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Abstract 

High Mobility III-V Compound Semiconductors  

For Advanced Transistor Applications 

by 

CHIN Hock Chun 

Doctor of Philosophy − Electrical and Computer Engineering 

National University of Singapore 

 

The continual geometrical scaling of Si MOSFET into nanoscale 

regime for improved device performance and density is rapidly approaching 

its fundamental limitations.  Fundamental changes to the materials and device 

structures are deemed to hold great promises for the evolution of future CMOS 

technologies.  High mobility III-V compound semiconductors have received 

renewed interest as alternative materials to replace conventional Si or strained 

Si channels and to be heterogeneously integrated on Si or silicon-on-insulator 

(SOI) substrates for advanced CMOS technology beyond the 22 nm 

technology node. 

To take full advantage of the III-V, a gate dielectric process technology 

that provides good interfacial properties is required.  In this thesis, effective 

and highly manufacturable passivation technology based on a multiple 

chamber MOCVD system was demonstrated.  The key characteristics of these 

new in-situ passivation technologies using silane (SiH4), silane and ammonia 

(SiH4+NH3), and post-gate dielectric deposition treatment in 

tetrafluoromethane (CF4) plasma were determined and identified.  Technology 

demonstrations in various III-V MOSFETs exhibit good transistor 
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characteristics.  This affirms the effectiveness of the designed concept for 

interface engineering for native oxide reduction. 

Further enhancement of III-V MOSFETs by the integration of in-situ 

doped lattice-mismatched S/D stressors for source/drain (S/D) doping and 

channel strain engineering is also investigated.  This work explores novel 

In0.53Ga0.47As N-channel MOSFET with in-situ doped In0.4Ga0.6As S/D 

regions.  The high S/D doping concentration, achieved by the in situ doping 

process, further reduces S/D series resistance (RSD) for additional performance 

improvement.  In addition, the lattice mismatch between In0.4Ga0.6As S/D and 

In0.53Ga0.47As channel is exploited to induce tensile strain in the channel for 

mobility enhancement.  

For achieving better electrostatic control than planar FETs, novel 

InGaAs multiple-gate FET (MuGFET) or FinFET for enhanced carrier 

mobility, and an epi-controlled retrograde-doped fin to suppress short channel 

effects is explored.  Transistor output characteristics with high saturation drain 

current and transconductance were obtained.  In addition, significant 

improvement in the short channel effects, such as drain-induced barrier 

lowering (DIBL), as compared to planar MOSFETs was achieved. 

In addition, a new method of forming GaAs on a Si-based substrate 

through selective migration-enhanced epitaxy (MEE) of GaAs on strain-

compliant SiGe nanowire structures was reported.  Good material property and 

growth selectivity were realized.  This new III-V integration scheme may be 

promising for integrating high speed transistors and optoelectronic devices 

with advanced electronic circuits on Si platform. 
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Chapter 1 

 

Introduction 
 

1.1 Background 

The number of transistors on integrated circuit (IC) chips has increased 

exponentially for more than four decades [1.1].  Through the years, sustaining 

the Moore’s law requires the continued downscaling of the transistor 

dimensions.  Enabled by tremendous advancement in lithography, the 

minimum feature size of transistors has been reduced by a factor of ~0.7 times 

in successive complementary metal-oxide-semiconductor (CMOS) technology 

nodes.  Continuous device scaling has enabled higher packing density per unit 

chip area and improvement in circuit speed performance, leading to improved 

performance-to-cost ratio for IC products.  However, aggressive geometrical 

scaling of silicon (Si)-based transistors would eventually reach the 

fundamental limits imposed by the properties of Si.  High leakage currents 

from aggressively-scaled transistors can reduce or offset the performance 

gains due to excessive power consumption.  Hence, the advancement of future 

CMOS technology will rely increasingly on the innovative deployment of 

materials, processes, and device architectures.  It is therefore important to 

devote research efforts to address problems relating to the physical scaling 

limits of conventional Si-based CMOS. 
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1.2 Emerging Channel Materials for Extending CMOS 

The International Technology Roadmap for Semiconductors (ITRS) 

identifies critical technology requirements and imminent challenges 

encountered by the semiconductor industry [1.2].  In addition to III-V 

compound semiconductors, several other emerging channel materials, such as 

carbon nanotubes, graphene, semiconductor nanowires, and germanium (Ge), 

have also been identified as promising candidates to replace the conventional 

Si or strained-Si channels [1.2].  New materials, such as Ge and III-V, offer 

the possibility of reduced power consumption and enhanced speed 

performance to meet the key logic technology requirements in the future.  

These benefits come from the superior field effect mobility of these 

semiconductors.  With enhanced carrier-transport in these new channel 

materials, higher on-current, Ion, and therefore lower gate capacitance at 

constant Ion are expected. This combination can result in higher performance 

MOSFET with reduced power consumption. In the following sections, the 

opportunities and challenges of these emerging channel materials are 

introduced and discussed in detail.  

 

1.2.1 Carbon Nanotube  

Carbon nanotubes are allotropes of carbon with a cylindrical 

nanostructure.  The primary advantages of carbon nanotubes are the high 

carrier mobility [1.3] and the potential to minimize short channel effects by 

surround gate geometry.  However, many difficult challenges must be solved 

for this material to be viable for high performance FET applications, 

including: 1) the ability to control bandgap, 2) control of charge carrier type 
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and concentration, 3) growth of the nanotubes in required locations and 

directions, 4) deposition of a gate dielectric, and 5) formation of a low 

resistance electrical contact.  

Remarkable progress has been demonstrated recently.  For instance, 

carbon nanotube FET with a measured cut-off frequency of 4 GHz was 

reported [1.4].  However, little progress has been made in controlling the 

carrier type and concentration as it is still achieved by attaching molecules to 

the surface of the carbon nanotube [1.5].  More research efforts are needed to 

develop technologies that enable carbon nanotubes as a viable alternate 

channel material for use in beyond CMOS applications. 

 

1.2.2 Graphene 

Graphene is another potential candidate of new channel materials 

[1.6]-[1.7] that offers extremely high carrier mobilities and without the need to 

control chirality as in carbon nanotubes.  For instance, mobilities of 10,000–

15,000 cm2 V−1s−1 are routinely reported for exfoliated graphene on SiO2-

covered Si wafers at room temperature [1.8].  Since the breakthrough results 

of graphene MOS device reported by K. S. Novoselov et. al. [1.6], significant 

progress was made in the development of graphene transistors, including the 

demonstrations of a graphene MOSFET with a high cut-off frequency of 100 

GHz [1.9], and the superior switching behavior of nanoribbon MOSFETs 

[1.10].  However, this progress has been accompanied by the appearance of 

several issues, such as processes capable of growing graphene on CMOS-

compatible substrate, graphene film deposition with excellent uniformity, 

pattern and etch with low edge defect, development of fabrication techniques 
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such as doping, contact formation, and integration with CMOS-compatible 

processes. In addition, for device applications, non-zero bandgap of graphene 

must be realized and controlled independently through either shape 

modification or applied electric fields.  

 

1.2.3 Nanowire 

Nanowire field-effect transistors are based on novel FET architecture 

that replaces the channel region of a planar MOSFET with a semiconducting 

nanowire.  The nanowires may be composed of a wide range of materials, 

including Si, Ge, III-V and II-VI compound semiconductors, and 

semiconducting oxides, such as In2O3, ZnO, and TiO2.  Nanowires with 

diameters as small as 0.5 nm were demonstrated [1.11]. With small diameters, 

these nanowires exhibit quantum confinement behavior due to one-

dimensional transport of carriers, leading to modified charge carrier scattering 

and suppressed short channel effects.   

There are two main approaches to form the nanowires, including: 1) 

top down lithography [1.12]; 2) bottom up catalyzed chemical vapor 

deposition [1.13]-[1.14].   Vertical nanowire FETs with good electrical 

characteristics based on Si [1.15], InAs [1.16], and ZnO [1.17] were 

demonstrated.  Several major challenges must be surmounted for high density 

IC applications, including identification of CMOS-compatible catalyst 

materials, control of the placement, the direction, and the doping of nanowires.  

In addition, processing of dense arrays of laterally placed nanowires with 

surround gates and low resistance contacts may be challenging. 
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1.2.4 Germanium 

With excellent electron and hole mobilities, Ge has received renewed 

interest as an alternative channel material candidate.  In particular, the strained 

Ge P-MOSFETs show significant enhancement in hole mobility than Si P-

FETs [1.18]-[1.19].  However, Ge has a small bandgap of 0.66 eV at 300 K 

[1.20].  This results in large band-to-band tunneling (BTBT) leakage or gate-

induced drain leakage (GIDL).  Ultrathin Ge film maybe necessary to control 

the leakage [1.21].  In addition, formation of high quality gate stack is another 

difficult challenge.  Several interface passivation schemes were proposed and 

demonstrated, such as Si capping layer for improving the interfacial properties 

[1.22].  High quality GeO2/Ge interfaces were also demonstrated by several 

research groups [1.22]-[1.24].  In addition, high-k gate dielectrics, such as 

HfO2, LaYO3 [1.24], and SrGex [1.25], have also been investigated.  

However, electron mobility in Ge N-MOSFETs is unable to out 

perform strained-Si N-MOSFETs despite the high electron mobility in bulk 

Ge.  In addition, formation of low resistance S/D is also very challenging for 

Ge N-channel devices. The performance of the Ge N-MOSFET needs 

substantial improvement for it to be attractive. 

 

1.3 Why III-V Compound Semiconductors? 

Most emerging materials that are formed by “bottom-up” chemical 

synthesis, suffer from the fundamental placement problem as there is no 

practical and reliable way to precisely align and position them for high density 

IC applications.  Conversely, III-V materials can be defined precisely into 

desirable device structures using conventional “top-down” lithographic and 
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etch approaches.  In this regard, III-V compound semiconductors are 

considered far more practical.   

III-V compound semiconductors are attractive for improving the 

mobility of N-MOSFETs, due to their high electron mobility.  A higher 

electron mobility leads to improved speed performance for a given supply 

voltage as well as reduced dynamic power consumption for a fixed 

performance level.  These advantages can bring tremendous benefits in terms 

of circuit and system performance due to the improved trade-off between 

power and performance.  Fig. 1.1 shows the carrier mobility of various 

InGaAs compound semiconductors with different Indium composition, x 

[1.26].  In general, the carrier mobility increases with higher x due to reduction 

in effective mass m* [1.27], as shown in Fig. 1.2.  The occurrence of a 

mobility minimum in the region of x ~ 0.1 to 0.2 is due to alloy scattering 

[1.26].   

In addition, III-V compound semiconductors also have the benefit of a 

lattice-matched heterostructure material system with a wide selection of band 

gaps and materials. Compared to Si-based heterostructures such as Si/SiGe, 

III-V heterostructures allow much greater flexibility in band structure 

engineering and thereby device design for both high performance and low 

power applications.  For instance, InGaAs compound semiconductors offer 

wide range of bandgap from 0.36 eV (InAs with x = 1) to 1.42 eV (GaAs with 

x = 0) (Fig. 1.3) [1.28].   
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Fig. 1.1 Mobility versus composition x for InxGa1-xAs compound 
semiconductors.  The mobility increases with higher Indium composition.   
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Fig. 1.2 Effective mass m* versus composition x for InxGa1-xAs 
compound semiconductors.  The effective mass decreases with higher Indium 
composition, leading to higher mobility in Fig. 1.1.   
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Fig. 1.3 Bandgap EG versus composition x for InxGa1-xAs compound 
semiconductors.  InGaAs offers wide range of bandgap from 0.36 eV to 1.42 
eV.  
 

 

1.4 Challenges of III-V MOSFET Technology 

However, there are several key front-end issues that impede the 

progress of III-V MOSFET device technology, including high-quality gate 

stack formation, material integration on Si substrates, channel material and 

device structure selection, and low resistance S/D formation, as illustrated in 

Fig. 1.4.  These technical challenges are discussed and summarized in the 

following sections.   
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Fig. 1.4 Schematic illustration of the key technical challenges faced in 
the realization and integration of high mobility III-V channel MOSFET on Si 
substrates for future logic applications. 
 

 

1.4.1 Formation of High-Quality Gate Stack 

Unlike Si, native oxides of III-V have very poor electrical properties.  

The issues and challenges for dielectrics on III-V channels are due to the 

problem of chemical and electronic control of the interface between dielectric 

and III-V materials.  Exposure of III-V to air or low vacuum results in the 

rapid formation of low quality native oxide on the surface, leading to Fermi 

level pinning and high interface state density [1.29]-[1.31].  Fermi level 

pinning on III-V compound semiconductors upon oxygen chemisorptions has 

been attributed to the formation of both donor and acceptor sites within the 

bandgap [1.32].  When two neighboring arsenic atoms from two different 

arsenic dimers are replaced by two oxygen atoms, the charge of atom of the 

central gallium atom deviates from its bulk value by about half an electron.  

Such a significant charge deviation gives rise to state formation.  In addition, 

excess interfacial arsenic atoms occupying gallium sites create gap states as 

well [1.32]-[1.33].   



 10

III-V surface passivations and interface layers have been developed to 

manage the interface properties.  Passivations such as in-situ molecular beam 

epitaxy (MBE) growth of Ga2O3, Gd2O3, and Ga2O3 (Gd2O3) [1.34]-[1.36], 

atomic layer deposition (ALD) of Al2O3 [1.37]-[1.39], HfO2 [1.40], ZrO2 

[1.41], and ZrO2/LaAlOx [1.42], jet vapor deposition of Si3N4 [1.43], wet 

thermal oxidation of InAlP [1.44], composite high-k gate stack of TaSiOx/InP 

[1.45], as well as surface passivation technology employing Si [1.46], 

aluminum oxynitride (AlON) [1.47], phosphorus [1.48], phosphorus nitride 

PxNy [1.49] have been demonstrated in controlling surface oxidation effects on 

III-V to achieve lower interface state density Dit and unpinned interfaces.  

However, different high-k dielectrics may be needed for different 

semiconductor surfaces to prevent Fermi-level pinning in specific materials 

systems due to different surface reconstruction among the various III-V 

semiconductor surfaces [1.50].  Nevertheless, important factors such as 

manufacturability, performance advantages, and implementation cost should 

also be considered for the evaluation of the various surface passivation 

options.  Schemes that provide simple and cost-effective integration with 

current manufacturing processes, and that give superior performance 

enhancement are highly desirable.  

In the silicon CMOS industry, hafnium (Hf)-based high-k gate 

dielectric materials are deposited using techniques such as ALD and metal-

organic chemical vapor deposition (MOCVD) in a manufacturable process.  A 

missing link between the well-established gate dielectric process technology 

and III-V based device technology is a surface passivation technique for III-V 

compound semiconductors.  Effective III-V surface passivation technologies 
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that can be easily integrated with these front-end processing tools will be 

preferred.   

 

1.4.2 Material Integration on Si Substrate 

III-V substrates are costly, brittle, and difficult to make in large sizes. 

In addition, from an economic point of view, the success of any future CMOS 

technology will depend on its compatibility with the existing Si manufacturing 

infrastructure. Therefore, methods need to be developed to integrate III-V 

materials on Si substrates. However, there are many issues and challenges to 

integrate III-V materials on Si-based substrates with controllable strain levels, 

acceptable defects and mobilities. Tremendous research effort has been made 

to overcome various technical challenges, including differences in lattice and 

thermal expansion parameters, and formation of antiphase domains (APDs), 

which typically appear during the growth of polar materials on non-polar 

materials.   

D. Zubia et. al. reported  direct nanoheteroepitaxial of GaAs on Si 

islands [1.51].  This approach relies on substrate compliance effect to 

accommodate the mismatch strain energy and to extend the critical thickness 

of the epilayer.  However, the material integration is eventually limited by the 

large lattice mismatch of 4.1% between GaAs and Si.  To reduce the lattice 

mismatch, SiGe graded buffer layer can be introduced between GaAs and Si 

[1.52]-[1.53].  However, surface dislocation density [1.54] and low throughput 

or high cost associated with a thick graded buffer layer remains as issues.  

Aspect ratio trapping (ART) method is another approach to significantly 

reduce the defect density by selective growth in high aspect ratio trenches and 
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subsequent lateral overgrowth [1.55].  Direct bonding of III-V crystalline 

layers through layer transfer is an alternative approach to epitaxial growth 

[1.56]-[1.58].   Using this approach, materials with huge lattice mismatch and 

desirable crystalline orientations can be integrated.  However, large and 

expensive III-V wafers for layer transfer are needed for this technique.   

Although progress has been made in integrating III-V on Si, further 

reduction in defect density and improvement in crystal quality is needed.  

Simple fabrication processes are highly desirable to reduce the process 

complexity and production cost. In addition, heterogeneous integration of III-

V compound semiconductors on Si substrates would enable the fabrication of 

high-speed transistors and optoelectronic devices on a single Si-based 

platform and the realization of enhanced functionalities in integrated 

electronics.   

 

1.4.3 Channel Material and Engineering 

There is a trade-off between mobility and bandgap in general.  For 

instance, InAs has a higher mobility but a narrower bandgap, as compared to 

GaAs.  A lower bandgap leads to higher junction leakage current.  In addition 

to the narrow bandgap, the energy difference between the lowest and the 

second lowest conduction bands tends to be small.  The population of 

electrons in the second lowest conduction band is increased and the overall 

carrier mobility is degraded [1.59].  Therefore, ternary compound 

semiconductors, such as InGaAs, have received much attention due to their 

moderate bandgap and the acceptable energy difference between the lowest 

and the second lowest conduction band minima. 
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Although many III-V compound semiconductors offer very attractive 

electron mobility, some III-V materials, such as GaSb and InGaSb, offer high 

hole mobility for P-FET applications.  On the other hand, channel strain 

engineering is another promising approach to further enhance the carrier 

transport of III-V semiconductors, such as GaAs and InGaAs [1.60]-[1.62]. 

 

1.4.4 Device Structure 

There are primarily two III-V MOSFET architectures being 

investigated for logic applications: surface-channel and buried-channel 

MOSFETs.  Buried-channel MOSFET typically has a quantum well structure 

to separate the gate and channel by a wide band-gap material.  The buried-

channel III-V high electron mobility transistors (HEMTs) demonstrates 

promising device performance [1.63]-[1.64].  However, the Schottky metal 

gate of these devices results in a large vertical Schottky gate leakage, which in 

turn causes high transistor off-state leakage.  A gate dielectric stack which is 

compatible with III-V materials will need to be incorporated in the III-V 

buried-channel device to reduce off-state leakage, improve gate control and 

subthreshold slope, and therefore, enhance device scalability.  While surface-

channel devices are more desirable to achieve better capacitive coupling 

effects, they require the formation of a high-quality MOS stack with low Dit. 

For this reason, a buried-channel MOSFET design may be preferable to relax 

the requirements for low Dit and improve the carrier mobility. However, the 

capacitance penalty due to buried channel design will offset some of the 

advantages provided by the high mobility, and it is important to investigate the 

performance trade-off between these two device designs.  
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In addition, device architectures, such as FinFETs or multiple-gate 

FETs (MuGFETs), are attractive device architectures for III-V MOSFETs.  

With a better electrostatic control over the channel, several benefits can be 

derived from such a shift in architecture, such as improved control of short 

channel effects, enhanced volume inversion in the channel region, lower 

leakage currents, and reduced device variability arising from random dopant 

fluctuations. 

 

1.4.5 Formation of Low Resistance Source/Drain Regions 

 S/D regions of conventional Si MOSFETs were formed by ion 

implantation, followed by dopant activation anneal.  High doping 

concentration in the S/D reduces series resistance for achieving high drain 

current.  In III-V materials, such as GaAs and InGaAs, Si is the preferred 

impurity to obtain N-type doping due to moderately low dopant activation 

temperature and thermally stable with low diffusivity. For instance, diffusivity 

of Si in GaAs  is ~10-14 cm2/s at 900 °C [1.65].  However, the maximum N-

type carrier concentration in GaAs with Si as dopants is limited to ~1 × 1019 

cm-3, irrespective of the dose [1.66].  High fluence implant amorphizes the III-

V compound material, results in the formation of high density of dislocation 

loops which cannot be eliminated even after high temperature annealing 

[1.67].  Such a low doping level leads to high S/D series resistance and further 

limits the S/D junction scaling for better control of short channel effects.  Co-

implantation of elements from Group V, such as phosphorus (P) or arsenic 

(As), was reported to further increase the Si activation in GaAs through the 

suppression of gallium on arsenic site (GaAs) acceptors as well as silicon on 
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arsenic site (SiAs) acceptors [1.68].  Other innovative solutions are necessary 

to boost the S/D doping level to address the S/D series resistance issues. 

