

DEPARTMENT OF THE NAVY OFFICE OF NAVAL RESEARCH 800 NORTH QUINCY STREET ARLINGTON, VA 22217-5660

174

IN REPLY REFER TO 11010 Ser 91/160 17 Aug 94

From: Chief of Naval Research To: Chief of Naval Operations (N44)

Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) DATA CALL NUMBER TWELVE

Ref: (a) CNO ltr 11000 Ser N441/4U594484 of 07 Apr 94 (b) CNO ltr 11000 Ser N441/4U594572 of 17 May 94

Encl: (1) NRL Data Call Number Twelve with Certifications

1. Enclosure (1) provides information and certification required by reference (a) and amended by reference (b).

2. The ONR point of contact is Mr. Frederick C. Esposito who may be reached on (703) 696-4613.

MARC PELAEZ Rear Admiral, USN

INCLUDES :

- REVISED PAGES DATED & AG 1994 (RUBBER STAMPED) IN LOWER RIGHT CORVER, OF-BOHRT OF PREE
- REVISED PROES DATED 19 AUG 1994 (RUBBER STANPED) IN LOWER RIGHT CORNER .
- REVISED PROFS DATED 16 SEP 1994 (RUBBER STRAPED)
 - IN LOWER RIGHT CORNER
- REVISED PAGES DOTED ZO SEP 1994 (RUBBER STAMPED) IN LOWER RIGHT ODRNER
- CEVISED PAGES DISTED 27 SEP 1994 (RUBBER STAMPED) IN LOWER RIGHT CORNER

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

NAME (Please type of print)

COMMANDING OFFICER

Title

NRL

Activity

<u>K. W. Cassidy</u> Signature

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type of print

Title

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MARC PELAEZ

NAME (Please type or print

CHIEF OF NAVAL RESEARCH

Title

OFFICE OF NAVAL RESEARCH

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLATIONS & LOGISTICS) W. A. EARNER

NAME (Please type of print

Signature 8 24 94

Date

Title

MAJOR	CLAIMANT LEVEL
print	Signature
	Date Date

Date

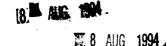
Date

Signature

Signature

- - -- -- -----

DEPARTMENT OF THE NAVY OFFICE OF NAVAL RESEARCH 800 NORTH QUINCY STREET ARLINGTON. VA 22217-5660


IN REPLY REFER TO **11010 Ser 91/272** 25 Aug 94

- From: Chief of Naval Research To: Chief of Naval Operations (N44)
- Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) DATA CALL NUMBER TWELVE CLARIFICATION ANSWERS
- Ref: (a) ONR ltr 11010 Ser 91/160 of 17 Aug 1994
 (b) Uncertified NRL BRAC Data Call Twelve of 27 July 1994
 (c) BSAT Memo 3 June 1994
- Encl: (1) Naval Research Laboratory Data Call Twelve Clarification letter 1001-188 of 8 Aug 1994 with Certifications
 - (2) BSAT Facsimile of 4 Aug 1994

1. Enclosure (1) forwards responses to questions in enclosure (2) about references (a) and (b), with required certifications. Enclosure (2) was facsimiled by the BSAT direct to NRL, bypassing both N44 and ONR. Enclosure (1) does not comply with format in reference (c) because the original response to the Data Call, references (a) and (b), did not have numbered pages. The BSAT questions and the NRL responses are annotated by section and paragraph providing the ability to accurately insert the additional information in the correct location in reference(a).

2. The ONR point of contact is Mr. Frederick C. Esposito who may be reached on 703-696-4613.

MARC PELAE Rear Admiral, AUSN

BRAC-95 CERTIFICATION

BRAC-12 Amend # 2

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

<u>Captain Richard M. Cassidy, USN</u> NAME (Please type of print)

Commanding Officer

Title Hand Rosearch hab <u>Washington, DC 20375-5320</u> Activity P.M. Cassidy____

8/8/94

Date

18.™ AUG 1994. ∑ 8 AUG 1994. I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print

Signature

Title

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type of print

Title

Date

Signature

Signatu

Date

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

MARC PELAEZ

NAME (Please type or print

CHIEF OF NAVAL RESEARCH

Title

OFFICE OF NAVAL RESEARCH

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLAT_ONS & LOGISTICS)				
W. A. EARNER	Wann			
NAME (Please type of print	Signature			
	8/30/94			

Date

a La AUG **1994**▲

Title

DEPARTMENT OF THE NAVY

NAVAL RESEARCH LABORATORY WASHINGTON, D.C. 20375-5320

IN REPLY REFER TO: 1001-188 8 Aug 94

- From: Commanding Officer, Naval Research Laboratory To: Base Structure Analysis Team (Attn: CDR T. S. Evans)
- Via: Chief of Naval Research Chief of Naval Operations (N44)
- Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) AMENDMENT TWO TO DATA CALL TWELVE - NAVAL RESEARCH LABORATORY
- Ref: (a) BSAT Fax memo of 4 Aug 94
- Encl: (1) Revised Avionics CSF Table 3.4.1
 (2) Revised Space Satellites CSF Section 3.0
 (3) Revised Space Satellites CSF Section 3.4.1
 (4) Revised Airborne C4I CSF Response
 (5) Revised Ground-Based C4I CSF Response
 (6) Revised Electronic Devices CSF Section 3.0
 (7) Revised Electronic Devices CSF Section 3.4.1
 (8) Revised Environmental Sciences CSF Section 3.4.1
 (9) Revised Environmental Sciences CSF Section 3.4.1
 (10) Revised Environmental Quality CSF Section 3.0
 (11) Revised Environmental Quality CSF Section 3.4.1
 - (12) Revised Advanced Materials CSF Section 3.0
 - (13) Revised Advanced Materials CSF Section 3.4.1

1. BRAC-95 Data Call #12 requested that the Naval Research Laboratory indicate its capability to perform certain common support functions. NRL responded with capability statements in the areas of Avionics, Space Systems, C4I, Electronic Devices, Environmental Sciences, Environmental Quality, and Advanced Materials. In preparing this revised submission, statements have been made in each section about the relationships and interconnectivity of each CSF with other functions in support of the overall NRL mission. There is, however, some danger in losing "the forest for the trees" as one reviews the individual BRAC Data Call 12 submissions. NRL was established at the recommendation of Thomas Edison, who argued that "the Government should maintain a great research laboratory, jointly under military and naval and civilian control. In this could be developed the continually increasing possibilities of great guns, the minutia of new explosives, all the technique of military and naval progression." Edison believed that the mobilization of science and invention in this research laboratory was the key to developing good weapons. He stated: "When the time came, if it ever did, we could take

.8 AUG 1994 .

advantage of the knowledge gained through the research work and quickly manufacture in large quantities the very latest and most effective instruments of warfare." The essential idea proposed by Edison and embodied by NRL was to bring together, in one location, individuals from a wide variety of disciplines, each contributing specialized knowledge. The ensemble knowledge base at NRL provides each employee access to skills and facilities which greatly increase their capacities. As a result of the co-location of expertise, NRL can rapidly organize team efforts for specific tasks and bring together a greater range of skills and knowledge than any single individual or any more narrowly focused organization. This capability has served the nation well over the past 70 years. It must be remembered, however, that the essential ingredient of the Naval Research Laboratory is the co-location of a multitude of science and technology disciplines. This will inevitably lead to the Naval Research Laboratory having organic capabilities which provide expertise in areas that are also possessed by more narrowly-focused organizations. The concept of the Naval Research Laboratory requires this. If one begins to strip out various subsets of the disciplines represented at NRL, one destroys the concept upon which the Laboratory was founded. It is the synergy amongst the various co-located disciplines at NRL that is the true contribution of NRL. This synergy must be preserved if the Laboratory is to have any meaning or any place in naval and defense R&D.

2. The following additional detailed information is submitted in response to reference (a).

3. QUESTION 2.2

Actual Workyears peak in FY91 is listed as 4909, but in the table in Questions 2.1 it is listed as 4090. Which is correct?

ANSWER - 4909 is correct.

4. AVIONICS

Your response addresses the "Avionics" CSF. This needs to be further broken out to "Fixed Wing Avionics" and "Rotary Wing Avionics." All questions in Section III must be answered for each common support function you perform.

RESPONSE: The preponderance of the effort in this CSF is in support of fixed wing applications. Some of the products of this effort will be applicable to rotary wing as well as fixed wing aircraft. Effort directly attributable to rotary wing avionics is insignificant compared to the total.

> 8 - AUG 1994 - E 8 AUG 1994 -

5. AVIONICS QUESTION 3.0

In addition to describing the major capabilities at your activity contributing to the common support function for which you are responding, the question asks you to describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity. Your response addressed this to some extent in a general manner; however, the question is to be answered for each CSF. Please provide response by each CSF.

<u>RESPONSE</u>: See Response 3 above. There is no practical way to separate out the relatively small amount of effort devoted to rotary wing aircraft avionics.

6. AVIONICS QUESTIONS 3.1-3.5

Answer each question for each CSF in which you are performing work.

<u>RESPONSE</u>: See previous response.

7. AVIONICS QUESTION 3.4.1

The question asks you to "describe major facilities and equipment to support <u>each CSF</u>." The question further asks <u>"If</u> <u>the facilities and equipment are shared with other</u> <u>functions, identify those functions and the percentage of</u> <u>total time used by each of these functions</u>." (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

RESPONSE: See enclosure (1). The remaining percentage of utilization of items marked with a single asterisk is devoted to shipboard electronic warfare system development. The remaining percentage of utilization for facilities denoted by two asterisks supports the electronic devices CSF.

8. Following <u>AVIONICS question 3.5</u>, there are 21 pages of "3.4.1 MAJOR EQUIPMENT AND FACILITIES." They are additional information on the following: Organometallic VPE, Optical Characterization Facility, Electronic Properties Facility, Epicenter Facility, Microwave Technology Facility, Magnetic Resonance Facility, Optical Properties Facility, Crystal Growth Facility, Far Infrared Spectroscopy Facility, and Reliability Facility. These do not correlate to the facilities listed in response to question 3.4.1 for Avionics. Are they part of the Avionics response? If so, they need to be listed in the response to 3.4.1.

<u>RESPONSE</u>: The above-listed facilities belong in Part D, Electronic Devices.

9. AVIONICS QUESTIONS 3.5.2, 3.5.3

Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call #4 is not acceptable.

and the second second

RESPONSES:

a. <u>3.5.2</u>: NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note, however, that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent. This would involve minimal reconfiguration.

b. <u>3.5.3</u>: Utility service capacities are depicted in the following table:

	On Base Capacity	Off Base Long <u>Term Contract</u>	Normal Steady <u>State Load</u>	Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

1 The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.

2 Production plant owned by PWC, Washington.

1 A. S. 12-14

4

10. **SPACE OUESTION 3.1.5**: This question asks for "nearby organizations which facilitate accomplishing or performing your mission." Please list and describe the importance of any such organizations for each CSF (up to five per CSF).

ANSWER: There are no nearby outside organizations whose location facilitates accomplishing the Space CSF effort.

11. SPACE

Enclosure (2) is a revised Section 3.0 for the Space Satellites CSF. Enclosure (3) is a revised Section 3.4.1 for the Space Satellites CSF.

12. <u>C41</u>:

<u>All questions in Section III must be answered for each</u> <u>common support function you perform</u>. You list Airborne and Fixed Ground. Please provide separate responses for each CSF.

<u>RESPONSE</u>: See enclosures (4) and (5).

13. ELECTRONIC DEVICES

See revised section 3.0 for the Electronic Devices CSF in enclosure (6).

14. ELECTRONIC DEVICES QUESTION 3.1.5

This question asks for "nearby organizations which facilitate accomplishing or performing your mission." Please list and describe the importance of any such organizations <u>for each CSF</u> (up to five per CSF).

ANSWER: There are no nearby outside organizations whose location facilitates the Electronic Devices CSF effort.

15. ELECTRONIC DEVICES QUESTION 3.4.1

The question asks you to "describe major facilities and equipment to support <u>each CSF</u>." The question further asks <u>"If</u> <u>the facilities and equipment are shared with other</u> <u>functions, identify those functions and the percentage of</u> <u>total time used by each of these functions</u>" (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

<u>RESPONSE</u>: See enclosure (7).

16. ENVIRONMENTAL SCIENCES QUESTION 3.0

This question asks you to describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity. Your response addressed this to some extent in a general manner; however, the question is to be answered for each CSF. Your response identifies interconnectivity with "WEAPONS", "C4I", "SPACE", "TRAINING", AND "ENVIRONMENTAL QUALITY". Weapons, C4I, and Space need to be further broken down into applicable CSFs (i.e., Cruise Missiles, Bombs,..., Satellites,..., Airborne C4I, ...) per the listing in the Data Call, further amplified in MM-0193-F4, BSAT/JT dtd 2 June 1994. Please provide response by each CSF.

<u>RESPONSE</u>: See enclosure (8).

17. ENVIRONMENTAL SCIENCES QUESTION 3.4.1

The question asks you to "describe major facilities and equipment to support <u>each CSF</u>." The question further asks <u>"If</u> <u>the facilities and equipment are shared with other</u> <u>functions, identify those functions and the percentage of</u> <u>total time used by each of these functions</u>." (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

<u>RESPONSE</u>: See enclosure (9).

18. ENVIRONMENTAL SCIENCES QUESTIONS 3.5.2, 3.5.3

Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call #4 is not acceptable.

RESPONSES

a. <u>3.5.2</u> NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note, however, that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent. This would involve minimal reconfiguration.

b. <u>3.5.3</u>: Utility service capacities are depicted in the following table:

	On Base Capacity	Off Base Long <u>Term Contract</u>	Normal Steady <u>State Load</u>	Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	² 190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

- 1 The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.
- 2 Production plant owned by PWC, Washington.

19. ENVIRONMENTAL QUALITY QUESTION 3.0

In addition to describing the major capabilities at your activity contributing to the common support function for which you are responding, the question asks you to describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity. Your response addressed this to some extent in a general manner; however, the question is to be answered for each CSF. Please provide response by each CSF.

<u>RESPONSE</u>: See enclosure (10).

20. ENVIRONMENTAL QUALITY QUESTION 3.2.1

Total Personnel labeled "Electronic Devices". Is this a typo?

ANSWER: Yes; it should read "Environmental Quality".

21. ENVIRONMENTAL QUALITY QUESTION 3.4.1

The question asks you to "describe major facilities and equipment to support <u>each CSF</u>." The question further asks <u>"If</u> <u>the facilities and equipment are shared with other</u> <u>functions, identify those functions and the percentage of</u> <u>total time used by each of these functions</u>." (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

<u>RESPONSE</u>: See enclosure (11).

22. ENVIRONMENTAL QUALITY QUESTIONS 3.5.2, 3.5.3

Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call #4 is not acceptable.

RESPONSES:

a. <u>3.5.2</u>: NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note, however, that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent. This would involve minimal reconfiguration.

b. <u>3.5.3</u>: Utility service capacities are depicted in the following table:

	On Base Capacity	Off Base Long <u>Term Contract</u>	Normal Steady <u>State Load</u>	Peak <u>Demand</u>
Electrical Supply (KWE)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	2 190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

1 The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.

2 Production plant owned by PWC, Washington.

23. ADVANCED MATERIALS

Enclosure (12) is a revised Section 3.0 to the Advanced Materials CSF.

24. ADVANCED MATERIALS QUESTION 3.4.1

The question asks you to "describe major facilities and equipment to support <u>each CSF</u>." The question further asks <u>If</u> <u>the facilities and equipment are shared with other</u> <u>functions, identify those functions and the percentage</u> <u>of total time used by each of these functions</u>." (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

<u>RESPONSE</u>: See enclosure (13).

25. ADVANCED MATERIALS QUESTIONS 3.5.2, 3.5.3

Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call #4 is not acceptable.

RESPONSE

a. <u>3.5.2</u>: NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion. The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note, however, that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new expanded mission assignments. However, accurate or quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent. This would involve minimal reconfiguration.

b. <u>3.5.3</u>: Utility service capacities are depicted in the following table:

	On Base Capacity	Off Base Long Term Contract	Normal Steady <u>State Load</u>	Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	2 190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

- 1 The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.
- 2 Production plant owned by PWC, Washington.

R.M. Cassidy

BRAC-95 CERTIFICATION

I certify that the information contained herein is accurate and complete to the best of my knowledge and beligf.

assidu Signature

Commanding Officer · _____

Date

Naval Research Laboratory

Captain Richard M. Cassidy, USN NAME (Please type or print)

4555 Overlook Avenue, SW

Department

Washington, DC 20375-5320 Activity

Enclosure (1)

•

·

🖀 8 AUG 1994

Department of the Navy Base Structure Analysis Team

Facsimile Transmission Cover Sheet

Date: 4 AUG 94

From:	Office:	SCOTT EVANS (703) 681-0476 (703) 756-2174
То:	Org:	MR. BOB DOAK ARD (202)767-2371 (202)404-7728

Message Per our telecon, please find attached a list of clarification questions to data call 12. Request response by FAX <u>as soon as possible</u> and follow with official certified copy through the Chain of Command. We are scheduled to share data with the Joint Cross-Service Group on Monday, 8 Aug.

Thanks in advance, Scott

Number of Pages (including cover page) : 4

📓 8 AUG 1994

Encl(2)

HUG-04-1934 14:47 FROM

10.9 85774045021e

NAVAL RESEARCH LABORATORY

OUESTION 2.2

Actual Workyears peak in FY91 is listed as 4909 but in the table in Questions 2.1 it is listed as 4090. Which is correct?

A. AVIONICS:

Your response addresses the 'Avionics' CSF. This needs to be further broken out to "Fixed Wing Avionics" and "Rotary WIng Avionics " All questions in Section III must be answered for each common support function you perform.

<u>OUESTION 3.0</u> In addition to describing the major capabilities at your activity contributing to the common support function for which you are responding, the question asks you to describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity. Your response addressed this to some extent in a general manner; however, the question is to be answered for each CSF. Please provide response <u>by each CSF</u>.

<u>OUESTIONS 3.1-3.5</u> Anwer each question for each CSF in which you are performing work.

<u>QUESTION 3.4.1</u> The question asks you to "describe major facilities and equipment to support each <u>CSF</u>." The question further asks <u>"If the facilities and equipment are shared</u> with other functions, identify those functions and the percentage of total time used by each of these functions" (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

Following question 3.5 there are 21 pages of "3.4.1 MAJOR EQUIPMENT AND FACILITIES". They are additional information on the following: Organometallic VPE, Optical Characterization Facility, Electronic Properties Facility, Epicenter Facility, Microwave Technology Facility, Magnetic Resonance Facility, Optical Properties Facility, Crystal Growth Facility, Far Infrared Spectroscopy Facility, and Reliability Facility. These do not correlate to the facilities listed in response to question 3.4.1 for Avionics. Are they part of the Avionics response? If so, they need to be listed in the response to 3.4.1.

<u>OUESTION 3.5.2, 3.5.3</u> Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call # 4 is not acceptable.

B. SPACE:

<u>QUESTION 3.1.5</u> This question asks for "nearby organizations which facilitate accomplishing or performing your mission". Please list and describe the importance of any such organizations for each CSF, (up to five per CSF).

<u>C. C4I:</u> All questions in Section III must be answered for each common support function you perform. You list Airborne and Fixed Ground. Please provide separate responses for each CSF.

01

🗍 🕘 AUG 1994

<u>QUESTION 3.1.5</u> This question asks for "nearby organizations which facilitate accomplishing or performing your mission". Please list and describe the importance of any such organizations for each CSF, (up to five per CSF).

<u>OUESTIONS 3.2-3.3</u> Anwer each question for each CSF in which you are performing work.

<u>OUESTION 3.4.1</u> The question asks you to "describe major facilities and equipment to support each CSF." The question further asks <u>"If the facilities and equipment are shared</u> with other functions, identify those functions and the percentage of total time used by each of these functions" (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

<u>QUESTION 3.5.2, 3.5.3</u> Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call # 4 is not acceptable.

D. ELECTRONIC DEVICES:

<u>OUESTION 3.1.5</u> This question asks for "nearby organizations which facilitate accomplishing or performing your mission". Please list and describe the importance of any such organizations for each CSF, (up to five per CSF).

<u>QUESTION 3.4.1</u> The question asks you to "describe major facilities and equipment to support each CSF." The question further asks <u>"If the facilities and equipment are shared</u> with other functions, identify those functions and the percentage of total time used by each of these functions" (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

E. ENVIRONMENTAL SCIENCE:

<u>OUESTION 3.0</u> This question asks you to describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity. Your response addressed this to some extent in a general manner; however, the question is to be answered for each CSF. Your response identifies interconnectivity with "WEAPONS", "C4I", "SPACE", "TRAINING", and "ENVIRONMENTAL QUALITY". Weapons, C4I, and Space need to be further broken down into applicable CSFs (ie. Cruise Missiles, Bombs . . , Satellites, . . , Airborne C4I, ...) per the listing in the Data Call, further amplified in MM-0193-F4, BSAT/JT dtd 2 June 1994. Please provide response by each CSF.

<u>QUESTION 3.4.1</u> The question asks you to "describe major facilities and equipment to support each CSF." The question further asks <u>"If the facilities and equipment are shared</u> with other functions, identify those functions and the percentage of total time used by each of these functions" (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

<u>OUESTION 3.5.2, 3.5.3</u> Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call # 4 is not acceptable.

1994 AUG

F. ENVIRONMENTAL QUALITY:

<u>QUESTION 3.0</u> In addition to describing the major capabilities at your activity contributing to the common support function for which you are responding, the question asks you to describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity. Your response addressed this to some extent in a general manner; however, the question is to be answered for each CSF. Please provide response by each CSF.

OUESTION 3.2.1 Total Personnel labeled "Electronic Devices". Is this a typo?

<u>OUESTION 3.4.1</u> The question asks you to "describe major facilities and equipment to support each CSF." The question further asks <u>"If the facilities and equipment are shared</u> with other functions, identify those functions and the percentage of total time used by each of these functions" (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

<u>QUESTION 3.5.2, 3.5.3</u> Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call # 4 is not acceptable.

G. ADVANCED MATERIALS:

<u>OUESTION 3.4.1</u> The question asks you to "describe major facilities and equipment to support each CSF." The question further asks <u>"If the facilities and equipment are shared</u> with other functions, identify those functions and the percentage of total time used by each of these functions" (Note: The response to SPACE does a good job of allocating percentage usage to CSF).

<u>QUESTION 3.5.2, 3.5.3</u> Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call # 4 is not acceptable.

DEPARTMENT OF THE NAVY OFFICE OF NAVAL RESEARCH 800 NORTH QUINCY STREET ARLINGTON, VA 22217-5660

IN REPLY REFER TO

11010 Ser 91/279

1 September 1994

- From: Chief of Naval Research To: Chief of Naval Operations (N44)
- Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) DATA CALL NUMBER TWELVE CERTIFICATION ANSWERS
- Ref: (a) Uncertified advance copy NRL BRAC Data Call Twelve Certification Answers-Revised of 19 Aug 94
 - (b) ONR ltr 11010 Ser 91/272 of 25 Aug 94(c) Uncertified advance copy of NRL BRAC Data Call
 - Twelve Certification Answers of 8 Aug 94 (d) BSAT memo of 3 Jun 94

Encl: (1) Naval Research Laboratory Data Call Twelve Certification Revision with Certifications (2) BSAT Facsimile of 15 Aug 94

1. Reference (a) forwarded to BSAT an uncertified copy of enclosure (1) in response to enclosure (2). Enclosure (1) forwards the required certified copy of reference (a).

2. Enclosure (2) was facsimiled by the BSAT directly to NRL, bypassing both N44 and ONR, and as a result, BSAT reviewed reference (c) before completion of the ONR certification. Reference (b) corrected most of the administrative errors cited in enclosure (2) about reference (c) not complying with the format in reference (d). Reference (a) and enclosure (1) correct the remaining errors cited and provided additional information requested by enclosure (2).

3. The ONR point of contact is Mr. Frederick C. Esposito who may be reached on 703-696-4613.

MARC PEL ÆΕΖ

Rear Admiral, USN

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print

Signature

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type of print

Signature

Title

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

MARC PELAEZ

NAME (Please type or print

CHIEF OF NAVAL RESEARCH Title

OFFICE OF NAVAL RESEARCH Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLAT_ONS & LOGISTICS)

J. B. GREENE, JR.

NAME	(Please	type	of	print
	ACTING			

Date

Title

Signature 9/1/94

Date

_

Date

Date

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

type of print) (Please Activity

Signature <u>8/19/94</u> Date

1 9 AUG 1994.

DEPARTMENT OF THE NAVY NAVAL RESEARCH LABORATORY WASHINGTON, D.C. 20375-5320

1001-195 19 Aug 94

- From: Commanding Officer, Naval Research Laboratory To: Base Structure Analysis Team (Attn: CDR T. S. Evans)
- Via: Chief of Naval Research Chief of Naval Operations (N44)
- Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) AMENDMENT THREE TO DATA CALL TWELVE - NAVAL RESEARCH LABORATORY
- Ref: (a) BSAT fax memo of 15 Aug 94 (b) CNO ltr Ser N44C1/4U594615 of 3 Jun 94 (c) BSAT fax memo of 4 Aug 94
- Encl: (1) Subject submission

1. Enclosure (1) is submitted in response to reference (a). In some instances we were unable to comply with guidance on pagination, since the pagination of the original submission was mistakenly and irrevocably changed during the preparation of amendments one and two. In accordance with references (a), (b) and (c), Sections A (Avionics), B (Space), and C (C4I) have each been divided into separate CSFs, which required the complete replacement of virtually all pages containing text or data of previous submissions of these sections.

