18 research outputs found

    The development of sub-25 nm III-V High Electron Mobility Transistors

    Get PDF
    High Electron Mobility Transistors (HEMTs) are crucially important devices in microwave circuit applications. As the technology has matured, new applications have arisen, particularly at millimetre-wave and sub-millimetre wave frequencies. There now exists great demand for low-visibility, security and medical imaging in addition to telecommunications applications operating at frequencies well above 100 GHz. These new applications have driven demand for high frequency, low noise device operation; key areas in which HEMTs excel. As a consequence, there is growing incentive to explore the ultimate performance available from such devices. As with all FETs, the key to HEMT performance optimisation is the reduction of gate length, whilst optimally scaling the rest of the device and minimising parasitic extrinsic influences on device performance. Although HEMTs have been under development for many years, key performance metrics have latterly slowed in their evolution, largely due to the difficulty of fabricating devices at increasingly nanometric gate lengths and maintaining satisfactory scaling and device performance. At Glasgow, the world-leading 50 nm HEMT process developed in 2003 had not since been improved in the intervening five years. This work describes the fabrication of sub-25 nm HEMTs in a robust and repeatable manner by the use of advanced processing techniques: in particular, electron beam lithography and reactive ion etching. This thesis describes firstly the development of robust gate lithography for sub-25 nm patterning, and its incorporation into a complete device process flow. Secondly, processes and techniques for the optimisation of the complete device are described. This work has led to the successful fabrication of functional 22 nm HEMTs and the development of 10 nm scale gate pattern transfer: simultaneously some of the shortest gate length devices reported and amongst the smallest scale structures ever lithographically defined on III-V substrates. The first successful fabrication of implant-isolated planar high-indium HEMTs is also reported amongst other novel secondary processes

    Study of High-k Dielectrics and their Interfaces on Semiconductors for Device Applications

    Get PDF
    This thesis has focused on two emerging applications of high-k dielectrics in Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) and in Metal-InsulatorSemiconductor High Electron Mobility Transistors (MIS-HEMTs). The key aim has been to propose the best routes for passivation of semiconductor/high-k oxide interfaces by investigating the band alignments and interface properties of several oxides, such as Tm2O3, Ta2O5, ZrO2, Al2O3 and MgO, deposited on different semiconductors: Si, Ge, GaN, InGaAs