In Si CMOS technology, S/D ohmic contacts, such as nickel silicide, 

are integrated based on self-aligned technology.  These self-aligned S/D ohmic 

contacts, which are adjacent to the MOSFET’s spacer, generate high 

conductivity paths for local wiring and therefore drastically reduce the S/D 

series resistance.  Therefore, it is vital to develop a self-aligned S/D ohmic 

contact technology for III-V channel devices.  In addition, gold-based contact 

technologies that are commonly integrated in III-V devices should be avoided 

as gold is a contaminant in CMOS technology.   

 

1.5 Objective of Research 

When advancing into the 22 nm technology generations and beyond, 

key changes to the fundamental material, process, and device structure are 

mandatory to sustain the need for ever increasing speed improvement.  The 

objective of this thesis work is to address some of the most challenging front-

end issues that impede the progress of current III-V device technology.  Areas 

specific to novel interface passivation techniques for high quality MOS stack 

formation on III-V materials will be investigated.  A comprehensive evaluation 

of various advanced device architectures, such as in-situ S/D doping, channel 

strain engineering and multiple-gate transistor structure, based on 

experimental results is furnished in this work.  Another aspect of this project is 

on developing effective and potentially viable III-V material integration 

solution on Si substrate for future high volume semiconductor manufacturing.  



 16

The results of this research will help in the assessment of III-V channel 

MOSFET for applications in future technology generations. 

 

1.6 Thesis Organization 

The main issues discussed in this thesis are documented in 4 chapters.    

 Chapter 2 reports the concept and demonstration of novel surface 

passivation techniques to realize high quality metal gate/high-k dielectric 

stacks on a range of III-V compound semiconductors.  This novel in-situ 

surface passivation technique that comprises vacuum anneal for native oxide 

desorption, followed by surface treatment, is compatible and can be easily 

integrated with a matured MOCVD gate cluster tool.  A successful integration 

of these technologies in various III-V channel MOSFETs is demonstrated.  

Extensive electrical and material analysis was conducted to ascertain the 

attractiveness of this passivation technique. 

 Chapter 3 explores the integration of in-situ doped lattice-mismatched 

S/D stressors with InGaAs N-channel MOSFETs for S/D junction and channel 

strain engineering.  Device design and concepts are explained with numerical 

simulations using the finite element method.  Process integration and device 

fabrication of InGaAs channel transistors with in-situ doped lattice-

mismatched S/D stressors are described. Material and electrical 

characterization results are discussed in detail to affirm the effectiveness of 

these advanced technologies.  

 Chapter 4 investigates advanced multiple-gate structure with epi-

controlled retrograde channel doping to suppress short channel effects.  Three-

dimensional device simulations are performed to evaluate the device design 
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and concepts.  Impact of this new device architecture on device characteristics 

is also presented. 

 Chapter 5 describes a new method of integrating GaAs on a Si-based 

substrate through selective migration-enhanced epitaxy (MEE) of GaAs on 

strain-compliant SiGe nanowire structures.  The compliance effect for strain 

relaxation in such nanowire structures is shown.  In addition, the quality of the 

GaAs epilayer is verified by extensive material characterization.  

 An overall conclusion and possibilities for future work are furnished in 

Chapter 6. 
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Chapter 2 

 

In-situ Surface Passivation and  

Metal-Gate/High-k Dielectric Stack 

Formation for III-V MOSFETs 
 

2.1 Introduction 

High mobility III-V compound semiconductors have received interest 

as potential channel materials to replace conventional Si or strained Si 

channels and to be heterogeneously integrated onto a silicon platform.  High 

quality and thermodynamically stable metal-oxide-semiconductor (MOS) 

stack on III-V is vital for exploiting the full advantages of high mobility 

channel materials.  However, exposure of III-V surface to air or low vacuum 

results in the rapid formation of a low quality native oxide on the surface, 

leading to Fermi level pinning and high interface state density Dit [2.1]-[2.5].   

Recently, III-V MOSFET research has been directed at developing 

advanced gate dielectric technology, including in-situ molecular beam epitaxy 

(MBE) growth of Ga2O3, Gd2O3, and Ga2O3 (Gd2O3) [2.6]-[2.8], atomic layer 

deposition (ALD) of Al2O3 [2.9]-[2.11], HfO2 [2.12], ZrO2 [2.13], and 

ZrO2/LaAlOx [2.14], jet vapor deposition of Si3N4 [2.15], wet thermal 

oxidation of InAlP [2.16], composite high-k gate stack of TaSiOx/InP [2.17], as 

well as surface passivation technology employing Si [2.18]-[2.19], aluminum 
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oxynitride (AlON) [2.20], phosphorus [2.21], phosphorus nitride PxNy [2.22] 

for reduction of Dit.  Nevertheless, important considerations such as 

manufacturability, implementation cost, and performance benefits are crucial 

factors in the assessment of the various surface passivation options.  Schemes 

that allow simple and cost-effective integration with current manufacturing 

processes, and that give superior performance improvements are preferred. 

In the Si CMOS industry, hafnium (Hf)-based high-k gate dielectric 

materials are commonly deposited using processes such as ALD and metal-

organic chemical vapor deposition (MOCVD).  A missing link between the 

well-established gate dielectric process technology and III-V based device 

technology is an effective surface passivation technique.  Effective III-V 

surface passivation technologies that can be easily integrated with gate 

dielectric deposition tools would be desirable.   

In this chapter, novel surface passivation schemes on various III-V 

compound semiconductors are explored to realize high quality metal 

gate/high-k dielectric stack.  The in-situ surface technique comprises a vacuum 

anneal for native oxide desorption, followed by a surface treatment process 

that is compatible and that can be easily integrated with a matured MOCVD 

gate cluster tool as shown in Fig. 2.1.  This MOCVD gate cluster system 

consists of three process chambers for native oxide desorption, surface 

passivation, and MOCVD high-k dielectric deposition.  It is also equipped 

with a high vacuum transfer module with base pressure of 1 × 10-7 Torr to 

prevent native oxide formation during wafer transfer.  The low vacuum level 

was achieved by the two-stage dry pumps and high speed turbo pump.  The  
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Fig. 2.1 Schematic illustration of the key process steps in the in-situ 

passivation technology based on a multiple chamber MOCVD gate cluster 
system.  The high vacuum transfer module serves to minimize native oxide 
formation during wafer transfer.  After pre-gate cleaning, the III-V wafers 
were quickly loaded into the gate cluster system for native oxide 
decomposition, surface treatment, and MOCVD high-k dielectric deposition at 
three different chambers. 
 

system has a robot arm that can handle two 8 inch wafers.  The small III-V 

wafers are placed on these 8 inch handling wafers for processing in the tool. 

Various in-situ surface passivation schemes explored in this thesis are 

summarized in Fig. 2.2.  In addition, Fig. 2.2 also shows the III-V compound 

semiconductors investigated in each scheme.  In Section 2.2, GaAs, with high 

carrier mobility, was first used in in-situ surface passivation, featuring vacuum 

anneal and silane (SiH4) treatment.  After high-quality MOS stack formation 

on GaAs, SiH4 passivation study was extended to In0.18Ga0.82As to explore the 

impacts to gate stack with additional Indium.  In Section 2.3, surface treatment 

using silane and ammonia (SiH4 + NH3) gas mixture is also employed on 

GaAs, and In0.53Ga0.47As.   In0.53Ga0.47As was investiged due to its high  
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Section 2.3  
In-situ SiH4 + NH3

Passivation

Section 2.4  
In-situ SiH4 + NH3

Passivation and CF4

Plasma Treatment

Section 2.2  
In-situ SiH4 Passivation

2.2.1  
GaAs

2.2.2  
In0.18Ga0.82As

2.3.1  
GaAs

2.3.2  
In0.53Ga0.47As

2.4.1  
In0.53Ga0.47As

 

Fig. 2.2  Summary of various in-situ surface passivation schemes and the III-V 
compound semiconductors investigated in each scheme. 
 

mobility [Fig. 1.1] and lattice constant that matches well with InP substrate.  

Section 2.4 explores the integration of multiple passivation methods with in-

situ SiH4 + NH3 surface passivation and post-gate dielectric deposition 

treatment in tetrafluoromethane (CF4) plasma for further performance 

enhancement.  Section 2.5 summarizes the key achievements attained. 

 

2.2 III-V Channel N-MOSFETs with In-situ SiH4 

Passivation 

In this section, novel III-V channel N-MOSFETs with in-situ surface 

passivation, comprising vacuum anneal and SiH4 treatment, are investigated 

for enhancing gate stack quality.  Vacuum annealing eliminated poor quality 

native oxide on III-V surface, while a thin silicon interfacial layer was formed 

by SiH4 treatment, therefore effectively preventing the III-V surface from 

exposure to an oxidizing ambient during MOCVD high-k dielectric deposition. 

In this section, self-aligned surface channel III-V N-MOSFET with in-

situ SiH4 surface passivation was realized.  Section 2.2.1 demonstrates high 

quality gate stack formation on GaAs using in-situ SiH4 passivation 

technology.  Section 2.2.2 explores the integration of in-situ SiH4 passivation 
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on InGaAs with indium composition of 20 %, showing improved device 

performance.  

 

2.2.1 GaAs N-MOSFET with In-situ SiH4 Passivation  

In this section, GaAs N-MOSFET with in-situ vacuum anneal and SiH4 

passivation is reported.  The impact of post-gate-dielectric deposition anneal 

(PDA) and forming gas anneal (FGA) conditions on the electrical performance 

and integrity of GaAs N-MOSFETs is investigated.  This self-aligned N-

channel GaAs MOSFET is also incorporated with Si+ + P+ deep S/D regions 

[2.23]-[2.24] and gold-free low resistance PdGe ohmic contacts.   

 

2.2.1.1 Experiment 

P-type Zn-doped GaAs (100) substrates with a NA of 1 – 5 × 1016 cm-3 

were used for device fabrication.  The process flow is depicted in Fig. 2.3.  

The pre-gate cleaning process comprises degreasing using acetone and 

isopropanol, removal of native oxide and excess elemental As using 

hydrochloric acid (HCl) and ammonium hydroxide solution (NH4OH), and ex- 

situ surface passivation using ammonium sulphide solution [(NH4)2S].  The 

native oxide on epi-ready GaAs surface is 2 to 3 nm [2.25].  With HCl 

cleaning, native oxide and elemental gallium were rapidly removed [2.26].  As 

elemental arsenic has low solubility in acid, the following NH4OH treatment is 

useful for excess elemental arsenic removal [2.27].  A dip in (NH4)2S solution 

was finally performed for ex-situ surface passivation [2.28].   
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Process Flow
Optimized Pre-Gate Clean 
(For native oxide reduction)
Interface Engineering and 
High-k Dielectric Deposition
� Vacuum Anneal
� SiH4 Surface Treatment
� High-k Dielectric Deposition
PDA
Metal Gate Deposition
Gate Patterning
Si+ + P+ S/D Implantation 
S/D Dopant Activation
FGA
Contact Patterning 
Gold-free PdGe Metallization  

Fig. 2.3 Process sequence employed in transistor fabrication.  The in-

situ vacuum anneal and SiH4 interface passivation steps are performed before 
MOCVD high-k dielectric deposition.  
 

After the pre-gate clean, the wafers were quickly loaded into a 

multiple-chamber MOCVD gate cluster.  In the first chamber of the gate 

cluster system, the wafers were annealed at 600 °C for 60 s at process pressure 

of ~ 1 × 10-6 Torr for native oxide decomposition.  The RMS surface 

roughness of the GaAs before and after vacuum anneal is 1.2 Å and 1.3 Å, 

respectively.  The wafers were then transferred to a second chamber through 

the transfer module for SiH4 treatment at 400 °C for 60 s at pressure of 5 Torr 

(the flow rates of SiH4 and N2 are 60 and 250 sccm, respectively) [2.29].  

Without breaking vacuum, the wafers were transferred to a third chamber for 

HfAlO high-k dielectric deposition.  The MOCVD process employed a single 

cocktail source, HfAl(MMP)2(OiPr)5, as precursor and Ar as the carrier gas at 

temperature of 450 °C and pressure of 400 mTorr [2.30].  As the precursor is 
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in liquid state with low vapor pressure of ~ 6.4 × 10-5 Torr at room 

temperature, the precursor was first delivered to a vaporizer using liquid 

delivery system at a liquid flow rate of 40 mg/minute.  The vaporized 

precursor was subsequently delivered to the process chamber using Ar as the 

carrier gas at flow rate of 170 sccm.  On a control wafer, HfAlO was deposited 

directly on GaAs without in-situ vacuum anneal and SiH4 passivation.   

After high-k dielectric deposition, PDA at various temperatures 

ranging from 500 to 600 °C was performed in a rapid thermal process chamber 

for 60 s in N2 ambient [2.29]-[2.30].  TaN metal gate was reactively sputtered.  

Fig. 2.4 shows the two-mask transistor structure.  Gate patterning was then 

carried out using contact printing in a mask aligner.  After spin-coating of 

photoresist, pre-bake at 95 °C was used to drive off excess solvent prior 

exposure in 365 nm ultraviolet light.  Post-exposure bake at 115 °C for 60 s 

was then performed to improve adhesion and to improve side wall profile 

caused by standing wave phenomena.  After development, hard bake at 115 °C 

for 60 s was used to solidify the remaining photoresist.  Gate etching in Cl2 

based plasma was then performed.  The Cl2 dry etching was stopped at high-k 

dielectric to protect the S/D regions.  The remaining high-k dielectric was  

 

Gate Layer

Contact Layer
W =
100 µm

100 µm80 µm

20 µm

20 µm

LG

140 µm  

Fig. 2.4 Schematic illustration of the two-mask transistor structure with 
gate and contact layers.  The transistor width W is 100 µm. 
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removed by another wet cleaning in dilute HF solution.  Self-aligned deep S/D 

regions formation were formed by Si+ and P+ implantation at dose of 1 × 1014 

cm-2 (25 keV and 80 keV) and 5 × 1013 cm-2 (25 keV and 80 keV), 

respectively, and dopant activation at 850 °C in N2 ambient.  Due to the lack 

of ion implanter in NUS, all the ion implantation processes in this thesis were 

not conducted by me.  The shallow implant at 25 keV serves to increase the 

doping level near the surface for contact resistance reduction.  The deep 

implant at 80 keV is used to increase the junction depth for source/drain series 

resistance reduction.  Si+ ions were introduced as n-type dopants whereas the 

P+ ions serve to reduce the formation of Si on As site acceptors [2.23]-[2.24].  

After that, some devices underwent FGA at various temperatures between 300 

oC to 500 oC for 10 min. to 30 min. at process pressure of 400 Torr (the flow 

rates of H2 and N2 are 300 sccm and 2000 sccm, respectively).  S/D ohmic 

contact regions were defined by a second optical lithography before the 

deposition of 40 nm of Pd, followed by 90 nm of Ge, using electron beam 

evaporation.  Lift-off process and contact formation at various temperatures 

between 300 to 450 °C for 10 s were subsequently carried out to complete the 

device fabrication. 

 

2.2.1.2 Results and Discussion 

The effect of PDA temperature is first investigated.  Fig. 2.5 depicts 

the C-V characteristics of GaAs capacitors formed with various process 

conditions: (i) without in-situ passivation, but PDA of 500 °C was performed; 

with in-situ surface passivation and PDA at temperatures of (ii) 500 °C, (iii) 

550 °C, and (iv) 600 °C.  In all cases, the duration of the PDA is 60 s.  The 
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square shape GaAs capacitors are 100 µm by 100 µm in dimensions.  

Electrical measurement was performed by using the TaN gate as metal contact.  

FGA was included.  As transistor can be fabricated by gate-last approach, 

implantation anneal was skipped here to evaluate the best achievable 

performance by this technique.  A separate investigation on the impact of 

implant anneal can be found in Fig. 2.26.  The control GaAs capacitors exhibit 

severe frequency dispersion due to the presence of a large number of interface 

traps (Fig. 2.6).  The frequency dispersion is evaluated as the percentage 

difference in accumulation capacitance values measured at 10 kHz and 1 MHz 

without correction for series resistance.  Frequency dispersion reveals 

difference time response of the interface states. 

C-V characteristics in forward and reverse sweeps are plotted in Fig. 

2.7.  Substantial reduction in hysteresis was observed in GaAs capacitors with 

additional in-situ surface passivation (inset of Fig. 2.7).  Hysteresis is defined 

as the difference in flatband voltage of C-V curves obtained from forward and 

reverse gate voltage VG sweeps.  Dalapati et al. reported significant 

degradation in electrical properties of gate dielectric at PDA temperatures 

above 500 °C, due to elemental Ga and As out-diffusion [2.31].  The weak 

PDA temperature dependence of frequency dispersion and hysteresis suggests 

that the in-situ surface passivation technique is quite effective.  SiH4 treatment 

allows the eventual formation of an interfacial layer comprising SiO2 that 

improves the thermal stability of gate stack.  The out-diffusion of Ga and As 

into the high-k dielectric during high temperature processing steps is also 

suppressed.   
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Fig. 2.5 C-V characteristics of GaAs MOS capacitors formed using 
various process conditions.  In (i), PDA of 500 °C was used, but no in-situ 
passivation was performed.  In other samples, PDA temperatures of (ii) 500 
°C, (iii) 550 °C, and (iv) 600 °C, were used together with in-situ vacuum 
anneal and SiH4 passivation.   
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Fig. 2.6 Frequency dispersion of C-V characteristics as a function of 
PDA temperature for GaAs MOS capacitors.  Dit attained at various PDA 
temperatures is depicted in the inset.   
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Fig. 2.7 C-V forward- and reverse sweeps for capacitors with and 
without in-situ surface passivation and at various PDA temperatures.  In-situ 
surface passivation is important for minimizing hysteresis.   
 

FGA in gas mixtures of hydrogen and nitrogen (H2 + N2) is effective in 

passivating dangling bonds and in reducing Dit at the SiO2–Si interface [2.32].  

Similar advantages were also found for GaAs capacitors.  In general, 

hysteresis, frequency dispersion, and Dit were improved after FGA (Fig. 2.8 

and Fig. 2.9).  The single frequency conduction method used for calculating 

Dit can be expressed as  

 
])/1()/[(

)/)(/2(
22

max

max

oxmox

it
CCCG

GqA
D

−+
=

ω
ω

,  (2-1) 

where A is the capacitor area, q is the electronic charge, ω is the angular 

frequency, Cox is the oxide capacitance, Gmax is the maximum conductance in 

the conductance-voltage (G-V) plot and its corresponding capacitance Cm 

[2.33].  The frequency f for the Dit analysis is 100 kHz.  By using an optimum 

FGA condition (400 °C for 10 min.), hysteresis, frequency dispersion, and Dit 

can be further reduced by ~ 23 %, ~ 60 % and ~ 30 %, respectively, as  
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Fig. 2.8 A summary of hysteresis and frequency dispersion for a variety 
of FGA conditions for GaAs MOS capacitors.   
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Fig. 2.9 Dit of the capacitors processed at different FGA conditions was 
extracted using the conductance method.  About 30 % reduction in Dit can be 
achieved by using FGA at 400 °C for 10 min.. 
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compared to a sample without FGA.  There are two main considerations for an 

effective FGA.  First, the annealing temperature needs to be sufficiently high 

for hydrogen to permeate into the gate stack for effective passivation, i.e. more 

than 300 °C.  Second, excessive thermal budget, such as more than 500 °C for 

30 minutes, may leads to interfacial reaction between high-k dielectric and 

GaAs, giving high Dit.  