2. All photos originally included in the Avionics section, except that of the Seeker Simulation Lab, should now be attached to Part A1, Fixed-Wing Avionics. The Seeker Simulation Lab photograph should be moved to Part A2, Rotary-Wing Avionics.

- 3. In response to question 3.5.2 of reference (a):
 - a. The response in the Electronic Devices CSF has been modified to be consistent with other submissions.
 - b. No vacant acreage is available at the NRL Washington site. NRL has for several years been implementing a long-range plan to repair and refurbish a number of the higher-quality older buildings at the DC site. This effort will not be completed for another six to eight years. At that point, demolition of lower-quality structures could make areas of the Laboratory available for new construction. Until that time, however, new populations of personnel (up to 10 percent of current population) could only be accommodated through minor reconfiguration of existing facilities.

R. E. LEONARD Acting

BASE REALIGNMENT AND CLOSURE DATA CALL 12 Naval Research Laboratory Amendment 3 Contents

· · _ _ _

_ _

_ _ _

Section	II:	Revised 8 Aug 94 (1 page)			
Section	111:	A1	Air Vehicles Fixed Wing Avionics, revised 17 Aug 94 (pages AlR-A12aR)		
		A2	Rotary-Wing Avionics, new section 17 Aug 94 (pages Al2bR-Al2hR, plus 3 photos)		
			Space Satellites, revised 17 Aug 94 (pages B1R-B10R) Ground Control Systems, revised 17 Aug 94 pages B11R-B17R		
			C4I Airborne C4I, revised 17 Aug 94 (pages C1R-C7R) Groundbased C4I, revised 8 Aug 94 (pages C8R-C13R)		
		D.	Electronic Devices, revised 8 Aug 94 (pages D1-D54)		
	·	E.	Environmental Science, revised 17 Aug 94 (pages E1-E18R)		
		F.	Environmental Quality, revised 8 Aug 94 (pages F1-F13aR)		
		G.	Advanced Materials, revised 8 Aug 94 (pages G1R-G6)		

Department of the Navy Base Structure Analysis Team

Facsimile Transmission Cover Sheet

Date: 15 AUGUST 1994

0	CDR SCOTT EVANS / M ajor Mike Cone ffice: (703) 681-0476 ax: (703) 756-2174
C C	ame: BOB DOAK Drg: NRL Diffice: ARL fax: 202-404-7728

Message The attached clarifications to Data Call 12, Laboratory Joint Cross-Service responses are required. Response must be certified through the Chain-of-Command and be configured in accordance with Navy BRAC policy and procedures. An advance copy of your response should be FAXed to the above NLT COB 17 August 1994.

Thanx Scott

	FAX TRANSMIT	TAL Fut pages > 2
	Fred ESPOSITO Dept/Agiancy	Phone #
Number of Pages (includ	Fex * NEN /540-01 317-7308 5090-101	CENERAL SERVICES AUMINISTRATION
		1 19 AUG 1994

NAVAL RESEARCH LABORATORY, WASHINGTON, DC

(Advance Copy dated 8 August 94 plus FAX of 9 August 94 w/ enclosures 4&5)

GENERAL

Your 8 August letter provided responses in the form of attached change pages as well as comments revising previous input statements. Changes must be done in accordance with Navy BRAC policy and procedures. This requires complete replacement of pages with the replacement page number marked with an "R" after it plus the revision date on each change page for all changes made to the data call response. Please submit change pages for all changes/corrections to facilitate our configuration control. Certified copy must follow correct procedure.

Ouestion 3.0

Air Vehicle, Rotary, Avionics must be broken out. Your response that there is no practical way to separate out the relatively small amount of effort is not acceptable. This needs to be done to the best of your ability, and your response footnoted to annotate the method for estimating it, if necessary, to meet certification requirements. Section III needs to be filled out in its entirely for this CSF.

Under CSF Space Systems, Ground Control Systems you list "Launch Vehicle Propulsion Technology Development'. Are you performing work that falls in the Space Systems, Launch Vehicle CSF. If so, this CSF must be reported and all questions in Section III answered, even if the work is at a very low level.

OUESTION 3.4.1

The percentage shared was not indicated for the Major Equipment and Facilities supporting the Environmental Science CSF.

OUESTION 3.5.2

For the Electronic Devices CSF your response was "None". For CSFs Ground Based C4I; Airborne C4I; Avionics; Environmental Sciences; Environmental Quality; and Advanced Materials your response stated "For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent" and "11.2 Acres available for unrestricted expansion located at its Chesapeake Bay Detachment". Why is your response to Electronic devices different than all the rest? If it wasn't meant to be, just correct your answer. If it was meant to be, please explain. Class 2 space is facilities. From your input we assume that there are no acres available at the Washington D.C site. If that is not the case, please revise your response accordingly.

DEPARTMENT OF THE NAVY OFFICE OF NAVAL RESEARCH 800 NORTH QUINCY STREET ARLINGTON, VA 22217-5660

IN REPLY REFER TO

174

11010 Ser 91/302 20 September 1994

FIRST ENDORSEMENT on NRL ltr 1001.1/048 of 16 September 1994

From: Chief of Naval Research To: Chief of Naval Operations (N44)

Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) AMENDMENT FOUR TO DATA CALL TWELVE - NAVAL RESEARCH LABORATORY

1. The subject amendment is forwarded for further action.

2. The ONR point of contact is Mr. Frederick C. Esposito, who may be reached on 703-696-4613.

MARC PELAEZ Rear Admiral, USN

DEPARTMENT OF THE NAVY NAVAL RESEARCH LABORATORY

WASHINGTON, D.C. 20375-5320

IN REPLY REFER TO:

1001.1/048 16 Sept 1994

From: Commanding Officer, Naval Research Laboratory To: Base Structure Analysis Team (Attn: John J. Trick)

- Via: Chief of Naval Research Chief of Naval Operations (N44)
- Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) AMENDMENT FOUR TO DATA CALL TWELVE - NAVAL RESEARCH LABORATORY
- Ref: (a) BSAT fax memo of 12 Sep 1994 (b) OPNAV ltr Ser N441/4U594484 of 7 Apr 1994

Encl: (1) Subject submission

1. Enclosure (1) is submitted in response to reference (a).

2. An attempt has been made to respond to the guidance provided in reference (a) regarding peer-reviewed journals. However, it should be noted that conventional practice for listing references in scientific journals is to provide journal name, volume, page number(s), and year. The month of the issue is not normally included in a list of journal articles. As a result, this information is not available in the NRL publications data base. The only way this information can be obtained is by manually checking every article. Time did not permit completion of this effort in all cases.

3. The publication lists for all Common Support Functions except C4I Systems and Ground Control Systems have been resubmitted in their entirety to ensure proper pagination and sequential numbering of articles, where this was possible. Significant changes and deletions have been denoted by an "R", for revised. The following changes were considered too minor to warrant individual notation as a revision:

- a. Correction of typographical errors.
- b. Deletion of duplicative entries.
- c. Addition of missing data for entries previously submitted.
- d. Changes to sequential numbers caused by deletions.

However, page numbers with such corrections were marked with an "R".

Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) AMENDMENT FOUR TO DATA CALL TWELVE - NAVAL RESEARCH LABORATORY

4. The guidance provided in reference (b) for Section 3.2.1 and 3.2.2 were that personnel were to be included if they were "engaged in science and technology, engineering development and in-service engineering activities ..." (emphasis added). At NRL, this was interpreted to include only scientific, engineering, technical, and support personnel directly charging to R&D programs. It did not include clerical or administrative personnel, or anyone on overhead or General and Administrative funding. Unfortunately, not all NRL components followed this guidance completely in our original submission, which led to the inconsistencies noted in reference (a). These inconsistencies have been corrected in enclosure (1).

R.W. Castidy RICHARD M. CASSION

.

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

NAME (Please type of print)

Commanding Officer

Naval Research Laboratory Activity

 $\frac{x N Cashidy}{Signature}$

DATA CALL

NAME (Please type or print

Signature

Date

Title

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

I certify that the information contained herein is accurate and

complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NEXT ECHELON LEVEL (if applicable)

NAME (Please type of print

Title

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

MARC PELAEZ

NAME (Please type or print

CHIEF OF NAVAL RESEARCH Title

OFFICE OF NAVAL RESEARCH

Activity

Title

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLAT_ONS & LOGISTICS)

W.A. EARNER NAME (Please type of print

Date

Signature

Signature

Date

Signature 0

Date

BASE REALIGNMENT AND CLOSURE DATA CALL 12

Naval Research Laboratory Amendment 4 Contents

- A. Air Vehicles Al Fixed Wing Avionics, revised 16 Sep 94: pages A-4R through A-6R
 - A2 Rotary Wing Avionics, revised 16 Sep 94: page A-12dR

B. Space

B1 Satellites, revised 15 Sep 94: pages B-5R and B-6R

C. C4I

- Cl Airborne C4I, revised 15 Sep 94: page C4R
- C2 Ground-based C4I, revised 15 Sep 94: page C9R
- D. Electronic Devices, revised 14 Sep 94: pages D-3R, D-4R, and D-B-1R through D-B-77R
- E. Environmental Sciences, revised 14 Sep 94: pages E-5R and E-A1R through E-A27R
- F. Environmental Quality, revised 14/15 Sep 94: pages F-2R, F-3R and F-6R through F-10R
- G. Advanced Materials, revised 14 Sep 94: pages G-3R, G-4R, and G-3-1R through G-3-88R

1

DEPARTMENT OF THE NAVY OFFICE OF NAVAL RESEARCH 800 NORTH QUINCY STREET ARLINGTON, VA 22217-5660 174

IN REPLY REFER TO

11010 Ser 91/311 21 September 1994

FIRST ENDORSEMENT on NRL ltr 1001.1/050 of 20 September 1994

From: Chief of Naval Research To: Chief of Naval Operations (N44)

Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) AMENDMENT FOUR SUPPLEMENT TO DATA CALL TWELVE - NAVAL RESEARCH LABORATORY

1. The subject amendment supplement is forwarded for further action.

2. The ONR point of contact is Mr. Frederick C. Esposito, who may be reached on 703-696-4613.

MARC **PELAE**Z Rear Admiral, USN

NAVAL RESEARCH LABORATORY WASHINGTON, D.C. 20375-5320

IN REPLY REFER TO:

1001.1/050 20 Sept 1994

From: Commanding Officer, Naval Research Laboratory To: Base Structure Analysis Team (Attn: John J. Trick)

Via: Chief of Naval Research Chief of Naval Operations (N44)

Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) AMENDMENT FIVE TO DATA CALL TWELVE - NAVAL RESEARCH LABORATORY

Ref: (a) NRL ltr Ser 1001.1/048 of 16 Sept 1994

Encl: (1) Subject submission

1. Reference (a) submitted amendment 4 to BRAC data call 12. As was stated in paragraph 2 of reference (a), the tight deadline did not permit completion of the requested revisions to all publication lists.

2. Enclosure (1) is a revised version of the NRL publications list for the Electronic Devices Common Support Function. These pages should be inserted into Section D of the NRL submission to BRAC data call 12. Given the magnitude of the changes included in enclosure (1), the pages have been completely renumbered.

B.B. Leonard Acting

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.*

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

of print) mmonding Officer Desearch Laboratory

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print

Signature

Title

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type of print

Title

Date

Signature

Sionature

Date

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

MARC PELAEZ

NAME (Please type or print

CHIEF OF NAVAL RESEARCH

Title

OFFICE OF NAVAL RESEARCH Activity

NAME (Please type of print

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

DEPUTY CHIEF OF NAVAL OPERATIONS (LOGISTICS) DEPUTY CHIEF OF STAFF (INSTALLAT_ONS & LOGISTICS)

W. A. EARNER

A Bean
Signature,

7/21/94

Title

ale

IN REPLY REFER TO: 1001.1/055 28 Sept 94

- Commanding Officer, Naval Research Laboratory From: TO: Base Structure Analysis Team (Attn: John J. Trick)
- Via: Chief of Naval Research Chief of Naval Operations (N44)
- Subj: 1995 BASE REALIGNMENT AND CLOSURE (BRAC) AMENDMENT SIX TO DATA CALL TWELVE - NAVAL RESEARCH LABORATORY
- Ref: (a) NRL ltr Ser 1001.1/048 of 16 Sept 1994 (b) BSAT fax memo of 12 Sept 1994
- Encl: (1) Subject submission

1. Reference (a) submitted amendment 4 to BRAC data call 12. As was stated in paragraph 2 of reference (a), the tight deadline did not permit completion of the requested revisions to all publication lists.

2. Enclosure (1) is a revised version of the NRL publications list for one NRL division that was included in the Materials Science Common Support Function. The enclosed material replaces pages G-3-70 through G-3-88 of the material submitted by reference (a). Since virtually every entry has had information added or revised in accordance with the guidance provided by reference (b), revised items have not been specially denoted with the letter "R".

R.W. Cassidy NCHARD M. CASSIDN

BRAC-95 CERTIFICATION

Reference: SECNAV NOTE 11000 dtd 8 Dec 93

In accordance with policy set forth by the Secretary of the Navy, personnel of the Department of the Navy, uniformed and civilian, who provide information for use in the BRAC-95 process are required to provide a signed certification that states "I certify that the information contained herein is accurate and complete to the best of my knowledge and belief."

The signing of this certification constitutes a representation that the certifying official has reviewed the information and either (1) personally vouches for its accuracy and completeness or (2) has possession of, and is relying upon, a certification executed by a competent subordinate.

Each individual in your activity generating information for the BRAC-95 process must certify that information. Enclosure (1) is provided for individual certifications and may be duplicated as necessary. You are directed to maintain those certifications at your activity for audit purposes. For purposes of this certification sheet, the commander of the activity will begin the certification process and each reporting senior in the Chain of Command reviewing the information will also sign this certification sheet. This sheet must remain attached to this package and be forwarded up the Chain of Command. Copies must be retained by each level in the Chain of Command for audit purposes.

I certify the information contained herein is accurate and complete to the best of my knowledge and belief.

ACTIVITY COMMANDER

NAME (Please type of print)

RICHARD M. CASSIDY Title Captain, U.S. Navy Commanding Officer Naval Research Laboratory Activity Activity

Signature 2 7 SEP 19

Date

DATA CALL

5 174

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type or print

Title

Signature

Signature

Signatur

Date

Date

Date

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge and belief.

NEXT ECHELON LEVEL (if applicable)

NAME (Please type of print

Title

Activity

In certify that the information herein is accurate and complete to the best of my knowledge and belief.

MAJOR CLAIMANT LEVEL

MARC PELAEZ

NAME (Please type or print

CHIEF OF NAVAL RESEARCH

Title

T

OFFICE OF NAVAL RESEARCH

Activity

I certify that the information contained herein is accurate and complete to the best of my knowledge belief.

	NAVAL OPERATIONS (LOGISTICS) AFF (INSTALLAT_ONS & LOGISTICS)
J. B. GREENE, JR.	10 secure M.
NAME (Please type of print ACTING	signature 13 OCT 1994
Title	Date

NAVAL RESEARCH LABORATORY

response to

Base Realignment and Closure 1995 Data Call 12

12 May 1994

SECTION I: TASKING

•

This section contained tasking instructions only, and is not included in the response.

SECTION II: CAPACITY OF DOD COMPONENTS

SECTION II: CAPACITY OF DOD COMPONENTS

2.1 <u>Workload</u>. Use the following table to describe historic and projected workload at each activity in terms of funding and workyears. Assume previous BRAC closures and realignments are implemented on schedule. Projected funding will be derived from FY95 President's Budget Submission (Then year dollars). Past fiscal year data shall begin with FY86 or at the inception of the activity as it existed on 1 Oct 93. (BRAC Criteria I & IV)

Information		Fiscal Years										
Required	86	87	88	89	90	91	92	93	94	95	96	97
Total Funds Programmed (\$M)	543	483	604	556	646	746	651	707	840	842	867	893
Total Actual Funds (\$M)	552	596	642	646	727	769	722	811				
Programmed Workyears	3,916	4,080	4,296	4,259	4,308	5,010	4,717	4,471	4,593	4,459	4,415	4,397
Actual Workyears	4,031	4,094	4,242	4,249	4,256	4,909	4,821	4,609				

NOTE: Increase due to inclusion of on-site contractors beginning in FY91. On-site contractor data not collected prior to FY91.

2.2 Excess "Lab" Capacity: 358 Workyears

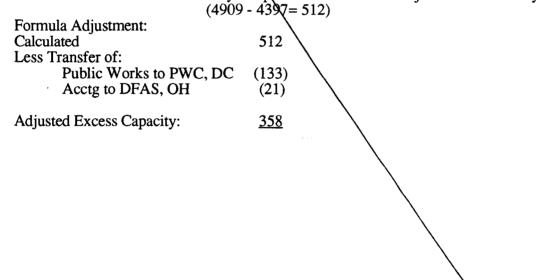
Mandated Formula: Actual Workyears peak in FY91 minus Projected FY97 Workyears (4909 - 4397= 512)

Formula Adjustment:	
Calculated	512
Less Transfer of:	
Public Works to PWC, DC	(133)
Acctg to DFAS, OH	(21)

Adjusted Excess Capacity: 358

SECTION II: CAPACITY OF DOD COMPONENTS

2.1 Workload. Use the following table to describe historic and projected workload at each activity in terms of funding and workyears. Assume previous BRAC closures and realignments are implemented on schedule. Projected funding will be derived from FY95 President's Budget Submission (Then year dollars). Past fiscal year data shall begin with FY86 or at the inception of the activity as it existed on 1 Oct 93. (BRAC Criteria I & IV)


Information		Fiscal Years										
Required	86	87	88	89	90	91	92	93	94	95	96	97
Total Funds Programmed (\$M)	543	483	604	556	646	746	651	707	840	842	867	893
Total Actual Funds (\$M)	552	596	642	646	727	769	722	811				
Programmed Workyears	3,916	4,080	4,296	4,259	4,308	5,010	4,717	4,471	4,593	4,459	4,415	4,397
Actual Workyears	4,031	4,094	4,242	4,249	4,256	4909 4,090	4,821	4,609				

ONR OSC Kultunberk 4/10/94

NOTE: Increase due to inclusion of on site contractors beginning in FY91. On-site contractor data not collected prior to FY91.

2.2 Excess "Lab" Capacity: 358 Workyears

Mandated Formula: Actual Workyears peak in FY91 minus Projected FY97 Workyears

SECTION III: CAPABILITY OF NRL TO PERFORM COMMON SUPPORT FUNCTIONS

- Air Vehicles (Avionics) Α.
- Β. Space
- C. Ċ4I
- Electronic Devices D.
- E. **Environmental Sciences**
- Environmental Quality Advanced Materials F.
- G.

A. AIR VEHICLES A1. FIXED-WING AVIONICS

3.0 Mission. The fixed-wing avionics work at NRL includes efforts in EW systems, EO/IR systems, and Cooperative Aircraft Identification (CAI). This research is conducted in three NRL divisions: the Tactical EW Division, the Optical Sciences Division, and the Radar Division. The research in these three warfare areas span a broad spectrum of research into the science, technologies, and system concepts that will enable the Navy to best meet its military requirements. The avionic activities at NRL draw upon the full spectrum of S&T areas within NRL, the Navy, the Department of Defense, and our international allies to develop new systems and to devise technologies that meet emerging needs of the Navy, and that better enable it to fulfill its designated role in DoD.

The EW research includes a wide range of effort addressing EW needs for both Naval ships and aircraft and for their missions in the area of electronic support measures and countermeasures, as well as in critical supporting technologies for electronic warfare. Although principally focused on EW research for ships, as part of the full spectrum Corporate Laboratory for the Navy, the NRL EW program includes a significant fraction that focuses on the needs unique to carrier aviation, and on other aircraft platforms that support the overall Navy mission. The NRL EW program is executed by a group of nearly 300 scientists, engineers, and technical support personnel who each specialize in one or more of the science and technology areas that are critical to EW for the Navy. In general, each of these personnel performs research that supports both ship and aircraft needs within their individual areas of expertise as the needs arise. The EW program is supported by an extensive set of modern research tools and facilities which are highly specialized to EW technology research needs, and are used to support both the larger ships related portion of the research program as well as the smaller part devoted to avionics for EW. In general, these specialized facilities are Navy specific in design and focus on the S&T needs for EW in support of the unique needs of the Navy.

The research in optical science includes a wide range of effort which include the application of EO/IR sensors to ships, aircraft, and undersea surveillance; application of optical devices to signal processing, delay lines, fiber-optic gyros, strain sensors, fiber-optic hydrophones, fiber-optic magnetic sensors, imaging systems, and basic research in optical materials, optical propagation studies, IR signature studies, and laser research. Specifically, the fixed-wing avionics program includes work in:

- IR focal plane design
- IR missile seeker evaluation
- Surveillance and reconnaissance camera development
- Modelling, detection and tracking algorithm development
- Missile threat warning receiver (both IR and UV) design and development
- In-house radiation hardened fiber fabrication
- Ultra high bandwidth fiber delay lines for EW decoys
- File networking for avionic data communications
- Smart structure development using embedded fiber sensors

The work in this area is complemented by work in other NRL divisions such as Materials, Chemistry, Electronics, etc. The NRL optical sciences program is supported by a group of nearly 140 scientists, engineers, and technical support personnel who each specialize in one or more of the science and technology areas which comprise the optical sciences effort. Of this complement less than 12% of the personnel support the fixed-wing avionics portion of the work. The optical sciences program is supported by a number of modern research tools and facilities, a portion of which are used in the avionics program. In general, these specialized facilities are Navy-specific in design and focus on unique Navy applications.

1 19 AUG 1994 .

R

R

R

NRL has been the acknowledged technical leader among the four Services in the field of Cooperative Aircraft Identification (CAI), formerly called Identification Friend or Foe (IFF). Its work in this area affects all four Services as well as the NATO allies. In terms of work years and funding, it is a small part of the total effort in the Radar division, but its importance is far greater than the dollar amount of funding indicates.

3.1 Location

3.1.1 <u>Geographic/Climatological Features.</u> The Chesapeake Bay Detachment (CBD) of the NRL provides a geographically unique facility (East Coast location) that is particularly well suited for research needs in support of Naval warfare areas. The site, on a cliff overlooking the Bay, provides a nine mile overwater path to the NRL site on Tilghman Island. The approximately 100 foot cliff height closely represents the height of ship sensors above the ocean, and the path to Tilghman Island approaches the surface horizon for these sensors. This geometry is exactly that seen in attacks on US ships by enemy missiles, and in attacks on enemy ships by low flying US aircraft and sea skimming missiles. Such a geometry must be achieved if successful experiments are to be conducted in support of the NRL warfare systems research program.

3.1.2 Licenses & Permits. Ordnance handling, transportation, and storage at CBD.

3.1.3 <u>Environmental Constraints</u>. None known other than those associated with the handling of explosives at the CBD site.

3.1.4 Special Support Infrastructure. None

3.1.5. <u>Proximity to Mission-Related organizations.</u> The two principal organizations on which the fixed-wing avionics research is most dependent upon are the Naval Air Warfare Center (NAWC) facilities at Patuxent River (PAX), MD and at the Naval Surface Warfare Center facilities at Wallops Island, VA. These facilities support the NRL EW effort by providing test ranges and radars at Wallops Island and a large aircraft test anechoic chamber at Patuxent River which is unique to the Navy.

Common Support Functions	Name	Type of Organization	Distance	Workyears Performed by Your Activity	
FIXED-WING AVIONICS		TEST CENTER	60 MI	7.0	0.5
FIXED-WING AVIONICS	WALLOPS	TEST RANGE	150 MI	1.0	0.5

3.2 Personnel

3.2.1 <u>Total Personnel.</u> Only government and on-site system engineering technical assistance (SETA) personnel support the avionics CSF. There are no military or FFRDC personnel supporting the program. The count below gives the number of persons, not the number of work years.

R

	Number of Personnel					
Types of Personnel	Government		On-Site FFRDC	On-Site SETA		
	Civilian	Military				
Technical	57	0	0	33		
Management (Supv)	10	0	0	0		
Other	0	0	0	0		

3.2.2 <u>Education</u>. The number of government personnel actively engaged in S&T, engineering development and in-service engineering activities by highest degree and type of position is provided in the following table (note that one Certified Professional Engineer is included in the Bachelor category).

	Number of Government Personnel by Type of Position						
Type of Degree/ Diploma	Technical	Management (Supv)	Other				
High School or Less	6	0	0 .				
Associates	1	0	0				
Bachelor	22	4	0				
Masters	15	0	0				
Doctorate (include Med/Vet/etc.)	13	6	0				

3.2.3 <u>Experience</u>. The experience level of government personnel is provided in the following table.

