e.g. once daily dosing)
and are less toxic, which has important implications for the long-
term management of HIV [46]. Secondly, drugs from the novel
drug classes (InI, EI), are currently not available as generic
formulations, whereas low-cost alternative drugs exist for estab-
lished drug classes. Therefore, in order to reduce treatment costs,
it is of advantage to select a strategy, in which inexpensive drugs
can be used for the majority of time, while cost-intensive ones are
only applied for short treatment periods.

Some drug classes can cause a distinct viral load decline. In
particular, the only approved InI raltegravir causes a more rapid
viral load decay, compared with other HIV inhibitors [47,48]. It
might therefore seem logical, based on viral load decay, to use
raltegravir in the induction treatment. It has been shown,
however, that the faster viral decay with raltegravir could be a
consequence of the particular site of action of InIs within the viral
life cycle and may not be due to an overall increased removal rate
of replication-competent viral compartments by raltegravir
[23,49]. Long-term studies of raltegravir- versus efavirenz-based
HAART showed equal outcomes with either therapies [50,51],
arguing against the superiority of raltegravir-based drug combi-
nations in removing replication-competent virus; however, further
analysis is required.

Intuitively, it might be more advantageous to use drug
resistance tests to guide treatment switches, instead of using a
fixed time for a pro-active switch from inducer- to maintenance
combination [19]. However, under the considerations discussed
above, a switch from inducer- to maintenance combination should
be applied before any resistant strains become abundant. This
implies that the most frequent viral strain at the time of switch
should be the wildtype. Standard assays fail to detect minority
species [32]. Ultra-deep/pyro-sequencing might provide a more
holistic picture of the quasi-species composition and can pick up
viral mutants that are abundant in &1% of the quasi-species
population and if the sample is large enough [33,39,40]. However,
even in this case, viral mutants are likely to dominate once the
results are available (w1 week), owing to the rapid viral kinetics
[52].

In our in silico study, we considered time-invariant, as well as
anatomically homogeneous average drug efficacy (1{g), for the
ease of modelling. It is also possible to consider drug- and patient-
specific time-varying pharmacokinetics and to study the impact of
compliance on drug resistance development. However, if compli-
ance is identical between the two study arms, the qualitative
difference between the outcome of conventional HAART versus
the proposed induction-maintenance strategy is not expected to
change. As shown in Table 2, the proposed induction-mainte-
nance therapy performs better than conventional HAART for a
wide range of parameter values for (1{g). Furthermore, it was
shown in a clinical study [20,21] that treatment alternation leads
to significantly less virological failure than conventional HAART,
when compliance is imperfect but identical between the two study
arms. However, since the study in [20,21] is not identical to the

Figure 5. Kaplan-Meier estimates of treatment success (prob-
ability of no virological failure) for very high initial abundance
of drug resistant mutants. The figure shows the outcome of 500
simulations for the proposed induction-maintenance strategy (blue
line) and for the conventional HAART therapy (red line), respectively.
Dashed lines indicate the 95% confidence ranges, calculated using
Greenwood’s formula. The initial abundance of drug resistant mutants
was set to 1% of the population. Other parameter values: (1{g) = 0.75,
s = 0.8.
doi:10.1371/journal.pone.0018204.g005
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treatment strategy presented herein, a clinical study should be
performed to fully investigate the potential of the proposed
induction-maintenance strategy. Ideally, this prospective random-
ized trial could evaluate the time to virological failure in patients
taking a single unchanged regimen and patients on induction-
maintenance regimens. Importantly, the trial should be designed
to evaluate whether the induction maintenance strategy affects the
durability of second- and third line regimens. The presence and
relative frequency of viral minority populations as well as their
mutational patterns could be monitored by analyzing proviral
DNA from circulating T-cells using, e.g., next-generation
sequencing. This data could serve to validate our mathematical
model.