  High S/D doping concentration reduces RSD for higher IDsat.  Next, the 

effect of additional P+ co-implantation for increasing the N-type doping 

concentration is investigated.  Fig. 2.10 compares the sheet resistance of N-

type GaAs regions formed by Si+ + P+ co-implantation and by Si+ implantation 

only at various dopant activation conditions.  The sheet resistance of the N-

type doped layer is determined from the slope of total resistance RT versus 

contact spacing in transfer length method (TLM) test structures.  Reduction in 

sheet resistance with increasing annealing temperature is observed, indicating 

better electrical activation of the implanted dopants.  In all activation 

conditions, lower sheet resistance was achieved in the N-type regions with 

additional P+ co-implantation.  This is due to a reduced concentration of Si on 

As site acceptors (SiAs), whose formation is inhibited by additional P atoms 

[2.23]-[2.24].  P co-implant reduced the sheet resistance by ~35 % for the case 

here the activation anneal conditions was 850 °C for 10 s. 

 The next process module component to be developed for a GaAs 

device technology is the contact technology.  PdGe ohmic contacts integrated 

on heavily N-type Si+ + P+ co-implanted regions demonstrate excellent ohmic 

behavior over a wide range of contact spacings (Fig. 2.11).  To achieve ohmic 

behavior, the ratio of Ge over Pd should be greater than two so that excess Ge  
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Fig. 2.10 Co-implantation of Si+ with P+ can boost the activation of Si as 
N-type dopants in GaAs.  35 % reduction in sheet resistance can be achieved.  
The sheet resistance was evaluated by using TLM test structures. 
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Fig. 2.11 PdGe contacts exhibit excellent ohmic I-V characteristics at 
different contact spacings (50, 100, 200, 300, and 400 µm) after contact 
formation at 400 °C for 10 s.   
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Fig. 2.12 Specific contact resistivity ρC at various formation temperatures 
was extracted using TLM test structures.  The measured total resistance RT 
versus contact spacing d is plotted in the inset. 
 

can be transported across the palladium germanide and grown epitaxially on 

the GaAs substrate [2.34]-[2.35].  The effect of annealing temperature on 

PdGe formation is shown in Fig. 2.12.  TLM test structures were employed to 

extract the specific contact resistivity ρC of the PdGe contacts [2.36].  Inset of 

Fig.2.12 shows the measured total resistance RT as a function of various 

contact spacings with different annealing conditions.  After annealing at 

300 °C, Pd reacts with Ge to form PdGe.  Since excess Ge exists, solid-phase 

transport and epitaxial growth of the Ge onto the GaAs will take place at 

higher temperature (~400 °C), leading to smaller ρC.  After transport and 

epitaxy, GaAs will be separated from the PdGe by the grown Ge layer, as 

shown in Fig. 2.13.  Lowest ρC of ~ 2.8 × 10-5 Ω-cm2 can be obtained after 

annealing at 400 °C for 10 s.  This is higher than ρC of ~ 10-6 Ω-cm2 obtained 

in [2.34].  ρC could be reduced further with more process optimization. 
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Fig. 2.13 shows a schematic of the fabricated GaAs N-MOSFET as 

well as transmission electron microscopy (TEM) images of the in-situ SiH4-

passivated gate stack and PdGe ohmic contact region.  Note that all the TEM 

results in this thesis were not obtained by me.  An oxidized Si interfacial layer 

of ~ 1 nm was formed between HfAlO dielectric and GaAs, replacing the low 

quality native oxide.  The composition of PdGe contact was investigated by 

energy dispersive X-ray (EDX) analysis.  This PdGe based contact scheme can 

achieve smooth contact interface and low contact resistivity on N-type GaAs,  

Ge = 100%

PdGe = 59:41

PdGe = 69:31

PdGe = 65:35

PdGe = 64:36

n+ n+

TaN Metal Gate

PdGe Contact

TaN

HfAlO

GaAs

Oxidized Si
interfacial layer

PdGe

GaAs

Semi-insulating 
GaAs substrate

Ge

HfAlO Gate Dielectric

20 nm2 nm

 
Fig. 2.13 Schematic and TEM pictures showing the key features of the 
GaAs N-MOSFET fabricated in this experiment: TaN/HfAlO gate stack 
formed with in-situ surface passivation process as well as a PdGe ohmic 
contact technology.  An oxidized Si interfacial layer (~ 1 nm) was formed 
between HfAlO dielectric and GaAs.  EDX analysis of the contact region 
reveals the composition of PdGe ohmic contact.  A Ge layer was epitaxially 
grown on the GaAs surface by solid phase regrowth during contact formation. 
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which was also reported by [2.34]-[2.35].  This is the first successful 

integration of gold-free ohmic contacts on III-V MOSFET, suggesting PdGe is 

a possible alternative to replace gold-based contacts, which are commonly 

employed in many GaAs devices [2.9], [2.11], [2.13], [2.14], [2.18], [2.21], 

[2.22].   

Fig. 2.14(a) plots the IDS – VGS transfer characteristics of a GaAs N-

MOSFET with in-situ SiH4 surface passivation.  Control transistors without 

in-situ surface passivation did not yield in our experiment, mainly due to the 

high interface state density and high gate leakage current.   Threshold voltage 

VT of this GaAs device with a gate length (LG) of 3 µm is 0.44 V, as 

determined by linear extrapolation from the maximum transconductance at VDS 

of 50 mV.  Inset of Fig. 2.14(a) plots the transconductance Gm characteristics 
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Fig. 2.14 (a) IDS-VGS curves of a surface channel GaAs MOS transistor 
with self-aligned S/D and LG of 3 µm, showing good output characteristics.  
Inset plots the transconductance characteristics of the GaAs device.  (b) IDS–

VDS characteristics of the GaAs N-MOSFET at various gate overdrives.   
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Fig. 2.15 Gate-to-bulk capacitance CGB versus VG and gate-to-channel 
capacitance CGC versus VG characteristics of a GaAs transistor.   
 

of the GaAs transistor.  The IDS–VDS characteristics of the GaAs device are 

shown in Fig. 2.14(b).  This GaAs transistor demonstrates excellent saturation 

and pinch-off characteristics with reasonably low series resistance, even with a 

large separation of 5 µm between gate and S/D contacts.  Much higher drive 

current and transconductance are expected when the EOT and the gate-to-

contact separation are reduced.  

Fig. 2.15 illustrates the gate-to-bulk capacitance CGB as well as gate-to-

channel capacitance CGC of the GaAs N-MOSFET.  EOT of this GaAs 

transistor is ~ 5.7 nm.  Fig. 2.16 plots the extracted effective mobility µeff 

versus effective field Eeff, showing high peak electron mobility of 1150 

cm2/Vs.  The effective electron mobility is extracted based on split C-V 

method [2.36] by using the ID-VGS characteristics at VDS of 50 mV [Fig. 

2.14(a)] and the total inversion charge density, which is obtained by 

integrating the measured CGC curve [Fig. 2.15].  Eeff  was obtained by dividing  
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Fig. 2.16 Plot of effective carrier mobility µeff as a function of effective 
field for a surface channel GaAs N-MOSFET. 
 

the total inversion charge density and depletion charge density with 

semiconductor dielectric function.  It should be noted that the mobility 

extraction was done without correction for series resistance effects.  The 

reduction in mobility at higher field is due to surface roughness scattering. 

 
2.2.1.3 Summary 

In summary, the impact of PDA and FGA conditions on the electrical 

characteristics of TaN/HfAlO/GaAs gate stack with in-situ vacuum anneal and 

SiH4 passivation were studied systematically.  Excellent C-V characteristics 

with low frequency dispersion of ~ 6 % and small hysteresis of ~ 150 mV can 

be achieved using optimized processing conditions.  Using the in-situ surface 

passivation technique for gate stack formation, a self-aligned N-MOSFET 

with good transfer characteristics and high peak carrier mobility of 1154 

cm2/Vs was demonstrated.   
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2.2.2 In0.18Ga0.82As N-MOSFET with In-situ SiH4 Passivation  

With a higher electron mobility than GaAs, InGaAs is more attractive 

for high speed CMOS logic applications.  In this section, in-situ SiH4 surface 

passivation technology was investigated to achieve high-quality gate stack on 

strained In0.18Ga0.82As.  The physics and origin of this surface passivation 

technology for realizing high quality III-V gate stacks is extensively 

investigated.   

 

2.2.2.1 Experiment 

P-type Zn-doped (100)-oriented GaAs wafers with NA of 1 - 5 × 1016 

cm-3 were used as starting substrates.  100 nm Zn-doped GaAs buffer layer 

with NA of 1 × 1017 cm-3 was then grown by Aixtron MOCVD reactor using 

trimethylgallium (TMGa), tertiarybutylarsine (TBA), and trimethylindium 

(TMIn) as precursors and H2 as the carrier gas.  Diethylzinc (DEZn) was also 

introduced into the reactor to dope the InGaAs epilayer with NA of 1 × 1017 

cm-3.  To prevent strain relaxation, thickness of the In0.18Ga0.82As layer is 

limited to ~ 20 nm.  After MOCVD epitaxial process, three step pre-gate clean 

in HCl, NH4OH, and (NH4)2S was carried out.  The wafers were then quickly 

loaded into multiple-chamber gate cluster system for  vacuum anneal at 600 

°C for 60 s, SiH4 treatment at a range of temperature from 300 to 500 °C for 

60 s and at process pressure of 5 Torr (the flow rates of SiH4 and N2 are 60 

and 250 sccm, respectively), and HfAlO high-k dielectric deposition.  On a 

control wafer, vacuum anneal and SiH4 treatment steps were skipped.  PDA at 

500 ˚C for 60 s was then performed to improve the quality of as-deposited 

HfAlO film.  After reactive sputter deposition of TaN metal gate and gate 
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patterning, the fabrication process was completed with FGA (15 % H2 and 85 

% N2) at 400 oC.   

 

2.2.2.2 Results and Discussion 

A. Physical Characterization of InGaAs Epilayer 

 The crystal quality of the 20 nm strained In0.18Ga0.82As layer on GaAs 

was examined by high resolution X-ray diffraction (HRXRD) analysis.  Fig. 

2.17 shows the high resolution rocking curve of the (004) reflection from the 

InGaAs/GaAs heterostructure.  The interface quality of the structure is 

confirmed by the clear interference pattern or Pendellösung oscillations in the 

rocking curve.  This interference originates from the beating of X-ray wave 

fields inside the crystal which has almost perfectly parallel boundaries.  The 

peak positions of the interference pattern are consistent with the Bragg angle θ 

calculated by using 2d sinθ = nλ, where n is 138, 139, 140, and 141 for  
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Fig. 2.17 High resolution XRD rocking curve of the (004) reflection on 
the In0.18Ga0.82As/GaAs structure.  The clear interference pattern in the rocking 
curve reveals the high interface quality of the InGaAs structure. 
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wavelength λ of 1.54 Å and thickness d of 20 nm.  The mismatch in lattice 

constants between In0.18Ga0.82As and GaAs leads to the following 

homogeneous biaxial strain in the InGaAs epilayer, with z as the growth 

direction: 

 
GaAs

GaAsInGaAs

a

aa −
−==

yyxx
εε  , (2-2)

 yyxxzz ε
σ
σ

ε
σ
σ

ε
−

−=
−

−=
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2
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, and (2-3)

 0=== zxyzxy εεε , (2-4) 

where aInGaAs is the lattice constant of unstrained In0.18Ga0.82As, aGaAs is the 

lattice constant of bulk GaAs, and σ is the Poisson coefficient of InGaAs, 

which is 0.31.  aInGaAs of 5.726 Å is obtained from linear interpolation between 

aGaAs of 5.653 Å and lattice constant of InAs aInAs of 6.058 Å.  Therefore, εxx 

and εyy of the InGaAs layer is -1.29 % and εzz is 1.16 %.  As surface roughness 

can degrade the effective carrier mobility of surface channel transistor, atomic  
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Fig. 2.18 AFM images of (a) GaAs before InGaAs growth, showing 
RMS surface roughness of 1.1 Å.  (b) After the growth of In0.18Ga0.82As, the 
RMS surface roughness is 1.3 Å.   
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force microscopy (AFM) analysis was employed to investigate the surface 

morphology of the strained InGaAs epilayer.  Fig. 2.18 shows the AFM 

images of (a) GaAs before MOCVD epitaxial process with root-mean-square 

(RMS) roughness of 1.1 Å, and (b) InGaAs after epitaxial process with RMS 

roughness of 1.3 Å.  The surface roughness can be maintained after MOCVD 

III-V epitaxial process.  

 

B. Physical Characterization of InGaAs Surfaces and MOS Stacks 

 X-ray photoelectron spectroscopy (XPS) analysis was employed to 

study the interfacial chemical bonding between high-k dielectric and InGaAs.  

The thickness of HfAlO is 1 nm so that the HfAlO/InGaAs interface is probe-

able.  Arsenic oxide was reported to act as defective states in the bandgap and 

play a critical role in the degradation of device performance [2.12], [2.37].  

The As 3d core level spectra in Fig. 2.19 indicates that As-O bond at 44.6 eV 

was eliminated after vacuum anneal and SiH4 passivation.  The elimination of 

arsenic oxide may explain the improved electrical properties of the MOS 

capacitors with vacuum anneal and SiH4 passivation.  In addition, Si-O bond 

at 103.9 eV was observed in the Si 2p spectra of the samples with vacuum 

anneal and SiH4 passivation (Fig. 2.20), indicating that the thin Si interfacial 

layer was oxidized.   

Fig. 2.21 shows HRTEM micrographs of the fabricated strained 

InGaAs MOS capacitors: (a) without vacuum anneal and SiH4 passivation, and 

(b) with vacuum anneal and SiH4 passivation.  The thickness of In0.18Ga0.82As 

epilayer is ~ 20 nm.  Fast Fourier transform diffractogram reveals good 

crystallinity of the strained InGaAs layer [inset of Fig. 2.21(a)].  HRTEM  
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Fig. 2.19 As 3d XPS spectra show the significant reduction in As-O bond 
signal after vacuum anneal and SiH4 treatment.   
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Fig. 2.20 Si 2p spectra verify the existence of Si-O bond at the interface 
in the samples with vacuum anneal and SiH4 passivation, indicating that the 
thin Si interfacial layer was oxidized. 
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Fig. 2.21 HRTEM micrographs showing the cross-section of a completed 
TaN/HfAlO/InGaAs stack: (a) without, and (b) with vacuum anneal and SiH4 
passivation.  In the samples with vacuum anneal and SiH4 treatment, an 
oxidized silicon layer was observed.  Diffractogram in the inset reveals 
excellent crystalline quality of the strained In0.18Ga0.82As layer. 
 

image in Fig. 2.21(b) shows an oxidized silicon layer with thickness of ~ 1.3 

nm at the interface between HfAlO and InGaAs.   

 

C. Electrical Characterization of InGaAs MOS Stacks 

 Fig. 2.22 reveals the C-V characteristics of InGaAs capacitors formed 

with and without SiH4 passivation at various measuring frequencies.  The 

SiH4-passivated InGaAs capacitors exhibit excellent C-V characteristics with 

negligible frequency dispersion and smaller stretch-out.  Significant reduction 

in hysteresis was also achieved (Fig. 2.23).  A higher SiH4 treatment 

temperature reduces hysteresis, possibly due to densification of the silicon 

interfacial layer.  Fig. 2.24 plots Dit at various SiH4 treatment temperatures, 

showing the effectiveness of SiH4 passivation on InGaAs.  Dit was evaluated 

using single-frequency C-V and G-V at 100 kHz.  Fig. 2.25 plots the gate  



 54

-3 -2 -1 0 1
0

2

4

6

8

10

12

14

SiH
4
 Passivation

 

With SiH
4
 Passivation

 

 

C
ap

ac
it

an
ce

 C
 (

fF
/ µµ µµ

m
2 )

Gate Voltage V
G
 (V)

Triangle f  = 10 kHz
Circle     f  = 100 kHz
Square   f  = 1 MHz

Without  

 

Fig. 2.22 C-V characteristics of TaN/HfAlO/InGaAs MOS capacitors 
characterized at frequencies of 10 kHz, 100 kHz and 1 MHz.  Significant 
reduction in frequency dispersion was achieved with SiH4 passivation.   
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Fig. 2.23 Hysteresis versus SiH4 treatment temperature ranging from 300 
˚C to 500 ˚C.   
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leakage current density JG versus EOT.  EOT was determined by comparing 

the accumulation capacitance with simulated C-V data.  A reduction in JG was 

observed in the SiH4-passivated gate stack, which is likely attributed to 

suppressed surface states assisted tunneling [2.38].  With EOT of 2.3 nm, the 

InGaAs MOS capacitor demonstrates a low JG of 1.54 × 10-5 A/cm2 at VG = 

VFB - 1 V. 
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Fig. 2.24 Dit at various SiH4 treatment temperatures.  Dit as low as 3.5 × 
1011 to 5.0 × 1011 cm-2eV-1 can be achieved with additional SiH4 treatment. 
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Fig. 2.25 The gate leakage current density JG obtained at VG = VFB - 1 V 
as a function of EOT.   
 

 

2.2.2.3 Summary 

In-situ SiH4 surface passivation was applied on strain InGaAs to 

achieve high quality MOS gate stack.  By introducing vacuum anneal for 

decomposition and desorption of native oxide and SiH4 passivation, InGaAs 

capacitors with EOT of 2.3 nm was fabricated, demonstrating good C-V 

characteristics with Dit as low as 3.5 × 1011 – 5.0 × 1011 cm-2eV-1 and low JG 

of 1.54 × 10-5 A/cm2 at VG = VFB - 1 V.   
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2.3 III-V Channel N-MOSFETs with In-situ SiH4 + NH3 

Passivation 

In this section, surface passivation employing a silane-ammonia gas 

mixture (SiH4 + NH3) is used to realize high quality MOS stacks on GaAs and 

InGaAs compound semiconductors.  Section 2.3.1 and 2.3.2 show high quality 

gate stack formation on GaAs, and In0.53Ga0.47As, respectively, using in-situ 

vacuum anneal and SiH4 + NH3 passivation technology.   

 

2.3.1 GaAs N-MOSFET with In-situ SiH4 + NH3 Passivation  

In this section, SiH4 + NH3 surface passivation technology is presented 

to realize very high quality metal-gate/high-k dielectric stack on GaAs.  

Compared to a SiH4-only passivation in Section 2.2, the addition of NH3 

improves the interfacial quality, providing better C-V characteristics and 

achieving lower interface state density.  The SiH4 + NH3 passivation 

technology was integrated in enhancement-mode GaAs N-MOSFETs, together 

with a Hf-based gate dielectric.  

 

2.3.1.1 Experiment 

P-type Zn-doped (100)-oriented GaAs wafers with NA of 1 - 5 × 1016 

cm-3 were used in this experiment.  After a three step pre-gate cleaning process 

similar to the one described in Section 2.2.1.1, the wafers were then quickly 

loaded into a multiple-chamber gate cluster system.  Vacuum anneal at 600 °C 

for 60 s was performed before SiH4 + NH3 passivation at 400 °C for 60 s at a 

process pressure of 5 Torr (the flow rates of SiH4, NH3 and N2 were 60, 60 and 

250 sccm, respectively).  To investigate the effect of the SiH4 + NH3 
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passivation, another three experimental splits were involved.  In the first split, 

vacuum-annealed GaAs wafers went straight to HfAlO deposition, skipping 

the surface passivation step.  In the second split, vacuum annealed GaAs 

wafers were passivated with SiH4 only, followed by HfAlO deposition.  In the 

last split, HfAlO was deposited on (100) Si wafers without surface treatment.   

PDA at 500 °C for 60 s was performed prior TaN metal deposition.  

After gate patterning, S/D regions were formed by Si+ and P+ implantation at 

doses of 1 × 1014 cm-2 and 5 × 1013 cm-2, respectively, and dopant activation at 

850 °C in N2 ambient.  In the MOS capacitor fabrication, implant anneal at 

850 °C was skipped in some samples for comparison.  FGA at 400 °C was also 

done for all samples before PdGe metallization.  

 

2.3.1.2 Results and Discussion 

 Fig. 2.26 compares the C-V characteristics of GaAs MOS capacitors 

with and without SiH4 + NH3 passivation before implant anneal at different 

measurement frequencies.  EOT of the GaAs MOS capacitors with and 

without SiH4 + NH3 passivation are 2.3 nm and 2.8 nm, respectively.  