	Years of Government and/or Military Service							
Type of Position	Less than 3 years	3-10 years	11–15 years	16–20 years	More than 20 years			
Technical	4	22	10	1	20			
Management (Supv)	0	0	2	1	7			
Total	4	22	12	2	27			

3.2.4 Accomplishments During FY91-93.

3.2.4.1 The number and listing of patent awards in the fixed-wing avionics area for FY91–93 are:

CSF	Disclosures	Awarded	Patent Titles (List)	
FIXED-WING AVIONICS	6	2	List Follows	R
Total	6	2		

Note that this list does not include those classified patents which have been assigned but not published or awarded due to classification.

0	
0	
nt personnel activ	
g activities by high	est
t and Contified Dr	-f-

A-3R (17 Aug 94)

R

R

R

FIXED-WING AVIONICS PATENTS AWARDED:

1. Interferometer With Two Phase Conjugate Mirrors, #5,120,133

2. Room Temperature Flashpumped 2.09 Micron Solid State Laser, #5,088,103

FIXED-WING AVIONICS PATENT DISCLOSURES:

- 1. Apparatus for Two Dimensional Images, #73,939
- 2. Combined Range Delay, #75,638
- CW Mode-Locked 2 Micron Tm: YAG Laser, #73,829
 Intracavity Pumped Tm:Ho 2.01 Micron Coupled Cavity Laser, #74,075
- 5. Subpicosecond Pulse Operation of a 2 Micron Tm: YAG Laser using Additive Pulse Modelocking, #74,203
- 6. Reduced Signal Friend Identification, #74,336

3.2.4.2 The number of papers published in peer reviewed journals in the years FY91–93 is provided in the table below. It should be noted that many of the NRL fixed-wing avionics research results are classified and cannot be published in the usual peer reviewed journals. Only the Journal of Defense Research (recently defunct) sponsored by DoD was available as a classified peer reviewed journal. Also many avionics research results are published in the form of classified DoD documents.

CSF	Number Published	Paper Titles (List)
FIXED-WING AVIONICS	11	List Follows

FIXED-WING AVIONICS PUBLICATIONS:

- "Ship Wake Exploitation for Cruise Missile Guidance", Journal of Defense Research, Nov. 1991, Vol. 21, No. 1, pp.1–34.
- 2. "Over-the-Horizon Radar ECM", Journal of Defense Research, Sep. 1992, Vol. 21, No. 4, pp.921-986.
- 3. "Tactical Proforma Exploitation", Journal of Defense Research, June 1992, Vol. 21, No. 3,
- pp.715-739. 4. "Transmission Line Amplifier", IEEE Transactions on Electron Devices, Sept. 1992, Vol. 39, No. 9, pp.2165-2171.
- 5. "Diode Pumped Amplifier/Laser using Leaky-Wave Fiber Coupling: An Evaluation", IEEE J. Quantum Mechanics, Apr. 1992, Vol. 28, No. 4.
- 6. "Image Speckle Contrast Reduction from Integrative Synthetic Aperture Imaging", Applied Optics, Jan. 1992, Vol. 31, No. 1.
- 7. "Effects on Nonredundance on a Synthetic Aperture Imaging System", Journal of the Optical Society of America, April 1993, Vol. 10, No.4.
- 8. "Short Wavelength Imaging Laser Radar using a Digicon Detector",* SPIE Optical Engineering, Nov. 1992, Vol. 31, No. 11.
- 9. "Infrared Focal Plane Array Technology", Proceedings IEEE, Jan 1991, Vol. 79, No. 1.
- 10. "Even Length Median Filters in Optimal Signal Processing", Elect. Letters, June 1992, Vol. 28, No. 13.

R

R

R

R

FIXED-WING AVIONICS PATENTS AWARDED:

- 1. Interferometer With Two Phase Conjugate Mirrors, #5,120,133
- 2. Room Temperature Flashpumped 2.09 Micron Solid State Laser, #5,088,103

FIXED-WING AVIONICS PATENT DISCLOSURES:

- 1. Apparatus for Two Dimensional Images, #73,939
- 2. Combined Range Delay, #75,638
- 3. CW Mode–Locked 2 Micron Tm: YAG Laser, #73,829
- 4. Intracavity Puxped Tm:Ho 2.01 Micron Coupled Cavity Laser, #74,075
- 5. Subpicosecond Rulse Operation of a 2 Micron Tm:YAG Laser using Additive Pulse Modelocking, #74,203
- 6. Reduced Signal Friend Identification, #74,336

3.2.4.2 The number of papers published in peer reviewed journals in the years FY91–93 is provided in the table below. It should be noted that many of the NRL fixed-wing avionics research results are classified and cannot be published in the usual peer reviewed journals. Only the Journal of Defense Research (recently defunct) sponsored by DoD was available as a classified peer reviewed journal. Also many avionics research results are published in the form of classified DoD documents.

CSF	Number Published	Paper Titles (List)	
FIXED-WING AVIONICS	25	List Follows	R

FIXED-WING AVIONICS PUBLICATIONS:

- 1. "A Toolset for Navigation in Virtual Environments", * Proceedings of the ACM Symposium on User Interface Software & Technology, Nov. 1993, pp. 157–165.
- 2. "Hands-off Interactions with Menus in Virtual Spaces", * Proceedings of the 7th Annual Workshop on Space Operations Applications & Research, Feb. 1994.
- 3. "Ship Wake Exploitation for Cruise Missile Guidance" Journal of Defense Research, Nov. 1991, Vol. 21, No. 1, pp.1–34.
- 4. "Over-the-Horizon Radar ECM", Journal of Defense Research, Sep. 1992, Vol. 21, No. 4, pp.921-986.
- 5. [^]Tactical Proforma Exploitation", Journal of Defense Research, June 1992, Vol. 21, No. 3, pp.715-739.
- 6. "Transmission Line Amplifier", IEEE Transactions on Electron Devices, Sept. 1992, Vol. 39, No. 9, pp.2165–2171.
- 7. "Diode Pumped Amplifier/Laser using Leaky–Wave Fiber Coupling: An Evaluation", IEEE J. Quantum Mechanics, Apr. 1992, Vol. 28, No. 4.
- 8. "Image Speckle Contrast Reduction from Integrative Synthetic Aperture Maging", Applied Optics, Jan. 1992, Vol. 31, No. 1.
- 9. "Effects on Nonredundance on a Synthetic Aperture Imaging System", Journal of the Optical Society of America, 1993.
- 10. "Laser Ranging Countermeasure Program Acceptance Test",* Proceedings of IRIS IRCM, 1992.
- 11. "Short Wavelength Imaging Laser Radar using a Digicon Detector",* SPIE Optical Engineering, Nov. 1992, Vol. 31, No. 11.
- 12. "Infrared Focal Plane Array Technology", Proceedings IEEE, Jan 1991, Vol. 79, No. 1.
- 13. "Even Length Median Filters in Optimal Signal Processing", Elect. Letters, June 1992, Vol. 28, No. 13.

R

R

R

R

11. "Intracavity-pumped 2.09 Micron Ho:YAG Laser", Optics Letters, May 1992, Vol. 17, No. 10.

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 <u>Work Year and Lifecycle</u>. The number of actual workyears executed for the fixed-wing avionics CSF in FY93 is provided by the table below for each of the following: government civilian; military; on-site FFRDCs; and on-site SETAs.

	Fiscal Year 1993 Actual				
"LAB"	Civilian	Military	FFRDC	SETA	
Science & Technology	37.21	0	0	16.05	
Engineering Development	27.90	0	0	15.7	
In–Service Engineering	0	0	0	0	

A-5R (16 Sep 94)

R

R

1994

SED

- 14. "Intracavity-pumped 2.09 Micron Ho:YAG Laser", Optics Letters, May 1992, Vol. 17, No. 10.
- 15. "Adaptive Nonuniformity Correction for Staring IRFPA Camera",* Proceedings IRIS Detectors, Aug. 1993.
- 16. "Composite Infrared Color Images and Related Processing", * Proceedings IRIS Targets, Jan. 1993.
- 17. "Effects of System Stability and Detector 1/f Noise on Staring IRFPA Performance",* Proceedings IRIS Sensors, Mar. 1993.
- 18. "Adaptive Retina-like Preprocessing for Imaging Detector Arrays",* Proceedings IEEE Conf. on Neural Networks, Mar. 1993.
- 19. "Performance of Real-time Adaptive Nonuniformity Correction Techniques for Arrays",* Proceedings IRIS Sensors, Mar. 1993.
- 20. "Effects of Low Power IR Laser Countermeasures on Several IR Focal Plane Arrays",* Proceeding IRIS IRCM, Apr. 1993.
- 21. "Protection of Civil and Military Aircraft from Heat Seeking Missiles",* Proceedings ADPA Symposium on Transport Aircraft Survivability, Oct. 1993.
- R

R

- 22. "Automatic Classification of Threat Missiles",* Proceeding IRIS IRCM, Apr. 1993.
- 23. "Measurement and Analysis of Optical Scatter in FLIR's",* Proceedings IRIS IRCM, Apr. 1993.
- 24. "Multispectral IRFPA Needs", Proceedings IRIS Detector, Aug. 1993.
- 25. "Theory and Design of Local Interpolators",* CVGIP Graphical Methods and Image Processing, 1993, Vol. 55, No. 6.

*Peer-Reviewed Conference Proceedings

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 <u>Work Year and Lifecycle</u>. The number of actual workyears executed for the fixed-wing avionics CSF in FY93 is provided by the table below for each of the following: government civilian; military; on-site FFRDCs; and on-site SETAs.

	Fiscal Year 1993 Actual				
"LAB"	Civilian	Military	FFRDC	SETA	
Science & Technology	37.21	0	0	16.05	
Engineering Development	27.90	0	0	15.7	
In-Service Engineering	0	0	0	0	

A-5R (17 Aug 94)

3.3.1.2 <u>Engineering Development By ACAT.</u> For the fixed-wing avionics CSF programs conducted under engineering development, the following table provides a summary of the efforts and identifies the specific engineering development programs that are supported.

Engineering Development	Name or Number	Workyear s(FY93 Actual)	FY93 Funds Received(\$ K) (Obligation Authority)	Narrative
ACAT IC	None			
ACAT ID	Combat ID/ Cooperative Aircraft ID	3.6	600	New CAI system to correct the deficiencies in the current Mark XII IFF
ACAT II	None			
ACAT III/IV	3	19.4	3914	Navy EA6B EW AN/ALE-50 Decoy SLQ-20 Upgrade
Other	6	20.60	6791	Airborne RF Decoys RF Labs/INEWS E2C Emitter ATEWES STOR YFINDER Gusty Beast (Classified Program)

3.3.1.3 In-Service Engineering. None

A-6R (16 Sep 94)

R

R

1 6 SFP 1994

3.3.1.2 <u>Engineering Development By ACAT.</u> For the fixed-wing avionics CSF programs conducted under engineering development, the following table provides a summary of the efforts and identifies the specific engineering development programs that are supported.

Engineering Development	Name or Number	Workyear s(FY93 Actual)	FY93 Funds Received(\$ K) (Obligation Authority)	Narrative
ACAT IC	None			
ACAT ID	CAI	3.6	600	New CAI system to correct the deficiencies in the current Mark XII IFF
ACAT II	None	•		
АСАТ ШЛV	3	19.4	3914	Navy EA–6B EW AN/ALE–50 Decoy SLQ–20 Upgrade
Other		20.60	6791	Airborne RF Decoys RF Labs/INEWS E2C Emitter ATEWES STORYFINDER Gusty Beast (Classified Program)

3.3.1.3 In-Service Engineering. None

A-6R (17 Aug 94)

1.9 AUG 1994

R

R

3.3.2 Projected Funding

3.3.2.1 <u>Direct Funding</u>. The NRL fixed-wing avionics program receives no direct funding, consequently all entries in the table below are zero.

CSF	FY94(\$K)	FY95(\$K)	FY96(\$K)	FY97(\$K)
FIXED-WING AVIONICS	0	0	0	0

3.3.2.2 <u>Other Obligation Authority</u>. Reimbursable and direct-cite funding (other obligation authority expected) from FY94 to FY97 is provided below:

CSF	FY94(\$K)	FY95(\$K)	FY96(\$K)	FY97(\$K)
Reimbursable	17,328	18,833	19,850	20,550
Direct-Cite	6,441	7,150	7,870	8,100

3.4 Facilities and Equipment

3.4.1 <u>Major Equipment and Facilities</u>. The major facilities and equipment necessary to support the fixed-wing avionics CSF are listed in the following table, and are described more fully in the text that follows the table. Where the facilities are shared with other functions, the percentage of total time used by the avionics function is shown in parentheses following each table entry. The remaining percentages are used to support Navy specific activities.

R

R

	Unique To					
Common Support Function	Major Facility or Equipment Description	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)	
AVIONICS FIXED-WING	Ships Radar ECM Simulator(30%)*	Х	X	X	3,500	
AVIONICS FIXED-WING	RCS Measurement Facility(50%)*	Х	Х	X	15,000	
AVIONICS FIXED-WING	Compact Antenna Range(60%)*				2,600	
AVIONICS FIXED-WING	Isolation Meas. Chamber(70%) *	Х			3,000	
AVIONICS FIXED-WING	Millimeter Wave Chamber(50%)*				2,000	
AVIONICS FIXED-WING	RF Techniques Chamber(80%)*				1,500	
AVIONICS FIXED-WING	High Precision Optical Tracker (50%)***				1,200	
AVIONICS FIXED-WING	Focal Plane Array Evaluation Facility(50%)**	X			2,000	
AVIONICS FIXED-WING	Missile Warning System Facility(50%)***	Х			2,000	
AVIONICS FIXED-WING	Digital Signal Proc. Facility(75%)**	X			650	

* The remaining percentage of utilization for these facilities supports Shipboard EW Systems.

** The remaining percentage of utilization for these facilities supports the Electronic Devices Function.

*** The remaining percentage of utilization for these facilities supports the Rotary-Wing Avionics CSF.

More detailed information on each of the special facilities identified above is provided in the following descriptions and photographs.

SEARCH RADAR ECM SIMULATOR(SRES)

SRES is an electronic laboratory designed to test ECM equipment by simulating the engagement between an airborne threat search radar and a group of surface ships and aircraft that use ECM as part of their defense. The method of simulation is real-time generation of the RF signals that would be present in the threat radar receiver from the radar echoes and the ECM. These signals are processed by the radar receivers and displayed on radar displays for man-in-the-loop determination of the ECM effects. An effective ECM would prevent the radar operator from determining the preferred target's location.

The combination of specific equipment, software and capabilities associated with and developed for the SRES laboratory are unique to this facility.

RADAR CROSS-SECTION MEASUREMENTS LABORATORY (CHESAPEAKE BAY DETACHMENT)

This facility is a land based installation designed to accurately characterize and quantify the over the water radar cross-section (RCS) signature of ships, aircraft and electronic warfare passive and active systems used to defend these platforms. The system is capable of collecting precision data in 2 to 18 Ghz, and 35 Ghz bands. Additionally, the system can characterize and quantify the Effective Radiated Power (ERP) and sensitivity of active electronic warfare systems over the same frequency range. This facility includes conventional single frequency radars as well as broad-band frequency agile units. Both coherent and noncoherent radars can be used. A 95 Ghz radar is being installed.

This is a one of a kind facility. It is the only facility which routinely conducts the necessary measurements critical to the design and development of R&D decoy and onboard ECM systems.

COMPACT ANTENNA RANGE FACILITY

The primary purpose of the Compact Antenna Range Facility is to provide a unique state-of-theart anechoic chamber to measure the phase and amplitude of antenna systems over a frequency range of 2 to 100 Ghz in a controlled environment in support of NRL research in EW. The facility also provides the capability for radar cross-section measurements from 2 to 40 Ghz, and small device metrology from 0.45 to 50 Ghz.

The facility has been specially EMI/RFI hardened using massive hydraulically actuated doors. A special hydraulic elevator was installed to move equipment in and out of the chamber. The chamber also has a state-of-the-art microwave lining designed to provide a 4 foot diameter by 6 foot length quiet zone area with greater than 50 dB below incident reflectivity reduction. The chamber also has an automatic fire suppression system designed to prevent damage to electrical systems under test. The facility and equipment are controlled in temperature and humidity to prevent large fluctuations in the microwave absorber and parabolic reflector characteristics.

ISOLATION MEASUREMENT CHAMBER FACILITY

The Isolation Measurement Chamber Facility provides a capability for measuring antenna to antenna radiation coupling characteristics from 2 to 40 Ghz in support of EW research. Configuration and size of the facility and special handling equipment allow for unique accommodation of portions of airframes having antennas mounted in the same position as those of operational aircraft. This feature accounts for the DoD uniqueness. The facility is also capable for making accurate measurements of the RCS of small objects. The facility has been specially EMI/RFI hardened using massive hydraulically actuated doors. In addition, the facility was provided with special handling fixtures to allow removal of a 12 ft. by 15 ft. panel to accommodate the installation of parts of ship structures, aircraft fuselages, wings, etc. for testing. The chamber has a state–of–the–art microwave absorber lining designed to provide a large quiet zone area of 12 ft. by 18 ft. by 10 ft. with a greater than 100dB below incident reflectivity reduction. The chamber has an automatic sensing fire suppression system designed to prevent damage to electrical systems under test. The facility/equipment are controlled in temperature and humidity to prevent large fluctuations in the microwave absorber characteristics.

MILLIMETER WAVE ANECHOIC CHAMBER FACILITY

The primary function of the state-of-the-art Millimeter Anechoic Chamber Facility is to measure and characterize antenna gain, beamwidth, axial roll, beam squint, phase center, VSWR and crosspolarization levels at low power continuously over the frequency range from 8 to 100 Ghz. The facility also provides a means to measure the radio frequency transmission and insertion loss of radomes intended for use in shipboard, aircraft, satellite and missile seekers. The facility consists of a fixed anechoic chamber with a carefully calibrated quiet zone area, while an extremely small portion of the control hardware is moveable, most of the hardware is permanently installed. The facility has been specially EMI/RFI hardened using massive hydraulically actuated doors. A special hydraulic elevator was installed to move equipment in and out of the anechoic chamber. The chamber has a state-of-the-art microwave absorber lining designed to provide a 3 ft. diameter quiet zone area with greater than 50 dB incident reflectivity reduction. The chamber has an automatic sensing fire suppression system designed to prevent damage to electrical systems under test.

RF TECHNIQUES CHAMBER FACILITY

The primary purpose of the RF Techniques Chamber Facility is to provide a low cost anechoic chamber capability to conduct ECM research on RF homing missiles, airborne intercept radars, antiradiation missiles, small tracking radars and in general to aid in the development of airborne EW systems over the frequency range of 2 to 4 Ghz. The facility has been specially EMI/RFI hardened using massive hydraulically actuated doors. In addition, one side wall of the chamber can be moved electrically to increase the length of the chamber. The chamber has a state–of–the–art microwave absorber lining designed to provide a 4 ft. by 4 ft. spherical quiet zone area with greater than 50 dB below incident reflectivity reduction. The chamber has an automatic sensing fire suppression system designed to prevent damage to electrical systems under test. This facility and equipment are controlled in temperature and humidity to prevent large fluctuations in microwave absorber characteristics.

HIGH PRECISION OPTICAL TRACKER

This facility measures optical and IR signatures of targets in motion and the propagation of light through the atmosphere. It consists of two 40 ft. long by 7 ft. wide electronic trailers. One has a 32" diameter optical tracker mounted on the back. Built originally to do absolute transmittance measurements between ships, the tracker now has the capability of tracking noncooperative targets for signature studies. With a 6 microradian tracking accuracy capability, tracking choices are trackball, video image tracking by contrast or correlation, or computer drive. Newtonian optics direct gathered radiation to either IR imaging sensors or to an IR scanning spectrometer. The second trailer provides the calibration capability of the facility. A 36" mirror with four blackbody sources with associated computer programs and control provide a known value of radiation arriving at the tracker telescope aperture. To complete the calibration suite is equipment to measure and record meteorological parameters such as air temperature, dew point and visibility.

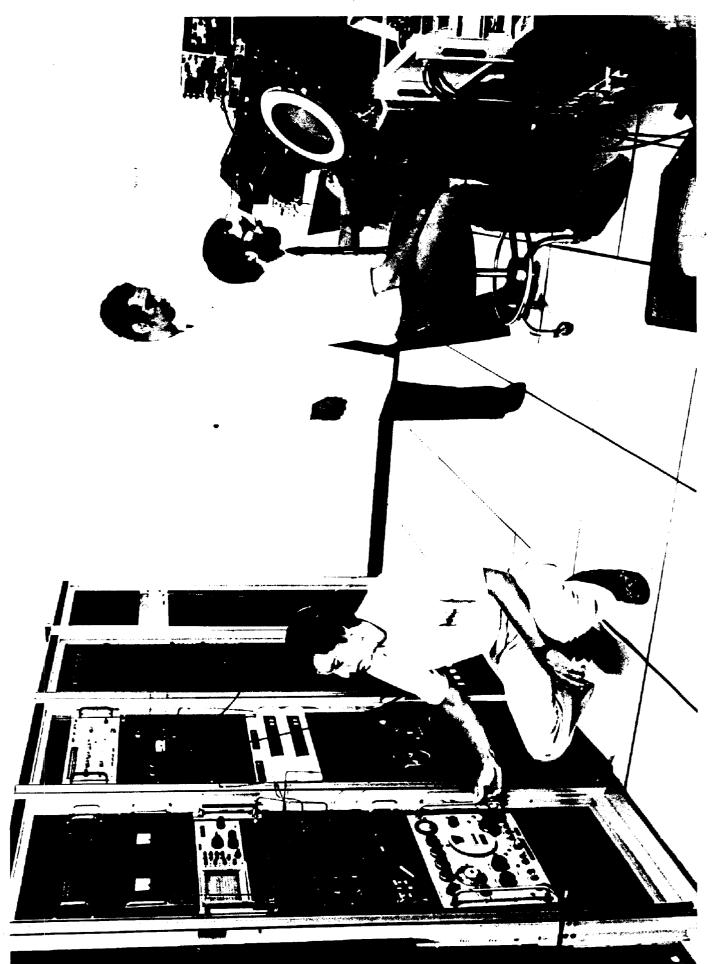
FOCAL PLANE ARRAY EVALUATION FACILITY

In this facility, the optical and electrical evaluation of developmental IR focal plane arrays is conducted to determine the development status, to provide guidelines for future development contracts, and to evaluate the potential for fulfilling Navy sensor requirements. The automated evaluation facility consists of optical sources and electronics required to evaluate monolithic or hybrid IR focal plane arrays that use charge coupled device (CCD), charge injected device (CID), direct readout (DRO), or charge imaging matrix (CIM) technologies. Since developmental arrays are often received in chip form, there are a variety of dewars and mounts to accept different chip carriers. Optical sources are used to illuminate the detectors with short pulse or continuous radiation in both uniform and single detector modes. Calibrated laser sources are used to study array performance under optical overload conditions. The data are acquired and reduced by using computer techniques because each array may consist of tens of thousands of detectors, and many samples of each detector are required for statistical significance. The spectral response of the arrays is determined by using optical filters or spectrometers.

The combination of the high data rate acquisition with real time imaging capability makes this facility unique within the Defense Department.

MISSILE WARNING SYSTEM FACILITY

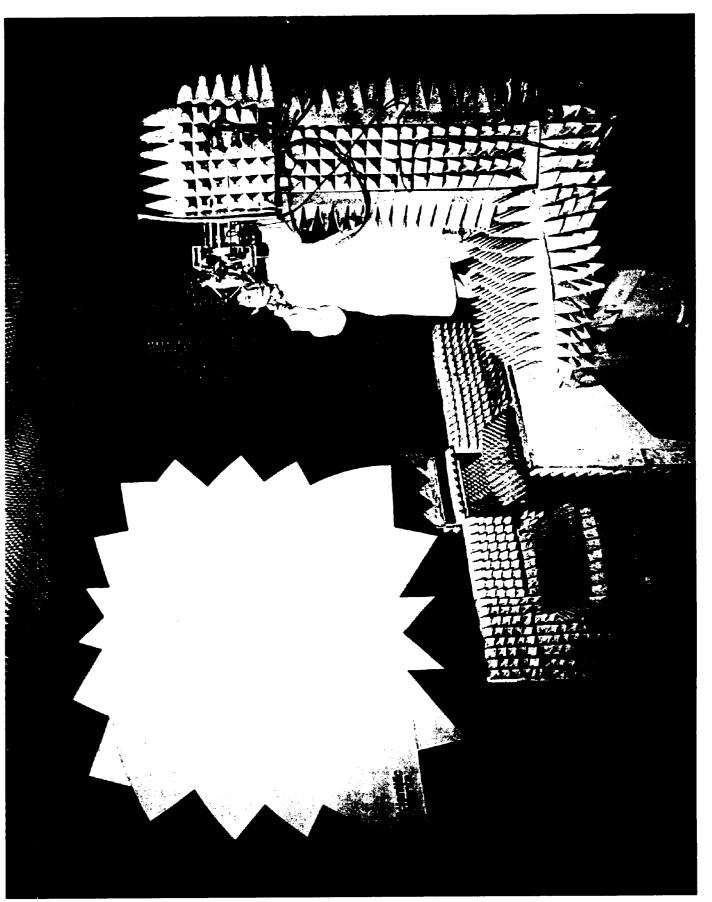
This facility is used for the development and demonstration of sensors and algorithms for missile warning systems and data collection in support of sensor and algorithm development. A missile warning sensor for aircraft requires a system capable of detecting the threat missile at sufficient range to implement effective countermeasures while requiring nonthreat missiles and background or clutter features which mimic the characteristics of threat missiles. The development of such systems requires a body of data characterizing both the targets and the competing background and clutter and a set of algorithms capable of sorting the features of all sources to provide a high probability of threat missile detection with a low false alarm rate under stressing clutter or battlefield conditions.

