1,497 research outputs found

    Measurement of Micro-bathymetry with a GOPRO Underwater Stereo Camera Pair

    Get PDF
    A GO-PRO underwater stereo camera kit has been used to measure the 3D topography (bathymetry) of a patch of seafloor producing a point cloud with a spatial data density of 15 measurements per 3 mm grid square and an standard deviation of less than 1 cm A GO-PRO camera is a fixed focus, 11 megapixel, still-frame (or 1080p high-definition video) camera, whose small form-factor and water-proof housing has made it popular with sports enthusiasts. A stereo camera kit is available providing a waterproof housing (to 61 m / 200 ft) for a pair of cameras. Measures of seafloor micro-bathymetrycapable of resolving seafloor features less than 1 cm in amplitude were possible from the stereoreconstruction. Bathymetric measurements of this scale provide important ground-truth data and boundary condition information for modeling of larger scale processes whose details depend on small-scale variations. Examples include modeling of turbulent water layers, seafloor sediment transfer and acoustic backscatter from bathymetric echo sounders

    Deep Neural Network Architectures and Learning Methodologies for Classification and Application in 3D Reconstruction

    Get PDF
    In this work we explore two different scenarios of 3D reconstruction. The first, urban scenes, is approached using a deep learning network trained to identify structurally important classes within aerial imagery of cities. The network was trained using data taken from ISPRS benchmark dataset of the city of Vaihingen. Using the segmented maps generated by the network we can proceed to more accurately reconstruct the scenes by a process of clustering and then class specific model generation. The second scenario is that of underwater scenes. We use two separate networks to first identify caustics and then remove them from a scene. Data was generated synthetically as real world datasets for this subject are extremely hard to produce. Using the generated caustic free image we can then reconstruct the scene with more precision and accuracy through a process of structure from motion. We investigate different deep learning architectures and parameters for both scenarios. Our results are evaluated to be efficient and effective by comparing them with online benchmarks and alternative reconstruction attempts. We conclude by discussing the limitations of problem specific datasets and our potential research into the generation of datasets through the use of Generative-Adverserial-Networks

    Employing Feedback to Filter Caustic Waves in Underwater Scenes in Motion

    Get PDF
    A real-time approach for removing sunlight flickers from subaquatic scenarios captured in videos is presented. For this end, a de-flickering filter is designed. The start point is a moving landscape scene. Essentially, the filtering approach is based on morphological characteristics of the caustic waves. It constructs an a-priori de-flickered image which is afterwards enhanced. The algorithm employs feedback of optical flow fields and brightness in order to predict a one-step-ahead value of the brightness.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Employing Feedback to Filter Caustic Waves in Underwater Scenes in Motion

    Get PDF
    A real-time approach for removing sunlight flickers from subaquatic scenarios captured in videos is presented. For this end, a de-flickering filter is designed. The start point is a moving landscape scene. Essentially, the filtering approach is based on morphological characteristics of the caustic waves. It constructs an a-priori de-flickered image which is afterwards enhanced. The algorithm employs feedback of optical flow fields and brightness in order to predict a one-step-ahead value of the brightness.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    A new 3-D modelling method to extract subtransect dimensions from underwater videos

    Get PDF
    Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera set-up and available instruments, different methods of surface measurement are applied, which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransect dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (ultra short baseline, USBL) and bottom tracking (Doppler velocity log, DVL). 3-D model building and scaling was successfully conducted on all three tested set-ups and the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and bottom tracking unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20 % longer than those derived from acoustic positioning due to the higher spatial resolution and the inclusion of slope. On a high relief wall bottom tracking and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for accurate determination of video subtransect dimensions

    3D Recording and Interpretation for Maritime Archaeology

    Get PDF
    This open access peer-reviewed volume was inspired by the UNESCO UNITWIN Network for Underwater Archaeology International Workshop held at Flinders University, Adelaide, Australia in November 2016. Content is based on, but not limited to, the work presented at the workshop which was dedicated to 3D recording and interpretation for maritime archaeology. The volume consists of contributions from leading international experts as well as up-and-coming early career researchers from around the globe. The content of the book includes recording and analysis of maritime archaeology through emerging technologies, including both practical and theoretical contributions. Topics include photogrammetric recording, laser scanning, marine geophysical 3D survey techniques, virtual reality, 3D modelling and reconstruction, data integration and Geographic Information Systems. The principal incentive for this publication is the ongoing rapid shift in the methodologies of maritime archaeology within recent years and a marked increase in the use of 3D and digital approaches. This convergence of digital technologies such as underwater photography and photogrammetry, 3D sonar, 3D virtual reality, and 3D printing has highlighted a pressing need for these new methodologies to be considered together, both in terms of defining the state-of-the-art and for consideration of future directions. As a scholarly publication, the audience for the book includes students and researchers, as well as professionals working in various aspects of archaeology, heritage management, education, museums, and public policy. It will be of special interest to those working in the field of coastal cultural resource management and underwater archaeology but will also be of broader interest to anyone interested in archaeology and to those in other disciplines who are now engaging with 3D recording and visualization

    High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology

    Get PDF
    Documenting underwater archaeological sites is an extremely challenging problem. Sites covering large areas are particularly daunting for traditional techniques. In this paper, we present a novel approach to this problem using both an autonomous underwater vehicle (AUV) and a diver-controlled stereo imaging platform to document the submerged Bronze Age city at Pavlopetri, Greece. The result is a three-dimensional (3D) reconstruction covering 26,600 m2 at a resolution of 2 mm/pixel, the largest-scale underwater optical 3D map, at such a resolution, in the world to date. We discuss the advances necessary to achieve this result, including i) an approach to color correct large numbers of images at varying altitudes and over varying bottom types; ii) a large-scale bundle adjustment framework that is capable of handling upward of 400,000 stereo images; and iii) a novel approach to the registration and rapid documentation of an underwater excavations area that can quickly produce maps of site change. We present visual and quantitative comparisons to the authors' previous underwater mapping approaches

    Underwater Exploration and Mapping

    Get PDF
    This paper analyzes the open challenges of exploring and mapping in the underwater realm with the goal of identifying research opportunities that will enable an Autonomous Underwater Vehicle (AUV) to robustly explore different environments. A taxonomy of environments based on their 3D structure is presented together with an analysis on how that influences the camera placement. The difference between exploration and coverage is presented and how they dictate different motion strategies. Loop closure, while critical for the accuracy of the resulting map, proves to be particularly challenging due to the limited field of view and the sensitivity to viewing direction. Experimental results of enforcing loop closures in underwater caves demonstrate a novel navigation strategy. Dense 3D mapping, both online and offline, as well as other sensor configurations are discussed following the presented taxonomy. Experimental results from field trials illustrate the above analysis.acceptedVersio
    • …
    corecore