Based on a recent, successful pre-exposure prophylaxis (PrEP)
trial, where emtricitabine (FTC) + tenofovir (TDF) were given to
high-risk individuals [53], it could be envisioned that PrEP is used
more broadly. One risk with such a strategy is the selection of
FTC/TDF resistance, which occurred in both subjects with acute
HIV infection at enrolment in the PrEP trial [53]. Furthermore,
there is a high risk for the selection of drug resistance, if subjects
get infected despite PrEP (e.g. due to low adherence; v50% in the
PrEP trial [53]). While FTC/TDF is a core component of first-line
HAART, the long-term epidemiological consequences of drug-
resistance selection are of utmost importance. One interesting
question is whether the proposed induction-maintenance therapy
can re-sensitize those subjects towards FTC/TDF treatment, who
had become infected with HIV despite PrEP. While a thorough
analysis of this question is beyond the scope of the current article,
related scenarios are frequently encountered in the context of
prevention of mother-to-child transmission (MTCT) programs,
when short-course intrapartum nevirapine is used. In the MTCT
context, protease-inhibitor-based induction therapy has been used
for the re-sensitization of pre-exposed children towards nevirapine
[54]. Further analysis, however, is required to elucidate the
potential of induction-maintenance strategies for re-sensitization of
pre-exposed HIV infected individuals.

Materials and Methods

Model Equations
The virus dynamics model (Fig. 1) comprises T-cells, macro-

phages, free non-infectious virus (TU,MU,VNI, respectively), free
infectious virus of mutant strain i,VI(i), and five types of infected
cells belonging to mutant strain i: infected T-cells and macro-
phages prior to proviral genomic integration (T1(i) and M1(i),
respectively) and infected T-cells and macrophages after proviral
genomic integration (T2(i),TL(i) and M2(i), respectively). The
latently infected cell type TL does not express viral genes, but can
become activated with rate a, transforming this cell into a virus
producing post-integration infected T-cell T2. The average rates of
change of the different species are given by the following system of
ODEs:

d

dt
TU~lTzdPIC,T

:T1(i){dT
:TU{

X

i

bT(i,j):VI(i):TU

d

dt
MU~lMzdPIC,M

:M1(i){dM
:MU{

X

i

bM(i,j):VI(i):MU

d

dt
T1(i)~bT(i,j):VI(i):TU{(dT1

zdPIC,TzkT(i,j)):T1(i)

d

dt
M1(i)~bM(i,j):VI(i):MU

{(dM1
zdPIC,MzkM(i,j)):M1(i)

ð3Þ

d

dt
TL(i)~

X

k

p:kT(k,j)T1(k):rk?i{ dLzað Þ:TL(i)

d

dt
T2(i)~

X

k

(1{p):kT(k,j)T1(k):rk?iza:TL(i){dT2
:T2(i)

d

dt
M2(i)~

X

k

kM(k,j)M1(k):rk?i{dM2
:M2(i)

d

dt
VI(i)~NM(i,j):M2(i)zNT(i,j):T2(i){

VI(i):½CLz(CLT(i,j)zbT(i,j))TUz

(CLM(i,j)zbM(i,j))MU$

d

dt
VNI~

X

i

½(bNNT{NT(i,j))T2(i)z

(bNNM{NM(i,j))M2(i)${CL:VNI,

where lT and lM are the birth rates of uninfected T-cells and
macrophages, and dT and dM denote their death rate constants.
The parameters kT(k,j) and kM(k,j) are the integration rate
constants of mutant strain k under treatment j. The parameters
dT1

,dL,dT2
,dM1

and dM2
are the death rate constants of

T1,TL,T2,M1 and M2 cells, respectively. The free virus (infectious
and non-infectious) gets cleared by the immune system with rate
constant CL. The parameters dPIC,T and dPIC,M refer to the
intracellular degradation of essential components of the pre-
integration complex, e.g., by the host cell proteasome within early

infected T-cells and macrophages, respectively. bNNT and bNNM

denote the total number of released infectious and non-infectious
virus from late infected T-cells and macrophages of mutant strain
i, and NT(i,j) and NM(i,j) are the rates of release of infective virus
under treatment j. The parameters CLT(i,j) and CLM(i,j) denote
the clearance of mutant virus i through unsuccessful infection of T-
cells and macrophages, respectively [23], and the parameters
bT(i,j) and bM(i,j) denote the successful infection rate constants of
mutant virus i under treatment j for T-cells and macrophages,
respectively. In our model, T-cells can become latently infected TL

with probability p. Latent infected cells can undergo apoptosis
with rate dL and can become activated with rate a. Activation of
latent cells by antigen- or other activating stimuli triggers the
production of viral building blocks via positive feedback loops
[55,56] in the late replication cycle of HIV, which turns the cell
into a virus producing cell T2 that becomes susceptible to HIV-
related cytopathic effects and destruction by the immune system.