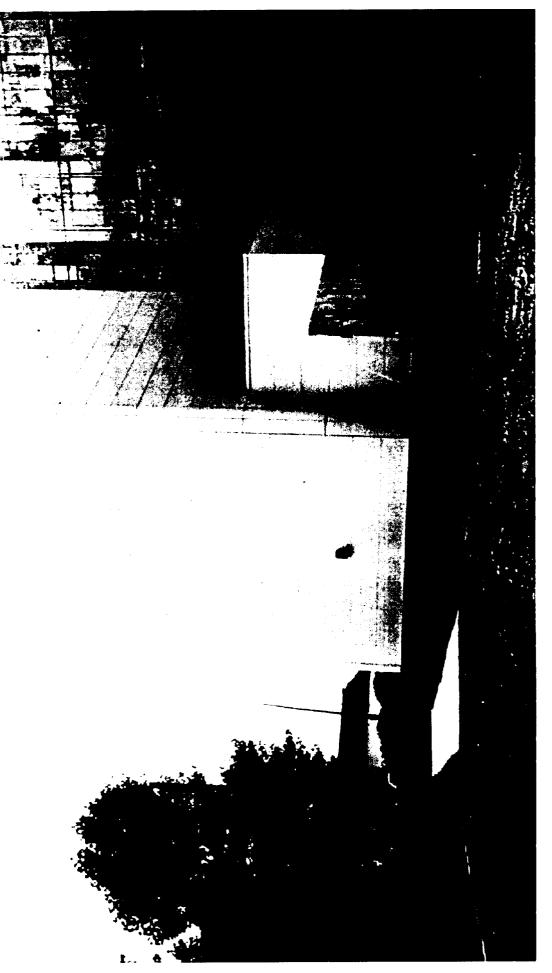

The capability of this facility for developing and demonstrating sensors and algorithms in spectral regions from the ultraviolet through the infrared spectral is unique within the Defense Department.

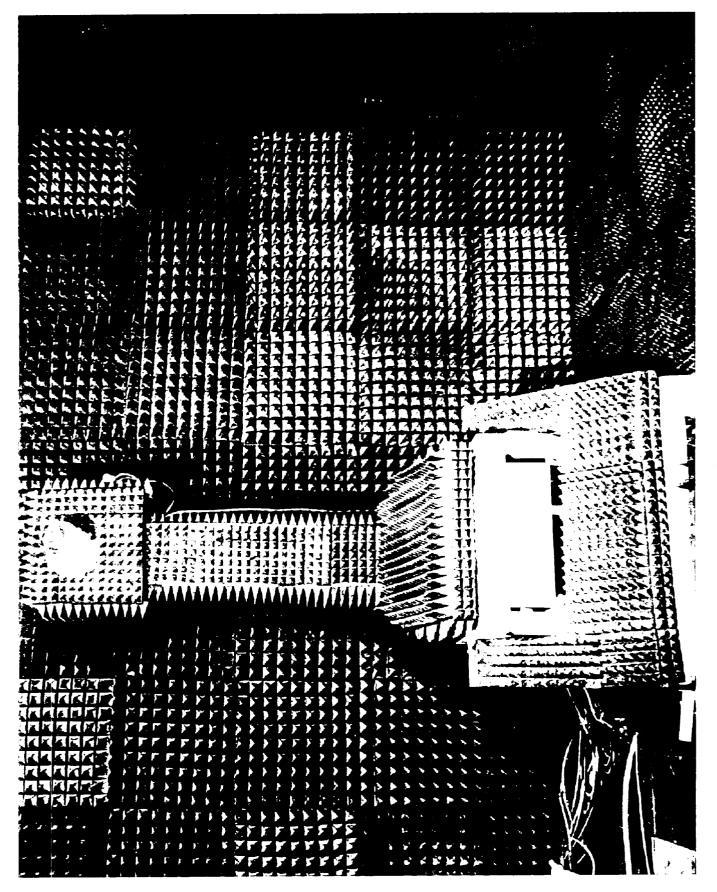
DIGITAL SIGNAL PROCESSING FACILITY

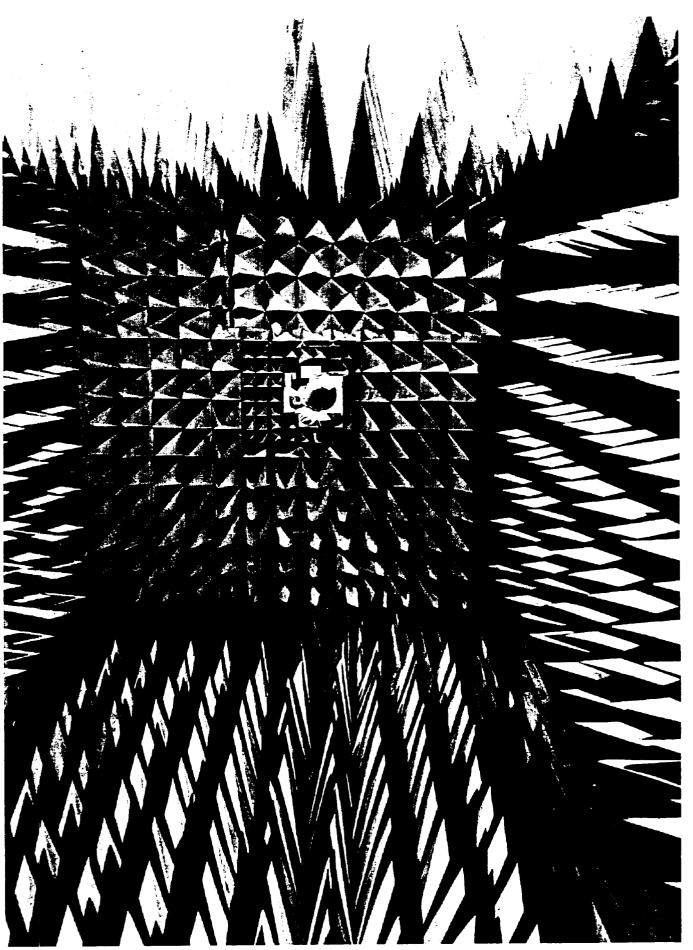
The signal processing facility provides a repository of visible, IR and Multispectral imagery and combines this database with processing tools needed for developing target detection algorithms. The existing database is updated and augmented with imagery from new sensors as it becomes available. The facility allows users to easily compile the necessary metrics for evaluating the images and to manipulate the images for extrapolation to other target/background scenarios. Current target detection algorithms are compared and emerging signal processing methods are tested and refined. Background modeling and sensor tradeoff studies are carried out against appropriate types of backgrounds and target data. The facility also designs and develops custom communications terminals, low-level protocols, and real-time data acquisition and processing systems that operate at speeds of gigabits/sec. This facility operates proof-of-concept adaptations of commercial high speed communications equipment for tactical use, and has demonstrated the importance of selecting international standards based products.

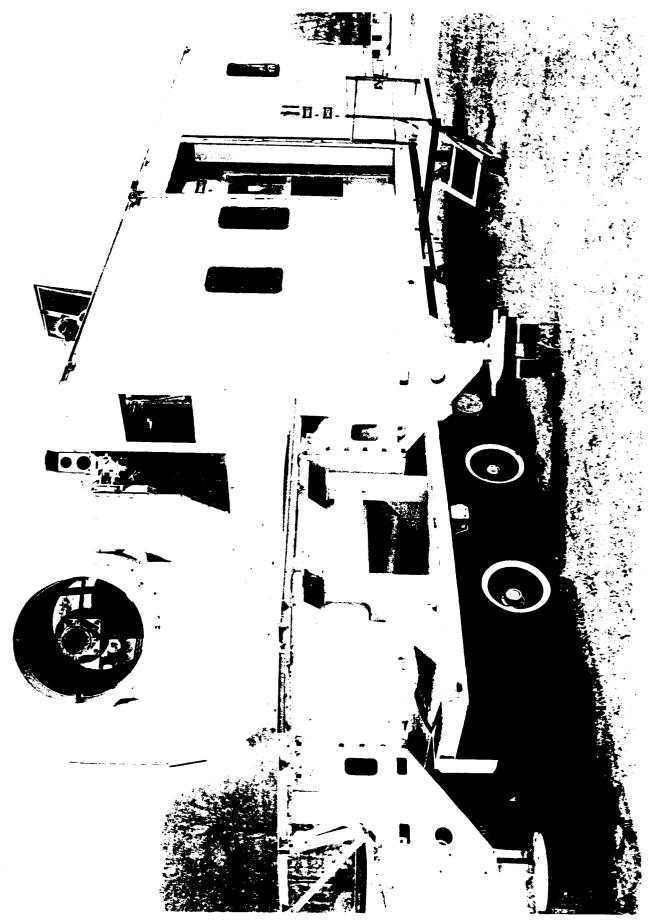
This facility has available a class of spatial, multispectral, and change detection algorithms, unique within the Defense Department, which are applied to actual electro-optic and infrared data from ground and airborne sensors for target discrimination.

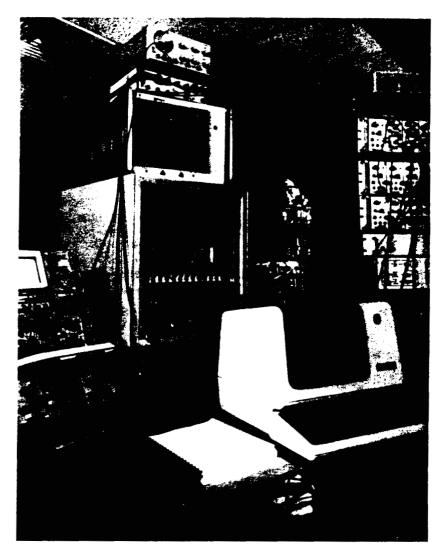

A-11R (17 Aug 94)


SEARCH RADAR ECM SIMULATOR

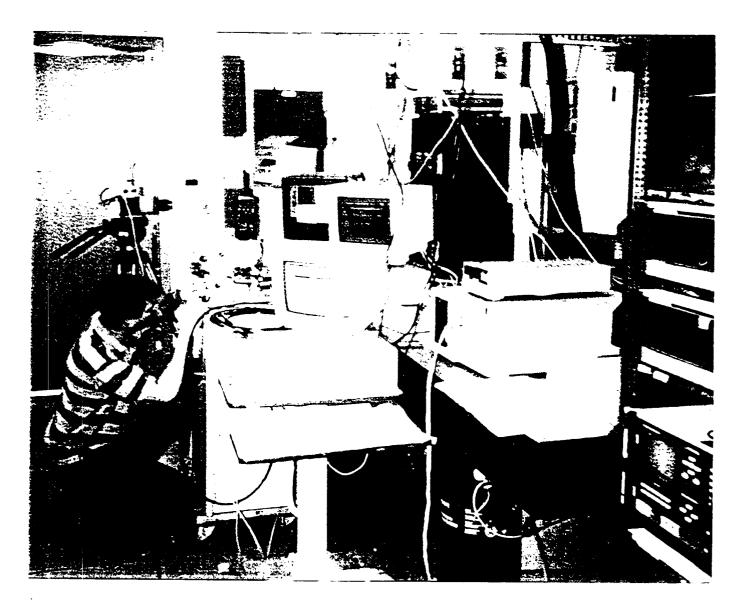

RADAR CROSS SECTION MEASUREMENT LABORATORY


COMPACT ANTENNA RANGE FACILITY


ISOLATION MEASUREMENT CHAMBER



MILLIMETER WAVE ANECHOIC CHAMBER



RF TECHNIQUES CHAMBER

FOCAL PLANE ARRAY EVALUATION FACILITY

DIGITAL SIGNAL PROCESSING FACILITY

3.5 Expansion Potential

			Space	Capacity (1	KSF)
Common Support Function	Facility or Equipment Description	Type of Space*	Current	Used	Excess
FIXED-WING AVIONICS	Office	Administrative	.719	.719	0
	Office	Technical	15	15	0
	Laboratory	Technical	40.13	40.13	0
	Storage	Storage	1.844	1.844	0

3.5.1 <u>Laboratory Facilities</u>. Facilities records as of the fourth–quarter FY93 are used in providing the following data (in ksq. ft.) for the fixed-wing avionics CSF.

* Administrative, Technical, Storage, Utility

Space is centrally managed at NRL. When space becomes excess in a Division the excess space is returned to the NRL space coordinator for reallocation. Hence, in general, the NRL performing Divisions do not have excess space and thus the above tables show no excess space for the avionics CSF.

3.5.1.1 In general, the facilities/labs that support the fixed-wing avionics CSF are readily capable R of accepting a modest increase of work as long as the type of work that would be gained is of the same type that is currently being performed. In this case, it is assumed that the physical size of the space, and the equipment and instrumentation available, is of the proper variety for the work. Although much greater increases in the capacity might be obtained, it is expected that this would entail major modifications to existing facilities or the construction of expanded facilities. Significant changes in the nature of the work might also entail a similar degree of modification.

3.5.1.2 Based on current available space, and using the consideration of similarity of work discussed above, it is believed that the NRL fixed-wing avionics CSF could be increased by as R much as 43 workyears per year before major modifications to facilities would be required. This increased workyear effort would have to be largely accommodated by new hires.

3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II). None

3.5.2 <u>Land Use</u>. NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

The building space (class 2 property) currently available for growth opportunities at the NRL DC R site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note, however, that NRL facilities can be reconfigured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the A-12R (17 Aug 94)

R

R

maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent. This would involve minimal reconfiguration.

3.5.3 <u>Utilities.</u> Utility service capacities are depicted in the following table:

	n Base pacity	Off Base Long Term Contract	Normal Steady State Load	Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD)	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	190,000 lb,	/Hr N/A	116,000 lb/Hr	125,000 lbr/Hr

1 The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.

2 Production plant owned by PWC, Washington.

R

4

A-12a R (17 Aug 94)

BRAC-95 DATA Call #12

Technical Center Site	NRL-DC/SSC/MRY
Facility/Equipment Nomenclature or	
Title	Organometallic VPE

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. Primary Purpose: The equipment is used to fabricate thin epitaxial layers of semiconductors used in fundamental and applied studies of new materials and device concepts.

2. Portability: The equipment is not portable.

3. Replacement value of facility/equipment: \$2.4 M

4. Gross weight and cube: 6000 lbs, 1500 cubic feet.

5. Special utility support: Back up diesel generator, toxic gas scrubbers, integrated safety system, DI water, hydrogen, nitrogen, and air lines, water chiller, acid neutralization tank, and one pass HVAC system.

6. Special budget requirements: Operating budget for facility (solvents, gases, safety consumables, etc..), hydride and organometallic sources for research.

7. Environmental control requirements: Integrated safety system for handling highly toxic gases and hydrogen, real-time toxic gas scrubbers, hoods and fans for exhaust, stainless steel ductwork throughout, one pass HVAC.

8. Relocation: Extremely difficult, would require special site preparation, dismantling of building walls to move equipment, manufacturer support for moving equipment, purchasing of similar equipment that could not be moved because it is delicate and/or to sensitive. No other facilities government wide that could be utilized. Commercial capabilities are extremely limited and not amenable to facility/section mission.

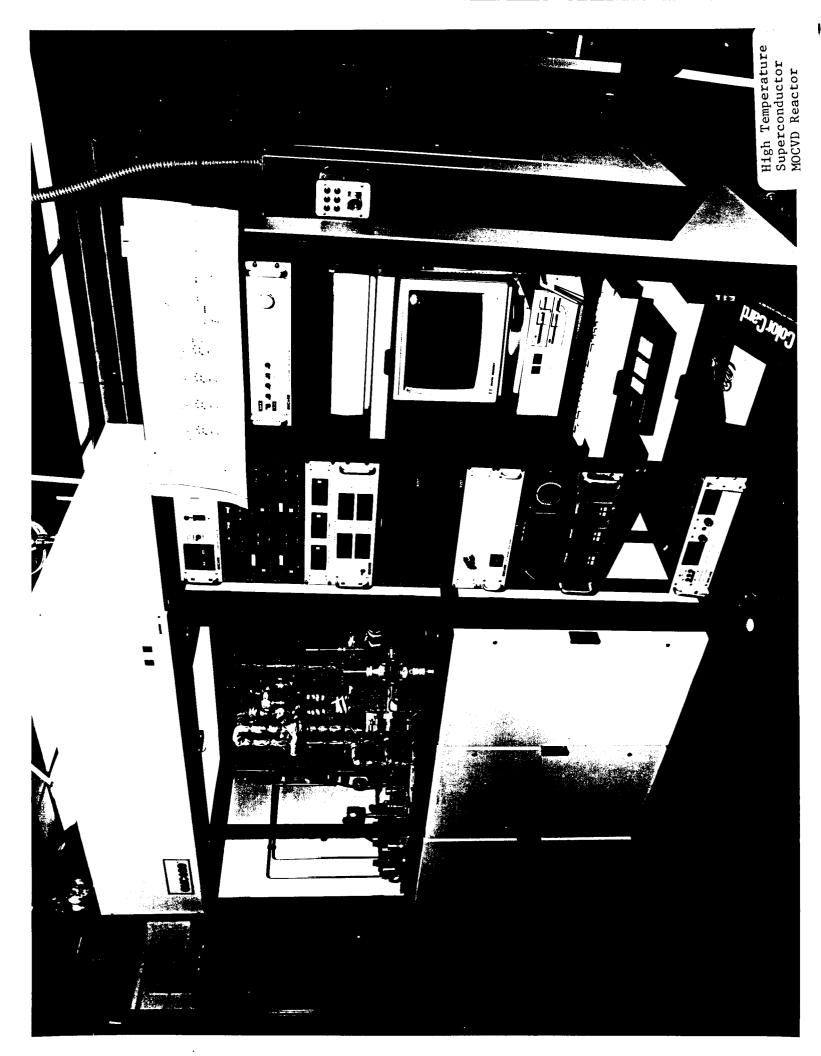
9. Indicate how and when equipment was transported or constructed: One piece of equipment was transported to site after removal of wall in 2/92. Other equipment constructed on-site from existing and purchased parts during 1992 and 1993.

10. Functional support areas: Electronic Devices 11.4 and Materials 11.5

11. Historical utilization for last 5 FY. Used every work day since facility and equipment came on line, mid 1992 for the first piece of equipment.

12. Projected utilization: Same as historical, every work day.

13. Number of personnel: Five.


14. Number to maintain: 5

15. Facility Photos Attached.

16. This facility is not shared with any other function. Others may have this capability but this particular facility is unique because of special safety capabilities needed to use the equipment. Therefore, it is unique to DoD.

Technical Center Site	NRL/ESTD
Facility/Equipment	Optical Characterization
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. The Optical Characterization Facility utilizes visible and infrared spectroscopy to provide information on materials properties and processing. Instrumentation includes Ar ion and Ti sapphire lasers, and Fourier Transform Infrared Spectroscopy. The latter is coupled with a processing chamber and ultra high vacuum chamber to provide information on film deposition, etching, and other chemical processing.

2. Equipment is movable.

3. Replacement Value: \$670K

4. Gross Weight: 1500 lbs. Gross Cubage: 6000 cu. ft.

5. Facility requires gaseous nitrogen, liquid helium, and cooling water.

6. None.

7. None.

8. This facility could be replicated or relocated. Delicate optical components require special care for transportation. Other facilities concerned with materials characterization and processing require timely feedback from this facility.

9. Equipment for this facility was acquired over the time period 1984 to 1994.

10. The Optical Characterization Facility supports areas 11.4 Electronics Devices and 11.5 Materials and Processes.

11. Average utilization from FY89 to FY93 was 5 WY per year.

12. Utilization is expected to be 5 WY per year for FY94 - FY97.

13. 3 people are required to operate the equipment.

14. No dedicated maintenance personnel are required.

15. Facility Photo Attached.

1

Technical Center Site	NRL/ESTD
Facility/Equipment	Electronic Properties
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Electronic Properties Facility provides detailed measurements of: a.) electron and hole transport in semiconductor materials and structures using variable-temperature resistivity and Hall effect measurements; b.) bulk and interface trap densities and energies using DLTS; and c.) surface structure, morphology, and electronic density of surface states of semiconductors, metals, insulators, and heterostructures using ambient STM/AFM and low-temperature STM. These measurements are crucial to the evaluation of materials grown and processed in other facilities. In addition, the ambient STM/AFM is crucial for the exploratory research in new approaches to nanometer-scale and atomic-scale lithography, processing, and device fabrication.

2. Equipment is movable.

3. Replacement value: \$725K

4. Gross Weight: 6500 lbs. Gross Cubage: 7600 cu. ft.

5. Facility requires good vibration isolation, including fully-floating isolation table, gaseous and liquid nitrogen, 2000 W power, high pressure nitrogen gas line, gaseous and liquid helium, 208 Volt 40 Amp electrical service. Plans exist to add gaseous hydrogen, chlorine, and fluorine (including vent and detection systems) to the low-temperature system for advanced surface chemistry studies.

6. None.

7. Temperature and humidity stability required to maintain acceptable operating environment for electronics. Vibration-free environment required for STM/AFM.

8. This equipment is unique. Few STM/AFMs have a 130 μ m scan field (essential for nanolithography) and virtually no other STMs have low-temperature capability combined with an 8 μ m scan field. A move away from NRL would severely impact on Navy electronics R&D because the diagnostic equipment in the electronics properties laboratory is essential for assessment of materials quality and for basic research on electronic materials. In addition, the ambient STM/AFM is essential to the nanometer and atomic scale lithographic research removal of this equipment would bring this research to a complete halt.

9. Equipment was acquired from 1985 - present.

10. The Electronic Properties Facility supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.

11. Average utilization from FY89 to FY93 was 6 WY per year.

-6-3

- 12. Utilization is expected to be 6 WY per year for FY94 FY97.
- 13. 6 people are required to operate the equipment.
- 14. No dedicated maintenance personnel are required.
- 15. Facility Photo Attached.
- 16. This facility is not shared with any other function.

Technical Center Site	NRL/ESTD
Facility/Equipment	Microwave Technology
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

1. **Purpose of facility/equipment.**

Code 6850 operates and maintains an extensive state-of-the-art facility for design, fabrication in a research environment, measurement, and modelling of microwave devices and circuits incorporating novel materials and/or topologies to address the needs of next generation electronic warfare, radar, and communication systems.

Design is performed with a networked cluster of four workstations including three stateof-the-art RISC machines (two Hewlett Packard 735s and one Hewlett Packard 710) running microwave CAD software which performs linear and non-linear analysis, electromagnetic simulation, and mask layout.

Research fabrication facilities include all capabilities required for thin film deposition and patterning including mask aligners, deposition systems for metals and dielectrics (thermal and electron beam evaporators as well as sputtering systems), and wet and dry etching processes. Photolithography is performed in a 400 square foot clean room facility. Some special lithography and processes are performed by the Nanoelectronics Processing Facility as needed. Code 6850 is also equipped with facilities for mounting, assembling and packaging microwave circuits and subsystems which are capable of being qualified for space applications

Test and measurement is performed using Code 6850's extensive array of microwave and general purpose test equipment. Major facilities are two laboratories centered around two vector network analyzers. There are facilities for spectrum analysis, noise figure characterization and scalar network analysis. Two closed-cycle refrigeration systems have been specially configured to facilitate the measurement of microwave cryoelectronics, including superconductors and quantum transport devices, over a temperature range from 10K to 400K. On wafer microwave characterization of novel microwave devices and circuits is also part of this facility. In addition, there is extensive general purpose microwave instrumentation to address custom and special purpose test and measurement needs.

Modelling is also performed using the computational tools discussed in the design section as well as custom codes. Special attention is presently focused on novel devices including narrow-band-gap InAs channel HEMTs for very high frequency performance and wide-band-gap GaN FETs for high-temperature operation.

2. **Portability/movability.**

All of these facilities are, in principle, movable. However, movement of any of the thin film deposition systems is difficult due to their size and weight and the requirement that these systems must remain under high-vacuum conditions during movement. The clean room facility could be dismantled and moved but it would probably be cheaper to build a new one than try to move and reassemble the existing facility whose integrity may be permanently compromised by such handling. Much of the equipment needs extensive utility connections beyond simple electrical hook-up.