TaN/HfAlO/Si capacitors without implant anneal are also compared.  EOT of 

GaAs capacitors with and without SiH4 + NH3 passivation at about 0.25-0.4 

eV above valence band edge were estimated to be ~1 × 1011 and ~8 × 1011 cm-

2eV-1, respectively.  The midgap Dit of the Si capacitor was estimated to be 

~7×1010 cm-2eV-1.   
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Fig. 2.26 C-V characteristics of GaAs MOS capacitors with and without 
SiH4 + NH3 passivation and before an implant anneal to simulate dopant 
activation process.  C-V characteristics of a Si capacitor without implant 
anneal are also plotted for comparison.  The SiH4 + NH3-passivated GaAs 
capacitor reveals electrical behavior comparable to Si capacitor.   

  

 Next, thermal stability of the gate stacks with and without implant 

anneal of 850 °C was investigated (Fig. 2.27).  Dit of the SiH4 + NH3-

passivated GaAs capacitors increased to ~7×1011 cm-2eV-1 after the implant 

anneal (inset of Fig. 2.27).  Nevertheless, it is still much better than ~2.2×1012 

cm-2eV-1 for capacitors without surface passivation.  Gate-last low thermal 

budget fabrication process flow can be employed to take full advantage of this 

surface passivation technology.  Hysteresis of the SiH4 + NH3-passivated 

GaAs capacitors with and without implant anneal is ~0.15 V and ~0.24 V, 

respectively.  Hysteresis, caused by bulk oxide traps, can be improved through 

optimizing the PDA conditions. 
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Fig. 2.27 C-V characteristics of SiH4 + NH3-passivated GaAs MOS 
capacitors before and after anneal.  Dit of GaAs MOS capacitors with and 
without SiH4 + NH3 passivation at various implant anneal conditions was 
summarized in inset. 

  

 XPS was employed to investigate the interfacial chemical bonding 

between high-k dielectric and GaAs.  The As 3d core level spectra in Fig. 

2.28(a) provides clear evidence that SiH4 + NH3 passivation eliminates the As-

O bond (at 44.6 eV) and forms the As-N bond.  The NH3 in the SiH4 + NH3 

passivation is responsible for this effect, and is one of the key improvements 

made in this work.  It is also likely that hydrogen dissociated from NH3 

passivates dangling bonds on the surface of GaAs and thereby decreases Dit.  

Furthermore, the Si-N layer on GaAs can protect the surface from the 

oxidizing ambient during a subsequent high-k dielectric deposition, while 

itself was oxidized to form silicon oxynitride SiOxNy, as confirmed by the Si 

2p spectra in Fig. 2.28(b).   
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Fig. 2.28 High-resolution XPS spectra reveal the bonding structure at the 
HfAlO/GaAs.  (a) As 3d spectra show the suppression of As-O bond after 
passivation, contributing to the improved interfacial quality.  (b) Si 2p spectra 
show that SiOxNy interlayer was formed with the SiH4 + NH3 passivation, 
while SiOx was formed with the SiH4-only passivation. 
  

 TEM and SEM images in Fig. 2.29 show the fabricated GaAs N-

MOSFET with TaN/HfAlO gate stack and gold-free PdGe S/D ohmic contact.  

The separation between the edge of the gate stack and PdGe contact is ~ 600 

nm.  Novel contact formation approach such as self-aligned contact 

metallization is needed to reduce the RSD for further performance 

improvement.   
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Fig. 2.29 (a), (b) TEM micrographs of a GaAs MOSFET with LG of 160 
nm and gold-free PdGe contact.  (c) Top SEM image of the GaAs transistor. 

 

 

 Fig. 2.30 shows the I-V characteristics of a GaAs N-MOSFET with LG 

of 250 nm.   This surface channel GaAs N-MOSFET has a VT of 0.55 V, drain-

induced barrier lowering (DIBL) of 0.23 V/V, and subthreshold swing (SS) of 

160 mV/decade.  The short channel effect can be improved by shallower S/D 

implant conditions and higher channel doping concentration.  Next, Fig. 2.31 

shows the I-V characteristics of another GaAs N-MOSFET with LG of 2 µm.  

This MOSFET has negligible DIBL, and SS of 98 mV/decade.  Unlike narrow 

bandgap III-V MOSFETs that may suffer from high source-to-drain leakage 

due to band-to-band tunneling and thermal generation of minority carriers, 

GaAs N-MOSFETs provides a high Ion/Ioff ratio of ~105 (Ion at VG = 1.2V and 

VD = 1.2V, Ioff at VG = 0V and VD = 1.2V) and a low source-to-drain leakage  
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Fig. 2.30 ID-VG characteristics of SiH4 + NH3-passivated GaAs N-
MOSFETs with LG of 250 nm, showing good output characteristics.  Inset 
plots the IDS–VDS curves of the GaAs device at various gate overdrives. 
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Fig. 2.31 ID-VG characteristics of SiH4 + NH3-passivated GaAs N-
MOSFETs with LG of 2 µm, showing good output characteristics.  Inset plots 
the IDS–VDS curves of the GaAs device at various gate overdrives.  The GaAs 
transistor demonstrates excellent saturation and pinch-off characteristics. 
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due to the large bandgap of GaAs.  EOT and hysteresis of the GaAs MOSFETs 

are 4.2 nm, and ~0.22 V, respectively.  Despite a gate-first high thermal budget 

process adopted here, the TaN/HfAlO/GaAs gate stack with SiH4 + NH3 

surface passivation demonstrates high quality and good robustness.  

 Fig. 2.32 plots µeff of a SiH4 + NH3-passivated GaAs N-MOSFET 

versus the effective vertical field Eeff.  The inversion carrier densities of the 

MOSFET are ~4.2 × 1011 cm-2 at Eeff of 0.1 MV/cm2 and ~5.6 × 1012 cm-2 at 

Eeff of 0.5 MV/cm2.  Using conductance method at room temperature, the Dit of 

the MOSFET was estimated to be ~ 8×1011 cm-2eV-1.  This GaAs N-MOSFET 

has a peak electron mobility of ~1920 cm2/Vs after correction for interface 

trap charges [2.39].  The occurrence of peak mobility at lower effective field, 

as compared to Fig. 2.16, is due to lower channel doping concentration. 
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Fig. 2.32 Plot of µeff versus Eeff for a GaAs N-MOSFET.  After correction 
for presence of interface trap charges, the peak electron mobility is ~1920 
cm2/Vs.  The inset shows the simulated and measured inversion C-V 
characteristics of the GaAs N-MOSFET. 
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2.3.1.3 Summary 

 Surface passivation technique based on a SiH4 + NH3 gas mixture was 

demonstrated for achieving high-quality gate stack on GaAs.  Significant 

improvement in interfacial properties is attributed to the desorption of native 

oxide during vacuum anneal and the formation of SiOxNy protective interfacial 

layer.  Incorporation of this technology in the fabrication of an inversion-type 

GaAs N-MOSFET was also demonstrated.   

   

2.3.2 InGaAs N-MOSFET with In-situ SiH4 + NH3 Passivation  

In this section, SiH4 + NH3 passivation technology was applied on 

InGaAs with a higher indium composition, In0.53Ga0.47As.  Significant 

improvement in Dit, SS, and Ioff over control was achieved in In0.53Ga0.47As 

MOSFETs.  

 

2.3.2.1 Experiment 

P-type Be-doped (100)-oriented In0.53Ga0.47As/InP substrates were used 

for this technology demonstration.  The NA of the 1 µm thick In0.53Ga0.47As 

layer is 1 - 5 × 1016 cm-3.  After pre-gate clean in HCl, NH4OH, and (NH4)2S, 

the wafers were loaded into a multiple-chamber MOCVD gate cluster system 

for vacuum anneal at 520 °C for 60 s at process pressure of ~ 1 × 10-5 Torr, and 

SiH4 + NH3 treatment at 400 °C for 60 s.  For the control devices, vacuum 

anneal and SiH4 + NH3 passivation were skipped.  MOCVD HfAlO high-k 

dielectric deposition was performed, before PDA at 500 ˚C for 60 s and 

reactive sputter deposition of TaN to form the gate electrode.  After gate 

patterning, S/D regions were formed by implantation of Si+ and P+, and 
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followed by rapid thermal annealing (650 ˚C for 60 s in N2 ambient) for 

dopant activation.  Ti, followed by Pt, was then deposited to form the backside 

ohmic contact.  Finally, PdGe contacts were integrated to from the S/D ohmic 

contacts.   

 

2.3.2.2 Results and Discussion 

Physical characterization using AFM was first performed to investigate 

the effect of vacuum anneal on the surface morphology of In0.53Ga0.47As.  The 

RMS surface roughness of the In0.53Ga0.47As surface before vacuum anneal 

was 0.10 nm [Fig. 2.33(a)].  Vacuum anneal at 520 °C for 60 s and 600 °C for 

60 s increased the RMS surface roughness to 0.13 nm and 0.46 nm, 

respectively [Fig. 2.33(b) and (c)].  Severe deterioration of the surface 

roughness after vacuum anneal at 600 °C may reduce the carrier mobility of 

surface channel MOSFETs due to additional surface roughness scattering.  The 

degradation of surface morphology is attributed to evaporation of highly 

volatile indium (In) atoms at temperatures higher than 560 °C, which leads to 

 

Fig. 2.33 AFM images of InGaAs surfaces (a) before vacuum annealing, 
and after vacuum anneal at (b) 520 °C for 60 s, and (c) 600 °C for 60 s.  The 
AFM scan area is 2.5 µm by 2.5 µm.  Severe degradation of surface roughness 
was observed after vacuum anneal at 600 °C for 60 s, and is attributed to the 
evaporation of indium. 
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a Ga-rich InGaAs surface [2.40].  As native oxide desorption is initiated at 510 

°C [2.41], an annealing temperature of 520 °C was chosen for integration in a 

transistor fabrication flow to maintain good surface morphology as well as 

material composition of In0.53Ga0.47As.  

TEM micrographs in Fig. 2.34 examine the MOS gate stacks formed 

on InGaAs (a) without vacuum anneal and SiH4 + NH3 passivation, and (b) 

with vacuum anneal (520 °C for 60 s) and SiH4 + NH3 passivation.  Without 

additional vacuum anneal and passivation, a few monolayers of interfacial 

native oxide between HfAlO and InGaAs were observed [Fig. 2.34(a)].  This 

low quality native oxide is the root cause of Fermi level pinning and high Dit.  

For the SiH4 + NH3-passivated sample, an atomically flat InGaAs surface was 

seen without visible degradation [Fig. 2.34(b)].  High resolution TEM image 

in the inset of Fig. 2.34(b) confirms the presence of an interfacial layer with 

10 nm 10 nm
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HfAlO

In0.53Ga0.47As

SiOxNy

(a) (b) TaN

HfAlO

In0.53Ga0.47As

HfAlO

In0.53Ga0.47As

 

Fig. 2.34 Cross-sectional TEM images of the TaN/HfAlO/InGaAs stacks: 
(a) without and (b) with vacuum anneal and SiH4 + NH3 passivation.  Inset 
reveals the existence of thin SiOxNy interfacial layer between HfAlO and 
InGaAs in the sample with vacuum anneal and SiH4 + NH3 passivation.   
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thickness of ~ 1 nm between HfAlO high-k dielectric and In0.53Ga0.47As.   

 The As 3d core level spectra in Fig. 2.35(a) reveal the As-O bond at 

44.9 eV is present in the unpassivated control but is absent in the sample with 

SiH4 + NH3  passivation prior high-k dielectric deposition.  In addition, SiH4 + 

NH3 passivation also leads to the suppression of In-O bond, as illustrated by In 

3d core level spectra in Fig. 2.35(b).  Examination of the Si 2p spectra in Fig. 

2.35(c) reveals the SiOxNy interfacial layer.   

 Charge pumping analysis was conducted to evaluate the Dit of the 

HfAlO/InGaAs interface.  The characterization was performed by sweeping 

the base level Vbase of constant-amplitude trapezoidal gate pulse train from 

accumulation level to inversion level, while keeping the S/D terminals 

grounded.  The amplitude Va and frequency f of the gate pulses are 1 V and 

200 kHz, respectively.  The charge pumping current ICP divided by f is plotted 
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Fig. 2.35 (a) As 3d XPS spectra show the elimination of As-O bond after 
SiH4 + NH3 passivation.  (b) With additional vacuum baking and SiH4 + NH3 
passivation, In-O bond at the interface was suppressed, as illustrated by the 
deconvoluted components of the In 3d XPS spectra.  (c) Si 2p spectrum of the 
SiH4 + NH3-passivated sample verifies the existence of Si-O and Si-N bonds, 
indicating the formation of a thin SiOxNy interfacial layer. 
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as a function of Vbase for equal trapezoidal pulse rise time tr and fall time tf, i.e. 

tr = tf (Fig. 2.36).  Note that tr and tf are varied, taking values of 100, 200, 300, 

400, 700, and 1000 ns.  Devices with SiH4 + NH3 passivation have 

significantly lower ICP than control devices, indicating a reduced number of 

interface states available for trapping and detrapping.  ICP for trapezoidal gate 

pulse waveform [2.42] is expressed as 
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where T is temperature, AG is transistor gate area, k is Boltzmann constant, VFB 

is flatband voltage, vth is the thermal velocity of the carriers, ns is the surface 

concentration of minority carriers, σn and σp are capture cross sections of 

electrons and holes, respectively.  Based on equation (2-5), the mean Dit over 

the energy range swept by the trapezoidal gate pulse with Va of 1 V was 

extracted from the slope of ICP/f versus ln[(tr⋅tf)] (Fig. 2.37).   

The mean Dit in the InGaAs N-MOSFETs with and without SiH4 + 

NH3 passivation were found to be 6.5 × 1011 cm-2eV-1 and 4.2 × 1012 cm-2eV-1, 

respectively.  Similar Dit level was also demonstrated in GaAs N-MOSFETs 

fabricated using the same passivation approach, as shown in Section 2.3.1.  

The significant reduction in Dit by introducing additional SiH4 + NH3 

passivation is related to the suppression of interfacial native oxides and 

dangling bonds.  First, Si-induced reduction of the III-V oxides occurs such 

that the oxygen previously bonded to III-V atoms is re-bonded with Si atoms 

to form SiOx [2.43].  Second, SiN layer formed by SiH4 + NH3 treatment acts 

as barrier layer to protect the III-V surface from exposure to oxidizing ambient 

during subsequent MOCVD high-k dielectric deposition.  It is also likely that  
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Fig. 2.36 ICP/f versus Vbase for In0.53Ga0.47As N-MOSFETs with and 
without SiH4 + NH3 passivation for rise and fall time of gate pulses ranging 
from 100 ns to 1000 ns.  Constant-amplitude trapezoidal gate pulse train was 
swept from accumulation to inversion level for interface characterization.  
Higher ICP in the control devices indicates the presence of more interface 
states available for trapping-detrapping.   
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Fig. 2.37 A gentler slope in ICP/f as a function of ln[(tr⋅tf)] indicates a 
lower Dit level as seen from equation (2-5).  The mean Dit of the In0.53Ga0.47As 
N-MOSFETs with and without SiH4 + NH3 passivation were extracted to be 
6.5 × 1011 cm-2eV-1 and 4.2 × 1012 cm-2eV-1, respectively. 
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hydrogen dissociated from NH3 and SiH4 during the treatment further 

passivates dangling bonds on the InGaAs surface and thereby decreases Dit.  

Though good electrical characteristics were demonstrated by the InGaAs 

MOSFETs fabricated using gate-first transistor fabrication approach in this 

experiment, the SiH4 + NH3-passivated InGaAs MOSFETs are expected to 

achieve even better device performance such as lower Dit and steeper 

subthreshold if gate-last transistor fabrication scheme, i.e. without huge 

thermal budget for dopant activation, was adopted. 

The impact of SiH4 + NH3 passivation on the electrical performance of 

InGaAs N-MOSFETs is further investigated.  The SiH4 + NH3-passivated 

transistor shows improved subthreshold characteristics over the control 

transistor [Fig. 2.38(a)], and are related to Dit reduction due to the SiH4 + NH3 

passivation process.  Steeper SS gives rise to lower Ioff and therefore higher 

Ion/Ioff ratio.  ID-VD output characteristics of the same pair of transistors are 

plotted in Fig. 2.38(b).   

Fig. 2.39 plots the cumulative distribution of the SS of the InGaAs 

MOSFETs with and without SiH4 + NH3 passivation.  SiH4 + NH3-passivated 

InGaAs N-MOSFETs have a median SS that is 300 mV/decade lower than that 

of control devices.  Fig. 2.40 compares the Ioff versus linear drain current IDlin 

characteristics of SiH4 + NH3-passivated MOSFETs and control transistors, 

showing Ioff reduction by more than an order of magnitude at a fixed IDlin in the 

SiH4 + NH3-passivated devices.  The performance enhancement is also 

illustrated in the Ioff versus saturation drain current IDsat plot in Fig. 2.41.   
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Fig. 2.38 (a) ID–VG curves reveal that SiH4 + NH3 passivation leads to 
significant improvement in the subthreshold characteristics of InGaAs N-
MOSFETs.  (b) ID-VD output characteristics of the same pair of transistors 
showing excellent saturation and pinch-off characteristics. 
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Fig. 2.39 Cumulative distribution of the SS of InGaAs N-MOSFETs with 
and without SiH4 + NH3 passivation.   The SiH4 + NH3 passivation technology 
reduces SS by more than 300 mV/decade.  
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Fig. 2.40 Plot of Ioff versus IDlin showing significant reduction in Ioff for 
In0.53Ga0.47As MOSFET with SiH4 + NH3 passivation.  The reduction in Ioff is 
attributed to the improvement in SS due to Dit reduction. 
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Fig. 2.41 Ioff versus IDsat showing of InGaAs N-MOSFETs with and 
without SiH4 + NH3 passivation.  Similar reduction in Ioff was also achieved in 
In0.53Ga0.47As MOSFET with SiH4  + NH3 passivation.   
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2.3.2.3 Summary 

 The effectiveness of SiH4 + NH3 passivation technology on 

In0.53Ga0.47As N-MOSFETs has been demonstrated.  The enhancement in 

interfacial properties is related to the desorption of native oxide during 

vacuum baking and the formation of a SiOxNy interfacial layer.   

 

2.4 InGaAs N-MOSFETs with In-situ SiH4 + NH3 

Passivation and Tetrafluoromethane (CF4) Plasma Treatment 

A high-k gate dielectric generally suffers from a high density of 

defects, which are mainly oxygen vacancies, contributing to charge trapping 

and mobility degradation [2.44].  Incorporation of F into high-k dielectric on 

Si and Ge was reported to improve MOSFET performance and reliability 

[2.45]-[2.48].  With a higher electronegativity than oxygen, F effectively 

passivates vacancies in ionic oxides by forming strong metal-F bonds [2.44] 

and interfacial defects by forming Si-F and Ge-F bonds [2.47]-[2.48].  F was 

also incorporated into ALD Al2O3 and ALD HfO2 gate dielectrics of 

In0.53Ga0.47As MOSFETs [2.49]-[2.50].  SiH4 + NH3 passivation of MOS 

stacks on GaAs and InGaAs using a multiple chamber MOCVD tool is 

demonstrated in Section 2.3.  Significant improvement in the interfacial 

properties between HfAlO and III-V was achieved.  Nevertheless, the effects 

of F on electrical characteristics of III-V MOSFETs with SiH4 + NH3 

passivation have not been investigated.   

In this section, multiple passivation methods comprising in-situ SiH4 + 

NH3 surface passivation and post-gate dielectric deposition treatment in CF4 

plasma were combined for further performance enhancement.  Section 2.4.1 
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discusses the integration of CF4 plasma treatment in the device fabrication 

process.  Section 2.4.2 reports the results of physical and electrical 

characterization on the SiH4+NH3–passivated In0.53Ga0.47As channel N-

MOSFETs.  

 

2.4.1 Experiment 

P-type Zn-doped (100)-oriented InP wafers with NA of 1 × 1018 cm-3 

were used as starting substrates on which a 500 nm thick Be-doped 

In0.53Ga0.47As layer with NA of 1 × 1016 cm-3 was grown.  A three step pre-gate 

cleaning process using HCl, NH4OH, and (NH4)2S solution was carried out 

before the wafers were loaded into a multiple-chamber MOCVD gate cluster 

system for vacuum anneal, SiH4 + NH3 treatment, and MOCVD HfAlO 

deposition.  F was then introduced into the gate dielectric by CF4 plasma 

treatment in an inductively coupled plasma (ICP) chamber using CF4 + O2 gas 

mixtures at a pressure of 100 mTorr and radio frequency power of 10 W for 1 

minute.  The flow rates of CF4 and O2 were 90 and 10 sccm, respectively.  

