511 research outputs found

    e-SAFE: Secure, Efficient and Forensics-Enabled Access to Implantable Medical Devices

    Full text link
    To facilitate monitoring and management, modern Implantable Medical Devices (IMDs) are often equipped with wireless capabilities, which raise the risk of malicious access to IMDs. Although schemes are proposed to secure the IMD access, some issues are still open. First, pre-sharing a long-term key between a patient's IMD and a doctor's programmer is vulnerable since once the doctor's programmer is compromised, all of her patients suffer; establishing a temporary key by leveraging proximity gets rid of pre-shared keys, but as the approach lacks real authentication, it can be exploited by nearby adversaries or through man-in-the-middle attacks. Second, while prolonging the lifetime of IMDs is one of the most important design goals, few schemes explore to lower the communication and computation overhead all at once. Finally, how to safely record the commands issued by doctors for the purpose of forensics, which can be the last measure to protect the patients' rights, is commonly omitted in the existing literature. Motivated by these important yet open problems, we propose an innovative scheme e-SAFE, which significantly improves security and safety, reduces the communication overhead and enables IMD-access forensics. We present a novel lightweight compressive sensing based encryption algorithm to encrypt and compress the IMD data simultaneously, reducing the data transmission overhead by over 50% while ensuring high data confidentiality and usability. Furthermore, we provide a suite of protocols regarding device pairing, dual-factor authentication, and accountability-enabled access. The security analysis and performance evaluation show the validity and efficiency of the proposed scheme

    Recent Advancements on Symmetric Cryptography Techniques -A Comprehensive Case Study

    Get PDF
    Now a day2019;s Cryptography is one of the broad areas for researchers; because of the conventional block cipher has lost its potency due to the sophistication of modern systems that can break it by brute force. Due to its importance, several cryptography techniques and algorithms are adopted by many authors to secure the data, but still there is a scope to improve the previous approaches. For this necessity, we provide the comprehensive survey which will help the researchers to provide better techniques

    Iris Recognition Approach for Preserving Privacy in Cloud Computing

    Get PDF
    Biometric identification systems involve securing biometric traits by encrypting them using an encryption algorithm and storing them in the cloud. In recent decades, iris recognition schemes have been considered one of the most effective biometric models for identifying humans based on iris texture, due to their relevance and distinctiveness. The proposed system focuses on encrypting biometric traits. The user’s iris feature vector is encrypted and stored in the cloud. During the matching process, the user’s iris feature vector is compared with the one stored in the cloud. If it meets the threshold conditions, the user is authenticated. Iris identification in cloud computing involves several steps. First, the iris image is pre-processed to remove noise using the Hough transform. Then, the pixel values are normalized, Gabor filters are applied to extract iris features. The features are then encrypted using the AES 128-bit algorithm. Finally, the features of the test image are matched with the stored features on the cloud to verify authenticity. The process ensures the privacy and security of the iris data in cloud storage by utilizing encryption and efficient image processing techniques. The matching is performed by setting an appropriate threshold for comparison. Overall, the approach offers a significant level of safety, effectiveness, and accuracy

    Information Security Using DNA Sequences

    Get PDF
       يعد أمن المعلومات من المواضيع المهمة، ويرجع ذلك أساسًا إلى النمو الهائل في استخدام الإنترنت على مدى السنوات القليلة الماضية. نتيجة لهذا النمو، كانت هناك حالات وصول غير مصرح به، والتي تم تقليلها بفضل "استخدام مجموعة من بروتوكولات الاتصال الآمن، مثل التشفير وإخفاء البيانات". باستخدام القدرات الجزيئية الحيوية للحمض النووي، ازداد استخدام الحمض النووي كناقل للتشفير وإخفاء البيانات في السنوات الأخيرة. أثار إدراك أن الحمض النووي قد يعمل كوسيط نقل أثار هذه الحركة. في هذه الدراسة، نفحص أولاً ونلخص بإيجاز تطور نظام ترميز الحمض النووي الحالي. بعد ذلك، يتم تصنيف الطرق العديدة التي تم بها استخدام الحمض النووي لتحسين تقنيات التشفير. تمت مناقشة مزايا وعيوب هذه الخوارزميات وأحدث التطورات في تقنيات التشفير القائم على الحمض النووي. أخيرًا، نقدم أفكارنا حول المستقبل المحتمل لخوارزميات التشفير القائمة على الحمض النووي.Information security is a significant cause for concern, mainly because of the explosive growth in internet usage over the last few years. Due to this growth, there have been occurrences of unauthorized access, which have been reduced thanks to “using a range of secure communication protocols, such as encryption and data concealment”. Using DNA's bio-molecular capabilities, the usage of DNA as a carrier for encryption and data concealing has increased in recent years. The realization that DNA may function as a transport medium sparked this movement. In this study, we first examine and briefly outline the evolution of the present DNA coding system. After that, the several ways DNA has been used to enhance encryption techniques are categorized. The benefits and drawbacks of these algorithms and the most recent advancements in DNA-based encryption techniques are discussed. Finally, we provide our thoughts on the potential future of DNA-based encryption algorithms. &nbsp

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Low-power emerging memristive designs towards secure hardware systems for applications in internet of things

    Get PDF
    Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-memory computing (IMC), but there is a rising interest in using memristive technologies for security applications in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-power design techniques based on emerging memristive technology for hardware security primitives/systems are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing, their application-level impacts on the novel implementations of secret key generation, crypto functions and machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security. This review article aims to help researchers to explore security solutions, to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs

    Wireless body area network revisited

    Get PDF
    Rapid growth of wireless body area networks (WBANs) technology allowed the fast and secured acquisition as well as exchange of vast amount of data information in diversified fields. WBANs intend to simplify and improve the speed, accuracy, and reliability of communica-tions from sensors (interior motors) placed on and/or close to the human body, reducing the healthcare cost remarkably. However, the secu-rity of sensitive data transfer using WBANs and subsequent protection from adversaries attack is a major issue. Depending on the types of applications, small and high sensitive sensors having several nodes obtained from invasive/non-invasive micro- and nano- technology can be installed on the human body to capture useful information. Lately, the use of micro-electro-mechanical systems (MEMS) and integrated circuits in wireless communications (WCs) became widespread because of their low-power operation, intelligence, accuracy, and miniaturi-zation. IEEE 802.15.6 and 802.15.4j standards have already been set to specifically regulate the medical networks and WBANs. In this view, present communication provides an all-inclusive overview of the past development, recent progress, challenges and future trends of security technology related to WBANs
    corecore