and InGaSb. The electrical characterisation of fabricated MIS capacitor and (MIS)-HEMT devices have also been performed. Thulium silicate (TmSiO) has been identified as a promising candidate for integration as interfacial layer (IL) in HfO2/TiN MOSFETs. The physical properties of Tm2O3/IL/Si interface have been elucidated, where IL (TmSiO) has been formed using different post-deposition annealing (PDA) temperatures, from 550 to 750 ยฐC. It has been found that the best-scaled stack (sub-nm IL) is formed at 550 ยฐC PDA with a graded interface layer and a strong SiOx (Si 3+) component. A large valence band offset (VBO) of 2.8 eV and a large conduction band offset (CBO) of 1.9 eV have been derived for Tm2O3/Si by X-ray photoelectron spectroscopy (XPS) and variable angle spectroscopic ellipsometry. Further increase of device performance can be achieved by replacing Si with GaN for high frequency, high power and high-temperature operation. In this thesis, several GaN cleaning procedures have been considered: 30% NH4OH, 20% (NH4)2S, and 37% HCl. It has been found that the HCl treatment shows the lowest oxygen contamination and Garich surface, and hence has been used prior sputtering of Ta2O5, Al2O3, ZrO2 and MgO on GaN. The large VBOs of 1.1 eV and 1.2 eV have been derived for Al2O3 and MgO on GaN respectively, using XPS and Krautโ€™s method; the corresponding CBOs are 2.0 eV and 2.8 eV respectively, taking into account the band gaps of Al2O3 (6.5 eV) and MgO (7.4 eV) determined from XPS O 1s electron energy spectra. The lowest leakage currents were obtained for devices with Al2O3 and MgO, i.e. 5.3 ร—10-6 A/cm2 and 3.2 ร—10-6 A/cm2 at 1 V, respectively in agreement with high band offsets (> 1 eV). Furthermore, the effect of different surface treatments (HCl, O2 plasma and 1-Octadecanethiol (ODT)) prior to atomic layer deposition of Al2O3 on the GaN/AlGaN/GaN heterostructure has been investigated. The MIS-HEMTs fabricated using the low-cost ODT GaN surface treatment have been found to exhibit superior performance for power switching applications such as a low threshold voltage, VT of -12.3 V, hysteresis of 0.12 V, a small subthreshold voltage slope (SS) of 73 mV/dec, and a low density of interface states, Dit of 3.0 x10^12 cm-2eV-1. A comprehensive novel study of HfO2/InGaAs and Al2O3/InGaSb interfaces have also been conducted for use in III-V based MOSFETs. The addition of the plasma H2/TMA/H2 pre-cleaning has been found to be very effective in recovering etch damage on InGaAs, especially for (110) orientation, and led to the improvement of electrical characteristics. Furthermore, the combination of H2 plasma exposure and forming gas anneal yielded significantly improved metrics for Al2O3/InGaSb over the control HCltreated sample, with the 150 W plasma treatment giving both the highest capacitance and the lowest stretch out