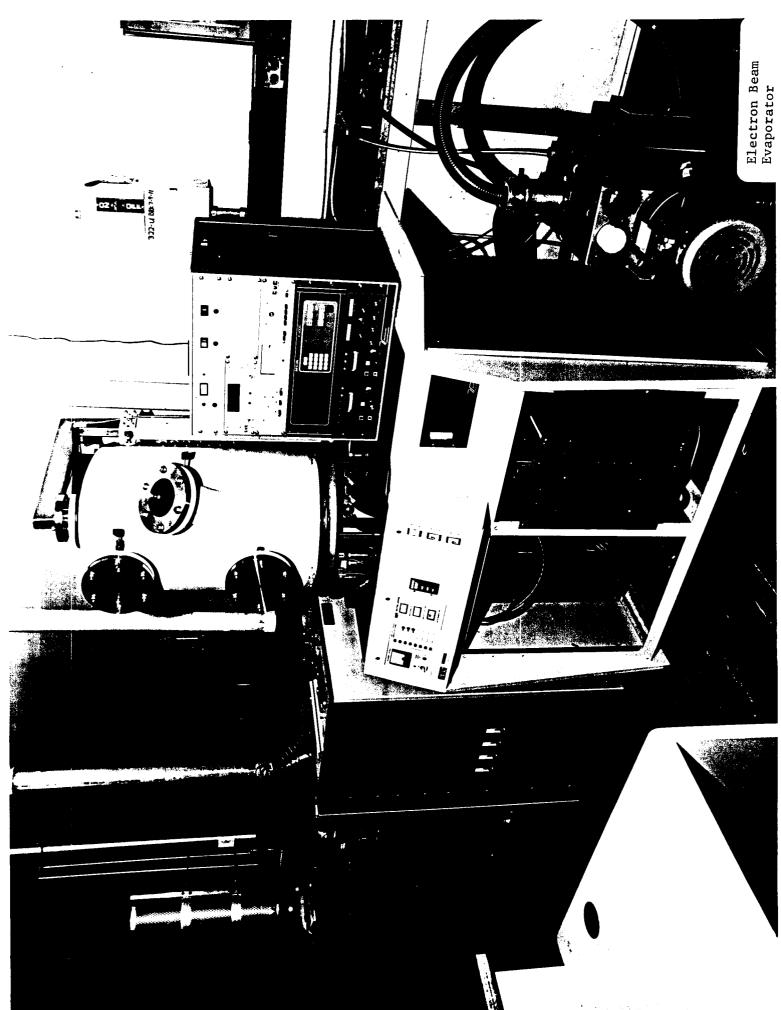
3. **Replacement value.**

The cost to replace the three Hewlett Packard workstations is approximately \$75,000. The microwave design software represents a total investment of another \$75,000. The thin film deposition and dry processing facilities represent a replacement cost estimated at \$400,000. The clean room itself would cost \$400,000 to duplicate. The remaining processing and lithography equipment would require another \$100,000 to duplicate. Equipment such as wafer scribers, thermo-compression and ultrasonic bonders, soldering and welding stations used in the assembly, mounting and packaging of microwave circuits would exceed \$75,000. Each of the Hewlett Packard 8510C network analyzers and supporting accessories cost \$160,000 (total: \$320,000). Other microwave (sources, scalar analyzer, spectrum analysis, noise figure measurement, etc.) and general purpose test and measurement electronics in support of this effort represent an investment of over \$250,000. Each of the closed cycle cryogenic refrigeration systems along with their control electronics represents an investment of approximately \$30,000 (total: \$60,000). On-wafer probing facilities would cost approximately \$75,000 to reproduce. Total cost to duplicate existing equipment would be approximately \$2,000,000. Not included in this estimate is the cost of providing standard laboratory equipment such as benches, cabinets, special utilities, etc.

4. Gross weight and cubic volume.

Excluding offices for personnel and support facilities, this facility would require 4,000 square feet of floor space, 48,000 cubic feet of space, and the total weight is roughly estimated at 7,500 lbs.

5. **Special utilities.**


In addition to standard single phase 110V and three phase 220V electrical utilities, the following are required: ethernet LAN; LocalTalk LAN; filtered, dry compressed air; vacuum; dry nitrogen gas (standard compressed tank is insufficient), ultra-pure deionized water, filtered water, 400 square foot clean room, fume hoods (one of which must be in the clean room), toxic gas storage, acid storage, solvent storage.

6. **Special budget requirements.**

A 400 square foot HEPA filtered clean room is required. Laboratories must be equipped with lab benches, storage cabinets, etc.

7. Environmental control requirements.

A clean room facility is required for proper photolithographic processes which requires that all air entering the room be extensively filtered. Photolithographic and chemical processes require highly stable temperature and humidity control. Standard temperature

Technical Center Site	NRL/ESTD
Facility/Equipment	
Nomenclature or Title	EPICENTER Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

The EPICENTER: A facility for the molecular beam epitaxial growth and characterization of compound semiconductor materials and structures

(This facility is a shared initiative of the Electronics Science and Technology, Materials Science and Technology and Chemistry Division.)

Electronic Materials Branch

1. The facility is dedicated to the growth and physical characterization of both III-V and II-VI semiconductors and selected metal films. In addition to two growth chambers, the facility allows in vacuo transfer from either growth chamber to two analysis chambers; one for scanning tunneling microscopy and the other for angle-resolved electron spectroscopy. While both growth chambers are of commercial design (Riber Model 32P), the analysis chambers are of custom design and commercial manufacture. The focus of effort in III-V film and superlattice growth is on the GaSb, AlSb, and InAs semiconductor family. The focus of effort in II-VI film and superlattice growth is on the diluted magnetic semiconductors MnxZn1-xSe and FexZn1-xSe.

2. The facility is moveable (Class 2). However, moving is complicated by the requirement that the various components be maintained under high vacuum conditions during movement. Since a variety of potentially toxic substances have been used inside the chambers, special safety precautions may be mandatory for shipment.

3. The replacement value is \$3M. (Exclusive of site preparation.)

4. Gross weight: 15,000 lbs. Gross cubage: 2,000 cubic feet.

5. Utility support: Filtered water delivery and drain system. Liquid nitrogen supply and exhaust system. (Either through bulk storage container or on-site liquifaction with peak demand capability of at least 10 gallon/hour. Insulated delivery lines from source to facility.) At least 120 kw of 3 phase, 225 volt electrical power for bake-out shrouds and growth chamber electronic systems. Vacuum exhaust system. Dry nitrogen purge gas. Ultra-pure deionized water for substrate processing. Fume hood with HEPA filters to minimize surface contamination during substrate processing. Pressurized (70 psi) nitrogen or clean, dry air to operate pneumatic valves.

6. Special budget requirements: The facility must be installed on a stable, low vibration floor in order to operate the scanning tunneling microscope which is vibration-sensitive.

Non-ferrous construction is mandatory adjacent to the magnetic-field sensitive electron spectrometer.

7. Environmental requirements: Temperature stability and sufficiently low relative humidity in order to provide an acceptable operating environment for electronic systems.

8. There is no facility within the U.S. government that is comparable to the Epicenter. In the private sector, a number of universities have facilities of equivalent size. However, each is configured differently from the Epicenter. The configuration of the Epicenter is unique in its combination of surface science techniques with semiconductor film growth capabilities. This emphasis has developed in recognition of the increased importance of interface/surface properties for the successful production of superior quality semiconductor heterostructures for optical and electronic devices of interest to the Navy. This facility could be relocated at another site but the down-time probably would be one year. If the facility were lost, device-oriented programs at NRL would have to find alternate sources of well-characterized semiconductor heterostructures. These device programs are quite diverse, ranging from infrared detectors to digital electronic applications.

9. Facility Construction: The major components of the facility were transported to the site by air/truck freight. However, a number of customized components, such as optical spectroscopy systems, were constructed on site.

10. Functional support areas: 11.4, Electronic devices and 11.5, Materials and processing.

11. Historical utilization average: The unit of measure is scientist work-year (WY). Since this is a new facility, the five year (FY89-93) average of 1.8WY is somewhat misleading: FY89, 0.5WY; FY90, 1.5WY; FY91, 2WY; FY92, 2WY; FY93, 3WY.

11A. Alternate measure of historical utilization average: The unit of measure is the individual semiconductor film, heterostructure or superlattice produced in the III-V and II-VI growth chambers. Since both growth chambers became fully operational (FY91), the facility has produced about 50 samples per month. Since routine maintenance consumes 2 months per year, 500 samples are produced per annum.

12. Projected utilization data out to FY1997 - Work Years (WY)

FY1994: 4WY FY1995: 6WY FY1996: 7WY FY1997: 7WY

13. Personnel to operate equipment in FY1994: 4 scientists (4WY).

14. Personnel to maintain the equipment in FY1994: All equipment is maintained by scientist-users.

15. Facility Photo Attached.

16. This facility is not shared with any other function. The equipment in this facility is unique since there is none other available in DoD or in the Federal government.

and humidity constraints appropriate for computers and electronic equipment must be met in the remainder of the facility. Facilities must be provided for the safe use and storage of toxic gases used in dry processing as well as for acids and solvents.

8. Impact of facility loss.

This facility is at the forefront of most of the promising new areas of microwave research including: the DARPA Ferrite Consortium, the SPAWAR High Temperature Superconductor Space Experiment, ONR funded efforts in; InAs and GaN devices, quantum transport devices, novel circuit topologies for narrow-band and other filter topologies, and a CRADA with Superconducting Core Technologies on ferroelectric/superconductor devices and circuits. Relocation of these facilities to another location would result in suspension of the activities performed in these facilities for a considerable length of time. Although certain equipment such as the network analyzers might be down for only a month or two assuming that the physical plant was fully ready to accept them, vacuum systems, cryogenic systems, and, in particular, the clean room photolithographic facility would take more than a year to become operational. It is estimated that to get the facility fully functional would require two years assuming that the present personnel were assigned the task and even longer if new personnel were assigned the task. In the meantime, progress on all of these programs which are critical to next generation electronic warfare, radar, and communication systems will be greatly slowed.

9. **Facility construction.**

The facility/equipment has been assembled over the past several years. All equipment in the facility was shipped via normal ground transportation. Assembly of the clean room facility requires a contractor specialized in that area.

10. Areas of functional support:

Electronic devices and electronic materials.

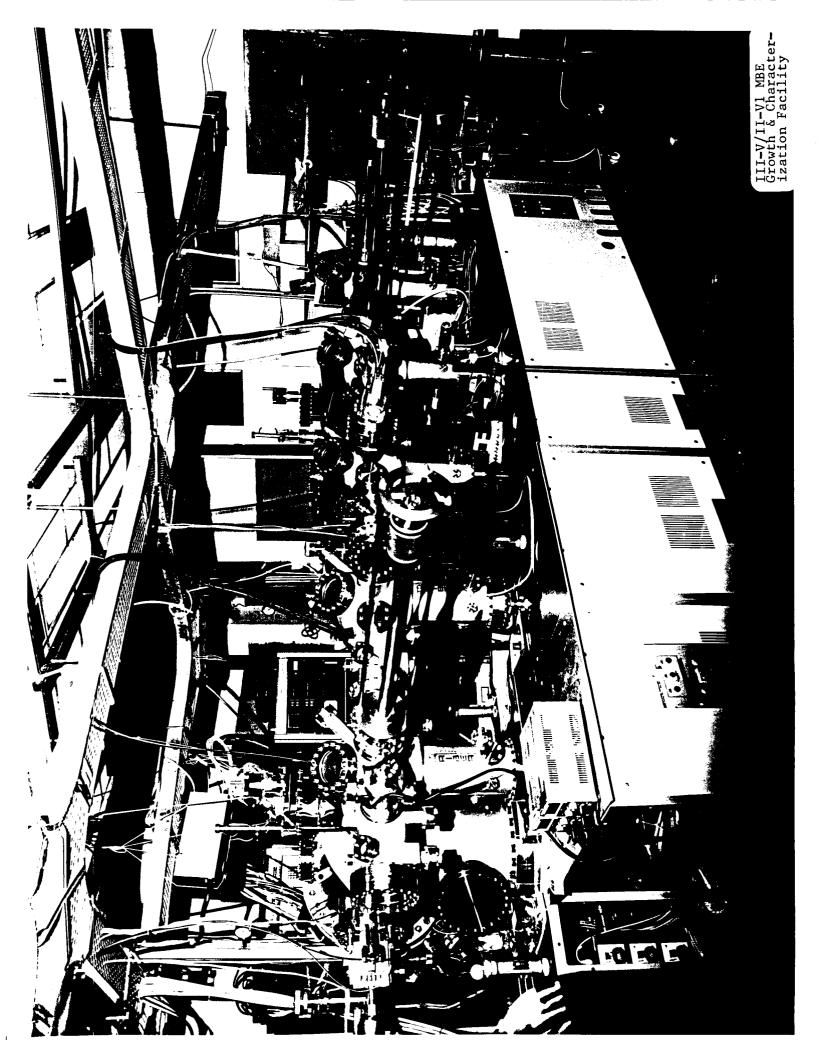
11. Historical use average.

Use is defined as the number of full-time-equivalent (FTE)/work years (WY) for personnel engaged in sponsor supported research using the facility. The level of utilization has increased steadily over the past five years from approximately 3.5 WY to 6 WY as the facility and its capabilities have been expanded.

12. **Projected use to FY 1997.**

The level of utilization is expected to increase through 1997 as the trend in sponsor interest moves more toward subsystem demonstration and delivery of functional, and in some cases, space qualified, hardware such as that delivered to the HTSSE I and HTSSE II programs. In addition it is expected that measurement and characterization of novel microwave devices, such as InAs channel HEMTs and low-temperature quantum-transport devices will significantly increase the demands placed on this facility.

13. **Personnel used to operate the equipment.**


The equipment is operated by the researchers and technicians of Code 6850 and involves approximately 6 work-years.

14. **Personnel used to maintain the equipment.**

With the exception of the Hewlett Packard vector network analyzers which are maintained by a service contract and building utilities maintained by NRL, the researchers and technicians of Code 6850 maintain the facility.

15. Photos.

Facility photographs attached.

Technical Center Site	NRL/ESTD
Facility/Equipment	Magnetic Resonance
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Magnetic Resonance Facility consists of 3 permanent magnet electron paramagnetic resonance (EPR) spectrometers and one superconducting magnet magnetic resonance spectrometer along with optical tables, lasers, optical monochrometers and detectors, variable temperature apparatus, and ancillary signal processing/control electronics. The spectrometers are used for conventional EPR, optically detected magnetic resonance (ODMR) and electron-nuclear double resonance (ENDOR). These diagnostic techniques are used to determine the effects of point defects on the electronic properties of semiconductors and are used integrally to provide analysis of materials quality for materials development and electronic device development.

- 2. The facility is moveable.
- 3. Replacement Value: \$704K
- 4. Gross Weight: 8500 lb. Cubic Feet: 9320.

5. Equipment requires chilled cooling water for magnets; enhanced pressure city water; 208 Volt, 60 Amp electrical service; liquid helium; liquid nitrogen; and high purity nitrogen gas from liquid boil off.

6. Magnets require some load-spreading but is currently accommodated on flooring rated at 100 lbs/sq. ft.

7. Vacuum pump exhaust lines, temperature control and humidity control are required to maintain alignment of optical equipment and for stability of electronics.

8. The facility could be replicated or relocated. However, much of the facility is unique within the DoD. Loss of the facility would have a significant impact on the Navy because the facility has been tailored to support bulk and epitaxial materials growth programs and electronic device research and development programs for Navy electronics systems. Part of the side of the building will need to be removed to remove large optical tables.

9. Some of the equipment was developed in-house using NRL machine shop but most was delivered to NRL by overland freight and installed by NRL personnel and by manufacturer technical personnel. Major purchases were made in 1979, 1985, 1987 and 1988.

10. The Magnetic Resonance Facility supports area 11.4, Electronic Devices and 11.5, Materials and Processes.

11. The average useage from FY89 - FY93 was 5 work years per year.

12. Expected usage (WY): FY94: 5; FY95: 5; FY96: 5; FY97: 5.

13. Number of people required to operate equipment: 4

14. Number of people required for maintenance: 0 (No dedicated technician. Service and repair performed by users as required.)

15. Facility Photo Attached.

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Optical Properties Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Optical Properties Laboratory performs interband-impurity, intra-impurity and vibrational spectroscopic measurements on materials used in current and emerging electronic technologies. The materials studied include thin films, superlattices and nanostructures produced by molecular beam epitaxy and organo-metalic vapor deposition, and bulk crystals. These materials are grown as part of electronic device research and development to provide diagnostics and to develop an understanding of basic physical properties of device materials. Specific spectroscopic techniques include pulsed and continuous wave photoluminescence, photoluminescence excitation, optical absorption and reflection, Raman scattering, and modulation spectroscopies. These measurements are performed in the spectral range from the mid infrared to the ultraviolet, at magnetic fields as high as 13 Tesla, and at temperatures between 1.5K and 400K.

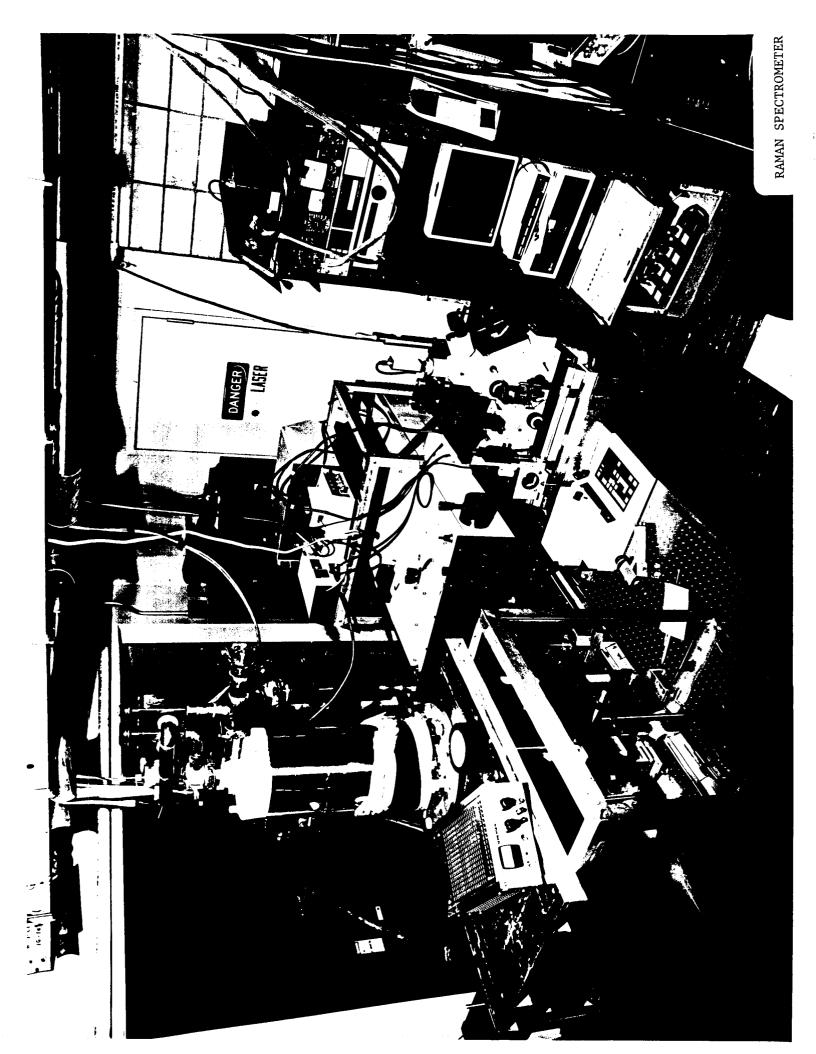
2. Equipment is moveable.

3. Replacement Value: \$843K

4. Gross weight: 13800 lbs. Gross Cubage: 8500 cu. ft.

5. Facility requires a high-pressure filtered water delivery system, high pressure nitrogen gas line, hydrogen and fluorine gas delivery (including vent and detection systems), 208 Volt 40 Amp electrical service.

6. None.


7. Temperature and humidity stability are required to maintain alignment of spectroscopic systems and to maintain an acceptable operating environment for electronics equipment.

8. The facility could be replicated or relocated. If this facility were lost to the Department of the Navy, the electronics materials and device development programs would be severely impacted. It is extremely important that all materials growth, diagnostics equipment and device fabrication facilities be colocated in order to provide timely feedback during growth and process development.

9. Equipment was shipped to NRL by overland freight and was installed by NRL personnel and by vendor technical personnel. The facility has been evolving at its present site since 1979. Various parts of the facility have been added over the years as modernization and capability expansion was required.

10. The Optical Properties Laboratory supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.

- 11. Average utilization from FY89 to FY93 was 4 Work Years (WY) per year
- 12. Utilization is expected to be 4 WY per year for FY94 FY97.
- 13. 4 people are required to operate the equipment.
- 14. No dedicated maintenance personnel are required.
- 15. Facility Photo Attached.
- 16. This facility is not shared with any other function.

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Crystal Growth Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The crystal growth facility grows crystals of semiconductor materials and crystalline layered structures of superconductor materials used in studies of new materials and new device concepts. Electronic device research often requires new materials or materials with electronic properties that are not commercially available. The mission of the crystal growth facility is to engage in the research necessary to study those electronic materials and devices. This research is multi-disciplinary and often involves solid state physicists and device engineers in addition to the crystal growth researchers of the facility.

2. The equipment is moveable as defined by paragraph 6, page 12 of this data call. For all practical purposes, however, much of the equipment in the crystal growth facility is fixed. In addition to being attached to plumbing for water cooling and attached to fume hoods for safety enclosure operation, the crystal growth furnaces are not capable of being moved without breaking fragile heating elements. Moving the furnaces might require replacement of the entire furnace because the heating elements become very brittle after they have been used.

3. Replacement value of the facility/equipment: \$2250K

4. Gross weight : 22000 lbs. Cube: 35000 cu. ft.

5. The facility requires fume hoods for the processing of hazardous materials, water cooling for the crystal growth furnaces, a nitrogen gas supply for the MOCVD reactor, hydrogen and oxygen gas supply for the glass shop, compressed air supply for valve operation in the MOCVD reactor, 208V and 240V electrical supply for the high temperature furnaces and 480V power supply for the RF generator used to heat the high pressure Czochralski furnace.

6. Special budget requirements for the facility/equipment: None.

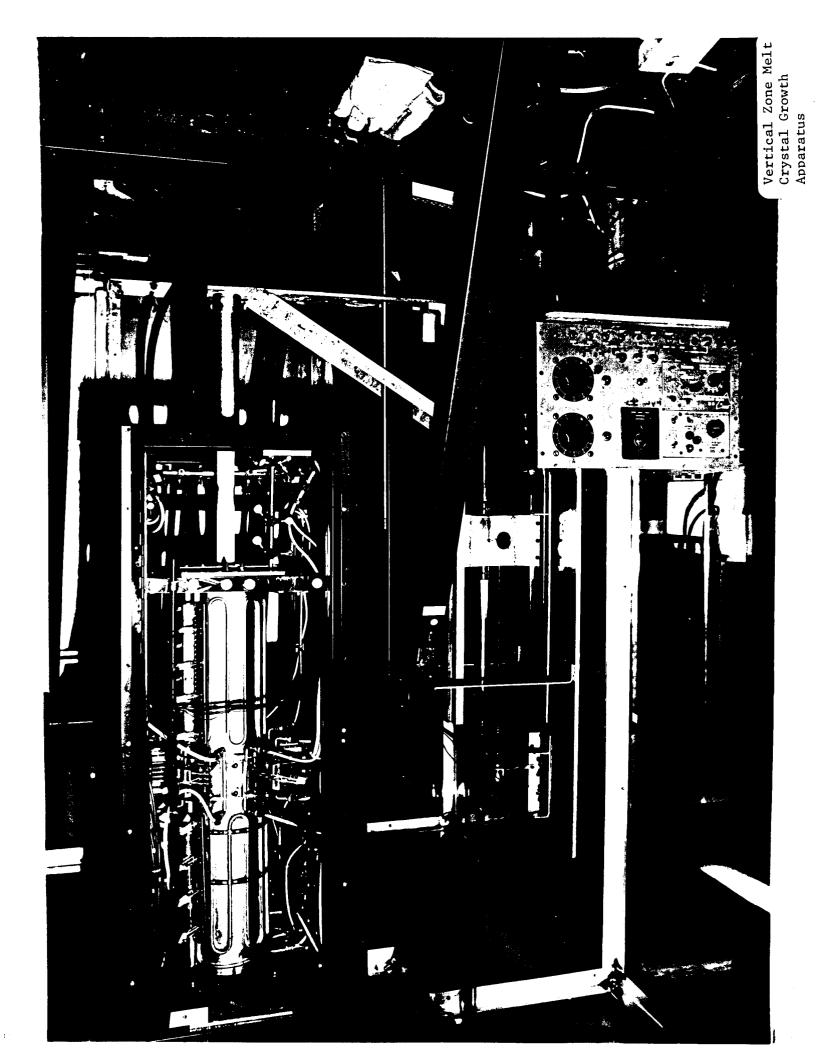
7. Environmental control requirements for the facility/equipment: None

8. Relocating the facility would likely involve replacement of many of the resistance heated crystal growth furnaces because of expected breakage of brittle heating elements. Replication of the facility would not be entirely possible because certain items such as the high pressure Czochralski crystal growth furnace (sized for research purposes) is no longer manufactured. Replacement of the high pressure furnace would mean that a production sized unit would be substituted for the research sized unit. Future research using the production sized unit would be much more expensive because of the larger quantities of new materials which would be required for the larger furnace.

Possible alternative crystal growth facilities at either government or commercial sites do not exist with the depth of capability that is present at NRL. Certain aspects of the capabilities could be obtained at various other facilities, but no other laboratory has the range of crystal growth/processing facilities that is located at NRL. Loss of the crystal growth facility would limit the ability of device engineers to obtain new materials or materials with desired properties for new device experimentation. The performance of electronic devices is often limited by the crystalline and chemical perfection of the materials from which the device is fabricated. Continued improvements in the quality of electronic materials is key to better device performance and new applications for the electronic materials. Enhanced electronic materials and enhanced electronics are responsible for providing force multipliers for the US.