Oxygen was introduced to avoid possible deposition of carbon byproducts.  

This F treatment step was skipped for the control devices.  PDA at 500 ˚C for 

60 s in N2 ambient was performed before reactive sputtering of TaN metal to 

form the gate electrode.  After gate patterning, S/D regions were formed by Si+ 

implant at dose of 1 × 1014 cm-2 and annealing at 600 °C in N2 ambient.  PdGe 

S/D ohmic contacts were integrated to complete the device fabrication. 

 

2.4.2 Results and Discussion 

 HRTEM image of a F-treated HfAlO gate dielectric in an InGaAs 
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MOSFET is shown in Fig. 2.42(a).  Fast Fourier transform diffractogram 

reveals good crystallinity of the In0.53Ga0.47As epilayer [Fig. 2.42(b)].  Fig. 

2.42(c) shows the F 1s XPS spectrum of HfAlO high-k dielectric after ICP CF4 

plasma treatment.   The strong F peak at 686 eV confirms its incorporation in 

the dielectric.  SIMS analysis [Fig. 2.43] was conducted to obtain the 

elemental distribution in the F-treated MOS gate stack before and after PDA.  

Considerable amount of F was found to pile up near the interface between 

high-k and InGaAs after PDA, where the charge trapping sites could be 

located. 
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Fig. 2.42 (a) Cross-sectional TEM micrograph showing a F-treated 
MOCVD HfAlO gate dielectric formed on a SiH4 + NH3-passivated surface in 
a In0.53Ga0.47As MOSFET.  A thin SiOxNy interfacial layer between HfAlO and 
InGaAs was observed.  (b) Diffractogram reveals excellent crystalline quality 
of the In0.53Ga0.47As epilayer.  (c) Strong peak in the F 1s spectrum reveals the 
incorporation of fluorine in the HfAlO film after ICP CF4 plasma treatment.  
This peak is absent in the control sample.   
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 Fig. 2.44(a) plots the ID–VG transfer characteristics of InGaAs N-

MOSFETs with and without F treatment.  The gate length is 2 µm.  F 

treatment improves the subthreshold characteristics and IDsat.  The SS of a F-

treated InGaAs MOSFET was improved from 170 mV/decade to 156 

mV/decade, indicating improvement in gate stack quality.  Fig. 2.44(b) shows 

the ID–VD output characteristics of the InGaAs MOSFETs.  Higher IDsat was 

achieved in the F-treated InGaAs MOSFET.  This is likely attributed to the 

improved carrier mobility (to be shown later), resulting from the reduction in 

interface and oxide trapped charges.   
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Fig. 2.43 SIMS profile reveals the elemental distribution of the 
TaN/HfAlO/InGaAs stack with SiH4 + NH3 passivation and F treatment.  F 
tends to pile up at the HfAlO/SiOxNy interface after PDA. 
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Fig. 2.44 (a) ID–VG and (b) ID–VD output characteristics of In0.53Ga0.47As 
N-MOSFETs with and without F treatment.  The F-passivated transistor 
demonstrates improvement in subthreshold characteristics and drive current. 
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Fig. 2.45 Cumulative distribution of (a) SS, and (b) hysteresis of InGaAs 
N-MOSFETs with and without ICP CF4 plasma treatment.  Fluorine 
passivation leads to smaller SS, indicating reduced interface states in the MOS 
stack, and improved hysteresis, indicating the reduced number of bulk oxide 
traps.   
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 Fig. 2.45(a) and (b) summarize the statistical distributions of SS and 

hysteresis in the C-V characteristics of InGaAs MOSFETs with and without F 

treatment.  InGaAs MOSFETs with F-treated gate dielectric have a median SS 

that is lower than that of the controls.  The improvement of SS indicates a 

reduction of interfacial states by F passivation.  Reduction in hysteresis was 

also achieved with the incorporation of F, indicating a reduction in the number 

of oxide traps.  The chemical bonding in Hf-rich HfAlO is ionic, which is 

different from covalent network structure in SiO2.  Oxygen vacancy states are 

highly localized on the orbitals of the Hf ions [2.44].  With shorter bond length 

than other halides such as Cl and Br, F would be more effective at repelling 

anti-bonding states into the oxide [2.44].  In addition, F is easily to be 

incorporated into the HfAlO film with smaller atomic radius than other 

halides.  Additional F treatment is also likely to passivate the vacancy states in 

the SiOxNy by forming Si-F bonds.  As a result, total oxide trapping states in 

the gate stack was reduced through F incorporation. 

 Fig. 2.46 plots the extracted µeff versus inversion charge density Ninv of 

InGaAs MOSFETs with and without F passivation.  The effective electron 

mobility is extracted based on split C-V method.  Both InGaAs transistors 

have comparable EOT of 3.2 nm.  The F treatment improved the electron 

mobility µe in the high field or high inversion charge density Ninv region.  

Higher mobility contributes to a higher drive current, as observed in Fig. 

2.44(a) and (b).  The improvement of carrier mobility is attributed to improved 

gate dielectric quality, which gives a reduced density of trapped charges that 

contributes to carrier scattering.  With improved subthreshold characteristiscs,  
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Fig. 2.46 Electron mobility µe as a function of inversion charge density 
Ninv.  Improvement of carrier mobility at high field could be attributed to 
reduced number of interface traps.  Inversion C-V characteristics indicate that 
the InGaAs MOSFETs have identical EOT of 3.2 nm. 
 
 

20 40 60 80

10-7

10-6

With F
Without F

 

 

 

 
I o

ff
 (

A
/ µµ µµ

m
) 

at
 V

G
-V

T
 =

 -
0.

2 
V

 

I
Dsat

 (µµµµA/µµµµm) at V
G
-V

T
 = 2.0 V 

V
D
 = 1.2 V

 

Fig. 2.47 Plot of off-state leakage Ioff versus on-state saturation drain 
current IDsat showing significant reduction in Ioff for In0.53Ga0.47As MOSFET 
with additional F passivation.  The reduction in Ioff is attributed to the 
improvement in subthreshold swing due to improved gate stack quality. 
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the InGaAs MOSFETs with additional F incorporation show significant Ioff 

reduction at a fixed IDsat [Fig. 2.47]. 

 

2.4.3 Summary 

In summary, the effects of F treatment on MOCVD HfAlO gate 

dielectric in N-MOSFETs with a SiH4 + NH3-passivated In0.53Ga0.47As surface 

channel were investigated.  XPS and SIMS analysis confirmed the 

incorporation of F into the gate dielectric.  F incorporation into the gate 

dielectric was found to improve the subthreshold characteristics and hysteresis 

of In0.53Ga0.47As MOSFETs by reducing both interface and oxide trapped 

charges.  The F-passivated In0.53Ga0.47As MOSFETs also demonstrate 

improved drive current and carrier mobility. 

2.5 Summary 

In-situ interface engineering, comprising vacuum anneal for native 

oxide desorption and surface treatment, has been successfully demonstrated to 

realize high quality metal gate/high-k dielectric stack on III-V compound 

semiconductors.  After vacuum anneal for the elimination of poor quality 

native oxide, a thin silicon interfacial layer was formed by SiH4 treatment to 

effectively prevent the III-V’s surface from exposure to an oxidizing ambient 

during MOCVD high-k dielectric deposition.  Using this passivation, surface 

channel III-V N-MOSFETs were demonstrated.   

MOSFET performance can be improved by introducing additional NH3 

in a SiH4 passivation.  The enhancement in interfacial properties is related to 

the formation of a SiOxNy interfacial layer that protects the GaAs or InGaAs 

surface from exposure to the oxidizing ambient during high-k dielectric 
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deposition.  Inversion-type GaAs and InGaAs channel N-MOSFETs were 

fabricated with the SiH4 and NH3 passivation technology, showing good 

electrical characteristics with high electron mobility, high Ion/Ioff ratio and low 

subthreshold swing. 

The impact of combining multiple interfacial passivation methods such 

as in-situ SiH4 + NH3 passivation and CF4 plasma treatment was investigated.  

Incorporation of F into the HfAlO high-k dielectric was found to improve the 

subthreshold characteristics and hysteresis of InGaAs MOSFETs due to the 

reduction in interface and oxide trapped charges.  In addition, further 

improvement in drive current and carrier mobility was also achieved in the F-

passivated InGaAs MOSFETs.  
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Chapter 3 

 

Lattice Mismatched In0.4Ga0.6As 

Source/Drain Stressors with In-situ Doping 

for Strained In0.53Ga0.47As Channel N-

MOSFETs 

 

3.1 Introduction 

In Si CMOS technology, channel strain engineering has been widely 

adopted to extend the performance and scaling limits of Si MOSFETs [3.1]-

[3.13].  Carrier mobility can be considerably enhanced through strain-induced 

modification of the electronic band structure [3.14].  In addition to the channel 

resistance RCH, the magnitude of a transistor drive current is also determined 

by the source/drain (S/D) series resistance RSD (Fig. 3.1).  The combination of 

these two resistance components constitute to the total resistance RTotal 

between the source and drain contacts of a transistor, which is given by 

 RTotal = RCh + RSD.  (3-1) 

With the introduction of high mobility III-V channel materials and additional 

channel strain engineering, RCh is anticipated to be reduced dramatically.  RSD 

has also to be reduced such that the transistor drive current can be maximized  
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Fig. 3.1 Schematic illustration of the channel resistance (RCh) and the 
source/drain resistance (RSD) of a transistor.  The total resistance (RTotal) of the 
transistor is the summation of these resistance components.  RTotal of the 
transistor is drastically reduced by high mobility InGaAs channel and 
additional channel strain engineering for RCh reduction and in-situ doping in 
the S/D regions for RSD reduction.  

 

with minimum RTotal.  

To realize the full potential of III-V MOSFETs, channel strain 

engineering will be an important direction.  The effect of strain on carrier 

transport in many III-V semiconductors, such as Gallium Arsenide (GaAs) and 

Indium Gallium Arsenide (InGaAs), is well-established [1.62]-[3.16].  

However, the integration of process-induced strain to exploit the effect of local 

stressors such as lattice-mismatched S/D regions [3.12] for mobility 

enhancement in III-V channel MOSFETs has never been demonstrated.  

Furthermore, RSD in III-V MOSFETs needs to be reduced to realize more 

performance benefits from the enhanced carrier transport.  The incorporation 

of a high doping concentration in the S/D regions would also be important. 

In this chapter, the concept and demonstration of a novel In0.53Ga0.47As 
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N-channel MOSFET with in-situ doped lattice-mismatched In0.4Ga0.6As S/D 

regions for channel strain and S/D doping engineering are proposed and 

demonstrated (Fig. 3.1).  The device concept and process development for this 

novel strained InGaAs MOSFET are described in Section 3.2.  The lattice 

mismatch between In0.4Ga0.6As S/D and In0.53Ga0.47As channel is exploited to 

induce tensile strain in the channel for mobility enhancement.  In addition, 

high S/D doping concentration, achieved by the in-situ doping process, further 

reduces RSD.  The key results in this technology demonstration are discussed in 

Section 3.3, followed by a conclusion in Section 3.4. 

 

3.2 Device Concepts and Fabrication 

3.2.1 Channel Strain Engineering By Lattice-Mismatched Source/Drain 

Stressors 

 By embedding a material in the S/D regions of a device structure that is 

lattice-mismatched with respect to the channel, beneficial strain can be locally 

introduced in the channel region.  In Si CMOS technology, materials such as 

silicon-germanium (SiGe) and silicon-carbon (Si:C), which have lattice 

constants larger and smaller than that of Si, are employed to induce 

appropriate strain components in the transistor channel of P-MOSFETs [3.4]-

[3.7] and N-MOSFETs [3.8]-[3.13], respectively.   

 Channel strain engineering can be introduced in III-V transistor by a 

similar approach.  Fig. 3.2 illustrates the difference in the lattice constant of 

GaAs, InxGa1-xAs, and InAs.  InAs has a much larger lattice constant than 

GaAs.  InxGa1-xAs alloy has an equilibrium lattice constant that is between the 

lattice constants of GaAs and InAs according to the Vegard’s law, 
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 aInGaAs = (1− x) aGaAs + x.aInAs  (3-2) 

where aGaAs and aInAs are the lattice constants of GaAs and InAs, respectively, 

and x is the mole fraction of In in the group III sublattice. 

Schematic in Fig. 3.3 illustrates the origin of strain induced in an 

In0.53Ga0.47As channel transistor featuring In0.4Ga0.6As S/D stressors.  The 

lattice interactions at the heterojunction between a pair of lattice-mismatched 

materials affect two major strain components: the vertical strain εy and the 

lateral strain εx.  At the vertical heterojunction, the smaller In0.4Ga0.6As lattice 

attempts to compress the larger In0.53Ga0.47As lattice vertically, while itself 

takes on a vertical tensile strain.  As a result, the In0.53Ga0.47As lattice 

experiences vertical compressive strain which concomitantly contributes to a 

lateral tensile strain that extends throughout the channel region.  However, at 

the horizontal heterojunction, the In0.53Ga0.47As lattice experiences opposite 

lateral and vertical strains, which offsets against the strain components 

induced at the vertical heterojunction.  Maximum strain level can then be 

found near the surface, where the carriers are conducted. 
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Fig. 3.2 Lattice constants of GaAs, InxGa1-xAs, and InAs.  The lattice 
constant of InxGa1-xAs can be tuned by varying the composition of indium.  
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Fig. 3.3 Schematic illustration of a strained N-channel In0.53Ga0.47As 
transistor with lattice-mismatched In0.4Ga0.6As S/D stressors.  The In0.4Ga0.6As 
stressor stretches the In0.53Ga0.47As lattice at both the horizontal and vertical 
heterojunctions, as shown in the inset. 
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A finite element study was performed to investigate the distribution of 

strain components in In0.53Ga0.47As MOSFET structures with In0.4Ga0.6As S/D 

regions, which is similar to Si transistor with SiGe S/D stressors [3.17].  Fig. 

3.4(a) and (b) show the simulated lateral strain εx and vertical strain εy profile 

of In0.53Ga0.47As MOSFET structures with In0.4Ga0.6As S/D regions and gate 

length of 200 nm, respectively.  Largest εx in the channel is observed to locate 

near the top surface of In0.53Ga0.47As channel where the inversion layer is 

formed, therefore contributing favorably to drive current and carrier transport 

enhancement.  The lateral tensile strain, induced along the channel of the 

transistor structure, decreases with increasing distance from the In0.4Ga0.6As 

regions.  In addition, the lateral tensile strain also decreases with increasing 

depth from the gate dielectric-In0.53Ga0.47As interface.  The vertical strain in 

the In0.53Ga0.47As channel behaves similarly and is compressive in nature.   
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Fig. 3.4 Finite element simulation obtained the distribution of (a) lateral 
strain εx and (b) vertical strain εy in the strained In0.53Ga0.47As channel.  The 
S/D recess depth is 15 nm, and the separation between the In0.4Ga0.6As source 
and drain regions is 200 nm.  
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Fig. 3.5 compares the average εx and εy in the transistor channel within 

top 5 nm from the gate dielectric-In0.53Ga0.47As interface as a function of gate 

lengths.  A larger strain is obtained in the transistor with the smaller gate 

length.  As the gate length becomes smaller, the In0.4Ga0.6As regions are 

placed closer together, giving rise to a larger strain in the channel.  The 

increase in the strain induced in the channel with gate length downsizing is a 

significant advantage of this approach, since it leads to scalable performance 

enhancement. 
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Fig. 3.5 Average lateral strain εx and vertical strain εy in the transistor 
channel within top 5 nm from the gate dielectric-In0.53Ga0.47As interface at 
various gate lengths.  Both strain components increase in magnitude with 
smaller gate length, and can be exploited for performance scaling. 
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3.2.2 Process Development of Selective InGaAs Epitaxy with In-situ 

Doping  

Dilute HCl cleaning was performed to remove native oxide on the 

In0.53Ga0.47As surface prior to selective epitaxial growth in a metal organic 

chemical vapor deposition (MOCVD) reactor.  Trimethylgallium (TMGa), 

tertiarybutylarsine (TBA), and trimethylindium (TMIn) were employed as the 

precursors for the MOCVD process.  Flow rates of TMGa, TBA, and TMIn 

were 9 sccm, 60 sccm, and 130 sccm, respectively.  Silane (SiH4) was 

introduced during the epitaxy process to achieve in-situ N-type doping.  The 

pressure of the reactor during MOCVD epitaxy was 75 Torr.  The MOCVD 

reactor was not directly operated by me. 

Indium composition and growth temperature are the two key factors 

affecting the selective epitaxy of InGaAs [Fig. 3.6(a)].  When indium 

composition is low, Fig. 3.6(b) shows undesirable three-dimensional growth of 

InGaAs dots on S/D regions due to huge lattice mismatch with In0.53Ga0.47As.  

The islanding process relieves the stress accumulated at the InGaAs 

heterojunction.  When indium composition is increased or lattice mismatch is 

reduced, two-dimensional growth mode becomes the dominant mechanism.  

SEM image in Fig. 3.6(c) show high quality InGaAs epitaxy with lattice 

mismatch of 0.9 % at the heterojunction.  However, selectivity over silicon 

oxide (SiO2) or silicon oxynitride (SiON) regions was not achieved.  The 

growth temperature was increased to 635 °C to enable the desorption of 

nucleated seeds on SiO2 
or SiON regions for achieving high growth selectivity, 

as illustrated in Fig. 3.6(d). 
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Fig. 3.6 (a) Indium composition and temperature are key factors 
affecting the growth. SEM images showing film quality and growth selectivity 
under different epitaxy conditions.  (b) Huge lattice mismatch leads to three-
dimensional growth of InGaAs dots.  (c) Two-dimensional growth of InGaAs 
layer was achieved with smaller lattice mismatch.  (d) Higher temperature 

enables the desorption of nucleated seeds on the gate lines to achieve selective 
growth. 
 

High resolution X-ray diffraction (HRXRD) was employed to 

investigate the composition of indium in the InGaAs epilayer.  The X-ray 

diffraction was performed on a separate monitor wafer, as the dimensions of 

the source/drain regions, 100 µm by 100 µm, are much smaller than the spot 

size of X-ray during HRXRD analysis, 3 mm by 12 mm.  The composition of 

indium incorporated in the InGaAs layer was determined to be ~40 %, as 

shown in Fig. 3.7.  In0.4Ga0.6As has a lattice constant ~1 % smaller than that of 

In0.53Ga0.47As.  Pendellösung oscillation fringes can be observed clearly, 

indicating high crystalline quality and flat interface of the structure.  Cross-

sectional transmission electron microscopy (TEM) image in Fig. 3.8 shows a 

transistor structure with In0.4Ga0.6As stressor and SiON dummy gate.  The 

recess depth formed by chorine (Cl2)-based dry etching process is about 20  
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Fig. 3.7 The well-defined InGaAs peak in the high resolution XRD 
indicates high crystalline quality of the InGaAs epilayer.  The composition of 
indium in the InGaAs epilayer was determined to be ~40 %. 
 

nm.  The regrown In0.4Ga0.6As region demonstrates excellent crystalline 

quality and high growth selectivity over SiON. 