    High mobility III-V compound semiconductors for advanced transistor applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Silicon Integrated HBV Frequency Multipliers for THz Applications

    Get PDF
    This thesis deals with integrated varactor diode circuits for terahertz (THz) applications. In particular hybrid, monolithic microwave integrated circuits (MMICs), and heterogeneous integration are explored for frequency multiplier applications. Each of these techniques addresses different requirements for high power and high frequency electronic circuits. Namely: high thermal conductivity (ฮบ) of substrates for enhanced power capabilities, process reproducibility of small diode and circuit component dimensions, and finally machining properties for enhanced robustness and functionality. A fixed tuned 175 GHz frequency quintupler with a flip-chip assembled Heterostructure Barrier Varactor (HBV) diode was demonstrated. The microstrip circuit was fabricated on AlN substrate - a material with high thermal conductivity. The device delivers 60 mW of output power corresponding to 6.3 % conversion efficiency. The heteregeneous integration of In0.53Ga0.47As/Al0.48Ga0.52As HBV material structure onto silicon and silicon-on-insulator (SOI) substrate was done in a process employing low temperature plasma assisted wafer bonding. Using this technology a frequency tripler (ร—3) for W-band (75-110 GHz) and frequency quintupler (ร—5) for 474 GHz were fabricated. The performance of the W-band frequency tripler delivering more than 180 mW of output power is comparable to the identical design in InP MMIC technology. The 474 GHz frequency quintupler circuit was fabricated on SOI substrate, hence robust and unform 20 ฮผm thick circuits were achieved. This multiplier delivers 2.8 mW of output power, and it represents the highest frequency of operation for HBV-based frequency multipliers. By enabling the integration of compound semiconductors onto a silicon substrate, an increase in the performance and functionality of the device is achieved. Moreover, due to good thermal and mechanical properties of silicon, as well as established process technology for this material, a new generation of THz monolithic integrated circuits is possible

    Journal of Telecommunications and Information Technology, 2007, nr 2

    Get PDF
    kwartalni

    Self-Aligned Source and Drain Contact Engineering for High Mobility III-V Transistor

