7 research outputs found

    OPTIMAL POWER MANAGEMENT OF DGS AND DSTATCOM USING IMPROVED ALI BABA AND THE FORTY THIEVES OPTIMIZER

    Get PDF
    In this study an improved Ali Baba and the forty thieves Optimizer (IAFT) is proposed and successfully adapted and applied to enhance the technical performances of radial distribution network (RDN). The standard AFT governed by two sensible parameters to balance the exploration and the exploitation stages. In the proposed variant a modification is introduced using sine and cosine functions to create flexible balance between Intensification and diversification during search process. The proposed variant namely IAFT applied to solve various single and combined objective functions such as the improvement of total power losses (TPL), the minimization of total voltage deviation and the maximization of the loading capacity (LC) under fixed load and considering the random aspect of loads. The exchange of active powers is elaborated by integration of multi distribution generation based photovoltaic systems (PV), otherwise the optimal management of reactive power is achieved by the installation of multi DSTATCOM. The efficiency and robustness of the proposed variant validated on two RDN, the 33-Bus and the 69-Bus. The qualities of objective functions achieved and the statistical analysis elaborated compared to results achieved using several recent metaheuristic methods demonstrate the competitive aspect of the proposed IAFT in solving with accuracy various practical problems related to optimal power management of RDN

    Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture

    Get PDF
    An effective method for optimizing high-performance concrete mixtures can significantly benefit the construction industry. However, traditional proportioning methods are not sufficient because of their expensive costs, limitations of use, and inability to address nonlinear relationships among components and concrete properties. Consequently, this research introduces a novel genetic algorithm (GA)–based evolutionary support vector machine (GA-ESIM), which combines the K-means and chaos genetic algorithm (KCGA) with the evolutionary support vector machine inference model (ESIM). This model benefits from both complex input-output mapping in ESIM and global solutions with faster convergence characteristics in KCGA. In total, 1,030 data points from concrete strength experiments are provided to demonstrate the application of GA-ESIM. According to the results, the newly developed model successfully produces the optimal mixture with minimal prediction errors. Furthermore, a graphical user interface is utilized to assist users in performing optimization tasks

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations

    Get PDF
    In recent algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature- inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field

    Integration of Distributed Generations in Smart Distribution Networks Using Multi-Criteria Based Sustainable Planning Approach

    Get PDF
    Energy planning has become more complicated in the 21st century of sustainable development due to the inclusion of numerous standards such as techno-economic, and environmental considerations. This paper proposes multi-criteria sustainable planning (MCSP) based optimization approach for identifying DGs’ optimal allocations and rating powers. The main objectives of this paper are the reduction of the network’s total power loss, voltage profile improvement, energy loss saving maximization, and curtailing environmental emissions and water consumption to achieve Sustainable Development Goals (SDGs 3, 6, 7, 13, and 15) by taking the constraints into consideration. Different alternatives are evaluated across four aspects of performance indices; technical, cost-economic, environmental, and social (TEES). In terms of TEES performance evaluations, various multi-criteria decision-making (MCDM) approaches are used to determine the optimal trade-off among the available solutions. These methods are gaining wide acceptance due to their flexibility while considering all criteria and objectives concurrently. Annual energy loss saving is increased by 97.13%, voltage profile is improved to 0.9943 (p.u), and emissions are reduced by 82.45% using the proposed technique. The numerical results of the proposed MCSP approach are compared to previously published works to validate and may be used by researchers and energy planners as a planning tool for ADN schemes

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations

    Full text link
    In recent years, a great variety of nature- and bio-inspired algorithms has been reported in the literature. This algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field.Comment: 76 pages, 6 figure

    L’edilizia rurale tra sviluppo tecnologico e tutela del territorio

    Get PDF
    The second Section of the AIIA promoted an opportunity to meet, discuss and reflect on the theme "L’edilizia rurale tra sviluppo tecnologico e tutela del territorio" (Rural construction between technological development and protection of the territory) through the collection of the results of the most recent research conducted on the subject by the SSD researchers “ Costruzioni rurali e territorio agroforestale” (Rural constructions and agro-forestry territory). The works included three sessions: in the first part, the results of PRIN 2008 on “Integrazione di sistemi tecnologici innovativi per il monitoraggio a distanza di animali” (Integration of innovative technological systems for remote monitoring of animals) were presented, with interventions by the various Operational Units involved. In the second and third sessions, the scientific results of research on the themes of technological innovation in agricultural buildings and of the Trends in the design of agricultural buildings for a sustainable use of the territory were presented
    corecore