69 research outputs found

    Resilient network design: Challenges and future directions

    Get PDF
    This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    Managed access dependability for critical services in wireless inter domain environment

    Get PDF
    The Information and Communications Technology (ICT) industry has through the last decades changed and still continues to affect the way people interact with each other and how they access and share information, services and applications in a global market characterized by constant change and evolution. For a networked and highly dynamic society, with consumers and market actors providing infrastructure, networks, services and applications, the mutual dependencies of failure free operations are getting more and more complex. Service Level Agreements (SLAs) between the various actors and users may be used to describe the offerings along with price schemes and promises regarding the delivered quality. However, there is no guarantee for failure free operations whatever efforts and means deployed. A system fails for a number of reasons, but automatic fault handling mechanisms and operational procedures may be used to decrease the probability for service interruptions. The global number of mobile broadband Internet subscriptions surpassed the number of broadband subscriptions over fixed technologies in 2010. The User Equipment (UE) has become a powerful device supporting a number of wireless access technologies and the always best connected opportunities have become a reality. Some services, e.g. health care, smart power grid control, surveillance/monitoring etc. called critical services in this thesis, put high requirements on service dependability. A definition of dependability is the ability to deliver services that can justifiably be trusted. For critical services, the access networks become crucial factors for achieving high dependability. A major challenge in a multi operator, multi technology wireless environment is the mobility of the user that necessitates handovers according to the physical movement. In this thesis it is proposed an approach for how to optimize the dependability for critical services in multi operator, multi technology wireless environment. This approach allows predicting the service availability and continuity at real-time. Predictions of the optimal service availability and continuity are considered crucial for critical services. To increase the dependability for critical services dual homing is proposed where the use of combinations of access points, possibly owned by different operators and using different technologies, are optimized for the specific location and movement of the user. A central part of the thesis is how to ensure the disjointedness of physical and logical resources so important for utilizing the dependability increase potential with dual homing. To address the interdependency issues between physical and logical resources, a study of Operations, Administrations, and Maintenance (OA&M) processes related to the access network of a commercial Global System for Mobile Communications (GSM)/Universal Mobile Telecommunications System (UMTS) operator was performed. The insight obtained by the study provided valuable information of the inter woven dependencies between different actors in the delivery chain of services. Based on the insight gained from the study of OA&M processes a technological neutral information model of physical and logical resources in the access networks is proposed. The model is used for service availability and continuity prediction and to unveil interdependencies between resources for the infrastructure. The model is proposed as an extension of the Media Independent Handover (MIH) framework. A field trial in a commercial network was conducted to verify the feasibility in retrieving the model related information from the operators' Operational Support Systems (OSSs) and to emulate the extension and usage of the MIH framework. In the thesis it is proposed how measurement reports from UE and signaling in networks are used to define virtual cells as part of the proposed extension of the MIH framework. Virtual cells are limited geographical areas where the radio conditions are homogeneous. Virtual cells have radio coverage from a number of access points. A Markovian model is proposed for prediction of the service continuity of a dual homed critical service, where both the infrastructure and radio links are considered. A dependability gain is obtained by choosing a global optimal sequence of access points. Great emphasizes have been on developing computational e cient techniques and near-optimal solutions considered important for being able to predict service continuity at real-time for critical services. The proposed techniques to obtain the global optimal sequence of access points may be used by handover and multi homing mechanisms/protocols for timely handover decisions and access point selections. With the proposed extension of the MIH framework a global optimal sequence of access points providing the highest reliability may be predicted at real-time

    Fiber optical network design problems : case for Turkey

    Get PDF
    Ankara : The Department of Industrial Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 102-110.The problems within scope of this thesis are based on an application arising from one of the largest Internet service providers operating in Turkey. There are mainly two different problems: the green field design and copper field re-design. In the green field design problem, the aim is to design a least cost fiber optical network from scratch that will provide high bandwidth Internet access from a given central station to a set of aggregated demand nodes. Such an access can be provided either directly by installing fibers or indirectly by utilizing passive splitters. Insertion loss, bandwidth level and distance limitations should simultaneously be considered in order to provide a least cost design to enable the required service level. On the other hand, in the re-design of the copper field application, the aim is to improve the current service level by augmenting the network through fiber optical wires. Copper rings in the existing infrastructure are augmented with cabinets and direct fiber links from cabinets to demand nodes provide the required coverage to distant nodes. Mathematical models are constructed for both problem specifications. Extensive computational results based on real data from Kartal (45 points) and Bakırköy (74 points) districts in Istanbul show that the proposed models are viable exact solution methodologies for moderate dimensions.Yazar, BaşakM.S

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Architectures for the Future Networks and the Next Generation Internet: A Survey

    Get PDF
    Networking research funding agencies in the USA, Europe, Japan, and other countries are encouraging research on revolutionary networking architectures that may or may not be bound by the restrictions of the current TCP/IP based Internet. We present a comprehensive survey of such research projects and activities. The topics covered include various testbeds for experimentations for new architectures, new security mechanisms, content delivery mechanisms, management and control frameworks, service architectures, and routing mechanisms. Delay/Disruption tolerant networks, which allow communications even when complete end-to-end path is not available, are also discussed

    Evaluation of the utility and performance of an autonomous surface vehicle for mobile monitoring of waterborne biochemical agents

    Get PDF
    Real-time water quality monitoring is crucial due to land utilization increases which can negatively impact aquatic ecosystems from surface water runoff. Conventional monitoring methodologies are laborious, expensive, and spatio-temporally limited. Autonomous surface vehicles (ASVs), equipped with sensors/instrumentation, serve as mobile sampling stations that reduce labor and enhance data resolution. However, ASV autopilot navigational accuracy is affected by environmental forces (wind, current, and waves) that can alter trajectories of planned paths and negatively affect spatio-temporal resolution of water quality data. This study demonstrated a commercially available solar powered ASV equipped with a multi-sensor payload ability to operate autonomously to accurately and repeatedly maintain established A-B line transects under varying environmental conditions, where lateral deviation from a planned linear route was measured and expressed as cross-track error (XTE). This work provides a framework for development of spatial/temporal resolution limitations of ASVs for real-time monitoring campaigns and future development of in-situ sampling technologies
    corecore