9. The equipment of the crystal growth facility was assembled over the period from 1975 through the present. Moving the equipment when it was new did not present a problem. The heating elements become very brittle after they have been heated to high temperatures.

10. The crystal growth facility supports area 11.4 Electronic Devices and 11.5 Materials and Processes


11. Historical utilization average for the past five years (1989-1993): The facility has been used on a continual basis (4 work-years/year) over the past five years.

12. Projected utilization data out to 1997: The facility is expected to be used on a continual basis (4 work-years/year) through 1997.

13. Approximate number of personnel used to operate the facility equipment: 4

14. Approximate number of people to maintain the facility: 1

15. Facility Photo Attached.

Technical Center Site	NRL/ESTD
Facility/Equipment	Far Infrared Spectroscopy
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The far infrared laboratory is used for transient and steady state infrared spectroscopy covering the wavelength range from two microns up to two mm. Experiments are performed on electronic and optical materials used in near-term and far-term Navy electronics systems. This includes semiconductors, superconductors and glasses. Experiments are performed under applied magnetic fields up to 13 Tesla using a number of specialized far infrared lasers and interferometers.

2. The far infrared spectroscopy facility is moveable.

3. Replacement value: \$685K

4. Gross Weight: 13000 lbs. Cubic Feet: 2400

5. Vacuum exhaust system, filtered water delivery and drain systems, chemical fume hood, dry nitrogen purge gas line from liquid boil-off system.

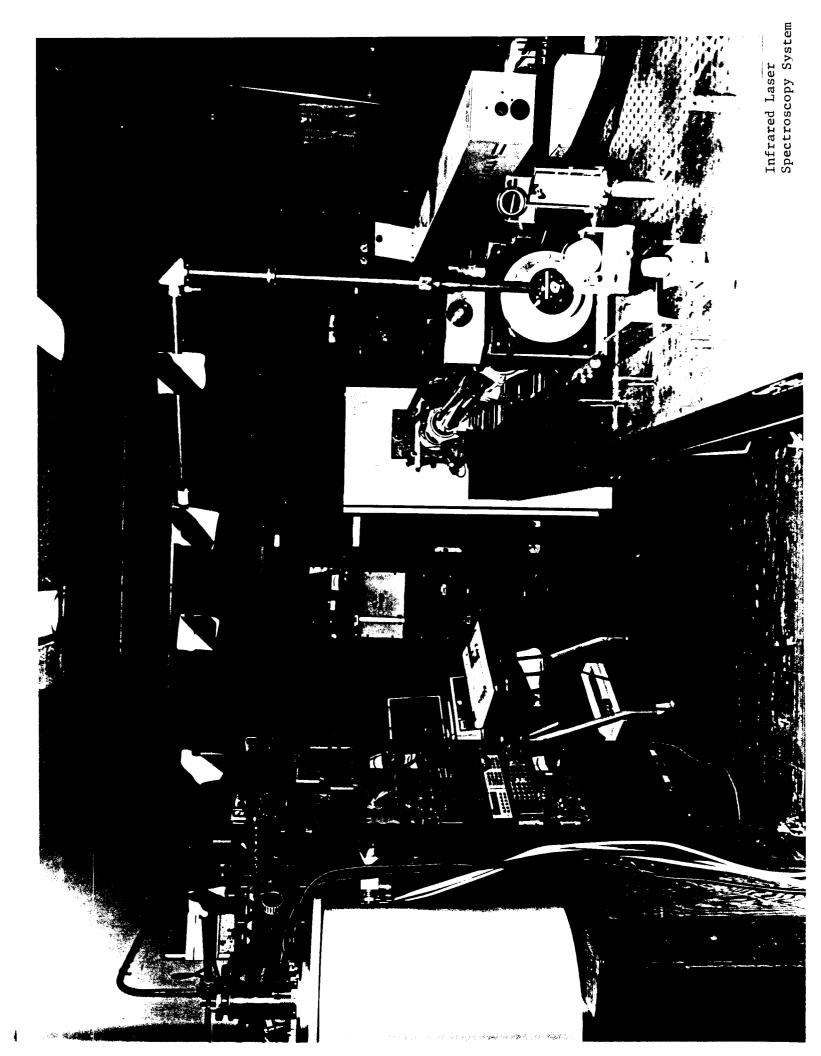
6. None

7. Environmental requirements: Temperature and humidity stability required to maintain alignment of optical systems and to maintain acceptable operating environment for electronics.

8. No government or commercial facility exists that has flexible capabilities afforded by this infrared facility. The facility could be replicated elsewhere but if the equipment were relocated, a part of the building would have to be removed to move large optical tables. Loss of this facility to the Navy would have a serious negative impact on the Navy's ability to develop advanced materials for electronics systems.

9. Delivered to NRL by overland freight, installed by NRL personnel and by factory representatives. Parts of spectrometer built by laboratory personnel. Part of building removed to install parts of the system. (1975 - present)

10. The far infrared spectroscopy facility supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.


11. Average useage over the past 5 fiscal years is 5 work years per year.

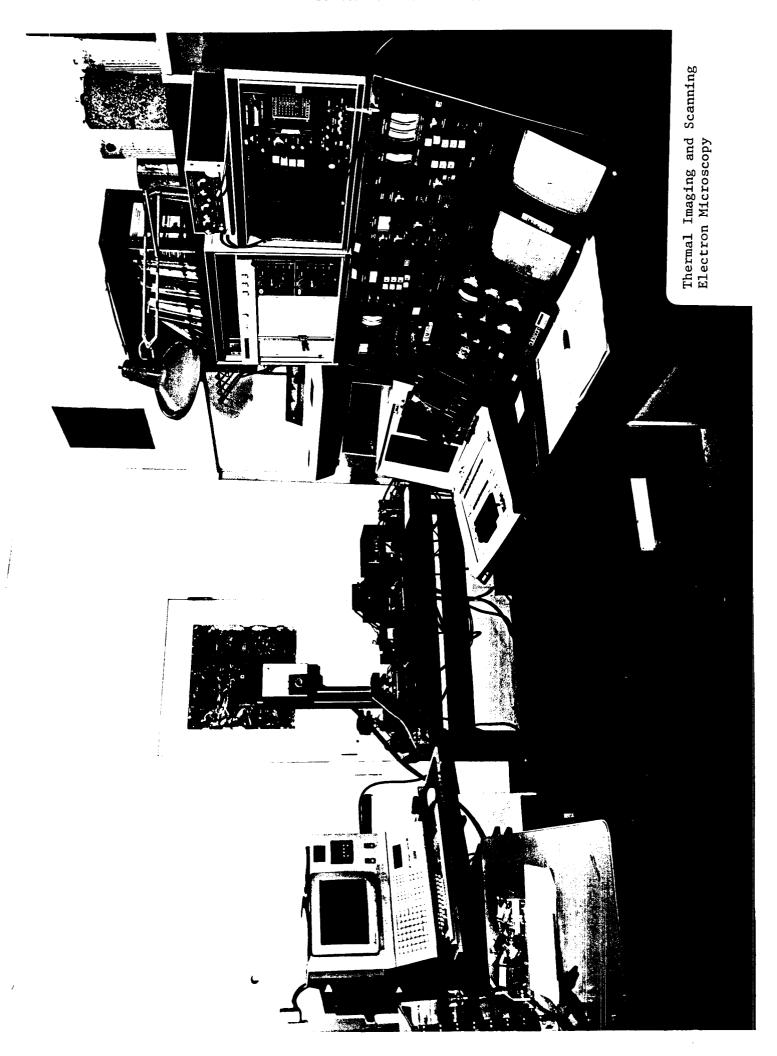
12. Projected utilization FY94 - FY95: 5 work years per year

13. Number of personnel used to operate the facility: 5

- 14. Number of personnel needed to maintain the equipment: 0 (no dedicated technician required.)
- 15. Facility Photo Attached.

.

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Reliability Facility


3.4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

- 1. Purpose of Facility/Equipment.
 - Code 6855 operates and maintains a Reliability and Failure Analysis Facility for the study of semiconductor devices. Operational life times are determined by a number of acceleration and stressing methods. After failure is induced, the physical failure mechanisms are determined by such methods as electrical characterization, optical microscopy, scanning electron microscopy, infrared microscopy, energy dispersive X-ray analysis, and various other X-ray techniques. Failure mechanisms are modeled by the Monte Carlo method and the results are correlated with the experimental results to gain a better understanding of the failure mechanisms and to improve the reliability of the devices.
- 2. The equipment is installed in laboratories and is not portable.
- 3. Replacement value. The cost to replace the reliability and failure analysis equipment is approximately \$1,800,000.
- 4. Gross weight and cubic volume. The gross weight of the reliability and failure analysis equipment is approximately 11,000 pounds. The total laboratory space required is about 4,500 cubic feet.
- 5. Special Utilities. None required.
- 6. Special budget requirements. None required.
- 7. Environmental control requirements. Standard temperature and humidity constraints appropriate for electronic equipment must be met.
- 8. Impact of facility loss. Certain types of equipment, such as the RF reliability accelerated life testing stations were built at NRL and could only be rebuilt at another location at a large expense. This combination of equipment and the staff trained to use it is unique in the military laboratories and its loss would leave the Navy without the ability to assess the

reliability of electronic components and to conduct research in the area of reliability and failure physics.

- 9. Facility construction. Most of the present equipment has been purchased or built over a period of time starting in 1985.
- 10. Areas of functional support: Electronic devices.
- Historical use average.
 Over the period of 1989-1993 the facilities have required utilization of approximately 6 work-years per year.
- 12. Projected use to FY 1997. Out to FY1997 the projected use is expected to be 6 work-years per year.
- 13. Personnel used to operate the equipment. Six professionals are required to operate the equipment.
- 14. Personnel used to maintain the equipment. Four professionals are required to maintain the equipment.
- 15. Facility photo attached.
- 16. This facility is not shared with any other function. This facility is unique to DoD and the Federal Government, because it allows RF life testing at microwave frequencies. No other government owned equipment does this.

i

Ι.

ţ

A.2: AIR VEHICLES: ROTARY-WING AVIONICS (note: this is a new section; 17 Aug 94)

3.0 <u>Mission</u>. The rotary-wing avionics work at NRL involves R&D in EO/IR systems. This research is conducted in the Optical Sciences Division. The research in this warfare area spans a broad spectrum of research into the science, technology, and system concepts that will enable the Navy to best meet its military requirements. The rotary-wing avionics activities at NRL draw upon the spectrum of S&T areas within NRL, the Navy, the Department of Defense, and our international allies to develop new systems and to devise technologies that meet emerging needs of the Navy, and that better enable it to fulfill its designated role in DoD.

The research in optical sciences includes a wide range of efforts which include the application of EO/IR sensors, application of optical devices to signal processing, and IR signature studies, Specifically the rotary-wing avionics program includes work in:

- IR missile seeker evaluation
- Modeling, detection and tracking algorithm development
- Missile threat warning receiver (both IR and UV) design and development

The work in this area is complemented by work in other NRL divisions such as Materials, Chemistry, Electronic Technology, etc. The NRL optical sciences program is supported by a group of nearly 140 scientists, engineers, and technical support personnel who each specialize in one or more of the science and technology areas which comprise the optical sciences effort. Of this complement, less than 8% of the personnel support the rotary-wing avionics portion of the work. The optical sciences program is supported by a number of modern research tools and facilities, a portion of which are used in the rotary-wing avionics program. In general, these specialized facilities are Navy specific in design and focus on unique Navy applications.

3.1 Location

3.1.1 <u>Geographic/Climatological Features</u>. No special geographic/climatological features are relevant to this CSF.

3.1.2 Licenses & Permits. None.

3.1.3 Environmental Constraints. None.

3.1.4 Special Support Infrastructure. None

3.1.5 Proximity to Mission-Related Organizations. None

3.2 Personnel

3.2.1 <u>Total Personnel.</u> Only Government and on-site system engineering technical assistance (SETA) personnel support the rotary-wing avionics CSF. There are no military or FFRDC personnel supporting the program. The count below gives the number of persons, not the number of work years.

A-12b R (17 Aug 94)

	Number of Personnel						
Types of personnel	Gover	nment	On-Site FFRDC	On-Site SETA			
	Civilian	Military					
Technical	8			4			
Management (Supv)	2						
Other							

3.2.2 <u>Education</u>. The number of government personnel actively engaged in S&T, engineering development and in-service engineering activities by highest degree and type of position is provided in the following table.

	Number of Government Personnel by Type of Position					
Type of Degree/ Diploma	Technical	Management (Supv)	Other			
High School or Less						
Associates						
Bachelor	1					
Masters	1					
Doctorate (include Med/Vet/etc.)	6	2				

3.2.3 <u>Experience</u>. The experience level of government personnel is provided in the following table.

	Years of Government and/or Military Service						
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years		
Technical		3	1	1	3		
Manageme nt (Supv)			1		1		
Total		3	2	1	4		

3.2.4 Accomplishments During FY91-93.

3.2.4.1 The number and listing of patent awards in the rotary-wing avionics area for FY91-93 are:

CSF	Disclosure s	Awarded	Patent Titles (List)
ROTARY-WING AVIONICS	0	1	List Follows
Total	0	1	

A-12c R (17 Aug 94)

	Number of Personnel						
Types of personnel	Gover	nment	On-Site FFRDC	On-Site SETA			
	Civilian	Military					
Technical	8			4			
Management (Supv)	2						
Qther							

3.2.2 <u>Education</u>. The number of government personnel actively engaged in S&T, engineering development and in-service engineering activities by highest degree and type of position is provided in the following table.

	Number of Government Personnel by Type of Position					
Type of	Technical	Management	Other			
Degree/		(Supv)				
Diploma						
High School or						
Less						
Associates						
Bachelor						
Masters						
Doctorate (include	6	2				
Med/Vet/etc.)						

3.2.3 <u>Experience</u>. The experience level of government personnel is provided in the following table.

	Years of Government and/or Military Service						
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years		
Technical		3	1	1	3		
Manageme nt (Supv)			1		1		
Total		3	2	1	4		

3.2.4 Accomplishments During FY91-93.

3.2.4.1 The number and listing of patent awards in the rotary-wing avionics area for FY91-93 are:

CSF	Disclosure s	Awarded	Patent Titles (List)
ROTARY-WING AVIONICS	0	1	List Follows
Total	0	1	

A-12c R (17 Aug 94)

ROTARY-WING AVIONICS PATENTS AWARDED:

1. "Noninvasive Pressure Measuring Device and Method", 5,115,668

ROTARY-WING AVIONICS PATENT DISCLOSURES: None

3.2.4.2 The number of papers published in peer reviewed journals in FY91-93 is provided in the table below.

CSF	Number Published	Paper Titles (List)
ROTARY-WING AVIONICS	None	

R

R

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 <u>Work Year and Lifecycle</u> The number of actual workyears executed for the rotary-wing avionics CSF in FY93 is provided by the table below for each of the following: government civilian; military; on-site FFRDCs; and on-site SETAs.

"LAB"		Fiscal Year	1993 Actual	
	Civilian	Military	FFRDC	SETA
Science & Technology	0.15			1
Engineering Development	0.62			1
In-Service Engineering	8.16			0.7

ROTARY-WING AVIONICS PATENTS AWARDED: 1. "Noninvasive Pressure Measuring Device and Method", 5,115,668

ROTARY-WING AVIONICS PATENT DISCLOSURES: None

3.2.4.2 The number of papers published in peer reviewed journals in FY91-93 is provided in the table below.

CSF	Number Published	Paper Titles (List)
ROTARY-WING AVIONICS	2	List Follows
TOTAL	2	

AVIONICS PUBLICATIONS:

1. "Design and Performance of a Loral Laser Warning Receiver",* Proc. IRIS IRCM, 347, 1, 1992.

2. "Laboratory and Field Evaluation of a Loral Laser Warning Receiver",* Proc. IRIS IRCM, Apr 1993.

* Peer-Reviewed Conference Proceedings

3.3 <u>Workload</u>

3.3.1 FY93 Workload

3.3.1.1 <u>Work Year and Lifecycle</u> The number of actual workyears executed for the rotary-wing avionics CSF in FY93 is provided by the table below for each of the following: government civilian; military; on-site FFRDCs; and on-site SETAs.

"LAB"	Fiscal Year 1993 Actual				
	Civilian	Military	FFRDC	SETA	
Science & Technology	0.15			1	
Engineering Development	0.62			1	
In-Service Engineering	8.16			0.7	

A-12d R (17 Aug 94)

3.3.1.2 <u>Engineering Development By ACAT</u>. For each rotary-wing avionics CSF programs conducted under engineering development, the following table provides a summary of the efforts and identifies the specific engineering development programs that are supported.

Engineerin g Developme nt	Name or Number	Workyears (FY93 Actual)	FY93 Funds Received (Obligation Authority)	Narrative
ACAT IC	None			
ACAT ID	None			
ACAT II	None			
ACAT Ш/IV	None			
Other	1	1.62	1,067	Tactical Aircraft CM

3.3.1.3 <u>In-Service Engineering</u>. The following table provides for each in-service engineering program in the rotary-wing avionics CSF the FY93 workyears, funding, and weapon system supported.

Common Support Functions	In-Service Engineering Efforts (List)			Weapon System(s) Supported
		Funds Received (Obligation Authority)	Workyears	
ROTARY- WING AVIONICS	Helicopter IRCM Laser RF/D CM IR Lamp Tester IR Source	628.3 3685.4 131.7 650	0.81 4.22 0.47 3.36	AN/AAR-47 AN/AAR-47 AN/AAR-47 AN/AAR-47

3.3.2 Projected Funding

3.3.2.1 <u>Direct Funding</u>. The NRL rotary-wing avionics program receives no direct funding, consequently all entries in the table below are zero.

CSF	FY94	FY95	FY96	FY97
ROTARY-WING AVIONICS	0	0	0	0

3.3.2.2 <u>Other Obligation Authority</u>. Reimbursable and direct-cite funding (other obligation authority expected) from FY94 to FY97 is provided below.

CSF	FY94	FY95	FY96	FY97
Reimbursable	2,803	3,200	3,300	· 3,400
Direct-Cite	2,195	2,300	2,500	2,700

A-12e R (17 Aug 94)

3.4 Facilities and Equipment

3.4.1 <u>Major Equipment and Facilities</u>. The major facilities necessary to support the rotary-wing avionics CSF are listed in the following table, and are described more fully in the text that follows the table. Where the facilities are shared with other functions, the percentage of total time used by the rotary-wing avionics function is shown in parentheses following each table entry. The remaining percentages are used to support Navy specific activities.

	Unique to				
Common Support Function	Major Facility or Equipment Description	DoD	Federal Gov't	U. S.	Replacement Cost (\$K)
ROTARY- WING AVIONICS	High Precision Optical Tracker* (50%)				1,200
	Seeker Simulation Laboratory (100%)	Х	X	Х	3,000
	Missile Warning System Facility* (50%)	X			2,000

*The remaining percentage of these facilities support the fixed-wing avionics CSF.

HIGH PRECISION OPTICAL TRACKER

This facility measures optical and infrared (IR) signatures of targets in motion and the propagation of light through the atmosphere. It consists of two 40-ft long, 7-ft wide electronics trailers. One has a 32" diameter optical tracker mounted at the back. Built originally to do absolute transmittance measurements between ships, the tracker now has the capability of tracking noncooperative targets for signature studies. With a 6-µrad tracking accuracy capability, tracking choices are trackball, video image tracking by contrast or correlation, or computer drive. Newtonian optics direct gathered radiation to either IR imaging sensors or to an IR scanning spectrometer. The second trailer provides the calibration capability to the facility. A 36" mirror with four blackbody sources with associated computer programs and control provide a known value of radiation arriving at the tracker telescope aperture. To complete the calibration suite is equipment to measure and record meteorological parameters such as air temperature, dew point and visibility.

SEEKER SIMULATION LABORATORY

The function of this laboratory is to assess optical countermeasure vulnerability of infrared seekers and trackers, to determine the effectiveness of the operation of infrared jammers, and to develop advanced jamming techniques. This laboratory consists of two computer-controlled rate tables where systems are mounted; four lasers acousto-optically modulated to simulate target and jammer; two computer-controlled arbitrary waveform generators; four computer-controlled function generators; a 32-channel Ampex tape recorder; and an extensive variety of electronic systems are interfaced to a desktop computer that controls the experiment and data acquisition. The combination of the diagnostic electronics and the four lasers integrated into a single operating system is a unique capability unavailable anywhere else in the US.

A-12f R (17 Aug 94)

MISSILE WARNING SYSTEM FACILITY

This facility is used for the development and demonstration of sensors and algorithms for missile warning systems and for data collection in support of sensor and algorithm development. A missile warning sensor for aircraft requires a system capable of detecting the threat missile at sufficient range to implement effective countermeasures while rejecting non-threat missiles and background or clutter features which mimic the characteristics of threat missiles. The development of such systems requires a body of data characterizing both the targets and the competing background and clutter and a set of algorithms capable of sorting the features of all sources to provide a high probability of threat missile detection with a low false alarm rate under stressing clutter or battlefield conditions. A facility for supporting such development must be capable of acquiring the necessary data and processing it rapidly to assess the effectiveness of algorithms. The capability of this facility for developing and demonstrating sensors and algorithms in spectral regions from the ultraviolet through the infrared spectral is unique within the Defense Department.

3.5 Expansion Potential

3.5.1 <u>Laboratory Facilities</u>. Facilities records as of the fourth-quarter FY93 are used in providing the following data (in ksq ft) for the rotary-wing avionics CSF.

			Space Capacity (KSF)		KSF)
Common Support Function	Facility or Equipment Description	Type of Space*	Current	Used	Excess
AVIONIC S	Office	Administrative	0.360	0.360	0
	Laboratory Storage	Technical Storage	6.90 .072	6.90 .072	0 0

* Administrative, Technical, Storage, Utility

Space is centrally managed at NRL. When space becomes excess in a Division the excess space is returned to the NRL space coordinator for reallocation. Hence, in general, the NRL performing Divisions do not have excess space and thus the above tables show no excess space for the rotary-wing avionics CSF.

3.5.1.1 In general, the facilities/labs that support the rotary-wing CSF are readily capable of accepting a modest increase of work as long as the type of work that would be gained is of the same type that is currently being performed. In this case, it is assumed that the physical size of the space, and the equipment and instrumentation available is of the proper variety for the work. Although much greater increases in the capacity may be obtained, it is expected that this would entail major modifications to existing facilities or the construction of expanded facilities. Significant changes in the nature of the work might also entail a similar degree of modification.

3.5.1.2 Based on currently available space, and using the consideration of similar work discussed above, it is believed that the NRL rotary-wing avionics CSF could be increased by as much as 5 workyears per year before major modifications to facilities would be required. This increased workyear effort would have to be accommodated largely by new hires.

3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II). None.

A-12g R (17 Aug 94)

MISSILE WARNING SYSTEM FACILITY

This facility is used for the development and demonstration of sensors and algorithms for missile warning systems and for data collection in support of sensor and algorithm development. A missile warning sensor for aircraft requires a system capable of detecting the threat missile at sufficient range to implement effective countermeasures while rejecting non-threat missiles and background or clutter features which mimic the characteristics of threat missiles. The development of such systems requires a body of data characterizing both the targets and the competing background and clutter and a set of algorithms capable of sorting the features of all sources to provide a high probability of threat missile detection with a low false alarm rate under stressing clutter or battlefield conditions. A facility for supporting such development must be capable of acquiring the necessary data and processing it rapidly to assess the effectiveness of algorithms. The capability of this facility for developing and demonstrating sensors and algorithms in spectral regions from the ultraviole through the infrared spectral is unique within the Defense Department.

3.5 Expansion Potential

3.5.1 <u>Laboratory Facilities</u>. Facilities records as of the fourth-quarter FY93 are used in providing the following data (in ksq ft) for the rotary-wing avionics CSF.

			Space Capacity (KSF)		
Common Support Function	Equipment	Type of Space*	Current	Used	Excess
AVIONIC S	Office	Administrative	0.360	0.360	0
	Laboratory Storage	Technical Storage	6.90 .072	6.90 .072	0 0

* Administrative, Technical, Storage, Utility

Space is centrally managed at NRL. When space becomes excess in a Division the excess space is returned to the NRL space coordinator for reallocation. Hence, in general, the NRL performing Divisions do not have excess space and thus the above tables show no excess space for the rotary-wing avionics CSF.

