62 research outputs found

    IEEE 802.11ax: challenges and requirements for future high efficiency wifi

    Get PDF
    The popularity of IEEE 802.11 based wireless local area networks (WLANs) has increased significantly in recent years because of their ability to provide increased mobility, flexibility, and ease of use, with reduced cost of installation and maintenance. This has resulted in massive WLAN deployment in geographically limited environments that encompass multiple overlapping basic service sets (OBSSs). In this article, we introduce IEEE 802.11ax, a new standard being developed by the IEEE 802.11 Working Group, which will enable efficient usage of spectrum along with an enhanced user experience. We expose advanced technological enhancements proposed to improve the efficiency within high density WLAN networks and explore the key challenges to the upcoming amendment.Peer ReviewedPostprint (author's final draft

    A PERFORMANCE ANALYSIS OF IEEE 802.11ax NETWORKS

    Get PDF
    The paper is focused on the forthcoming IEEE 802.11ax standard and its influence on Wi-Fi networks performance. The most important features dedicated to improve transmission effectiveness are presented. Furthermore, the simulation results of a new transmission modes are described. The comparison with the legacy IEEE 802.11n/ac standards shows that even partial implementation of a new standard should bring significant throughput improvements

    Reinforcement-Learning-Enabled Massive Internet of Things for 6G Wireless Communications

    Get PDF
    Recently, extensive research efforts have been devoted to developing beyond fifth generation (B5G), also referred to as sixth generation (6G) wireless networks aimed at bringing ultra-reli-able low-latency communication services. 6G is expected to extend 5G capabilities to higher communication levels where numerous connected devices and sensors can operate seamlessly. One of the major research focuses of 6G is to enable massive Internet of Things (mIoT) applications. Like Wi-Fi 6 (IEEE 802.11ax), forthcoming wireless communication networks are likely to meet massively deployed devices and extremely new smart applications such as smart cities for mIoT. However, channel scarcity is still present due to a massive number of connected devices accessing the common spectrum resources. With this expectation, next-generation Wi-Fi 6 and beyond for mIoT are anticipated to have inherent machine intelligence capabilities to access the optimum channel resources for their performance optimization. Unfortunately, current wireless communication network standards do not support the ensuing needs of machine learning (ML)-aware frameworks in terms of resource allocation optimization. Keeping such an issue in mind, we propose a reinforcement-learning-based, one of the ML techniques, a framework for a wireless channel access mechanism for IEEE 802.11 standards (i.e., Wi-Fi) in mIoT. The proposed mechanism suggests exploiting a practically measured channel collision probability as a collected dataset from the wireless environment to select optimal resource allocation in mIoT for upcoming 6G wireless communications

    Usage of Network Simulators in Machine-Learning-Assisted 5G/6G Networks

    Full text link
    Without any doubt, Machine Learning (ML) will be an important driver of future communications due to its foreseen performance when applied to complex problems. However, the application of ML to networking systems raises concerns among network operators and other stakeholders, especially regarding trustworthiness and reliability. In this paper, we devise the role of network simulators for bridging the gap between ML and communications systems. In particular, we present an architectural integration of simulators in ML-aware networks for training, testing, and validating ML models before being applied to the operative network. Moreover, we provide insights on the main challenges resulting from this integration, and then give hints discussing how they can be overcome. Finally, we illustrate the integration of network simulators into ML-assisted communications through a proof-of-concept testbed implementation of a residential Wi-Fi network
    corecore