The parameter rk?i denotes the probability to mutate from
strain k to strain i and is defined by
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rk?i~mh(i,k):(1{m)L{h(i,k), ð4Þ

where m denotes the point mutation probability per base and

reverse transcription process (m&2:16:10{5 [42]), h(i,k) denotes
the hamming distance between strain k and strain i, and L is the
total number of different positions that are considered in our
model (here, L~6 point mutations). In total, the model includes

2L different viral strains i that contain point mutations in any
pattern of the modelled L possible mutations. The phenotype of
each mutant strain i is modelled by introducing a selective
disadvantage s(i), which denotes the loss of functionality (e.g., in
the activity of some viral enzyme that is affected by the mutation)
relative to the wildtype, and a strain specific inhibitory activity
g(i,j) of treatment j against the mutant strain i. For example, the
strain specific infection rate i under a certain treatment j is given
by b(i,j)~(1{g(i,j)):(1{s(i)):b(wt,w), where b(wt,w) denotes the
infection rate constant of the wildtype 0wt’ in the absence of drug
w (parameters listed in Table 1). The strain-specific specific
inhibitory activity is calculated via g(i,j)~g(wt,j):res(i,j), where
the efficacy of the drugs against the wildtype g(wt,j) is generally
stated in the corresponding tables and figures (Fig. 2, Fig. 5 and
Table 2) and the resistance of a particular mutant res(i,j) was
either set to 1 (100% susceptible) or 0.01 (99% resistant), if the
particular mutant iconferred resistance to the particular drug j.

All parameter values have been chosen according to previous
studies (see Table 1). The particular viral decay dynamics after
application of distinct drug classes were validated in [23]. The
model (Fig. 1) with above described parameters reproduces an
average frequency of latently infected cells of 26

%
106 CD4z cells

(reference range: 0:82
%

106 – 205
%

106 CD4z cells [2,7,30,31]), a
total of 4:5:106 latently infected cells (reference: 1:4:106 [7]), with
a halflife of 20.6 month (average of [2,57–60]: 21 month) and a
plasma viremia of &1 HIV RNA/mL [61] from the latent
reservoir.

Realization and Implementation of the Model
The overall virus dynamics in our model comprise different viral

strains with copy numbers that can vary over several orders of
magnitude. For this reason we have chosen a hybrid (stochastic-
deterministic) setting for numerical simulation. This approach (i)
takes into account stochastic fluctuations in the slow reaction
processes; and (ii) reduces the computational costs for the
simulation of the fast (deterministic) system dynamics. We used
the direct hybrid method proposed in [25], where we treated
elementary reactions rj as discrete stochastic processes whenever
their propensity function aj or the quantity of at least one of their
reactants was below a threshold of 20. All other reactions were
approximated as continuous deterministic processes. Elementary
reactions rj with propensity functions aj and their respective net
changes nj can be deduced from eqs. (3). For example, the term
bT
:VI

:TU denotes the infection reaction of T-cells by infectious
virus. The propensity function of this reaction is aj~bT

:VI
:TU.

This reaction changes the species levels as follows: one TU cell and
one VI virus get consumed (the term is once subtracted from each
corresponding ODE), and one T1 cell is produced (the term is
once added to the ODE of T1).