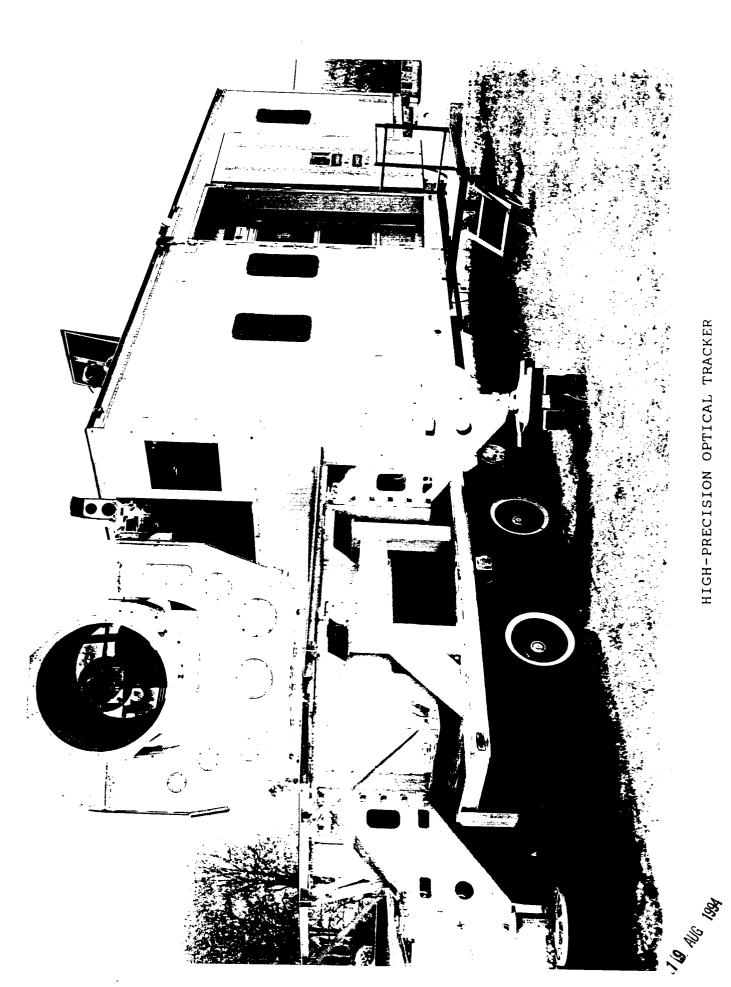
3.5.1.1 In general, the facilities/labs that support the rotary-wing CSF are readily capable of accepting a modest increase of work as long as the type of work that would be gained is of the same type that is currently being performed. In this case, it is assumed that the physical size of the space, and the equipment and instrumentation available is of the proper variety for the work. Although much greater increases in the capacity may be obtained, it is expected that this would entail major modifications to existing facilities or the construction of expanded facilities. Significant changes in the nature of the work might also entail a similar degree of modification.

3.5.1.2 Based on currently available space, and using the consideration of similar work discussed above, it is believed that the NRL rotary-wing avionics CSF could be increased by as much as 5 workyears per year before major modifications to facilities would be required. This increased workyear effort would have to be accommodated largely by new hires.

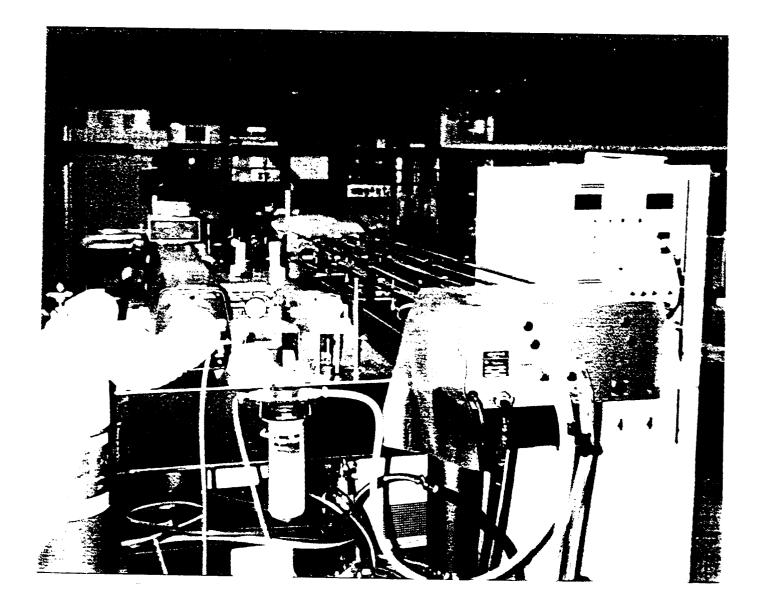
3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II). None.

A-12g R (17 Aug 94)

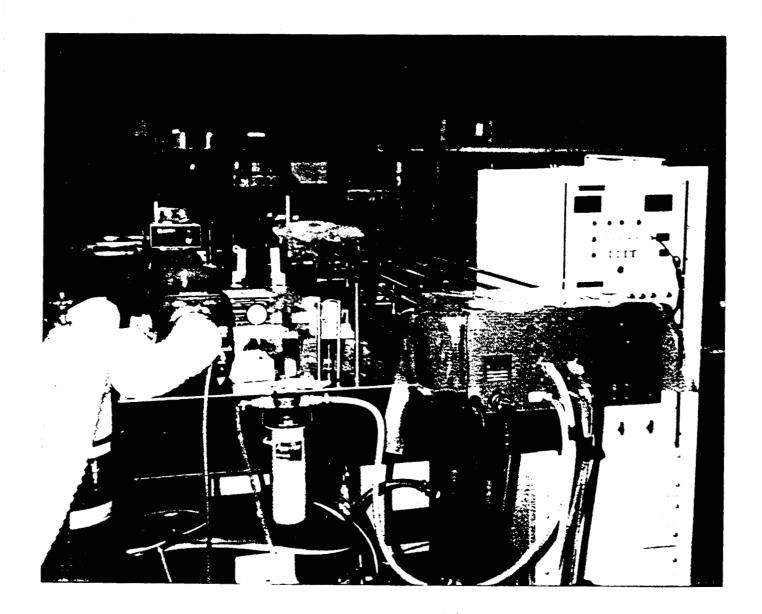
3.5.2 Land Use. NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

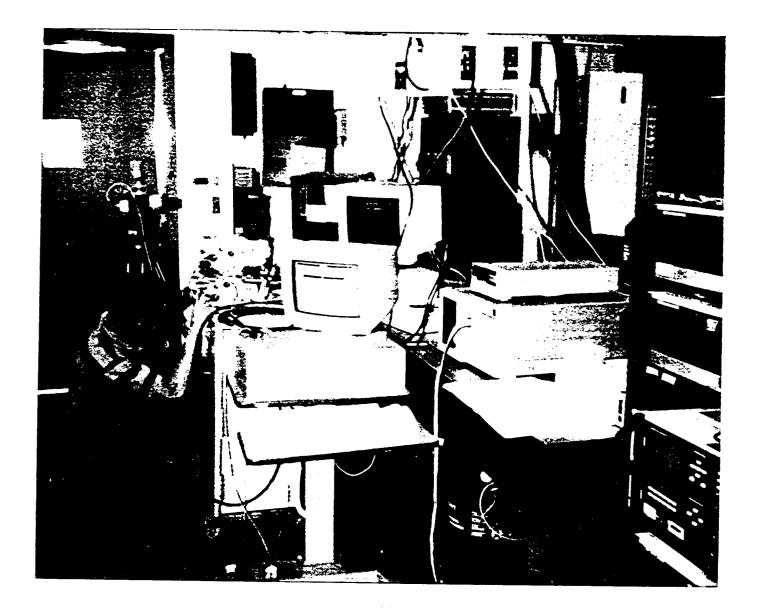

The building space, (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note, however, that NRL facilities can be re-configured, e.g. demolished and rebuilt, altered, and fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent. This would involve minimal reconfiguration.

	On Base <u>Capacity</u>	Off Base Long <u>Term Contract</u>	Normal Steady State Load	Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD)	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr


3.5.3 <u>Utilities.</u> Utility service capacities are depicted in the following table:

¹ The availability of natural gas is controlled by the Washington Gas Light Company. It can be relied on as a primary fuel.


² Production plant owned by the PWC, Washington.BRAC-95 CERTIFICATION


HIGH-PRECISION OPTICAL TRACKER

SEEKER SINULAIION TREDENI DI

SEEKER SIMULATION LABORATORY

MISSILE WARNING SISTEM FACILITY

EPLACED IN ITS ENTIRETY BY AIRVEHICLES/FIXED WING AVIONES SECTION of 19 ALG 94 AD AIRVEHICO

RETARY WINE AVIONICS SECTION \$ 19 AUG 94

A: AIR VEHICLES: AVIONICS

3.0 Mission. The avionics work at NRL includes efforts in EW systems, EO/IR systems, and Cooperative Aircraft Identification (CAI). This research is conducted in three NRL divisions: the Tactical EW Division, the Optical Sciences Division, and the Radar Division. The research in these three warfare areas span a broad spectrum of research into the science, technologies, and system concepts that will enable the Navy to best meet its military requirements. The avionic activities at NRL draw upon the full spectrum of S&T areas within NRL, the Navy, the Department of Defense, and our international allies to develop new systems and to devise technologies that meet emerging needs of the Navy, and that better enable it to fulfill its designated role in DoD.

The EW research includes a wide range of effort addressing EW needs for both Naval ships and aircraft and for their missions in the area of electronic support measures and countermeasures, as well as in critical supporting technologies for electronic warfare. Although principally focused on EW research for ships, as part of the full spectrum Corporate Laboratory for the Navy, the NRL EW program includes a significant fraction that focuses on the needs unique to carrier aviation, and on other aircraft platforms that support the overall Navy mission. The NRL EW program is executed by a group of nearly 300 scientists, engineers, and technical support personnel who each specialize in one or more of the science and technology areas that are critical to EW for the Navy. In general, each of these personnel performs research that supports both ship and aircraft needs within their individual areas of expertise as the needs arise. The EW program is supported by an extensive set of modern research tools and facilities which are highly specialized to EW technology research needs, and are used to support both the larger ships related portion of the research program as well as the smaller part devoted to avionics for EW. In general, these specialized facilities are Navy specific in design and focus on the S&T needs for EW in support of the unique needs of the Navy.

The research in optical science includes a wide range of effort which include the application of EO/IR sensors to ships, aircraft, and undersea surveillance; application of optical devices to signal processing, delay lines, fiber-optic gyros, strain sensors, fiber-optic hydrophones, fiber-optic magnetic sensors, imaging systems, and basic research in optical materials, optical propagation studies, IR signature studies, and laser research. Specifically the avionics program includes work in;

- IR focal plane design
- IR missile seeker evaluation
- Surveillance and reconnaissance camera development
- Modelling, detection and tracking algorithm development
- Missile threat warning receiver (both IR and UV) design and development
- In-house radiation hardened fiber fabrication
- Ultra high bandwidth fiber delay lines for EW decoys
- File networking for avionic data communications
- Smart structure development using embedded fiber sensors

The work in this area is complemented by work in other NRL divisions such as Materials, Chemistry, Electronics, etc. The NRL optical sciences program is supported by a group of nearly 140 scientists, engineers, and technical support personnel who each specialize in one or more of the science and technology areas which comprise the optical sciences effort. Of this complement less than 20% of the personnel support the avionics portion of the work. The optical sciences program is supported by a number of modern research tools and facilities, a portion of which are used in the avionics program. In general, these specialized facilities are Navy specific in design and focus on unique Navy applications.

NRL has been the acknowledged technical leader among the four Services in the field of Cooperative Aircraft Identification (CAI), formerly called Identification Friend or Foe (IFF). Its work in this area affects all four Services as well as the NATO allies. In terms of work years and funding, it is a small part of the total effort in the Radar division, but its importance is far greater than the dollar amount of funding indicates.

3.1 Location

3.1.1 <u>Geographic/Climatological Features.</u> The Chesapeake Bay Detachment (CBD) of the NRL provides a geographically unique facility (East Coast location) that is particularly well suited for research needs in support of Naval warfare areas. The site, on a cliff overlooking the Bay, provides a nine mile overwater path to the NRL site on Tilghman Island. The approximately 100 foot cliff height closely represents the height of ship sensors above the ocean, and the path to Tilghman Island approaches the surface horizon for these sensors. This geometry is exactly that seen in attacks on US ships by enemy missiles, and in attacks on enemy ships by low flying US aircraft and sea skimming missiles. Such a geometry must be achieved if successful experiments are to be conducted in support of the NRL warfare systems research program.

3.1.2 Licenses & Permits. Ordnance handling, transportation, and storage at CBD.

3.1.3 <u>Environmental Constraints</u>. None known other than those associated with the handling of explosives at the CBD site.

3.1.4 Special Support Infrastructure None

3.1.5. <u>Proximity to Mission-Related organizations</u>. The two principal organizations on which the avionics research is most dependent upon are the Naval Air Warfare Center (NAWC) facilities at Patuxent River (PAX), MD and at the Naval Surface Warfare Center facilities at Wallops Island, VA. These facilities support the NRL EW effort by providing test ranges and radars at Wallops Island and a large aircraft test anechoic chamber at Patuxent River which is unique to the Navy.

Common Support Functions	Name	Type of Organization	Distance	Workyears Performed by Your Activity	Workyears Funded by Your Activity
AVIONICS	PAX	TEST CENTER	60 MI	7.0	0.5
AVIONICS	WALLOPS	TEST RANGE	150 MI	1.0	0.5

3.2 Personnel

3.2.1 <u>Total Personnel.</u> Only government and on-site system engineering technical assistance (SETA) personnel support the avionics CSF. There are no military or FFRDC personnel supporting the program. The count below gives the number of persons, not the number of work years.

	Number of Personnel						
Types of Personnel	Government		On-Site FFRDC	On-Site SETA			
	Civilian	Military					
Technical	65	0	0	37			
Management (Supv)	12	0	0	0			
Other	0	0	0	0			

3.2.2 <u>Education</u>. The number of government personnel actively engaged in S&T, engineering development and in-service engineering activities by highest degree and type of position is provided in the following table (note that one Certified Professional Engineer is included in the Bachelor category).

	Number of Government Personnel by Type of Position							
Type of Degree/ Diploma	Technical	Management (Supv)	Other					
High School or Less	6	0	0					
Associates	1	0	0					
Bachelor	23	4	0					
Masters	16	0	0					
Doctorate (include Med/Vet/etc.)	19	8	0					

3.2.3 <u>Experience</u>. The experience level of government personnel is provided in the following table.

	Years of Government and/or Military Service							
Type of Position	Less than 3 years	3–10 years	11-15 years	16–20 years	More than 20 years			
Technical	4	25	11	2	23			
Management (Supv)	0	0	3		8			
Total	4	25	14	3	31			

3.2.4 Accomplishments During FY91-93.

3.2.4.1 The number and listing of patent awards in the avionics area for FY91–93 are:

CSF	Disclosures	Awarded	Patent Titles (List)
AVIONICS	6	3	List Follows
Total	6	3	

Note that this list does not include those classified patents which have been assigned but not published or awarded due to classification.

AVIONICS PATENTS AWARDED:

- 1. Noninvasive Pressure Measuring Device and Method, #5,115,668
- 2. Interferometer With Two Phase Conjugate Mirrors, #5,120,133
- 3. Room Temperature Flashpumped 2.09 Micron Solid State Laser, #5,088,103

AVIONIOS PATENT DISCLOSURES:

- 1. Apparatus for Two Dimensional Images, #73,939
- 2. Combined Range Delay, #75,638
- 3. CW Mode-Docked 2 Micron Tm: YAG Laser, #73,829
- 4. Intracavity Purpped Tm:Ho 2.01 Micron Coupled Cavity Laser, #74,075
- 5. Subpicosecond Pulse Operation of a 2 Micron Tm:YAG Laser using Additive Pulse Modelocking, #74,203
- 6. Reduced Signal Friend Identification, #74,336

3.2.4.2 The number of papers published in peer reviewed journals in the years FY91-93 is provided in the table below. It should be noted that many of the NRL avionics research results are classified and cannot be published in the usual peer reviewed journals. Only the Journal of Defense Research (recently defunct) sponsored by DoD was available as a classified peer reviewed journal. Also many avionics research results are published in the form of classified DoD documents.

CSF	Number Published	Paper Titles (List)
AVIONICS	27	List Follows

AVIONICS PUBLICATIONS:

- 1. "A Toolset for Navigation in Virtual Environments", * Proceedings of the ACM Symposium on User Interface Software & Technology, Ndv. 1993, pp. 157–165.
- 2. "Hands-off Interactions with Menus in Virtual Spaces", * Proceedings of the 7th Annual Workshop on Space Operations Applications & Research, Feb. 1994.
- 3. "Ship Wake Exploitation for Cruise Missile Guidance", Journal of Defense Research, Nov. 1991, Vol. 21, No. 1, pp.1–34.
- 4. "Over-the-Horizon Radar ECM", Journal of Defense Research, Sep. 1992, Vol. 21, No. 4, pp.921-986.
- 5. "Tactical Proforma Exploitation", Journal of Defense Research, June 1992, Vol. 21, No. 3, pp.715–739. 6. "Transmission Line Amplifier", IEEE Transactions on Electron Devices, Sept. 1992, Vol. 39,
- No. 9, pp.2165-2171.
- 7. "Diode Pumped Amplifier/Laser using Leaky-Wave Fiber Coupling: An Evaluation", IEEE J. Quantum Mechanics, Apr. 1992, Vol. 28, No. 4.
- 8. "Image Speckle Contrast Reduction from Integrative Synthetic Aperture Imaging", Applied Optics, Jan. 1992, Vol. 31, No. 1.
- 9. "Effects on Nonredundance on a Synthetic Aperture Imaging System", Journal of the Optical Society of America, 1993.
- 10. "Design and Performance of a Loral Laser Warning Receiver", * Proceedings of IRIS IRCM 1992.
- 11. "Laser Ranging Countermeasure Program Acceptance Test",* Proceedings of IRIS IRCM, 1992.
- 12. "Short Wavelength Imaging Laser Radar using a Digicon Detector", SPIE Optical Engineering, Nov. 1992, Vol. 31, No. 11.
- 13. "Infrared Focal Plane Array Technology", Proceedings IEEE, Jan 1991, Vol. 79, No. 1.
- 14. "Even Length Median Filters in Optimal Signal Processing", Elect. Letters, June 1992, Vol. 28. No. 13.
- 15. "Intracavity-pumped 2.09 Micron Ho: YAG Laser", Optics Letters, May 1992, Vol. 17.

No. 10.

- Adaptive Nonuniformity Correction for Staring IRFPA Camera",* Proceedings IRIS 16. Detectors, Aug. 1993.
- 17. "Composite Infrared Color Images and Related Processing", * Proceedings IRIS Targets, Jan. 1993.
- 18. "Effects of System Stability and Detector 1/f Noise on Staring IRFPA Performance",* Proceedings IRIS Sensors, Mar. 1993.
- 19. "Adaptive Retina-like Preprocessing for Imaging Detector Arrays",* Proceedings IEEE Conf. on Neural Networks, Mar. 1993.
- 20. "Performance of Real-time Adaptive Nonuniformity Correction Techniques for Arrays",* Proceedings IRIS Sensors, Mar. 1993.
- 21. "Effects of Low Rower IR Laser Countermeasures on Several IR Focal Plane Arrays",* Proceeding IRIS IRCM, Apr. 1993.
- 22. "Laboratory and Field Evaluation of a Loral Laser Warning Receiver",*, Proceeding IRIS IRCM, Apr. 1993.
- 23. "Protection of Civil and Military Aircraft from Heat Seeking Missiles",* Proceedings ADPA Symposium on Transport Aircraft Survivability, Oct. 1993.
- 24. "Automatic Classification of Threat Missiles",* Proceeding IRIS IRCM, Apr. 1993.
- 25. "Measurement and Analysis of Optical Scatter in FLIR's",* Proceedings IRIS IRCM, Apr. 1993.
- 26. "Multispectral IRFPA Needs",* Proceedings IRIS Detector, Aug. 1993. 27. "Theory and Design of Local Interpolators",* CVGIP Graphical Methods and Image Processing, 1993, Vol. 55, No. 6.

*Peer-Reviewed Conference Proceedings

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 Work Year and Lifecvcle. The number of actual workyears executed for the avionics CSF in FY93 is provided by the table below for each of the following: government civilian; military; on-site FFRDCs; and on-site SETAs.

	Fiscal Year 1993 Actual					
"LAB"	Civilian	Military	FFRDC	SETA		
Science & Technology	37.36	0	0	17.05		
Engineering Development	28.52	0	0	16.7		
In–Service Engineering	8.16	0	0	0.7		

3.3.1.2 <u>Engineering Development By ACAT.</u> For the avionics CSF programs conducted under engineering development, the following table provides a summary of the efforts and identifies the specific engineering development programs that are supported.

Engineering Development	Name or Number	Workyear s(FY93 Actual)	FY93 Funds Received(\$ K) (Obligation Authority)	Narrative
ACAT IC	None			
ACAT ID	CAI	3.6	600	New CAI system to correct the deficiencies in the current Mark XII IFF
ACAT II	None			
ACAT III/IV	3	19.4	3914	Navy EA-6B EW AN/ALE-50 Decoy SLQ-20 Upgrade
Other	7	22.22	7858	Airborne RF Decoys RF Labs/INEWS E2C Emitter ATEWES STORYFINDER Tactical Aircraft CM Gusty Beast (Classified Program)

3.3.1.3 <u>In-Service Engineering</u>. The following table provides for each in-service engineering program in the avionics CSF the FY93 workyears, funding, and weapon system supported.

Common Support Functions	In-Service Engineering Efforts (List)	FY93 Actual		Weapon System(s) Supported
		Funds Received (\$K) (Obligation Authority)	Workyears	
AVIONICS	Helicopter IRCM Laser RF/D CM IR Lamp Tester IR Source	628.3 3685.4 131.7 650	0.81 4.22 0.47 3.36	AN/AAR-47 AN/AAR-47 AN/AAR-47 AN/AAR-47 AN/AAR-47

3.3.2 Projected Funding

3.3.2.1 <u>Direct Funding</u>. The NRL avionics program receives no direct funding, consequently all entries in the table below are zero.

CSF	FY94(\$K)	FY95(\$K)	FY96(\$K)	FY97(\$K)
AVIONICS	0	0	0	0

3.3.2.2 <u>Other Obligation Authority</u>. Reimbursable and direct-cite funding (other obligation authority expected) from FY94 to FY97 is provided below:

CSF	FY94(\$K)	FY95(\$K)	FY96(\$K)	FY97(\$K)
Reimbursable	20,131	22,033	23,150	23,950
Direct-Cite	8,63 6	9,450	10,370	10,800

3.4 Facilities and Equipment

3.4.1 <u>Major Equipment and Facilities</u>. The major facilities and equipment necessary to support the avionics CSF are listed in the following table, and are described more fully in the text that follows the table. Where the facilities are shared with other functions, the percentage of total time used by the avionics function is shown in parentheses following each table entry. The remaining percentages are used to support Navy specific activities.

	Unique To					
Common Support Function	Major Facility or Equipment Description	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)	
AVIONICS Fixed Wing	Ships Radar ECM Simulator(30%)*	X	X	X	3,500	
AVIONICS Fixed Wing	RCS Measurement Facility(50%)*	X	X	Х	15,000	
AVIONICS Fixed Wing	Compact Antenna Range(60%)*				2,600	
AVIONICS Fixed Wing	Isolation Meas. Chamber (70%)*	X			3,000	
AVIONICS Fixed Wing	Millimeter Wave Chamber (50%)*				2,000	
AVIONICS Fixed Wing	RF Techniques Chamber(80%)*				1,500	
AVIONICS Fixed Wing	High Precision Optical Tracker (100%)				1,200	
AVIONICS Fixed Wing	Focal Plane Array Evaluation Facility(50%)**	X			2,000	
AVIONICS Fixed Wing	Seeker Simulation Laboratory(100%)	X	X	X	3,000	
AVIONICS Fixed Wing	Missile Warning System Facility(100%)	X			2,000	
AVIONICS Fixed Wing	Digital Signal Proc. Facility(75%)**	X			650	

* The remaining percentage of utilization for these facilities support Shipboard EW Systems.

** The remaining percentage of utilization for these facilities support the Electronic Devices Function.

More detailed information on each of the special facilities identified above is provided in the following descriptions and photographs.

SEARCH RADAR ECM SIMULATOR(SRES)

SRES is an electronic laboratory designed to test ECM equipment by simulating the engagement between an airborne threat search radar and a group of surface ships and aircraft that use ECM as part of their defense. The method of simulation is real-time generation of the RF signals that would be present in the threat radar receiver from the radar echoes and the ECM. These signals are processed by the radar receivers and displayed on radar displays for man-in-the-loop determination of the ECM effects. An effective ECM would prevent the radar operator from determining the preferred target's location.

The combination of specific equipment, software and capabilities associated with and developed for the SRES laboratory are unique to this facility.

Revision Table 3.4.1 762/ONR91 8/17/94 8 AUG 1 + 8 AUG 1994 A

	an din dinana aki ni bi yan dinang unina nan	Unique To					
Common Support Function	Major Facility or Equipment Description	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)		
AVIONICS	Ships Radar ECM Simulator(30%)	X	X	X	3,500		
	RCS Measurement Facility(50%)	X	X	X	15,000		
	Compact Antenna Range(60%)				2,600		
-	Isolation Meas. Chamber(70%)	X			3,000		
	Millimeter Wave Chamber(50%)				2,000		
	RF Techniques Chamber(80%)				1,500		
	High Precision Optical Tracker (100%)				1,200		
	Focal Plane Array Evaluation Facility(50%)	X			2,000		
	Seeker Simulation Laboratory(100%)	X	X	X	3,000		
	Missile Warning System Facility(100%)	X			2,000		
	Digital Signal Proc. Facility(75%)	Х			650		

More detailed information on each of the special facilities identified above is provided in the following descriptions and photographs.