Next, the sheet resistance of InGaAs film with in-situ doping during 

S/D regrowth process is investigated.  Transmission line method (TLM) test 

structure with low resistance palladium germanide (PdGe) ohmic contacts was 

employed to accurately extract the sheet resistance value.  Fig. 3.9 compares 

the sheet resistance of N-type InGaAs films formed by in-situ SiH4 doping 

process and by Si+ implantation and dopant activation.  The implant conditions 

of the control were adjusted such that similar junction depths were obtained, 

as confirmed by secondary ion mass spectrometry (SIMS) analysis.  ~ 20 % 

reduction in the sheet resistance was achieved using the in-situ doping process,  
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Fig. 3.8 Cross-sectional TEM micrographs showing (a) an 
In0.53Ga0.47As transistor structure with SiON dummy gate and selective grown 
In0.4Ga0.6As structures on the S/D regions, and (b) a zoomed-in view of a 
region in (a) which shows raised In0.4Ga0.6As S/D structure and SiON dummy 
gate.  The recess depth is about 20 nm and the thickness of In0.4Ga0.6As 
stressor is 70 nm.  (c) A high resolution zoomed-in view of a region showing 
the heterojunction highlighted in (a).  Pseudomorphic epitaxy of In0.4Ga0.6As 
on In0.53Ga0.47As was achieved in this MOCVD process. 
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Fig. 3.9 Comparison of sheet resistance of N-type InGaAs layer formed 
by in-situ SiH4 doping process and by Si+ implantation and dopant activation.  
The sheet resistance is extracted using TLM test structure.  In-situ SiH4 doping 
process leads to significant reduction in RSD for enhanced transistor 
performance. 
 

which is crucial to reduce the RSD of a transistor.  RSD cannot be improved by 

simply increasing the implant dose of Si+ due to the difficulty to re-crystallize 

amorphous III-V material and the formation of Si on As site acceptors at high 

Si level. 

 
3.2.3 Device Fabrication 

The key process steps for forming an In0.53Ga0.47As channel N-

MOSFET with in-situ doped In0.4Ga0.6As S/D stressors are summarized in Fig. 

3.10.  P-type Be-doped (100)-oriented In0.53Ga0.47As/InP substrates with a 

doping concentration NA of 1 - 5 ×1016 cm-3 were used.  After pre-gate 

cleaning in HCl, NH4OH, and followed by (NH4)2S, the wafers were quickly 

loaded into a multiple-chamber gate cluster system, where 550 ˚C vacuum 

anneal, SiH4 + NH3 passivation, and MOCVD deposition of HfAlO were  
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Fig. 3.10 Process sequence employed in transistor fabrication.  The 
In0.53Ga0.47As recess etch and In0.4Ga0.6As selective epitaxy steps are 
introduced to replace S/D implant step in the fabrication process. 
 

performed.  This was followed by post-gate dielectric deposition anneal and 

reactive sputter deposition of TaN as gate electrode.  A SiO2 hardmask was 

deposited to cover the TaN gate during the selective epitaxy process.  After 

gate patterning, S/D extension (SDE) implantation was performed before 

forming the SiON spacers.   

Process steps for all devices are exactly the same except for the deep 

S/D formation step.  For control devices, deep S/D regions were formed by 

self-aligned implantation (1014 Si atoms/cm2 at 50 keV), and a rapid thermal 

annealing (650 ˚C for 60 s in N2 ambient) to activate the dopants, including 

those in the SDE.  For the strained MOSFETs, S/D recess etch was performed 

followed by selective epitaxy using MOCVD to form 50 nm thick in-situ 

doped single-crystalline In0.4Ga0.6As S/D.  The thermal budget from the 



 105

MOCVD growth (635 ˚C for 120 s) was used for dopant activation in the 

SDE.  Finally, low resistance CMOS-compatible PdGe contacts were 

integrated for all devices. 

 

3.3 Device Characterization and Analysis 

In this section, the advantages of integrating in-situ doped In0.4Ga0.6As 

S/D stressors to In0.53Ga0.47As MOSFETs are evaluated based on comparison 

with control In0.53Ga0.47As devices featuring In0.53Ga0.47As S/D regions formed 

by implantation and dopant activation.   

Fig. 3.11(a) shows ID–VD family of curves for a pair of surface channel 

In0.53Ga0.47As MOSFETs with LG of 200 nm.  The In0.53Ga0.47As MOSFETs 

demonstrate good saturation and pinch-off characteristics.  A 28 % 

enhancement in drive current was achieved at a gate overdrive VG–VT of 3 V 

and VD of 3 V in the strained channel device with in-situ doped lattice-

mismatched In0.4Ga0.6As S/D.  Fig. 3.11(b) shows the ID–VG characteristics of 

the same pair of devices in the linear (VDS = 100 mV) and saturation (VDS = 1.2 

V) regions.  The devices exhibit comparable subthreshold swing of 200 

mV/decade and drain-induced barrier lowering (DIBL) of 130 mV/V.  It is 

obvious that In0.53Ga0.47As-channel N-MOSFET integrated with in-situ doped 

In0.4Ga0.6As S/D stressors exhibits enhanced saturation drive current IDsat over 

control N-MOSFET.  This clearly established the applicability of in-situ doped 

lattice-mismatched S/D stressors for InGaAs MOSFETs. 
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Fig. 3.11 (a) ID–VD, and (b) ID–VG characteristics showing current 
enhancement in the In0.53Ga0.47As N-MOSFET with in-situ doped In0.4Ga0.6As 
S/D regions over a control In0.53Ga0.47As N-MOSFET.  Both devices have a 
gate length of 200 nm.  The control N-MOSFET has In0.53Ga0.47As S/D 
regions. 
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Fig. 3.12 RTotal as a function of VG for strained In0.53Ga0.47As N-MOSFET 
with in-situ doped In0.4Ga0.6As S/D regions and control In0.53Ga0.47As N-
MOSFET.  LG is 200 nm and VD is 0.1 V.  Higher S/D doping level in N-
MOSFET with in-situ doped In0.4Ga0.6As S/D regions gives a reduced series 
resistance.  Inset shows the extracted RSD at VG of 3 V.    

 

The RTotal of a transistor measured at low drain bias decreases with 

increasing gate bias VG, and approaches RSD at large VG.  RTotal is calculated by 

dividing drain bias over measured drain current.  RSD is the sum of the source 

resistance RS and drain resistance RD, where RS is equal to RD for a symmetric 

device.  Fig. 3.12 plots the RTotal versus VG characteristics of the same pair of 

InGaAs transistors.  In-situ doped In0.4Ga0.6As S/D reduced the RSD by ~ 20 %, 

as compared to the control device.  This is attributed to higher doping 

concentration achieved by the in-situ SiH4 doping process. 

Fig. 3.13 shows the extrinsic linear transconductance Gm,ext.  Gm,ext is 

an affected by both carrier mobility and RSD.  To take out the effect of RSD, the 
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intrinsic linear transconductance Gm,int was extracted based on the following 

equations [3.18]: 

 Gm,int ( ) )1(1 0

0

mSDDS

m

GRGRR

G

⋅+⋅+−
=  (3-3) 

 
extmS

extm

m
GR

G
G

,

,0

1 ⋅−
=  (3-4) 

where GD is the measured drain conductance or slope in ID-VD plot (dID/dVD).   

Source resistance RS and drain resistance RD are half of RSD obtained in Fig. 

3.12.  Gm,ext is extrinsic transconductance or slope in ID-VG plot (dID/dVG).  

Intrinsic linear transconductance Gm,int is free from series resistance effects and 

is directly related to the carrier mobility.  Using the RS extracted from 
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Fig. 3.13 Linear Gm,ext versus VG of strained and control devices at VD of 
0.1 V.  The inset plots the extracted peak linear Gm,int of both strained and 
control devices.  The 28 % improvement in peak Gm,int is due to improvement 
in carrier mobility.    
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Fig. 3.12, Gm,int of strained In0.53Ga0.47As MOSFET (GS
m,int) and control 

(GC
m,int) can be extracted using equations 3-3, and 3-4, respectively.  The 

strained In0.53Ga0.47As MOSFET demonstrates Gm,int enhancement of ~ 28 % 

over the control device, indicating carrier mobility improvement [inset of Fig. 

3.13].  This is attributed to lateral tensile strain induced in the transistor 

channel.  Tensile strain modifies the Γ–valley minimum to become ellipsoidal 

and contributes to reduced effective mass along the transport direction [3.15].  

Peak Gm,ext, which is also related to RSD, increased from 36.0 µS/µm for the 

control transistor to 45.3 µS/µm for the strained transistor, giving a change in 

Gm,ext of 9.3 µS/µm or 26 % enhancement.  Fig. 3.14(a) shows the procedure to 

analyze the contribution from carrier mobility and RSD to total Gm,ext 

enhancement.  Gm,ext of the InGaAs device with mobility of the strain channel 

and RS of the control (GT
m,ext) can be calculated using equations 3-3, and 3-4.  

As illustrated by Fig. 3.14(b), change in Gm,ext due carrier mobility 

enhancement can be estimated based on the difference between G
T

m,ext and 

Gm,ext of control (GC
m,ext), as RS is kept constant.  Similarly, the difference 

between G
T

m,ext and Gm,ext of InGaAs device with In0.4Ga0.6As S/D (GS
m,ext) 

shows the enhancement due to RS, as carrier mobility is the same.  Our 

analysis shows that 44 % of Gm,ext comes from mobility enhancement and 56 

% of Gm,ext comes from RSD reduction.  Further performance improvement is 

expected with device scaling due to increased channel strain with reduced 

separation between the In0.4Ga0.6As S/D regions.   

The IOFF–IDsat characteristics in Fig. 3.15 show that in-situ doped 

In0.4Ga0.6As S/D enhance IDsat by 25% at a fixed IOFF of 10-6 A/µm.  Larger 

enhancement is observed at shorter gate length due to enhanced strain effects.  
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Although the devices studied here do not have aggressively scaled gate lengths 

or comparable performance with state-of-the-art Si N-MOSFETs, the concept 

of lattice mismatched in-situ doped S/D was demonstrated and could be 

attractive for further exploration in future high performance III-V MOSFETs.    
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Fig. 3.14 (a) Schematic illustrating the extraction of GS
m,int, G

C
m,int, G

T
m,ext 

to analyze the contributions from carrier mobility and RSD to total Gm,ext 
enhancement, using equations 3-3, and 3-4.  (b) By comparing among GS

m,ext, 
G

C
m,ext, and G

T
m,ext, the contribution from carrier mobility and RSD can be 

separated. 
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Fig. 3.15 Plot of off-state leakage IOFF versus on-state saturation drain 
current IDsat showing significant enhancement in IDsat for In0.53Ga0.47As 
MOSFET with in-situ doped In0.4Ga0.6As S/D over control MOSFET.  
 

3.4 Summary 

The concept of channel strain engineering using lattice-mismatched 

S/D stressors and S/D doping engineering using in-situ SiH4 doping process 

has been successfully demonstrated for the enhancement of electron mobility 

and the reduction of RSD of III-V channel N-MOSFETs.  For the first time, a 

novel strained-In0.53Ga0.47As channel N-MOSFET, comprising in-situ doped 

lattice-mismatched In0.4Ga0.6As S/D regions, was demonstrated.  Due to the 

lattice interactions at the heterojunction between In0.53Ga0.47As channel and 

In0.4Ga0.6As S/D regions, beneficial strain components can be induced in the 

adjacent transistor channel region, leading to significant carrier transport 

improvement.  Through finite element simulations, it has been verified that the 
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In0.4Ga0.6As regions act as stressors, giving rise to lateral tensile strain and 

vertical compressive strain in the In0.53Ga0.47As channel for enhanced electron 

mobility.  In addition, with the achievement of higher N-type doping 

concentration by in-situ doping process in the S/D regions, significant 

reduction in RSD was achieved, contributing to the reduction of total resistance 

in a transistor for performance enhancement.  Significant improvement in 

drive current performance was observed, which could partially be attributed to 

strain-induced electron mobility enhancement and series resistance reduction 

due to in-situ S/D doping.  Both effects are expected to become more 

prominent in aggressively scaled MOSFETs.  This chapter clearly illustrates 

the potential of in-situ doped lattice-mismatched S/D stressor to extend the 

device performance of III-V transistors for future technology nodes. 
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Chapter 4 

 

III-V Multiple-Gate Field-Effect-

Transistors (MuGFETs) with  

High Mobility In0.7Ga0.3As Channel and  

Epi-Controlled Retrograde-Doped Fin 
 

4.1 Introduction 

Device architectures, such as FinFETs or multiple-gate FETs 

(MuGFETs), are promising device architectures for extending device 

performance beyond the 22 nm technology node.  The benefits derived from 

such a multiple-gate device architecture include: improved control of SCEs, 

enhanced volume inversion in the channel region, lower leakage currents, and 

reduced device variability arising from random dopant fluctuations.  At 

present, technology development for MuGFETs has advanced significantly as 

it has been a topic of intensive research efforts over the last decade [4.1]-[4.8].  

Nevertheless, significant technical challenges exist for the adoption of 

MuGFETs in high-volume manufacturing. 

The integration of multiple gate structure in III-V MOSFETs would be 

another important direction to explore the full potential of III-V compound 

semiconductors.  In addition, short channel effects (SCEs) are more severe in 

InGaAs MOSFETs due to its narrower bandgap and higher permittivity.  
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Recently, In0.53Ga0.47As FinFETs with ALD Al2O3 were reported [4.9].  

Materials with higher carrier mobility than In0.53Ga0.47As should also be 

considered, such as In0.7Ga0.3As.  Nevertheless, MuGFET with In0.7Ga0.3As 

channel has not been demonstrated.   

In this chapter, novel MuGFET or FinFET with InGaAs channel 

having an indium composition as high as 70% for enhanced carrier mobility, 

as well as an epi-controlled retrograde-doped fin, with lightly-doped 

In0.7Ga0.3As channel on top of heavily-doped In0.55Ga0.45As retrograde channel 

to suppress SCEs is explored.  Fig. 4.1 shows the schematic representation of 

this novel InGaAs MuGFET structure. Transistor output characteristics with 

high saturation drain current and transconductance were obtained.  In addition, 

significant improvement in the SCEs, such as drain-induced barrier lowering 

(DIBL), as compared to planar MOSFETs was achieved. 

 

 

Higher Indium Content 
(In0.7Ga0.3As) for 
Higher Mobility

Epi-Controlled Retrograde 
Channel Doping in In0.7Ga0.3As for 
Reduced Short Channel Effects

InP Substrate

In0.55Ga0.45As 

TaN 

PdGe 

In0.7Ga0.3As    (~ 1×1016 cm-3)

In0.55Ga0.45As (~ 5×1017 cm-3)

 

Fig. 4.1 Three-dimensional schematic of N-channel InGaAs MuGFET, 
comprising high mobility InGaAs channel with indium composition of 70 %, 
and precise epi-controlled retrograde-doped fin structure. 
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The fabrication process of the InGaAs MuGFET is first described in 

Section 4.2.  Extensive device simulation and electrical characterization are 

discussed in Section 4.3.   Section 4.4 summarizes the key achievements 

attained in this work. 

 

4.2 Device Concepts  

Extensive three dimensional device simulations using Synopsys’s 

Sentaurus Technology Computer-Aided Design (TCAD) tool were performed 

to investigate the device performance and electrostatic control of the InGaAs 

MuGFET.  Fig. 4.2 shows the mesh simulation grid of the InGaAs MuGFET 

structure used in the device simulation.  The simulated device has a LG of 150 

nm, Wfin of 220 nm, and Hfin of 100 nm.  For the device with retrograde-doped 

channel, the NA of In0.55Ga0.45As retrograde well and In0.7Ga0.3As channel are 5 

× 1017 cm-3, and 1 × 1016 cm-3, respectively.  For the control without 

retrograde-doped channel, NA of In0.55Ga0.45As region is 1 × 1016 cm-3. 

Fig. 4.3 shows the conduction band (EC) profile along the MuGFET at 

y = 2 nm and 20 nm from the top surface and at the center of the fin with Wfin 

= 220 nm.  Improvement in DIBL can be clearly observed by having the 

retrograde-doped channel.  Fig. 4.4 shows the distribution of electrostatic 

potential in the fin region of InGaAs with VG of 1.2 V applied to (a) top gate 

(GT) and both side gates (GS1 + GS2), (b) GT only.  Significant difference in the 

electrostatic potential at the sides of the fin can be observed.  

Fig. 4.5(a) and (b) show the distribution of current density along A-A’ 

of the fin, as illustrated in the inset of Fig. 4.5(a), by applying gate bias VG to 

GT + GS1 + GS2, and to GT only, respectively.  The electron density in the 
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inversion layer is still surface channel-like.  In fact, many MuGFET designs 

are surface-channel devices, with the inversion layer formed on the top and 

sidewall surfaces rather than in the bulk of the fin.  There are two paths for 

current flow in this multilayer structure by applying VG to GT + GS1 + GS2 [Fig. 

4.5(a)], i.e. current flow in the In0.7Ga0.3As top layer (ITop) and current flow 

along the In0.55Ga0.45As sidewalls (ISide1 + ISide2).  ITop and ISide1+ ISide2 can be 

obtained by integrating the current densities in the region, as specified by Fig. 

4.5(a).  ITop and ISide1+ ISide2 were found to contribute ~66 % and ~34 % of the 

total drain current, respectively, at VGS = 1.2 V and VDS = 1.2 V.   

In0.7Ga0.3As

In0.55Ga0.45As

HfO2

 

Fig. 4.2 Three-dimensional mesh grid of the InGaAs MuGFET structure 
used in the device simulation.  In the channel region of the transistor, a mesh 
with tight grid spacing of 1 nm near the oxide-III-V interface is used as the 
carrier distribution gradient in the inversion layer is steep.  The grid spacing is 
relaxed gradually towards the bulk. 
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Fig. 4.3 Band diagram of conduction band (EC) along the MuGFET at y 
= 2 nm and 20 nm from the top surface and at the center of the fin with Wfin = 
220 nm, as illustrated in the top schematic. 
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Fig. 4.4 Distribution of electrostatic potential in the fin region of 
InGaAs with VG of 1.2 V applied to (a) GT + GS1 + GS2, (b) GT only.  VD of 1.2 
V was applied to both cases.  Inset shows the position along A-A’ of the fin 
for the analysis. 
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Fig. 4.5 Distribution of current density in the fin region of InGaAs with 
VG = 1.2 V and VD = 1.2 V applied to (a) GT, GS1 and GS2, and (b) GT only.  
ITop and ISide1 + ISide3 were obtained by integrating the current densities over the 
regions, as illustrated in (a).  Inset shows the position along A-A’ of the fin for 
the analysis. 
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4.3 Device Fabrication  

The process flow for MuGFET fabrication is summarized in Fig. 4.6.  

Fig. 4.7 illustrates the key process steps.  P-type Zn-doped (100)-oriented InP 

wafers with doping concentration NA of 1 × 1018 cm-3 were used as starting 

substrates.  A 1 µm thick Be-doped In0.55Ga0.45As retrograde well with NA of 5 

× 1017 cm-3 and ~16 nm In0.7Ga0.3As channel with a lower NA of 1 × 1016 cm-3 

were sequentially grown by molecular beam epitaxy (MBE) on the InP 

substrates.  During the MBE process, the substrate temperature was 480-490 

ºC and base pressure was 7–8×10-8 Torr.  The fluxes of In, Ga, and As are 

1.10×10-7, 5.08×10-8, and 1.00×10-5 Torr, respectively, giving a growth rate of 

3.08 Å/s for the In0.55Ga0.45As retrograde well.  The cell temperature of Be was 

830 ºC.  During epitaxy of In0.7Ga0.3As channel, the fluxes of In, Ga, and As 

are 1.90×10-7, 5.08×10-8, and 1.00×10-5 Torr, respectively, with the cell 

temperature of Be at 765 ºC.  High-resolution X-ray diffraction (HRXRD) was 

employed to confirm the composition of the InGaAs layers (Fig. 4.8).  Fig. 4.9 

shows the vertical profile of Be dopants in the InGaAs epilayers.  The high Be 

concentration at the surface is an artefact.  The heavily-doped In0.55Ga0.45As 

retrograde well is designed to minimize punchthrough effect and provide 

superior control of SCEs.   

A 25 nm thick screen SiO2 layer was first deposited, followed by 

formation of dummy photoresist gate pattern to define the source/drain (S/D) 

regions.  Si+ was then implanted at a dose of 1 × 1014 cm-2 and an energy of 30 

keV.  This defines the channel length LCH.  The dummy photoresist gate 

pattern was then removed.  Fin lithography was then performed before a Cl2-

based plasma etch to define the InGaAs fins with a fin height HFin of 100 nm.  
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This removed the N+ regions surrounding the fins.  This was followed by 

dopant activation (600 ºC for 60 s) in N2 ambient.   