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    III-V์กฑ ํ™”ํ•ฉ๋ฌผ ๋ฐ˜๋„์ฒด ํ„ฐ๋„ ์ „๊ณ„ ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ตœ์šฐ์˜.๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ธฐ์ˆ ์˜ ๋†€๋ผ์šด ๋ฐœ์ „์€ 10 nm ์ดํ•˜์˜ ๋…ผ๋ฆฌ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ์ƒ์šฉํ™”ํ–ˆ๋‹ค. ๊ฒŒ์ดํŠธ ๊ธธ์ด ์Šค์ผ€์ผ๋ง์€ ๋ชจ์ŠคํŽซ (MOSFET)์˜ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์˜ ํฐ ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ์˜ ๋ฌผ๋ฆฌ์  ํ•œ๊ณ„์™€ ๋ˆ„์„ค ์ „๋ฅ˜ ์ œ์–ด์™€ ๊ฐ™์€ ๋ช‡ ๊ฐ€์ง€ ๋ฌธ์ œ์— ์ง๋ฉดํ–ˆ๋‹ค. ๋ชจ์ŠคํŽซ์˜ ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๋Š” ํ˜„์žฌ ์ „์†ก ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ํ•œ๊ณ„๋กœ ์ธํ•ด 60 mV/dec ๋ฏธ๋งŒ์˜ ์ž„๊ณ„๊ฐ’ ๊ธฐ์šธ๊ธฐ (SS)์— ๋„๋‹ฌํ•  ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. Si ํ„ฐ๋„๋ง ์ „๊ณ„ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ (TFET)์˜ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ์ž๋“ค์ด 60 mV/dec ๋ฏธ๋งŒ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ณ ํ–ˆ์ง€๋งŒ, Si ๋™์ข… ์ ‘ํ•ฉ ํ„ฐ๋„๋ง ์ „๊ณ„ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” ๊ฐ„์ ‘ ๋Œ€์—ญ ๊ฐญ ๋ฌผ์งˆ์˜ ํ„ฐ๋„๋ง ํ™•๋ฅ ์ด ๋‚ฎ์•„ ์ „๋ฅ˜์ƒ์œผ๋กœ ๋ถˆ์ถฉ๋ถ„ํ•˜๋‹ค. P-I ์ ‘ํ•ฉ๋ถ€์—์„œ์˜ ํ„ฐ๋„๋ง ํ™•๋ฅ ์€ ํ„ฐ๋„๋ง ์ „๊ณ„ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๋™์ž‘์ „๋ฅ˜์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์— ์ž‘์€ ์ง์ ‘ ๋ฐด๋“œ๊ฐญ์„ ๊ฐ€์ง€๊ณ  ์œ ํšจ์งˆ๋Ÿ‰์ด ๋‚ฎ์€ III-V ํ™”ํ•ฉ๋ฌผ ๋ฐ˜๋„์ฒด๋Š” ์ž„๊ณ„๊ฐ’ ๊ธฐ์šธ๊ธฐ๊ฐ€ 60 mV/dec ๋ฏธ๋งŒ์ธ ๋†’์€ ํ„ฐ๋„๋ง ์ „๋ฅ˜๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ์œ ๋งํ•œ ์žฌ๋ฃŒ์ด๋‹ค. ๋˜ํ•œ ๋ฐด๋“œ ์˜คํ”„์…‹์ด ๋‹ค๋ฅธ ์žฌ๋ฃŒ๋ฅผ ์„ ํƒํ•จ์œผ๋กœ์จ, ์Šคํƒœ๊ฑฐ๋“œ ๋˜๋Š” ๋ธŒ๋กœํฐ ๊ฐญ์„ ํ˜•์„ฑํ•จ์œผ๋กœ์จ ํ„ฐ๋„๋ง ์ „๋ฅ˜๋ฅผ ํ˜„์ €ํ•˜๊ฒŒ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. P-I ์ ‘ํ•ฉ๋ถ€์˜ ํ„ฐ๋„๋ง์ด ํ„ฐ๋„ ์ „๊ณ„ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ ์†Œ์ž์˜ ์ „๋ฅ˜ ๊ณต๊ธ‰์›์ด๊ธฐ ๋•Œ๋ฌธ์— ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์ด ๋ถ„์ž๋น” ์—ํ”ผํƒ์‹œ (MBE) ๋ฐฉ์‹์œผ๋กœ ์„ฑ์žฅํ•œ pํ˜• ๋„ํ•‘ ๋†๋„๊ฐ€ ๋†’์€ III-V ์›จ์ดํผ๋กœ ์ œ์กฐ๋œ ํ„ฐ๋„ ์ „๊ณ„ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์„ฑ๋Šฅ์„ ๋ณด๊ณ ํ•ด์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋†’์€ ๋„ํ•‘ ๋†๋„์™€ ๊ฐ€ํŒŒ๋ฅธ ๋„ํŽ€ํŠธ ํ”„๋กœํŒŒ์ผ์„ ๊ฐ–๋Š” pํ˜• InGaAs๋ฅผ ์„ฑ์žฅํ•˜๊ธฐ๊ฐ€ ๊นŒ๋‹ค๋กญ๊ธฐ ๋•Œ๋ฌธ์— ๊ธˆ์†-์œ ๊ธฐ ํ™”ํ•™ ๊ธฐ์ƒ ์ฆ์ฐฉ (MOCVD) ์„ฑ์žฅ ์—ํ”ผํƒ์…œ ์ธต์—์„œ ์ œ์กฐ๋œ InGaAs TFET ์†Œ์ž๋Š” ๊ฑฐ์˜ ๋ณด๊ณ ๋˜์ง€ ์•Š์•˜๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ์—ฐ๊ตฌ๋Š” TFET ์†Œ์ž ์ œ์ž‘์„ ์œ„ํ•œ ๊ณ ํ’ˆ์งˆ ์—ํ”ผํƒ์…œ ์ธต์„ ์„ฑ์žฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ MOCVD ์„ฑ์žฅ ๊ธฐ์ˆ ์„ ์„ ๋ณด์ธ๋‹ค. ์ข…๋ž˜์˜ TFET ์†Œ์ž์— ๋Œ€ํ•ด์„œ๋Š” ๋™์ข… ์ ‘ํ•ฉ p-i-n InGaAs ์—ํ”ผํƒ์…œ์ธต์„ ์„ฑ์žฅ์‹œํ‚ค๊ณ , p++-Ge/i-InGaAs/n+-InAs ๋‚˜๋…ธ์„ ์„ ์„ฑ์žฅ์‹œ์ผœ TFET ์†Œ์ž ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. MOCVD์— ์˜ํ•ด ์„ฑ์žฅํ•œ ์—ํ”ผํƒ์‹œ ์ธต์—์„œ ์ œ์กฐ๋œ TFET ์†Œ์ž์˜ ์ž ์žฌ์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ํ‰ํŒ๊ณผ ๋‚˜๋…ธ์„  ์—ํ”ผํƒ์…œ ์ธต์—์„œ ์ œ์ž‘๋œ TFET ์†Œ์ž์˜ ์„ฑ๋Šฅ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. MOCVD ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ณ ํ’ˆ์งˆ์˜ ์—ํ”ผํƒ์…œ ์ธต์ด ์„ฑ์žฅ๋˜์—ˆ๋‹ค. MBE์— ๋น„ํ•ด ๊ฐ€์„ฑ๋น„, ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰, ์šฐ์ˆ˜ํ•œ ๊ฒฐ์ • ํ’ˆ์งˆ์ด MOCVD์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์ด๋‹ค. ์ด์— ์—ฌ๋Ÿฌ ์„ฑ์žฅ ์กฐ๊ฑด์„ ๋ณ€ํ™”์‹œํ‚ค๋ฉด์„œ InP (001) ๊ธฐํŒ ์œ„๋กœ InGaAs ํ•„๋ฆ„์ธต์˜ ์„ฑ์žฅ์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์†Œ์Šค ์œ ๋Ÿ‰, ์˜จ๋„ ๋ฐ V/III ๋น„์œจ์ด ์„ฑ์žฅ๋œ InGaAs ํ•„๋ฆ„์ธต์˜ ํ’ˆ์งˆ์— ๋ผ์น˜๋Š” ์˜ํ–ฅ์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ๋˜ํ•œ MOCVD InGaAs ์„ฑ์žฅ ๊ธฐ์ˆ ์—์„œ nํ˜• ๋ฐ pํ˜• ๋„ํŽ€ํŠธ์˜ ๋†๋„๋ฅผ ๋†’์ด๋Š” ๊ฒƒ๊ณผ ๋„ํŽ€ํŠธ ํ”„๋กœํŒŒ์ผ์„ ๊ฐ€ํŒŒ๋ฅด๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ด ๋„์ „์ ์ด๋ฏ€๋กœ ํƒ„์†Œ ๋ฐ ํ…”๋ฃจ๋ฅจ ๋„ํ•‘์„ ํ†ตํ•ด ๊ฐ€ํŒŒ๋ฅธ ๋„ํŽ€ํŠธ ํ”„๋กœํŒŒ์ผ์„ ๋ณด์ด๋Š” ๊ณ ๋†๋„์˜ pํ˜• ๋ฐ nํ˜• InGaAs์ธต์„ ์„ฑ์žฅํ•˜์˜€๋‹ค. ์„ฑ์žฅ๋œ ์—ํ”ผํƒ์…œ ํ•„๋ฆ„์ธต์€ TFET ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. TFET ์†Œ์ž ์ œ์ž‘ ์ „์— ์šฐ์„  TFET ์†Œ์ž์˜ ์ฑ„๋„ ๊ธธ์ด๊ฐ€ ์ „๊ธฐ์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์— ์˜ํ•ด ์„ ํƒ๋˜์—ˆ๋‹ค. MOCVD๋ฅผ ์ด์šฉํ•˜์—ฌ ๋„ํ•‘ ํ”„๋กœํŒŒ์ผ์ด ๊ฐ€ํŒŒ๋ฅธ ๊ณ ํ’ˆ์งˆ์˜ ์ˆ˜์ง p-i-n ์—ํ”ผํ…์…œ ๊ตฌ์กฐ๊ฐ€ ํ•œ๋ฒˆ์— ์„ฑ์žฅ๋˜์—ˆ๋‹ค. ์—ํ”ผํƒ์…œ ์„ฑ์žฅ ํ›„์— TFET ์†Œ์ž๋Š” ์ˆ˜์ง ๋ฐฉํ–ฅ์˜ ์Šต์‹ ์‹๊ฐ์„ ํ†ตํ•ด ์ œ์ž‘๋˜์—ˆ๋‹ค. ์˜ด (Ohmic) ๊ณต์ •๊ณผ ์—์–ด๋ธŒ๋ฆฟ์ง€ ๊ณต์ •๋„ ์†Œ์ž ์ œ์ž‘์„ ์œ„ํ•ด ์ตœ์ ํ™”๋˜์—ˆ๋‹ค. Pํ˜• ๋„ํ•‘ ๋†๋„์— ๋Œ€ํ•œ ์˜ํ–ฅ๊ณผ MOCVD ์„ฑ์žฅ ์ค‘์— ์ƒ๊ธด ์ „์œ„์— ๋Œ€ํ•œ ์˜ํ–ฅ์ด TFET ์„ฑ๋Šฅ์„ ํ†ตํ•˜์—ฌ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ œ์กฐ๋œ TFET ์†Œ์ž๋Š” 60 mV/dec์— ๊ฐ€๊นŒ์šด SS์™€ ๊ดœ์ฐฎ์€ ์˜จ/์˜คํ”„ ์ „๋ฅ˜ ๋น„์œจ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋Š”๋ฐ, ์ด๋Š” ์ตœ์ดˆ๋กœ ๋ณด๊ณ ๋˜๋Š” MBE์—์„œ ์„ฑ์žฅ๋œ ์›จ์ดํผ์—์„œ ๋งŒ๋“ค์–ด์ง„ TFET ์†Œ์ž์™€ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ์†Œ์ž์ด๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ๊ณ ํ’ˆ์งˆ์˜ MOCVD๋กœ ์„ฑ์žฅํ•œ III-V TFET ์†Œ์ž์˜ ์–‘์‚ฐ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ๋‹ค์Œ ๋ถ€๋ถ„์€ ๋‚˜๋…ธ์„  TFET ์ œ์ž‘์ด๋‹ค. ์ „์ž์†Œ์ž ์ œ์ž‘์„ ์œ„ํ•œ III-V ๋‚˜๋…ธ์„  ์„ฑ์žฅ์—๋Š” ๋ช‡ ๊ฐ€์ง€ ์žฅ์ ์ด ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์›จ์ดํผ์— ๋‹ค์–‘ํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ํ—คํ…Œ๋กœ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ํฐ ์žฅ์ ์ด๋‹ค. ์ถฉ๋ถ„ํžˆ ์ž‘์€ ์ง๊ฒฝ์œผ๋กœ ์„ฑ์žฅ๋œ ๋‚˜๋…ธ์„ ์€ ์›จ์ดํผ์™€ ๋‹ค๋ฅธ ๊ฒฉ์ž ์ƒ์ˆ˜๋ฅผ ๊ฐ€์ง€๋”๋ผ๋„ ์ „์œ„ ์—†๋Š” ๊ณ„๋ฉด์„ ๊ฐ€์ง„๋‹ค. ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ๋ฐด๋“œ ์ •๋ ฌ์ด ๋งŒ๋“ค์–ด์งˆ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” TFET์˜ ํ„ฐ๋„๋ง ์ •๋ฅ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐ์— ์žˆ์–ด ์ค‘์š”ํ•œ ์š”์†Œ์ด๋‹ค. ๋˜ํ•œ ์ง๊ฒฝ์ด ์ž‘์€ ๋‚˜๋…ธ์„ ์€ ์นฉ์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์„ ๋•Œ ๋” ๋‚˜์€ ์†Œ์ž ๋ฐ€๋„, ํ–ฅ์ƒ๋œ ๊ฒŒ์ดํŠธ ์ œ์–ด์„ฑ, ์„ฑ์žฅ ์‹œ๊ฐ„ ๋‹จ์ถ•์„ ํ†ตํ•œ ์ฒ˜๋ฆฌ๋Ÿ‰ ํ–ฅ์ƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. InGaAs ๋‚˜๋…ธ์„ ์€ ์„ ํƒ์  ์˜์—ญ ์„ฑ์žฅ๋ฒ• (SAG) ์„ฑ์žฅ๋˜์—ˆ๋‹ค. ํ•˜๋“œ๋งˆ์Šคํฌ ์ธต์œผ๋กœ์„œ InP (111)B ๋ฐ Ge (111) ์›จ์ดํผ์— SiO2 ์ธต์ด ์ฆ์ฐฉ ๋˜์—ˆ๋‹ค. ์„ฑ์žฅ ๋ชจ๋“œ๊ฐ€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์— InGaAs ํ‰ํŒ ํ•„๋ฆ„์ธต ์„ฑ์žฅ๊ณผ๋Š” ํฌ๊ฒŒ ๋‹ค๋ฅธ ์„ฑ์žฅ ์กฐ๊ฑด์„ ํ…Œ์ŠคํŠธํ•˜์˜€๋‹ค. ๋‚˜๋…ธ์„ ์˜ ์„ ํƒ์  ์„ฑ์žฅ์€ ์˜จ๋„, V/III ๋น„์œจ ๋ฐ ์†Œ์Šค ์œ ๋Ÿ‰์„ ์ตœ์ ํ™”ํ•˜์—ฌ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ InP (111)B์™€ Ge (111) ์›จ์ดํผ์—์„œ InAs์™€ InGaAs ๋‚˜๋…ธ์„ ์„ ์„ฑ๊ณต์ ์œผ๋กœ ์„ฑ์žฅ์‹œ์ผฐ๋‹ค. Pํ˜• ๋ฌผ์งˆ๋กœ๋Š” p++๋„ํ•‘๋œ Ge (111) ์›จ์ดํผ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ธํŠธ๋ฆฐ์‹ InGaAs์™€ InAs ๋‚˜๋…ธ์„ ์ด ๊ทธ ์œ„์— ์„ ํƒ์ ์œผ๋กœ ์„ฑ์žฅ๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์‹ค๋ฆฌ์ฝ˜ ๋„ํŽ€ํŠธ๋ฅผ ๊ฐ€์ง„ nํ˜• InAs ๋‚˜๋…ธ์„ ์ด ํ›„์†์ ์œผ๋กœ ์„ฑ์žฅ๋˜์—ˆ๋‹ค. ์„ฑ์žฅ๋œ ๋‚˜๋…ธ์„ ์€ ์ˆ˜์ง ๋‚˜๋…ธ์„  TFET์„ ์ œ์ž‘ํ•˜์—ฌ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋†’์€ ๋‹จ๊ณ„ ์ปค๋ฒ„๋ฆฌ์ง€์™€ ์–‘ํ˜ธํ•œ ์ธํ„ฐํŽ˜์ด์Šค ์ƒํƒœ ๋ฐ€๋„๋ฅผ ์œ„ํ•˜์—ฌ ALD HfO2 ๋ฐ ALD TiN ๊ณต์ •๊ณผ์ •์ด ์ตœ์ ํ™”๋˜์—ˆ๋‹ค. ๊ฐœ๋ฐœ๋œ ALD ๊ณต์ •์„ ์ ์šฉํ•จ์œผ๋กœ์จ ์ˆ˜์งํ˜• ๋‚˜๋…ธ์„  Ge/InGaAs ํ—คํ…Œ๋กœ ์ ‘ํ•ฉ TFET์˜ ๋™์ž‘์ด ์„ฑ๊ณต์ ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค.The remarkable development of lithography technology commercialized the sub-10 nm logic transistors. Gate length scaling is a large portion of the effort to reduce the power consumption of metal-oxide-semiconductor field-effect transistors (MOSFETs). However, this approach faces several problems, such as the physical limitation of lithography and leakage current control. The fundamental problem of MOSFETs is that they cannot reach subthreshold-slope (SS) below 60 mV/dec due to their current transport mechanism. Several researchers of Si tunneling field-effect transistors (TFETs) reported sub-60 mV/dec, but Si homo-junction TFETs show insufficient on-current due to the poor tunneling probability of indirect-band gap materials. As tunneling probability at the p-i junction influences the on-current of TFETs, III-V compound semiconductors, which have a direct small band gap and low effective masses, are the most promising materials to achieve high tunneling current with SS below 60 mV/dec. Also, the tunneling current can be remarkably increased by forming a staggered or broken gap by choosing materials with different band offsets. Since the tunneling at a p-i junction is the current source of TFET devices, many researchers have reported the performance of TFETs fabricated from III-V wafers with high p-type doping concentration grown by the molecular beam epitaxy (MBE) method. However, very few InGaAs TFET devices fabricated on MOCVD-grown epitaxial layers have been reported due to the challenging techniques for achieving p-type InGaAs with high doping concentration and steep dopant profile. Accordingly, this work demonstrates the