In brief, the hybrid method comprises the following algorithmic
workflow:

(1) Set initial time t~t0 and initial number of molecules X t0ð Þ.
(2) Generate two uniformly distributed pseudo-random variables

j1 and j2 on the open unit interval 0,1ð Þ and determine the

partitioning of reactions into deterministic and stochastic
subsets D and S, respectively. The latter is realized by
comparing the actual propensity and the reactant levels of
every reaction with pre-specified thresholds. If one value is
below the thresholds, a reaction is included in the stochastic
subset S, otherwise it is put in the deterministic subset D.

(3) Set g tjtð Þ~ln j1ð Þ and solve the ODE system for the
deterministic part of the system starting at time t~t

d

dt
X tð Þ~

X

j[D
njaj X tð Þð Þ, ð5Þ

together with

d

dt
g tjtð Þ~

X

j[S
aj X tð Þð Þ, ð6Þ

until time t~s such that g sjtð Þ~0.

(4) Take the integer m satisfying

Xm{1

j~1

aj X tð Þð Þvj2

X

j[S
aj X tð Þð Þ

ƒ
Xm

j~1

aj X tð Þð Þ with j,m [S,

ð7Þ

in order to determine the stochastic reaction rm to be
performed.

(5) Update X sð Þ according to reaction rm, hence set X sð Þ/
X sð Þznm.

(6) Set t/s, and stop the procedure if the final time is reached.
Otherwise go to Step (2).

The above algorithmic scheme requires the use of numerical
integrators that allow to stop integration in step (3) when a
stochastic reaction event is detected at a time t where g sjtð Þ~0.
The utilized integrator is based on numerical differentiation
formulas [62], and uses strategies for event detection and error-
and step size control comparable to ode15s in MATLAB [63]. To
generate the data for Fig. 4, we performed 12000 hybrid
simulations in total. With realization start (t0~0) the effects of
drug treatment were simulated, until t~730 days was reached.
Every numerical calculation was computed with a relative error
tolerance of 1026 and an absolute error tolerance of 1029. Our
simulation code is provided in Source Code S1–S6.

Reproductive Numbers
For the model above (eq. (3)), the reproductive numbers, which

indicate the expected number of offspring in the next generation,
are defined as follows: the reproductive number RV(i,j) of a single
virus of strain i under treatment j is given by

RV(i,j)~

bT(i,j)TU
:kT(i,j) 1{p:

dL

dLza

# $
:NT(i,j)

cu(i,j):cT (i,j):dT2

z

bM(i,j)MU
:kM(i,j):NM(i,j)

cu(i,j):cM (i,j):dM2

,

with constants
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cu(i,j)~CLz CLT(i,j)zbT(i,j)½ $TUz CLM(i,j)zbM(i,j)½ $MU,

cT (i,j)~dTzdPIC,TzkT(i,j),

cM (i,j)~dMzdPIC,MzkM(i,j):

Since infected cells are also pathogens, which can lead to a
rebound of the disease even in the absence of any virus, we also
determined their basic reproductive numbers under a given
treatment j. The basic reproductive numbers RT1 (i,j) and RM1 (i,j)
of the infectious stages T1 and M1, associated with the viral strain
i, are given by

RT1
(i,j)~

kT(i,j) 1{p:
dL

dLza

# $
:NT(i,j)

cT (i,j):dT2

: bT(i,j)TUzbM(i,j)MU

cu(i,j)
,

RM1
(i,j)~

kM(i,j):NM(i,j)

cM (i,j):dM2

: bT(i,j)TUzbM(i,j)MU

cu(i,j)
:

Finally, the reproductive numbers RT2
(i,j),RTL

(i,j) and RM2
(i,j)

of the infectious stages T2,TL and M2, associated with the viral
strain i, are given by

RT2
(i,j)~

NT(i,j)

dT2

: kT(i,j)TU
:bT(i,j)

cu(i,j):cT (i,j)
z

kM(i,j)MU
:bM(i,j)

cu(i,j):cM (i,j)

& '
,

RTL
(i,j)~

a

dLza

NT(i,j)

dT2

: kT(i,j)TU
:bT(i,j)

cu(i,j):cT (i,j)
z

kM(i,j)MU
:bM(i,j)

cu(i,j):cM (i,j)

& '
,

RM2
(i,j)~

NM(i,j)

dM2

: kT(i,j)TU
:bT(i,j)

cu(i,j):cT (i,j)
z

kM(i,j)MU
:bM(i,j)

cu(i,j):cM (i,j)

& '
:

Reproductive Capacity
We have previously introduced the reproductive capacity Rcap(j)

[23], which can be interpreted as the expected total number of
infectious offspring that the infection produces in one round of
replication under a certain treatment j, given the current state of the
infection. In this article, we utilize the reproductive capacity in order
to get individual treatment switching times (see eq. (1), main article),
which are displayed in Fig. 3. The reproductive capacity of the
entire quasi-species ensemble under treatment j is defined as the
weighted sum of the basic reproductive numbers of all pathogenic
stages of mutant strain i, i.e., free virus, infected T-cells and infected
macrophages, weighted by the abundance of the corresponding
pathogenic stage [23]:

Rcap(j)~
X

i

½VI(i)RV(i,j)zT1(i)RT1
(i,j)zM1(i)RM1

(i,j)z

T2(i)RT2
(i,j)zTL(i)RTL

(i,j)zM2(i)RM2
(i,j)$,

where RV(i,j),RT1
(i,j),RM1

(i,j),RT2
(i,j) and RM2

(i,j) are the

strain-specific reproductive numbers of the different infective
compartments (see previous sections).

Supporting Information

Figure S1 Time and probability of virological failure
depends on pool-size of archived drug-resistant virus. A:
The median time until virological failure, in relation to the
number of fully-resistant archived virus (fully = resistant against
all drugs in the triple-drug combination). B: Probability that
virological failure occurs within two years after initiation of
HAART therapy as a function of the number of fully-resistant
archived virus. 500 stochastic-deterministic runs were performed
for each pool size of the latently infected drug-resistant reservoir.
Parameter values used: (1{g) = 0.75, s = 0.8.
(PDF)

Table S1 Determination of relevant parameter space
for further investigation. We assessed virological failure rates
after one year of triple drug therapy for varying values of efficacy
(1{g(wt,j)) of drug j against the wildtype 0wt’ and selective
disadvantage per mutation s. All other parameters have been
taken from Table 1. A parameter combination (in terms of
(1{g(wt,j)) and s) was considered relevant, if it produced realistic
failure rates after one year of therapy [29]. Confidence ranges are
indicated in brackets and were calculated using Greenwood’s
formula. Each condition has been evaluated by 100 stochastic
deterministic simulations.
(PDF)

Source Code S1 The File ‘HAART.m’ can be used to simulate
the kinetics of HIV after application of conventional HAART
treatment in MATLAB.
(M)

Source Code S2 The File ‘HIVmodel.m’ builds the original
HIV model used throughout the manuscript for use in MATLAB.
(M)

Source Code S3 The File ‘InductionMaintenance.m’ can be
used to simulate the kinetics of HIV after under the proposed
induction-maintenance therapy in MATLAB.
(M)

Source Code S4 The File ‘PatientMonitoring.m’ contains the
MATLAB implementation of routine patient monitoring.
(M)

Source Code S5 The File ‘ReadMeFirst.txt’ Contains a
description of all supplied source code files, contact details,
information on runtime and execution and a copy of the GNU
public license.
(TXT)

Source Code S6 The File ‘SpeciesLevelsIndices.pdf’ contains an
interpretation of the output generated by executing the provided
MATLAB Source Code Files (Source Code S1–S4).
(PDF)
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39. Ji H, Massé N, Tyler S, Liang B, Li Y, et al. (2010) HIV drug resistance
surveillance using pooled pyrosequencing. PLoS One 5: e9263.

40. Archer J, Braverman MS, Taillon BE, Desany B, James I, et al. (2009) Detection
of low-frequency pretherapy chemokine (CXC motif) receptor 4 (CXCR4)-using
HIV-1 with ultra-deep pyrosequencing. AIDS 23: 1209–1218.

41. Ribeiro RM, Bonhoeffer S, Nowak MA (1998) The frequency of resistant
mutant virus before antiviral therapy. AIDS 12: 461–465.

42. Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human
immunodeficiency virus type 1 than that predicted from the fidelity of purified
reverse transcriptase. J Virol 69: 5087–5094.

43. Martinez-Picado J, Martı́nez MA (2008) HIV-1 reverse transcriptase inhibitor
resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res
134: 104–123.

44. Smith RJ, Okano JT, Kahn JS, Bodine EN, Blower S (2010) Evolutionary
dynamics of complex networks of HIV drug-resistant strains: the case of San
Francisco. Science 327: 697–701.

45. Ghosn J, Pellegrin I, Goujard C, Deveau C, Viard JP, et al. (2006) HIV-1
resistant strains acquired at the time of primary infection massively fuel the
cellular reservoir and persist for lengthy periods of time. AIDS 20: 159–170.

46. Bartlett JA (2002) Addressing the challenges of adherence. J Acquir Immune
Defic Syndr 29(Suppl 1): S2–10.

47. Murray JM, Emery S, Kelleher AD, Law M, Chen J, et al. (2007) Antiretroviral
therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV,
significantly reducing the second phase. AIDS 21: 2315–2321.

48. DeJesus E, Berger D, Markowitz M, Cohen C, Hawkins T, et al. (2006) Antiviral
activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor
gs-9137 (jtk-303) in treatment-naive and treatment-experienced patients.
J Acquir Immune Defic Syndr 43: 1–5.

49. Sedaghat AR, Dinoso JB, Shen L, Wilke CO, Siliciano RF (2008) Decay
dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc
Natl Acad Sci U S A 105: 4832–4837.

50. Lennox JL, DeJesus E, Lazzarin A, Pollard RB, Madruga JVR, et al. (2009)
Safety and efficacy of raltegravir-based versus efavirenz-based combination
therapy in treatment-naive patients with HIV-1 infection: a multicentre, double-
blind randomised controlled trial. Lancet 374: 796–806.

51. Lennox JL, Dejesus E, Berger DS, Lazzarin A, Pollard RB, et al. (2010)
Raltegravir versus efavirenz regimens in treatment-naive HIV-1-infected
patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses.
J Acquir Immune Defic Syndr 55: 39–48.

52. Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, et al. (1999) Rapid
production and clearance of HIV-1 and hepatitis C virus assessed by large
volume plasma apheresis. Lancet 354: 1782–1785.

53. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, et al. (2010)
Preexposure chemoprophylaxis for HIV prevention in men who have sex with
men. N Engl J Med 363: 2587–2599.

HIV Dynamics during Pro-Active Treatment Switching

PLoS ONE | www.plosone.org 11 March 2011 | Volume 6 | Issue 3 | e18204234



54. Coovadia A, Abrams EJ, Stehlau R, Meyers T, Martens L, et al. (2010) Reuse of
nevirapine in exposed HIV-infected children after protease inhibitor-based viral
suppression: a randomized controlled trial. JAMA 304: 1082–1090.

55. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005)
Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 tat
fluctuations drive phenotypic diversity. Cell 122: 169–182.

56. Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF (2006) Nuclear
retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog
2: e68.

57. Zhang L, Ramratnam B, Tenner-Racz K, He Y, Vesanen M, et al. (1999)
Quantifying residual HIV-1 replication in patients receiving combination
antiretroviral therapy. N Engl J Med 340: 1605–1613.

58. Chun TW, Justement JS, Moir S, Hallahan CW, Maenza J, et al. (2007) Decay
of the HIV reservoir in patients receiving antiretroviral therapy for extended
periods: implications for eradication of virus. J Infect Dis 195: 1762–1764.

59. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, et al. (2003) Long-term
follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting
CD4+ T cells. Nat Med 9: 727–728.

60. Ramratnam B, Mittler JE, Zhang L, Boden D, Hurley A, et al. (2000) The decay
of the latent reservoir of replication-competent HIV-1 is inversely correlated
with the extent of residual viral replication during prolonged anti-retroviral
therapy. Nat Med 6: 82–85.

61. Coffin J, Maldarelli F, Palmer S, Weigand A, Brun S, et al. (2006) Long-term
persistance of low-level HIV-1 in patients on suppressive antiretroviral therapy.