After pre-gate clean comprising sequential treatment in dilute 

H2SO4:H2O2:H2O, HCl, NH4OH, and (NH4)2S, the wafers were loaded into a 

multiple-chamber gate cluster system for vacuum baking, SiH4+NH3 

passivation and MOCVD deposition of HfAlO (19 nm).  CF4 treatment and 

post-gate dielectric deposition anneal (PDA) at 500 ºC for 60 s were 

performed prior to reactive sputter deposition and patterning of TaN gate 

electrode.  Low resistance CMOS-compatible PdGe contacts were finally 

integrated.  

S/D Definition
- Si+ Implantation 

Fin Definition
Dopant Activation 
Pre-Gate Clean
Gate Stack Formation

- Vacuum Anneal
- SiH4 + NH3 Passivation
- MOCVD HfAlO Deposition
- CF4 + O2 Plasma Treatment
- PDA and TaN Gate 
Electrode  Deposition

Gate Definition
Contact Definition

- PdGe Metalization

Process Flow:

 

Fig. 4.6 Process sequence employed in transistor fabrication.  A gate 
last fabrication approach was used in this device demonstration. 
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(a) S/D Definition by Si+ Implantation

In0.7Ga0.3As
In0.55Ga0.45As
InP

In0.7Ga0.3As
In0.55Ga0.45As
InP

(b) Fin Definition

PR Dummy Gate

N+ region here was
removed

N+ region here was
removed

(c) Gate Definition

In0.7Ga0.3As
In0.55Ga0.45As
InP

TaN gate line

N+ Source
N+ Drain

 

Fig. 4.7 Schematic illustration of the key process steps in the MuGFET 
fabrication.  (a) Dummy photo resist (PR) gate pattern was used to define the 
S/D regions during Si+ implantation.  (b) Fin lithography was then performed 
before a Cl2-based plasma etch to define the InGaAs fins with a HFin of 100 
nm.  This also removed the N+ regions surrounding the fins.  (c) After surface 
passivation and high-k dielectric deposition, TaN metal gate was reactively 
sputtered and patterned. 
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Fig. 4.8 HRXRD shows well-defined In0.7Ga0.3As and In0.55Ga0.45As 
peaks, indicating high crystalline quality of the epilayers. 
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Fig. 4.9 SIMS profile reveals the elemental distribution of Be in the 
In0.7Ga0.3As/In0.55Ga0.45As stack.  The high Be concentration at the surface is 
an artefact. 
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4.4 Device Characterization and Analysis 

Fig. 4.10(a) shows the top view Scanning Electron Microscopy (SEM) 

image of a completed InGaAs MuGFET with TaN gate line, In0.7Ga0.3As fin 

and PdGe ohmic contacts.  Transmission Electron Microscopy (TEM) image 

in Fig. 4.10(b) shows the cross-sectional view of the InGaAs MuGFET along 

line A-A’, as indicated in Fig. 4.10(a).  The thickness of In0.7Ga0.3As layer is 

about 16 nm.  The In0.7Ga0.3As surface appears rough, and the roughening 

could be strain-induced as the thickness of In0.7Ga0.3As is close to its critical 

thickness.  A similar phenomenon in strained-layer epitaxy of InGaAs has also 

been reported [4.10].  TEM micrograph in Fig. 4.10(c) shows the fin structure 

along B-B’, as indicated in Fig. 4.10(a).  The InGaAs fin structure has a WFin 

of 220 nm and HFin of 100 nm.  

Fig. 4.11 plots the ID–VG transfer characteristics of In0.7Ga0.3As N-

MuGFET with WFin of 220 nm in the linear (VD = 100 mV) and saturation (VD 

= 1.2 V) regions.  LCH is 130 nm.  The IDS is normalized by WFin + 2 × HFin.  

With a multiple-gate architecture for better electrostatic control and a 

retrograde-doped fin for suppression of sub-surface punchthrough, SCEs in the 

channel region are well-controlled.  The DIBL is 135 mV/V, which is very 

small considering that the physical thickness of the HfAlO dielectric is 19 nm.  

Subthreshold swing (SS) of the MuGFET is 230 mV/decade, which is 

indicative of a poor interface quality, and can be reduced by improving the 

surface passivation process and by reducing the EOT. 
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Fig. 4.10 (a) SEM image shows the top view of a fabricated MuGFET 
with TaN gate electrode, In0.7Ga0.3As channel and PdGe ohmic contacts.  (b) 
TEM micrograph showing the cross-sectional view of the InGaAs MOSFET 
along A-A’, as indicated in the SEM image in (a).  (c) TEM micrograph 
showing the cross-sectional view of the InGaAs fin structure along B-B’, as 
indicated in (a).  The InGaAs fin structure has a WFin of 220 nm and HFin of 
100 nm. 
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Fig. 4.11 ID–VG transfer characteristics of In0.7Ga0.3As N-MuGFET with 
retrograde p-type In0.55Ga0.45As fin.   
 

ID-VD output characteristics are plotted in Fig. 4.12.  Despite the 

relatively thick gate dielectric (19 nm of HfAlO), the InGaAs MuGFET 

demonstrates IDsat exceeding 850 µA/µm at VDS of 2 V and VG – VT of 3 V.  

This is partly due to the multiple-gate structure that contributes to suppressed 

DIBL and relaxation of the gate oxide thickness requirement.  Further 

improvement in IDsat and DIBL can be realized through reduction of the EOT 

and further improvement in surface passivation.  Parasitic S/D series 

resistance RSD of the InGaAs FETs is ~ 1 kΩ-µm, which is similar to Ref. [4.9] 

and [4.11].  The RSD is higher than HEMT structure as reported in Ref. [4.12].  

This is related to low S/D doping concentration by implantation technique and 

integration of non-self-aligned ohmic contacts.  RSD has to be reduced to derive 

more performance benefits from enhanced carrier transport in the high 

mobility channel.  In addition, the low S/D junction leakage is attributed to the 

low S/D implant dose of 1 × 1014 cm-2, which reduces crystal damage. 
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Fig. 4.12 ID–VD output characteristics of the InGaAs N-MuGFET in Fig. 
4.11. 
 

 Fig. 4.13 shows DIBL of MuGFETs with various WFin at a fixed LCH of 

130 nm.  DIBL is reduced with decreasing WFin, indicating better control of 

SCEs in the multiple-gate structure.  Similar improvement in SCEs of 

MuGFETs with similar WFin was also reported by other groups [4.13], [4.14].  

Further improvement in DIBL is expected through scaling of WFin.  Fig. 4.14 

shows that the DIBL of the devices is a weak function of LCH, showing 

reasonable control of SCEs due to the multiple-gate structure and retrograde 

channel doping. 
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Fig. 4.13 DIBL versus channel width of the InGaAs transistors with 
retrograde channel doping.  DIBL decreases with the reduction of channel 
width, indicating improved electrostatic control of the channel. 
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Fig. 4.14 DIBL of In0.7Ga0.3As N-MuGFETs with retrograde doping as a 
function of LCH.   
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4.5 Summary 

 In summary, multiple-gate device architecture and retrograde channel 

doping design were investigated for the improvement of the device 

performance of III-V channel MOSFETs.  A novel III-V N-MuGFET with 

lightly-doped high mobility In0.7Ga0.3As channel and epi-controlled 

retrograde-doped fin was fabricated for this technology demonstration.  

Through device simulations, it has been verified that the additional retrograde 

channel doping gives rise to improved control of SCEs.  In addition, the 

electrical results further confirmed the significant improvement in SCEs, such 

as Vt roll-off and DIBL, which was realized by using the multiple-gate 

structure, as compared to the planar MOSFET.  The In0.7Ga0.3As N-MuGFETs 

demonstrate good electrical performance, showing DIBL of 135 mV/V, and 

IDsat exceeding 840 µA/µm at VD of 1.5 V and VG – VT of 3 V.  The device 

architecture investigated in this chapter is very promising for achieving very 

high carrier mobility and improved short-channel effects in aggressively 

scaled III-V transistors.   
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Chapter 5 

 

Nanoheteroepitaxy of  

Gallium Arsenide on Strain-Compliant  

Silicon-Germanium Nanowires  
 

5.1 Introduction 

Heterogeneous integration of III-V compound semiconductors such as 

gallium arsenide (GaAs) on silicon (Si) substrates would enable the fabrication 

of high-speed transistors and optoelectronic devices on a Si platform and the 

realization of enhanced functionalities in integrated electronics.  Tremendous 

research effort has been made to integrate GaAs on Si, including direct growth 

on Si islands [5.1], flip-chip bonding [5.2]-[5.3], insertion of a silicon-

germanium (SiGe) graded buffer layer [5.4]-[5.5], and selective aspect ratio 

trapping (ART) method [5.6].  Antiphase domains (APDs) which typically 

form during the growth of polar III-V materials on non-polar materials, such 

as Si, have to be effectively suppressed.  In addition, huge differences in 

lattice constant of ~ 4.1 % and thermal expansion coefficient of ~ 110 % 

between GaAs and Si impose immense challenges for direct integration of 

GaAs on Si.  Use of compliant substrates may be an attractive approach to 

achieve dislocation-free heterostructure [5.1], [5.7]-[5.8].  Additional stress 

relief mechanisms in compliant substrate can significantly reduce the strain 
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energy in the compound semiconductor epilayer, increase the critical 

thickness, and facilitate the integration of lattice-mismatched materials. 

In this chapter, a new method of forming GaAs on a Si-based substrate 

through selective migration-enhanced epitaxy (MEE) of GaAs on strain-

compliant SiGe nanowire structures was reported.  The physics of compliance 

in nanoscale heterostructures is exploited for accommodating strain at the 

GaAs-SiGe interface.  The nanowire structure adopted here provides 

additional stress relief, as compared to the growth on planar structures, due to 

the substrate compliance effect or distribution of strain energy between the 

GaAs layer and the SiGe nanowire.  Si0.35Ge0.65 nanowires formed by the 

germanium (Ge) condensation process [5.9] were employed as template for 

GaAs growth.  The need for thick (> 1 µm) lattice-matched Ge buffer layer, 

expensive bulk III-V wafers for layer transfer, or chemical mechanical 

polishing (CMP) process steps was eliminated.   

The fabrication process employed in the hetero-integration is first 

described in Section 5.2.  Extensive finite element simulations and material 

characterization, including scanning electron microscopy (SEM), cross-

sectional transmission electron microscopy (TEM), photoluminescence (PL), 

micro-Raman spectroscopy, and Auger electron spectroscopy, are discussed in 

Section 5.3.  Section 5.4 summarizes the key achievements attained in this 

work. 
 

5.2 Experiment  

The starting materials were silicon-on-insulator (SOI) substrates with ~ 

15 nm of (001) Si on 140 nm of buried oxide (BOX).  A Si0.85Ge0.15 layer was 
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pseudomorphically grown by ultra-high vacuum chemical vapor deposition 

(UHVCVD) on the Si surface.  The growth was carried out at 580 °C using 

disilane (Si2H6) and germane (GeH4) as precursors.  Schematics in Fig. 5.1 

illustrate the two-stage Ge condensation process for the formation of silicon-

germanium-on-insulator (SGOI) substrates.  The wafer was oxidized in dry 

oxygen ambient.  The first stage of the oxidation was carried out at 1050 °C, 

after which the temperature was ramped down to 900 °C for second stage of 

condensation in order to stay within the solidus curve of the Si–Ge phase 

diagram [5.10].  The oxidation of SiGe forms SiO2 preferentially, due to the 

difference in the heats of formation between SiO2 and GeO2 [5.11].  The Ge 

atoms, which are rejected during the oxidation, pile up at the SiGe-oxide 

interface, leading to the formation of enriched SiGe alloy [5.12].  Ge atoms are 

thus condensed in the SiGe layer, as the out-diffusion of Ge is prohibited by 

the top and bottom SiO2 layers.  Oxidation at 1050 °C enables substantial 

diffusion of Ge atoms to maintain uniform distribution of Ge in the SGOI 

layer due to the large diffusion length of Ge (lGe), which is given by 

 lGe=2 Dt  (5-1) 

where D is diffusion coefficient [5.13], and t is the oxidation time.  However, 

in the second oxidation stage where the concentration of Ge is relatively high, 

the oxidation temperature has to be reduced to below the melting point of 

SiGe at the highest targeted Ge concentration.  Oxidation at a lower 

temperature of 900 °C leads to lGe of 5.06 nm, which is smaller than the final 

SiGe layer thickness, and this increases the potential of large strain levels to be 

built up due to the accumulation or pileup of Ge near the top SiO2 region.  

Therefore, the annealing step at 900 °C in nitrogen ambient serves to 
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redistribute the Ge atoms in all directions, i.e. downwards and laterally.  

Oxidation continues after the Ge redistribution step.  The intermittent 

redistribution of Ge atoms in the SGOI layer in between oxidation steps will 

minimize the pile up of Ge.     

Si0.85Ge0.15

Si

BOX

BOX

Si1-xGex

SiO2

BOX

Si1-yGey

SiO2

BOX

SiO2

Si0.35Ge0.65

BOX

1000 ºC Oxidation 
for 200 minutes

900 ºC Oxidation 
for 20 minutes

900 ºC Anneal 
for 10 minutes

Redistribution of
Germanium

Final SGOI after
Oxide Removal

25 cycles

 
Fig. 5.1 Schematic illustrating the process flow for the fabrication of 
SGOI substrate using two-steps Ge condensation process at 1050 °C and 900 
°C.  Cyclical oxidation and annealing performed at 900 °C serve to improve 
the distribution of the Ge in the SiGe layer. 
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SEM images in Fig. 5.2(a) and (b) show the top view of SiGe surface 

after the Ge condensation process with and without this cyclical process, 

respectively.  Significant improvement in the surface morphology was 

achieved by introducing the cyclical oxidation and annealing at 900 °C.  High 

resolution X-ray diffraction (XRD) was employed to investigate the 

composition of Ge in the SiGe layer.  Fig. 5.3 shows the high resolution 

rocking curve of the (004) reflection from the SGOI substrate.  The 

composition of Ge incorporated in the SiGe layer was determined to be 65 %.  

Atomic force microscopy (AFM) analysis was also carried out to investigate 

the surface morphology of the SiGe layer.   Fig. 5.4 shows the AFM image of 

the surface of a completed SGOI substrate.  Low root-mean-square (RMS) 

roughness of ~0.44 nm was achieved by using the two-stage Ge condensation 

process. 

 

(a) (b)

100 nm 100 nm

 

Fig. 5.2 SEM top view of the SiGe layer formed by Ge condenstation 
process (a) without, (b) with second stage of cyclical oxidation and annealing 
at 900 °C.  The cyclical step significantly improves the surface morphology.  
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Fig. 5.3 The well-defined SiGe peak in the high resolution XRD 
indicates high crystalline quality of the SiGe layer.  The composition of Ge in 
the SiGe layer was determined to be ~65 %. 
 

 
Fig. 5.4 AFM surface scanning of a completed SGOI substrate after 
oxide removal.  The SGOI substrate exhibits low RMS roughness of ~0.44 
nm. 
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Photolithography and dry etching were then used to define SiGe 

nanowires as well as large SiGe planar structures or pads on SiO2.  After 

native oxide removal in HF solution, the samples were immediately loaded 

into a molecular beam epitaxy (MBE) system.  The MBE epitaxy was carried 

out in collaboration with research team from Nanyang Technological 

University.  In-situ thermal annealing at 600 °C for 10 minutes was carried out 

to drive off water vapour in the transfer chamber.  The pressure in the transfer 

chamber is ~ 9 × 10-10 Torr.  Subsequently, the sample was loaded into the 

growth chamber and a second annealing step at 850 oC for 5 min under a 

background vacuum level of 10-8 Torr was conducted to further desorb any 

remaining native oxide on the SiGe surface and to form double atomic steps 

on the SiGe surface necessary for the suppression of anti-phase domain-related 

defects, as shown in the typical (2 × 2) reflection high-energy electron 

diffraction pattern [5.14]-[5.15].  High temperature annealing of vicinal (001) 

Ge and Si surfaces has been observed to produce a single-domain, double 

atomic-height stepped surface, i.e. the dimer rows run perpendicular to the 

step edges and the dimer bonds are parallel to the step edges [5.14]-[5.15]. 

The selective GaAs growth consists of two epitaxy steps: MEE process 

right after the in-situ thermal annealing step, followed by a standard GaAs 

MBE growth process.  Fig. 5.5 shows the cross-sectional TEM images of 

epitaxy growth at temperatures of (a) 525 °C, (b) 580 °C, and (c) 625 °C.  

When growth temperature is low, Fig. 5.5(a) shows the growth selectivity over 

SiO2 was not achieved.  The GaAs crystals on SiO2 are polycrystalline, as 

confirmed by the diffractogram in the inset of Fig. 5.5(a).  The growth 

temperature was increased to 580 °C to enable the desorption of nucleated  



 144

(a)

(b)

(c)

SiO2

SiGe

GaAs

SiO2

SiGe

GaAs

SiO2

SiGe

GaAsGaAs

 

Fig. 5.5 TEM images showing film quality and growth selectivity under 
different epitaxy temperatures at (a) 525 °C, (b) 580 °C, and (c) 625 °C.  
Higher temperature enables the desorption of nucleated seeds on the SiO2 to 
achieve selective growth.  Diffractogram in the inset of (a) reveals that the 
GaAs grown on SiO2 is polycrystalline.  
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seeds on SiO2 regions for achieving high growth selectivity, as illustrated in 

Fig. 5.5(b).  However, when growth temperature is increased to 625 °C, GaAs 

was not observed on both SiGe and SiO2 regions [Fig. 5.5(c)].  This is 

attributed to high desorption rate of Ga and As seeds from both SiGe and SiO2 

regions.  

The MEE process was performed by alternating the As and Ga shutter 

opening and closing cycles, each with 3 s opening time [5.16].  A 3 s growth 

interruption was inserted following each Ga and As shutter opening and 

closing cycle to provide sufficient time for each type of adatoms to form a 

complete monolayer covering the substrate surface before bonding occurs.  

This layer-by-layer growth mode achieved in MEE process affects the 

relaxation mechanism of the epitaxial layer.  The Ga beam equivalent pressure 

(BEP) is is ~6 × 10-8 Torr, which was determined by ion gauge facing the Ga 

source.  The As/Ga BEP ratio during this process was set at 30.  The shutter 

opening time has been optimized to supply enough Ga and As adatoms to 

complete a monolayer of 2.83 Å growth during each cycle.  The MEE process 

was repeated for ten cycles, corresponding to the growth of 10 monolayers 

(MLs) of GaAs.  Subsequently, a standard GaAs MBE growth process was 

used to grow the remaining GaAs layer. 

 

5.3 Device Characterization and Analysis 

5.3.1 Compliance in Nanostructures and Simulation  

The difference in lattice constant between GaAs and Si0.35Ge0.65 is 1.48 %.   

When GaAs is epitaxially grown on SiGe such that pseudomorphic growth is 

achieved, the lattice of GaAs is compressed horizontally due to the 1.48 % 
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lattice mismatch.   In a large planar SiGe-on-insulator structure with limited or 

no substrate compliance, the GaAs epilayer is biaxially strained or deformed, 

as shown in Fig. 5.6(a), while the SiGe layer remains relaxed.   Lattice 

interactions at the heterojunction between GaAs and SiGe in a planar SiGe-on-

insulator structure are highlighted in Fig. 5.6(b).  The critical thickness of the 

strained GaAs epilayer is limited by the level of stress energy that can be 

accumulated without defect formation.   
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Fig. 5.6 (a) When a GaAs layer is grown on a planar SiGe layer or a 
large SiGe island with limited or no compliance, the GaAs epilayer is 
deformed or strained, whereas the SiGe layer is relaxed.  In this case, as 
shown in (b), a high level of strain energy is stored in the GaAs epilayer as 
lateral compression and vertical tension.  (c) The substrate compliance effect 
in SiGe nanowire structure enables both the nanowire and the epilayer to be 
deformed.  The mismatched strain energy is thus distributed between the 
epilayer and nanowire, as shown in (d).  The reduced strain energy 
accumulated in the epilayer suppresses the formation of defects. 
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As compared to the planar structure, additional stress relief 

mechanisms are available in a nanowire structure during heteroepitaxy, as 

illustrated in Fig. 5.6(c).   Both the nanowire and the epilayer can deform 

laterally and vertically [Fig. 5.6(d)].   Thus, the strain energy due to lattice 

mismatch between the epilayer and the nanowire can be distributed in both 

materials.  This substrate compliance effect reduces the amount of strain 

energy in the epilayer and enables the GaAs epilayer to remain coherent 

beyond the critical thickness that is characteristic of heteroepitaxy.   

