5,592 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Optimizing Effort and Time Parameters of COCOMO II Estimation using Fuzzy Multi-objective PSO

    Get PDF
    The  estimation  of  software  effort  is  an  essential and  crucial   activity   for  the  software   development   life  cycle. Software effort estimation is a challenge that often appears on the project of making a software. A poor estimate will produce result in a worse project management.  Various software cost estimation model has been introduced  to resolve this problem. Constructive Cost Model II (COCOMO II Model) create large extent most considerable  and broadly  used as model  for cost estimation.  To estimate   the  effort  and  the  development   time  of  a  software project,  COCOMO  II model uses cost drivers,  scale factors  and line  of  code.  However,  the  model  is  still  lacking  in  terms  of accuracy both in effort and development  time estimation.  In this study,   we   do   investigate   the   influence   of   components   and attributes to achieve new better accuracy improvement on COCOMO II model. And we introduced the use of Gaussian Membership  Function  (GMF)  Fuzzy  Logic  and Multi-Objective Particle Swarm Optimization method (MOPSO) algorithms in calibrating  and optimizing  the COCOMO  II model parameters. The   proposed   method   is   applied   on   Nasa93   dataset.   The experiment  result of proposed method able to reduce error down to  11.891%  and  8.082%  from  the  perspective  of  COCOMO  II model.  The  method  has  achieved  better  results  than  those  of previous   researches   and  deals  proficient   with  inexplicit   data input and further improve reliability of the estimation method

    Optimizing Time and Effort Parameters of COCOMO II using Fuzzy Multi-Objective Particle Swarm Optimization

    Get PDF
    Estimating the efforts, costs, and schedules of software projects is a frequent challenge to software development projects. A bad estimation will result in bad management of a project. Various models of estimation have been defined to complete this estimate. The Constructive Cost Model II (COCOMO II) is one of the most famous models as a model for estimating efforts, costs, and schedules. To estimate the effort, cost, and schedule in project of software, the COCOMO II uses inputs: Effort Multiplier (EM), Scale Factor (SF), and Source Line of Code (SLOC). Evidently, this model is still lack in terms of accuracy rates in both efforts estimated and time of development. In this paper, we introduced to use Gaussian Membership Function (GMF) of Fuzzy Logic and Multi-Objective Particle Swarm Optimization (MOPSO) method to calibrate and optimize the parameters of COCOMO II. It is to achieve a new level of accuracy better on COCOMO II. The Nasa93 dataset is used to implement the method proposed. The experimental results of the method proposed have reduced the error downto 11.89% and 8.08% compared to the original COCOMO II. This method proposed has achieved better results than previous studies

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    Solving software project scheduling problem using grey wolf optimization

    Get PDF
    In this paper, we will explore the application of grey wolf optimization (GWO) methodology in order to solve the software project scheduling problem (SPSP) to seek an optimum solution via applying different instances from two datasets. We will focus on the effects of the quantity of employees as well as the number of tasks which will be accomplished. We concluded that increasing employee number will decrease the project’s duration, but we could not find any explanation for the cost values for all instances that studied. Also, we concluded that, when increasing the number of the tasks, both the cost and duration will be increased. The results will compare with a max-min ant system hyper cube framework (MMAS-HC), intelligent water drops algorithm (IWD), firefly algorithm (FA), ant colony optimization (ACO), intelligent water drop algorithm standard version (IWDSTD), and intelligent water drop autonomous search (IWDAS). According to these study and comparisons, we would like to say that GWO algorithm is a better optimizing tool for all instances, except one instance that FA is outperform the GWO

    Software Effort Estimation Using Particle Swarm Optimization with Inertia Weight

    Get PDF
    Software is the most expensive element of virtually all computer based systems. For complex custom systems, a large effort estimation error can make the difference between profit and loss. Cost (Effort) Overruns can be disastrous for the developer. The basic input for the effort estimation is size of project. A number of models have been proposed to construct a relation between software size and Effort; however we still have problems for effort estimation because of uncertainty existing in the input information. Accurate software effort estimation is a challenge in Industry. In this paper we are proposing three software effort estimation models by using soft computing techniques: Particle Swarm Optimization with inertia weight for tuning effort parameters. The performance of the developed models was tested by NASA software project dataset. The developed models were able to provide good estimation capabilities

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Bio-Inspired Multi-Agent Technology for Industrial Applications

    Get PDF
    corecore