Abstract 169 13th Conference on Retroviruses and Opportunistic Infections; 5–
8 February 2006; Denver, Colorado, United States Available at http://
wwwretroconferenceorg/2006/Abstracts/28061htm.

62. Klopfenstein R (1971) Numerical differentiation formulas for stiff systems of
ordinary differential equations. RCA Review 32: 447–462.

63. Shampine L, Reichelt M (1997) The Matlab ODE Suite. SIAM Journal on
Scientific Computing 18: 1–22.

64. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, et al. (1995) Viral
dynamics in human immunodeficiency virus type 1 infection. Nature 373:
117–122.

65. Sedaghat AR, Siliciano RF, Wilke CO (2009) Constraints on the dominant
mechanism for HIV viral dynamics in patients on raltegravir. Antivir Ther 14:
263–271.

66. Callaway DS, Perelson AS (2002) HIV-1 infection and low steady state viral
loads. Bull Math Biol 64: 29–64.

67. Koelsch KK, Liu L, Haubrich R, May S, Havlir D, et al. (2008) Dynamics of
total, linear nonintegrated, and integrated HIV-1DNA in vivo and in vitro.
J Infect Dis 197: 411–419.

68. Zhou Y, Zhang H, Siliciano JD, Siliciano RF (2005) Kinetics of human
immunodeficiency virus type 1 decay following entry into resting CD4+ T cells.
J Virol 79: 2199–2210.

69. Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, et al. (2002) Molecular
characterization of preintegration latency in human immunodeficiency virus
type 1 infection. J Virol 76: 8518–8531.

HIV Dynamics during Pro-Active Treatment Switching

PLoS ONE | www.plosone.org 12 March 2011 | Volume 6 | Issue 3 | e18204235


	DTG_PrEP_Paper
	published
	published
	published
	published
	l
	l
	l
	l
	l
	l

	1-s2.0-S0928098716300173-main
	Top-�down and bottom-�up modeling in system pharmacology to understand clinical efficacy: An example with NRTIs of HIV-�1
	1. Introduction
	2. Materials and methods
	2.1. Case studies
	2.2. Bottom up
	2.2.1. MMOA parameters
	2.2.2. MMOA

	2.3. Top down
	2.3.1. Clinical data
	2.3.1.1. Lamivudine
	2.3.1.2. Emtricitabine
	2.3.1.3. Tenofovir disoproxil fumarate

	2.3.2. Pharmacokinetic model development
	2.3.3. Translational model
	2.3.4. Pharmacodynamic linker model & estimation of EC50
	2.3.5. Software


	3. Results
	3.1. Bottom-up
	3.2. Top-down
	3.2.1. Lamivudine PK–PD
	3.2.2. Emtricitabine PK–PD
	3.2.3. Tenofovir PK–PD

	3.3. Comparison of estimated IC50 values

	4. Discussion
	5. Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	References


	published
	published
	nmeth.3490
	Mutational interference mapping experiment (MIME) for studying RNA structure and function
	RESULTS
	Mutational interference mapping experiment (MIME)
	Mapping the Pr55Gag core binding domain
	Modeling the Pr55Gag core binding domain

	DISCUSSION
	Methods
	ONLINE METHODS
	Pr55Gag protein expression.
	Cloning, mutagenesis and RNA production.
	Mutational interference mapping analysis protocol.
	RNA filter-binding assay.
	Data analysis.
	Identification of interacting base pairs.
	Prediction of stem regions consisting of (cis) Watson-Crick and wobble pairs.
	Code availability.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 A model protein-RNA interaction and a schematic for MIME.
	Figure 2 Modeling the effects of mutations on Pr55Gag-RNA 
interaction.
	Figure 3 Single-variation analysis identifies RNA structure and sequence requirements for Pr55Gag binding.
	Figure 4 Identification of RNA structures important for Pr55Gag binding through covariation analysis.
	Figure 5 Mapping the mutational effects on binding affinity to the structure of the HIV genomic RNA.


	Published_Final
	published
	published
	published