metal-organic chemical vapor deposition (MOCVD) growth techniques to grow a high-quality epitaxial layer for TFET device fabrication. Homo-junction p-i-n InGaAs epitaxial layers were grown for conventional TFET devices, and hetero-junction p++-Ge/i-InGaAs/n+-InAs nanowires were grown to confirm the possibility of boosting the TFET device performance. The TFET device performance at both epitaxial layers was characterized to confirm the potential of TFET devices fabricated on the epitaxy layers grown by the MOCVD method. The high-quality epitaxial layers were grown using the MOCVD method. Compared to the MBE method, cost-effectiveness, high throughput, and excellent crystal quality are the significant advantages of the MOCVD method. The growth of InGaAs film layers on InP (001) substrate with several growth conditions was studied. The effects of source flow rate, temperature, and V/III ratio on the quality of grown InGaAs film layers were studied. As the high-concentration and steep dopant profile of n-type and p-type dopants are challenging in MOCVD InGaAs growth technique, carbon and tellurium doping techniques were introduced to achieve highly-doped p-type and n-type InGaAs layer with steep dopant profile. The grown epitaxial film layers were evaluated by fabricating the TFET device. Before the TFET device fabrication, the dimensions of the TFET device were selected by electrical simulation results of TFET devices with different structures. For TFET device fabrication, a high-quality vertical p-i-n epitaxial structure with a steep doping profile was successively formed by MOCVD. After epitaxial growth, the TFET devices were fabricated by the vertical top-down wet etching method. The ohmic process and air-bridge process were also optimized for device fabrication. The effect of p-type doping concentration and the dislocations formed during MOCVD growth was confirmed by TFET performance. The fabricated TFET devices showed SS of near-60 mV/dec and sound on/off current ratio, which was by far the first reported device comparable to TFET devices fabricated on the MBE-grown wafers. This result represents the possible mass-production of high-quality MOCVD-grown III-V TFET devices. The next part of this study is nanowire TFET fabrication. The growth of III-V nanowires for electronic device fabrication has several advantages. The significant advantage is that hetero-structures with various characteristics can be formed on various wafers. The nanowires grown by a sufficiently small diameter show a dislocation-free interface even if nanowires have a different lattice constant compared to the wafer. Various types of band-alignment can be formed, and this is a crucial factor in boosting the tunneling current of TFETs. Also, nanowires with a small diameter show better device density in a chip, improved gate controllability, and enhanced