The physics of lattice interactions at the heterojunction of two 

nanostructured materials can be captured using a finite-element method [5.17].  

The Young’s modulus of 85.5 GPa and 111 GPa are used in the simulation for 

GaAs and SiGe, respectively.  The Poisson’s ratio of GaAs and SiGe are 0.31 

and 0.266, respectively.  Fig. 5.7(a) and 5.7(b) show the simulated lateral 

strain εx and vertical strain εy profile of GaAs/Si0.35Ge0.65 heterostuctures with 

width W of 100 nm, respectively.  The thicknesses of GaAs and Si0.35Ge0.65 are 

20 nm and 100 nm, respectively.  In the GaAs region, the lateral strain εx is 

compressive (negative), and the vertical strain εy is tensile (positive).  

Conversely, in the SiGe nanowire region, εx is tensile and εy is compressive.  

The magnitude of εx is the highest at the heterojunction and decreases away 

from the heterojunction.  The vertical strain εy in the SiGe nanowire region 

behaves similarly and is compressive in nature.  The simulated lateral strain εx 

and vertical strain εy profile at the centre of GaAs/Si0.35Ge0.65 heterostuctures 

with W of 1 µm are shown in Fig. 5.8(a) and 5.8(b), respectively.  Both εx and 

vertical strain εy are higher in magnitude than the heterostructure with W of 

100 nm.  The lateral strain εx and vertical strain εy components in the 
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GaAs/Si0.35Ge0.65 heterostuctures are plotted as a function of the depth y from 

the GaAs surface [Fig. 5.9(a) and 5.9(b)].  The W of the nanowire is varied 

from 100 nm to 2 µm.  The compliance effect is larger for a narrower SiGe 

nanowire.  It can be observed that the strain components in GaAs decrease in 

magnitude as W becomes smaller.  In fact, for a 100 nm wide nanostructure, 

the GaAs is almost strain-free at the top surface. 
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Fig. 5.7 Finite element simulation obtained the distribution of (a) lateral 
strain εx and (b) vertical strain εy in the GaAs/Si0.35Ge0.65 heterostructure with 
W of 100 nm.  The magnitude of εx and εy is the highest at the heterojunction 
and decreases away from the heterojunction. 
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Fig. 5.8 Finite element simulation obtained the distribution of (a) lateral 
strain εx and (b) vertical strain εy in the GaAs/Si0.35Ge0.65 heterostructure with 
W of 1 µm.  Both εx and εy are larger than the structure with W of 100 nm, as 
shown in Fig. 5.7.  Inset shows the location of the GaAs/Si0.35Ge0.65 
heterostructure for this analysis. 
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Fig. 5.9 Finite element simulation of (a) lateral strain εx and (b) vertical 
strain εy as a function of depth from the GaAs surface y in a GaAs/Si0.35Ge0.65 
heterostructure formed on SiO2.  The thicknesses of the GaAs and SiGe layers 
are 20 nm and 100 nm.  The width W of GaAs/SiGe nanostructure is varied 
(100 nm, 200 nm, 500 nm, and 2 µm).  The strain in GaAs is significantly 
reduced for narrower structures. 
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5.3.2 Growth of Gallium Arsenide on Si0.35Ge0.65 Islands or Nanowires 

SEM micrograph in Fig. 5.10(a) shows the top view of the GaAs layer 

grown on a planar Si0.35Ge0.65 structure.  The surface of the epilayer is rough 

and filled with many GaAs islands.  The islanding is related to the high level 

of stress built up in the mismatched strained systems [5.18].  The formation of 

isolated thick islands and interfacial misfit defects reduces total energy in the 

system as compared to a coherent GaAs/SiGe planar structure.  Defects such 

as stacking faults and dislocations are clearly observed in these GaAs islands 

and at the interface between GaAs and SiGe, as shown in the cross-sectional 

TEM images in Fig. 5.10(b) and 5.10(c).  These defects relieve the stress 

accumulated at the GaAs/SiGe heterojunction.  Some of the defects are mostly 

confined in the (111) plane, indicating APDs in nature.  The GaAs islanding 

can be suppressed at lower growth temperature, where the evaporation of As 

dimers is suppressed and the migration distance of the Ga adatoms is reduced.  

As a result, two-dimensional (2D) growth mode becomes the dominant 

mechanism.  However, the selectivity of growth on SiGe regions and the 

crystalline quality of the GaAs layer will be compromised. 

Next, the quality of the GaAs epitaxial layer formed on SiGe 

nanowires is investigated and compared with planar structure.  The width of 

the nanowire is ~75 nm, as shown in the top-view SEM picture in Fig. 5.11(a).  

GaAs was not observed on the SiO2 surface, indicating the excellent 

selectivity of the GaAs MEE process on SiGe regions.  Focussed ion beam 

(FIB) milling was performed at the position indicated in Fig. 5.11(a) for 

subsequent TEM analysis.  Pseudomorphic growth of GaAs on the top surface 

of SiGe is evident from the TEM micrographs in Fig. 5.11(b) and 5.11(c).  The 
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thickness of the GaAs layer is between 20 to 35 nm.  The GaAs lattice is well 

aligned to the SiGe lattice without any observable defects such as APDs or 

stacking faults.  This is attributed to the compliant nature of the nanowire 

structure which allows stress relief or partition of strain energy between the 

GaAs layer and SiGe nanowire structure.  It should be noted that many MBE 

growth experiments were performed, and the islanding of GaAs on large 

planar Si0.35Ge0.65 structures is not observed while good coverage is obtained 

on SiGe nanowires.   

200 nm

5 µm

Si
SiO 2SiGe

GaAs

SiO2

SiGe

GaAs

(c)(a)

(b)

50 nm

 
Fig. 5.10 (a) SEM image showing the top view of a layer of GaAs grown 
on planar SiGe-on-insulator structure.  Island formation for stress relief results 
in a rough GaAs surface.  The cross-sectional TEM image in (b) is a zoomed-
in view of a region in (c) which shows nucleation of GaAs islands on the SiGe 
surface.  Defects such as stacking faults and dislocations are clearly observed 
in these GaAs islands and at the interface between GaAs and SiGe.  These 
defects relieve the stress due to lattice mismatch at the GaAs/SiGe 
heterojunction. 
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Fig. 5.11 (a) SEM image showing the top view of a Si0.35Ge0.65 nanowire 
with a width of 75 nm and a GaAs layer grown on it.  Cross-sectional TEM 
micrographs in (b) and (c) show that the GaAs layer is pseudomorphically 
grown on SiGe.  The GaAs lattice is well-aligned to the Si0.35Ge0.65 lattice and 
with no observable defects such as APDs or stacking faults. 

Next, optical properties of the GaAs epilayer were investigated.  Fig. 

5.12 shows the PL spectrum of the GaAs on SiGe nanowire structure at room 

temperature, using 532 nm laser for excitation.  Interference effects can be 

observed in the PL spectrum.  This is attributed to multiple internal reflections 

of the luminescence [5.19]-[5.20] at various interfaces within the 

GaAs/SiGe/SiO2/Si multi-layer structure, as illustrated in the inset of Fig. 

5.12.  The spectral structure due to multiple reflections by the incident light 

perpendicular to the surface can be analyzed using the following equation,  

 n d = (2m + 1) λ /4,  (5-2) 

where n and d are the refractive index and the thickness of the material where 

internal reflection occurs, respectively.  λ is the wavelength of each  
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Fig. 5.12 Room temperature photoluminescence spectrum of GaAs on 
SiGe nanowire.  Interference fringes can be observed, and are attributed to 
multiple reflections within the multi-layer structure, indicating abrupt and flat 
interface.   
 

interference peak, and m is integer.  Using equation (5-2), it was 

determinedthat the interference fringes in Fig. 5.12 are predominantly due to 

internal reflections between the GaAs-air and SiGe-SiO2 interface, i.e. within 

the GaAs/SiGe stack, as illustrated by rays I1 and I3 in the inset of Fig. 5.12. 

Raman spectroscopy was carried out to further investigate the 

crystalline structure of the GaAs layer grown by MEE at 580 °C.  The Ramam 

spectroscopy was carried out in collaboration with research team from 

Nanyang Technological University.  Fig. 5.13 plots the Raman spectra of 

GaAs grown on planar SiGe-on-insulator structure and on SiGe nanowire 

structure.  The three main peaks correspond to Si-Si mode, Si-Ge mode, and 

Ge-Ge mode in the SiGe layer.   The small peak at 520 cm-1 is the signal of Si-  
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Fig. 5.13 Micro-Raman spectra of GaAs grown on planar SiGe-on-
insulator structure and SiGe nanowire structure.  The red shift in the Si-Si, Si-
Ge, and Ge-Ge mode phonons in the nanowire structure, as compared to 
planar structure, indicates that the SiGe nanowire is under tensile strain.   
 

Si phonon from the underlying Si substrate.  Note that the Ge-Ge phonon 

mode overlaps with the longitudinal optical (LO) phonon from GaAs.  A red 

shift in the Si-Si, Si-Ge, and Ge-Ge mode phonons in the nanowire structure 

indicates that the SiGe region was stretched horizontally, which allows stress 

relief or distribution of strain energy to accommodate the lattice mismatch.  

The shift in the Raman frequency of the Si-Si phonons ∆ωSi-Si in SiGe alloy is 

related to biaxial strain ε by the relationship,  

 ∆ωSi-Si = b ε,  (5-3)  

where b is the strain-shift coefficient of Si-Si mode phonons in SiGe alloys, 

which is equal to -730 ±  70 cm-1 [5.21].  The peak position of the Si-Si mode 

atomic vibrations can be clearly obtained from the Raman spectra in Fig. 5.13 
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with accuracy comparable to the stability of the horizontal axis calibration, i.e. 

0.1 cm-1.  ∆ωSi-Si between planar SiGe-on-insulator structure and SiGe 

nanowire structure was found to be -2.3 ±  0.2 cm-1.  This peak shift in the Si-

Si phonons suggested the SiGe nanowire structure is under additional 0.32 ±  

0.06 % of lateral tensile strain, as compared to the planar SiGe-on-insulator 

structure.   

It is difficult to achieve selective growth without polycrystalline 

deposition on the SiO2 mask due to the high sticking coefficient of Ga atoms 

on the SiO2 mask using solid source MBE.  Therefore, to obtain the complete 

selectivity, it is necessary to grow the layers at high substrate temperatures (≥ 

700 °C) [5.22] and/or at very slow growth rates [5.23] to enhance the Ga 

desorption on SiO2.  However, thermal damage may occur on the growth 

surface at high temperatures due to the evaporation of As molecules in the 

high vacuum environment during MBE process.  In order to reduce the 

selective-growth temperature, desorption rate of Ga on SiO2 should be 

increased at low temperature.  This can be achieved by employing MEE, 

where Ga and As beams are alternatively supplied such that Ga atoms are 

supplied to the growing surface under an As-free or a very low As pressure 

atmosphere, as compared to normal MBE.  As a result, the Ga desorption is 

enhanced by decreasing As pressure [5.24].  Auger electron spectroscopy was 

performed to investigate the growth selectivity of GaAs, as shown in Fig. 5.14.  

SEM micrograph in the inset of Fig. 5.14 indicates the five locations for the 

Auger point scanning.  No GaAs island was observed in the SiO2 region.  Both 

Ga-LMM (1060 eV) and As-LMM (1222 eV) were detected in the nanowire 

regions (locations 1, 2 and 3), confirming the existence of GaAs on the  
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Fig. 5.14 (a) Direct, and (b) differential AES spectra at five locations as 
shown in SEM micrograph in the inset.  Both Ga-LMM and As-LMM were 
detected in the nanowire regions (locations 1, 2 and 3), confirming the 
existence of GaAs on the nanowire.  Neither Ga nor As was detected in the 
SiO2 regions (locations 4 and 5), indicating the high selectivity of the 
migration-enhanced epitaxy method. 

nanowire.  No Ga and As was detected in the SiO2 regions (locations 4 
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and 5), indicating high selectivity of the MEE method.   

 

5.4 Summary 

 In this chapter, high quality GaAs growth on SiGe nanowires by MEE 

process was demonstrated.  Compared to GaAs grown on planar SiGe-on-

insulator structure, significant reduction in the defects in the GaAs layer 

grown on SiGe nanowires was confirmed by extensive SEM and cross-

sectional TEM analysis.  It is attributed to the additional stress relief 

mechanisms that significantly partition the strain energy between the epilayer 

and nanoscale underlying structure.  The micro-Raman and AES 

measurements further confirm the good material property and growth 

selectivity of the GaAs using MEE.  The new III-V integration scheme in this 

chapter may be promising for integrating high speed transistors and 

optoelectronic devices with advanced electronic circuits on Si platform. 
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Chapter 6 

 

Conclusion and Future Work 
 

6.1 Conclusion 

Geometrical scaling of conventional silicon (Si) transistors is reaching 

its fundamental limits after four decades of continuous downsizing of device 

dimensions.  This thesis has sought to explore the application of III-V 

compound semiconductors as alternative channel materials for extending the 

performance limits of conventional Si CMOS technology.  Various practical 

and manufacturable surface passivation technologies have been proposed and 

experimentally realized.  In particular, novel in-situ surface techniques that 

comprise vacuum anneal for native oxide desorption, followed by surface 

treatment, have been demonstrated to effectively suppress native oxides of III-

V for significant interface states density reduction.  To explore the full 

potential of III-V MOSFETs, a novel III-V device structure comprising in-situ 

doped lattice-mismatched source/drain (S/D) regions was demonstrated for the 

reduction of S/D series resistance by high S/D doping and the enhancement of 

carrier mobility by channel strain engineering. 

In addition to conventional bulk planar transistors, alternative device 

structure has also been explored in this work for effective control of short 

channel effects in aggressively scaled III-V channel MOSFETs.  Such 

advanced structure makes use of multiple-gate and retrograde-doped channel 
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designs for improved electrostatic control and short channel effects so that 

good transistor turn-off characteristics can be achieved.  Novel multiple gate 

field-effect-transistor (MuGFET) or FinFET with epi-controlled retrograde-

doped fin has been demonstrated to implement this device concept.  

Bulk III-V substrates are expensive, brittle and difficult to make in 

large diameters.  From an economic standpoint, the success of any future 

CMOS technology will depend on its compatibility with the existing Si 

manufacturing infrastructure.  An effective and potentially viable III-V 

material integration solution on Si substrate for future high volume 

semiconductor manufacturing was demonstrated through selective migration-

enhanced epitaxy (MEE) of GaAs on strain-compliant SiGe nanowire 

structures. 

 

6.2 Contributions of This Thesis 

The major conclusion and contributions of this work are elucidated 

here. 

 

6.2.1 In-situ Interfacial Engineering for High Quality MOS Stack 

Formation 

 The concept and demonstration of novel surface passivation techniques 

was exploited to realize high quality metal gate/high-k dielectric stacks on 

various III-V compound semiconductors, such as GaAs, and InGaAs [6.1]-

[6.11].  This interface engineering technology is highly compatible with a 

matured high-k dielectric deposition process.  The passivated III-V transistors 
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exhibit good electrical characteristics. These results open new avenues for 

interface passivation to explore the full potential of III-V channel MOSFETs.  

 

6.2.2 Source/Drain Doping and Channel Strain Engineering for 

Performance Enhancement  

 In this technology demonstration, the concept of in-situ doped lattice-

mismatched S/D stressors was examined to enhance the performance of 

In0.53Ga0.47As channel N-MOSFETs [6.12]-[6.13].  Through finite element 

simulations, it has been verified that the In0.4Ga0.6As regions act as stressors, 

giving rise to lateral tensile strain and vertical compressive strain in the 

In0.53Ga0.47As channel for enhanced electron mobility.  In addition, the in-situ 

SiH4 doping process further boost the N-type S/D doping concentration, 

contributing to the reduction of total resistance in a transistor for performance 

enhancement.  Significant improvement in drive current performance was 

observed, which could partially be attributed to strain-induced electron 

mobility enhancement and series resistance reduction due to in-situ S/D 

doping.  Both effects are expected to become more prominent in aggressively 

scaled MOSFETs.  This work provides new insights for device engineers to 

explore of the full potential of III-V MOSFETs for future technology nodes.   

 

6.2.3 Multiple-Gate Transistor Structure with Retrograde-Channel 

Doping for Reduced Short Channel Effects 

 Advanced multiple-gate transistor structure with retrograde channel 

doping was investigated to improve gate control and suppress short channel 

effects.  The device design and concept was evaluated by three-dimensional 
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device simulations.  In addition, the electrical results further confirmed the 

significant improvement in short channel effects.   The device architecture 

investigated here is very promising for achieving very high carrier mobility 

and improved short-channel effects in aggressively scaled III-V transistors.   

 

6.2.4 Nanoheteroepitaxy of Gallium Arsenide on Strain-Compliant 

Silicon-Germanium Nanowires for Material Integration 

 Successful hetero-integration of GaAs on Si-based substrate through 

selective migration-enhanced epitaxy (MEE) of GaAs on strain-compliant 

SiGe nanowire structures was demonstrated [6.14].  Compared to GaAs grown 

on planar SiGe-on-insulator structure, significant reduction in the defects in 

the GaAs layer grown on SiGe nanowires was confirmed by extensive 

material characterization.  It is attributed to the additional stress relief 

mechanisms that significantly partition the strain energy between the epilayer 

and nanoscale underlying structure.  The photoluminescence and micro-

Raman analysis further confirm the good material and optical properties of the 

GaAs epilayer.  This new III-V integration scheme is attractive for integrating 

high speed transistors and optoelectronic devices with advanced electronic 

circuits on Si platform.  

 

6.3 Future Directions 

In summary, this thesis has conceptualized and embarked on the 

development of several exploratory concepts and technology options to 

address several key technical challenges of III-V MOSFET for advanced 

CMOS applications, such as novel surface passivation methods, advanced 
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device architectures, and new material integration scheme.  Preliminary 

assessment has been verified and shown to be very promising for its adoption 

in future technology nodes.  Nevertheless, several issues have been opened up 

in this thesis which deserves further investigation.  Some of the suggestions 

for future directions in the field of III-V MOSFETs are highlighted in this 

section. 

 

6.3.1 Passivation Studies on Other High Mobility III-V Materials  

In Chapter 2, in-situ surface passivation methods were demonstrated to 

realize high quality MOS stacks on III-V compound semiconductors, such as 

GaAs, and InGaAs.  With even higher electron mobilities than GaAs and 

InGaAs, other III-V materials, such as InAs, InSb, are also very attractive for 

high speed CMOS applications.  Future extension of this work could be on 

other high mobility III-V compound semiconductors.   

 

6.3.2 Source/Drain and Channel Strain Engineering 

Chapter 3 shows that the incorporation of in-situ doped lattice-

mismatched heterostructure in the S/D regions of an InGaAs MOSFET is a 

promising approach for reduced S/D series resistance, and enhanced electron 

mobility.  The concepts developed in this thesis could provide insights to the 

development for III-V devices.  Further extension of this work could be on the 

in-situ doping techniques for further increasing the S/D doping level.  In 

addition, the integration of additional stressors, such as high stress SiN liner 

stressors, on improving channel strain effect could also be explored for further 

performance benefits.  



 169

6.3.3 Hetero-integration of Other High Mobility III-V Materials on Si 

Substrates  

In Chapter 5, GaAs was successfully integrated on Si-based substrate 

through selective MEE on strain-compliant SiGe nanowire structures.  Further 

development in this area should also focus on the integration of other III-V 

materials with even higher electron mobilities, such as InGaAs, InAs, and 

InSb.   

 

6.3.4 III-V P-Channel Devices  

Due to the attractive electron mobilities, existing developments on III-V 

devices are mainly focused on N-channel devices.  Further work can also 

focus on III-V P-channel MOSFETs through material and channel strain 

engineering to enhance hole mobilities for advanced CMOS technology.  For 

instance, III-V materials with attractive hole mobilities, such as GaSb and 

InGaSb, may be promising for III-V P-MOSFET applications [6.15].  
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