throughput by reducing growth time. The InGaAs nanowires were grown by the selective area growth (SAG) method. As a hard-mask layer, a SiO2 layer was deposited on InP (111)B and Ge (111) wafers. Growth conditions far different from InGaAs film layer growth were tested due to the different growth modes. Selective growth of nanowires was identified by optimizing temperature, V/III ratio, and source flow rate. As a result, InAs and InGaAs nanowires were successfully grown on InP (111)B and Ge (111) wafers. For p-type material, the p++-doped Ge (111) wafer was used. The intrinsic InGaAs and InAs nanowires were selectively grown on the patterned substrate. Finally, n-type InAs nanowires with silicon dopant were grown subsequently. The grown nanowires were evaluated by fabricating the vertical nanowire TFETs. ALD HfO2 and ALD TiN processes were optimized for high step coverage and good interface state density. By applying the developed ALD processes, a successful demonstration of vertical nanowire Ge/InGaAs hetero-junction TFET was observed.Contents List of Tables List of Figures Chapter 1. Introduction 1 1.1. Backgrounds 1 1.2. III-V TFETs for Low Power Device 5 1.3. Epitaxy of III-V Materials 12 1.4. Research Aims 17 1.5. References 20 Chapter 2. Epitaxial Growth of InGaAs on InP (001) Substrate 24 2.1. Introduction 24 2.2. Temperature Dependent Properties of Intrinsic-InGaAs on InP (001) Substrate 33 2.3. In-situ Doping Properties of InGaAs on InP (001) Substrate 37 2.4. Conclusion 51 2.5. References 52 Chapter 3. Demonstration of TFET Device Fabricated on InGaAs-on-InP (001) Substrate 56 3.1. Introduction 56 3.2. Simulation of Basic Operations of TFET Device 60 3.3. Process Optimization of TFET Fabrication 68 3.4. Process Flow 74 3.5. Characterization of TFETs Fabricated on MBE-grown and MOCVD-grown Wafers 78 3.6. Conclusion 96 3.7. References 97 Chapter 4. Selective Area Growth of In(Ga)As Nanowires 101 4.1. Introduction 101 4.2. Process Flow of Nanowire Growth 108 4.3. Impact of Different Growth Variables on the Growth of InAs Nanowires 113 4.4. Impact of Different Growth Variables on the Growth of InGaAs Nanowires 127 4.5. Conclusion 144 4.6. References 146 Chapter 5. Demonstration of Vertical Nanowire TFET 149 5.1. Introduction 149 5.2. Optimization of ALD HfO2 High-k Stack 152 5.3. Optimization of ALD TiN Gate Metal 169 5.4. Detailed Demonstration of Vertical Nanowire TFET Fabrication Processes 182 5.5. Characterization of Fabricated Vertical Nanowire TFETs 196 5.6. Conclusion 203 5.7. References 205 Chapter 6. Conclusions and Outlook 209 6.1. Conclusions 209 6.2. Outlook 211 Appendix. 213 A. n+-InAs Nanowire Doping Concentration Evaluation by TLM Method 213 B. n+-InAs Nanowire Doping Concentration Evaluation by C-V Method 219 C. References 205 Abstract in Korean 226 Research Achievements 230๋ฐ•
    corecore