SEARCH RADAR ECM SIMULATOR(SRES)

SRES is an electronic laboratory designed to test ECM equipment by simulating the engagement between an airborne threat search radar and a group of surface ships and aircraft that use ECM as part of their defense. The method of simulation is real-time generation of the RF signals that would be present in the threat radar receiver from the radar echoes and the ECM. These signals are processed by the radar receivers and displayed on radar displays for man-in-the-loop determination of the ECM effects. An effective ECM would prevent the radar operator from determining the preferred target's location.

The combination of specific equipment, software and capabilities associated with and developed for the SRES laboratory are unique to this facility.

RADAR CROSS-SECTION MEASUREMENTS LABORATORY (CHESAPEAKE BAY DETACHMENT)

This facility is a land based installation designed to accurately characterize and quantify the over the water radar cross-section (RCS) signature of ships, aircraft and electronic warfare passive and active systems used to defend these platforms. The system is capable of collecting precision data in 2 to 18 Ghz, and 35 Ghz bands. Additionally, the system can characterize and quantify the Effective Radiated Power (ERP) and sensitivity of active electronic warfare systems over the same frequency range. This facility includes conventional single frequency radars as well as broad-band frequency agile units. Both coherent and noncoherent radars can be used. A 95 Ghz radar is being installed.

This is a one of a kind facility. It is the only facility which routinely conducts the necessary measurements critical to the design and development of R&D decoy and onboard ECM systems.

COMPACT ANTENNA RANGE FACILITY

The primary purpose of the Compact Antenna Range Facility is to provide a unique state-of-theart anechoic chamber to measure the phase and amplitude of antenna systems over a frequency range of 2 to 100 Ghz in a controlled environment in support of NRL research in EW. The facility also provides the capability for radar cross-section measurements from 2 to 40 Ghz, and small device metrology from 0.45 to \$0 Ghz.

The facility has been specially EMI/RFI hardened using massive hydraulically actuated doors. A special hydraulic elevator was installed to move equipment in and out of the chamber. The chamber also has a state-of-the-art microwave lining designed to provide a 4 foot diameter by 6 foot length quiet zone area with greater than 50 dB below incident reflectivity reduction. The chamber also has an automatic fire suppression system designed to prevent damage to electrical systems under test. The facility and equipment are controlled in temperature and humidity to prevent large fluctuations in the microwave absorber and parabolic reflector characteristics.

ISOLATION MEASUREMENT CHAMBER FACILITY

The Isolation Measurement Chamber Facility provides a capability for measuring antenna to antenna radiation coupling characteristics from 2 to 40 Ghz in support of EW research. Configuration and size of the facility and special handling equipment allow for unique accommodation of portions of airframes having antennas mounted in the same position as those of operational aircraft. This feature accounts for the DoD uniqueness. The facility is also capable for making accurate measurements of the RCS of small objects. The facility has been specially EMI/RFI hardened using massive hydraulically actuated doors. In addition, the facility was provided with special handling fixtures to allow removal of a 12 ft. by 15 ft. panel to accommodate the installation of parts of ship structures, aircraft fuselages, wings, etc. for testing. The chamber has a state–of–the–art microwave absorber lining designed to provide a large quiet zone area of 12 ft. by 18 ft. by 10 ft. with a greater than 100dB below incident reflectivity reduction. The chamber has an automatic sensing fire suppression system designed to provent damage to electrical systems under test. The facility/equipment are controlled in temperature and humidity to prevent large fluctuations in the microwave absorber characteristics.

MILLIMETER WAVE ANECHOIC CHAMBER FACILITY

The primary function of the state-of-the-art Millimeter Anechoic Chamber Facility is to measure and characterize antenna gain, beamwidth, axial roll, beam squint, phase center, VSWR and crosspolarization levels at low power continuously over the frequency range from 8 to 100 Ghz. The facility also provides a means to measure the radio frequency transmission and insertion loss of radomes intended for use in shipboard, aircraft, satellite and missile seekers. The facility consists of a fixed anechoic chamber with a carefully calibrated quiet zone area, while an extremely small portion of the control hardware is moveable, most of the hardware is permanently installed. The facility has been specially EMI/RFI hardened using massive hydraulically actuated doors. A special hydraulic elevator was installed to move equipment in and out of the anechoic chamber. The chamber has a state-of-the-art microwave absorber lining designed to provide a 3 ft. diameter quiet zone area with greater than 50 dB incident reflectivity reduction. The chamber has an automatic sensing fire suppression system designed to prevent damage to electrical systems under test.

RF TECHNIQUES CHAMBER FACILITY

The primary purpose of the RF Techniques Chamber Facility is to provide a low cost anechoic chamber capability to conduct ECM research on RF homing missiles, airborne intercept radars, antiradiation missiles, small tracking radars and in general to aid in the development of airborne EW systems over the frequency range of 2 to 4 Ghz. The facility has been specially EMI/RFI hardened using massive hydraulically actuated doors. In addition, one side wall of the chamber can be moved electrically to increase the length of the chamber. The chamber has a state-of-the-art microwave absorber lining designed to provide a 4 ft. by 4 ft. spherical quiet zone area with greater than 50 dB below incident reflectivity reduction. The chamber has an automatic sensing fire suppression system designed to prevent damage to electrical systems under test. This facility and equipment are controlled in temperature and humidity to prevent large fluctuations in microwave absorber characteristics.

HIGH PRECISION OPTICAL TRACKER

This facility measures optical and IR signatures of targets in motion and the propagation of light through the atmosphere. It consists of two 40 ft. long by 7 ft. wide electronic trailers. One has a 32" diameter optical tracker mounted on the back. Built originally to do absolute transmittance measurements between ships, the tracker now has the capability of tracking noncooperative targets for signature studies. With a 6 microradian tracking accuracy capability, tracking choices are trackball, video image tracking by contrast or correlation, or computer drive. Newtonian optics direct gathered radiation to either IR imaging sensors or to an IR scanning spectrometer. The second trailer provides the calibration capability of the facility. A 36" mirror with four blackbody sources with associated computer programs and control provide a known value of radiation arriving at the tracker telescope aperture. To complete the calibration suite is equipment to measure and record meteorological parameters such as air temperature, dew point and visibility.

FOCAL PLANE ARRAY EVALUATION FACILITY

In this facility, the optical and electrical evaluation of developmental IR focal plane arrays is conducted to determine the development status, to provide guidelines for future development contracts, and to evaluate the potential for fulfilling Navy sensor requirements. The automated evaluation facility consists of optical sources and electronics required to evaluate monolithic or hybrid IR focal plane arrays that use charge coupled device (CCD), charge injected device (CID), direct readout (DRO), or charge imaging matrix (CIM) technologies. Since developmental arrays are often received in chip form, there are a variety of dewars and mounts to accept different chip carriers. Optical sources are used to illuminate the detectors with short pulse or continuous radiation in both uniform and single detector modes. Calibrated laser sources are used to study array performance under optical overload conditions. The data are acquired and reduced by using computer techniques because each array may consist of tens of thousands of detectors, and many samples of each detector are required for statistical significance. The spectral response of the arrays is determined by using optical filters or spectrometers.

The combination of the high data rate acquisition with real time imaging capability makes this facility unique within the Defense Department.

SEEKER SIMULATION LABORATORY

The function of this laboratory is to assess optical countermeasures vulnerability of IR seekers and trackers, to determine the effectiveness of the operation of IR jammers, and to develop advanced jamming techniques. This laboratory consists of two computer controlled rate tables where systems are mounted: four laser acousto-optically modulated to simulate target and jammer; two computer controlled arbitrary waveform generators; four computer controlled function generators; a 32-channel Ampex tape recorder; and an extensive variety of electronic processing equipment including a spectrum analyzer, vector phase lock analyzers, etc. All electronic systems are interfaced to a desctop computer that controls the experiment and data analysis.

The combination of the diagnostic electronics and the four lasers integrated into a single operating system is a unique capability unavailable anywhere else in the US.

MISSILE WARNING SYSTEM FACILITY

This facility is used for the development and demonstration of sensors and algorithms for missile warning systems and data collection in support of sensor and algorithm development. A missile warning sensor for aircraft requires a system capable of detecting the threat missile at sufficient range to implement effective countermeasures while requiring nonthreat missiles and background or clutter features which mimic the characteristics of threat missiles. The development of such systems requires a body of data characterizing both the targets and the competing background and clutter and a set of algorithms capable of sorting the features of all sources to provide a high probability of threat missile detection with a low false alarm rate under stressing clutter or battlefield conditions.

The capability of this facility for developing and demonstrating sensors and algorithms in spectral regions from the ultraviolet through the infrared spectral is unique within the Defense Department.

DIGITAL SIGNAL PROCESSING FACILITY

The signal processing facility provides a repository of visible, IR and Multispectral imagery and combines this database with processing tools needed for developing target detection algorithms. The existing database is updated and augmented with imagery from new sensors as it becomes available. The facility allows users to easily compile the necessary metrics for evaluating the images and to manipulate the images for extrapolation to other target/background scenarios. Current target detection algorithms are compared and emerging signal processing methods are tested and refined. Background modeling and sensor tradeoff studies are carried out against appropriate types of backgrounds and target data. The facility also designs and develops custom communications terminals, low-level protocols, and real-time data acquisition and processing systems that operate at speeds of gigabits/sec. This facility operates proof-of-concept adaptations of commercial high speed communications equipment for tactical use, and has demonstrated the importance of selecting international standards based products.

This facility has available a class of spatial, multispectral, and change detection algorithms, unique within the Defense Department, which are applied to actual electro-optic and infrared data from ground and airborne sensors for target discrimination.

3.5 Expansion Potential

3.5.1 <u>Laboratory Facilities</u>. Facilities records as of the fourth-quarter FY93 are used in providing the following data (in ksq. ft.) for the avionics CSF.

		<u> </u>	Space	Capacity (KSF)
Common Support Function	Facility or Equipment Description	Type of Space*	Current	Used	Excess
AVIONICS	Office	Administrative	1.079	1.079	0
	Office	Technical	15	15	0
	Laboratory	Technical	47.03	47.03	0
	Storage	Storage	1.916	1.916	0

* Administrative, Technical, Storage, Utility

Space is centrally managed at NRL. When space becomes excess in a Division the excess space is returned to the NRL space coordinator for reallocation. Hence, in general, the NRL performing Divisions do not have excess space and thus the above tables show no excess space for the avionics CSF.

3.5.1.1 In general, the facilities/labs that support the avionics CSF are readily capable of accepting a modest increase of work as long as the type of work that would be gained is of the same type that is currently being performed. In this case, it is assumed that the physical size of the space, and the equipment and instrumentation available, is of the proper variety for the work. Although much greater increases in the capacity might be obtained, it is expected that this would entail major modifications to existing facilities or the construction of expanded facilities. Significant changes in the nature of the work might also entail a similar degree of modification.

3.5.1.2 Based on current available space, and using the consideration of similarity of work discussed above, it is believed that the NRL avionics CSF could be increased by as much as 48 workyears per year before major modifications to facilities would be required. This increased workyear effort would have to be largely accommodated by new hires.

3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II). None

3.5.2 <u>Land Use</u>. Provide number of buildable acres for additional laboratory/ administrative support construction at your installation. (BRAC Criteria II) Not separately reportable - see/ response to BRAC Data Call 4.

3.5.3 <u>Utilities.</u> Provide an estimate of your installation's capability to expand or procure additional utility services (electric, gas, water). Estimates should be provided in appropriate units — e.g. KWH of electricity. (BRAC Criteria II) Not separately reportable - see response to BRAC Data Call 4.

9. AVIONICS QUESTIONS 3.5.2, 3.5.3

Please provide a response to these questions, for each CSF in which you are performing work. Citing Data Call #4 is not acceptable.

RESPONSES:

a. <u>3.5.2</u>: NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note, however, that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent. This would involve minimal reconfiguration.

b. <u>3.5.3</u>: Utility service capacities are depicted in the following table:

	On Base Capacity	Off Base Long <u>Term Contract</u>	Normal Steady State Load	Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

1 The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.

2 Production plant owned by PWC, Washington.

B. SPACE

B1. Satellites

3.0 Mission: Major capabilities contributing to the common support function.

- o Navy's Lead Laboratory For Space
- o Systems And Missions Analyses
- o Technology Assessment/Advancement
- o Systems Engineering
- o Spacecraft Electronic Systems Development
- o Spacecraft Integration, Test, And Launch Operations
- o Mission Operations
- o Payload Data Management Systems Design
- o Spacecraft On-Board Processor Design
- o Spacecraft Software Technology Development
- o Spacecraft Electrical Power System Design
- o Spacecraft Telemetry And Command Systems Design
- o Spacecraft Networking Systems Design
- o Space Systems Architecture Development
- o Space Systems Astrodynamics Analysis
- o Space Surveillance Systems Design
- o Orbitology Technology Development
- o Parallel Processing For Space Surveillance Applications Technology Development
- o On-Orbit Performance Analysis
- o Space Based Laser Communications Technology Development
- o Laser Ranging Technology Development

B-1 R (17 Aug 94)

R

- o Space Based High Temperature Superconductivity Technology Development
- o Launch Vehicle Propulsion Technology Development
- o Transfer Stage Technology Development And Systems Design
- o Time And Frequency Technology Development
- o Space Based Navigation Systems Technology Development
- o Spacecraft Structures And Mass Properties Analysis And Design
- o Spacecraft Environmental Testing
- o Spacecraft Mechanism And Space Borne Robotics Systems Design
- o Spacecraft Attitude And Orbit Control Systems Analysis And Design
- o Spacecraft Reaction Control Systems Design
- o Spacecraft Propulsion Systems Design
- o Spacecraft Thermal Control Systems Design
- o Spacecraft Launch Vehicle Integration
- o Space Expert Systems Design
- o Large Space Structures Control Analysis And Design
- o Advanced Data Modem Design
- o Advanced Spacecraft Materials Technology Development

Describe any relationship and interconnectivity with other function (common or otherwise) in support of the overall activity mission.

The Naval Center for Space Technology (NCST), in performing the mission detailed herein, relies very heavily on the basic research and exploratory development work conducted in the other research divisions of NRL, in that the systems developed by the NCST to solve DOD problems and requirements integrate these technologies into operational systems. Conversely, these research divisions of NRL rely on the NCST to provide a "product line" for these technologies to be demonstrated or integrated into the military service or transitioned to commercial or industrial applications. Having the vertical integration of 6.1 research with the systems design, systems engineering, and systems integration capability for Satellites collocated at the laboratory allows for the very rapid infusion of Laboratory technology into operational satellites.

Specific Pervasive Functions that are intimately linked to satellites are Electronic Devices, Environmental Sciences, and Advanced Materials. Large cooperative efforts exist in all of these areas. For example, the High Temperature Superconductivity Space Experiment is a classic R example that is held as a model for managing technology development and bringing laboratory research into operational use in record time. This will result in the first use of high temperature superconducting devices in space. Another example in the utilization of Advanced Composite Materials in spacecraft applications. The use of these materials developed in the laboratory in experimental space craft fabricated, integrated, and most importantly, qualified here at NRL could not be accomplished effectively without having the pervasive functions and the common support colocated in one facility.

In addition, there is a significant, pervasive and inseverable coupling of technology development, analysis and engineering between the Product Functions of Satellites and C4I Systems. The primary technology effort of NRL in Satellites is devoted to surveillance and sensor systems. The application of these systems in defense is to provide combat data to the war fighter. The systems must be treated as complete "sensor- to-shooter" architectures, including the requirements determination, performance analysis, engineering design, acquisition, and operations. Inherent in this treatment is the sensor portion and the C4I portion; the space portion and the ground portion; the tactical terminal and the satellite command and control portion. All engineering, trade studies, performance analysis, and indeed the operation of the system must be optimized across the entire system. The successful function of the system requires this. Separation the functions of C4I and Satellites Technology development would seriously jeopardize the development of future systems such as those which NRL has been so highly successful at developing and deploying in the past.

3.1 Location

3.1.1 Geographic/Climatological Features: There are no special geographic or climatological features in or around this activity relevant to the Satellites CSF.

3.1.2 Licenses & Permits: The Satellites CSF requires no special licenses or permits for the performance of its function.

3.1.3 Environmental Constraints: There are no environmental constraints to the Satellites CSF at this activity.

3.1.4 Special Support Infrastructure: No special support infrastructure is required for the Satellites CSF at this activity.

3.1.5 Proximity to Mission-Related organizations: There are no nearby outside organizations whose location facilitates accomplishing the satellites CSF effort.

R

3.2 Personnel

3.2.1 Total Personnel: The total number of government (military and civilian), on-site federally funded research and development center (FFRDC) and on-site system engineering technical assistance (SETA) personnel engaged in science and technology (S&T), engineering development and in-service engineering activities as of the end of FY93 is described on the chart below:

CSF-SATELLITES

Types of Personnel	Number of Personnel				
	Government		On-Site FFRDC	On-Site SETA	
·	Civilian	Military			
Technical	176	- O	0	142	
Management (SUPV)	5 1	0	0	14	
Other	0	0	0	0	

3.2.2 Education: the number of government personnel actively engaged in S&T, engineering and in-service engineering activities by highest degree and type of position is as follows:

CSF-SATELLITES

Type of	Number of Government Personnel by Type of Position					
Degree/Diploma						
	Technical	Management	Other			
		(supv)				
High School or less	35	3				
Associates	8	0				
Bachelor	95	27				
Masters	24	17				
Doctorate	14	4				
(incl med/vet,etc)	0	0				

3.2.3 Experience: The experience level of government personnel is provided below.

CSF-SATELLITES

Type of	Y	ears of G	overnment a	and/or Milit	ary Service
Position	Less than 3 Years	3-10 Years	11-15 Years	16-20 Years	More than 20 Years
Technical	24	1 73	3 15	14	50
Management (supv)	2	2 9	8	4	28
Total	26	82	2 23	18	7 8

3.2.4.1 The following patents were awarded or disclosed.

CSF	Disclosures	Awarded	Patent Titles
Satellites	1	1	Multi-GHZ Frequency Divider Efficient Dynamic Phasefront Modulation System for Free-space Optical Communications

3.2.4.2 The following papers were published in peer reviewed journals.

CSF	Number	Paper Titles
	Published	(List)

Satellites 13

Reilly, M.H., Upgrades for efficient three-dimensional ionospheric ray tracing: Investigation of HF near vertical incidence sky wave effects, Radio Sci. 26, No. 4, 971-980, July/August 1991

Reilly, M.H., F.J. Rhoads, and J.M. Goodman, Updated climatological model predictions of ionospheric and HF propagation parameters, Radio Sci. 26, No. 4, 1017-1024, July/August 1991

"Operating modes of a charge-transfer-plate liquid crystal phase modulator", Appl. Opt., 31 3892 (1992), G.A. Melnik, G.C. Gilbreath, T.N. Tsakiris, R.P. Jurgilewicz, D.M. O'Mara, T.N. Horsky, and C. Warde.

R

3.2.3

Experience: The experience level of government personnel is provided below.

CSF-SATELLITES

Type of		Y	ears of Go	vernment a	and/or Milit	ary Service
Position	Less than 3 Years		3-10 Years	11-15 Years	16-20 Years	More than 20 Years
Technical		24	73	15	14	50
Management (supv)		2	9	8	4	28
Total		26	82	23	18	78

3.2.4.1 The following patents were awarded or disclosed.

CSF	Disclosures	Awarded	Patent Titles
Satellites	1	1	Multi-GHZ Frequency Divider Efficient Dynamic Phasefront Modulation System for Free-space Optical Communications

3.2.4.2 The following papers were published in peer reviewed journals.

CSF Number Published Paper Titles (List)

Satellites 15

Reilly, M.H., Upgrades for efficient three-dimensional ionospheric ray tracing: Investigation of HF near vertical incidence sky wave effects, Radio Sci. 26, No. 4, 971-980, 1991

Reilly, M.H., F.J. Rhoads, and J.M. Goodman, Updated climatological model predictions of ionospheric and HF propagation parameters, Radio Sci. 26, No. 4, 1017-1024, 1991

"Operating modes of a charge-transfer-plate liquid crystal phase modulator", Appl. Opt., 31 3892 (1992), G.A. Melnik, G.C. Gilbreath, T.N. Tsakiris, R.P. Jurgilewicz, D.M. O'Mara, T.N. Horsky, and C. Warde. "Passive stabilization of photorefractive two beam coupling with laser diodes using acromatic grating techniques", Opt. Comm., 93, 156 (1992), W.S. Rabinovich, G.C. Gilbreath, A.E. Clement, and B.J. Feldman.

"Comparison of photorefractive beam fanning using monochromatic and achromatic two-wave mixing in SBN", Opt. Comm., 94, 609 (1992), C.L.Adler, W.S. Rabinovich, A.E. Clement, G.C. Gilbreath, and B.J. Feldman.

Selected Article: "Thin-phase Screen Estimates of TID Effects on Midlatitude Transionosperic Radio Paths," Radio Science, Vol. 28, No. 6, pp 979-986, November -December 1993

"Determination of the Effective Trap Density of Ta:KNb03 and BaTi03 at 823NM Using the Shallow Trap Model," A.E. Clement, G.C. Gilbreath, NRL Code 8123; and S.N. Peterson

"Frozen orbit morphology in Orlov's plane," (AAS 93-695), Astrodynamics, Aug. R 1993, Vol. 85, Advances in the Astronautical Sciences (Univelt, San Diego, CA, 1994)

"Geolocation Accuracy of HERCULES on STS 53," (AAS 93-604), with M.T. Soyka, H.M. Pickard, S.N. Lam, K.H. Little, R.R. Dasenbrock and T.W. Murphy, Astrodynamics, Aug. 1993, Vol. 85, Advances in the Astronautical Sciences (Univelt, San Diego, CA, 1994)

"Kinematic and Dynamic Properties of an Elbow Manipulator Mounted on a Satellite," Lindberg, Robert E., Richard W. Longman, and Michael F. Zedd., The Journal of the Astronautical Sciences, 38(4), October-December, 1990, 397-421.

"Paint by number: Uncovering phase flows of an integrable dynamical system," Coffey, S., Healy, L. and Deprit, E.,Computers in Physics, Sept-Oct, 1991.

"Ground-based Ladar Measurements of Satellite Vibrations," Schultz, K. I. and Fisher, Journal of Applied Optics, Laser and Photonics, Vol. 31, No. 36, Dec 1992.

"Frozen Orbits for Satellites Close to an Earth-like Planet," Coffey, S., Deprit, A. and Deprit, E., Celestial Mechanics, May 1994.

R

R

R

R

"Passive stabilization of photorefractive two beam coupling with laser diodes using acromatic grating techniques", Opt. Comm., 93, 156 (1992), W.S. Rabinovich, G.C. Gilbreath, A.E. Clement, and B.J. Feldman.

"Comparison of photorefractive beam fanning using monochromatic and achromatic two wave mixing in SBN", Opt. Comm., 94, 609 (1992), C.L.Adler, W.S. Rabinovich, A.E. Clement, G.C. Gilbreath, and B.J. Feldman. 3.2.4.2

Selected Article: "Thin-phase Screen Estimates of TID Effects on Midlatitude Transionosperic Radio Paths," Radio Science, Vol. 28, No. 6, pp 979-986, November - December 1993

"Along Track Formation keeping for Satellites with Low Eccentricity", Jay W. Middour; AAS 91-510, AAS/AIAA Astrodynamics Conference, Durango, CO, August 19-22, 1991.

"Determination of the Effective Trap Density of Ta:KNb03 and BaTi03 at 823NM Using the Shallow Trap Model," A.E. Clement, G.C. Gilbreath, NRL Code 8123; and S.N. Peterson

"Frozen orbit morphology in Oxlov's plane," (AAS 93-695), to appear Astrodynamics 1993, Vol. 85, Advances in the Astronautical Sciences (Univelt, San Diego, CA, 1994)

"Geolocation Accuracy of HERCULES on STS 53," (AAS 93-604), with M.T. Soyka, H.M. Pickard, S.N. Lam, K.H. Little, R.R. Dasenbrock and T.W. Murphy, to appear Astrodynamics 1993, Vol. 85, Advances in the Astronautical Sciences (Univelt, San Diego, CA, 1994)

"Painting the Phase Space Portrait of an Integrable Dynamical System, "Coffey, S., Deprit, A., Deprit, E., Healy, L., Science, 247, 883--836, Feb. 1990.

"Kinematic and Dynamic Properties of an Elbow Manipulator Mounted on a Satellite," Lindberg, Robert E., Richard W. Longman, and Michael F. Zedd., The Journal of the Astronautical Sciences, 38(4), October December, 1990, 397-421.

"Paint by number: Uncovering phase flows of an integrable dynamical system," Coffey, S., Healy, L. and Deprit, E., Computers in Physics, Sept-Oct, 1991.

"Ground-based Ladar Measurements of Satellite Vibrations," Schultz, K. I. and Fisher, Journal of Applied Optics, Laser and Photonics, Vol. 31, No. 36, Dec 1992.

"Frozen Orbits for Satellites Close to an Earth-like Planet," Coffex, S., Deprit, A. and Deprit, E., Celestial Mechanics, May 1994.

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 Work Year Lifecycle: Identified below are the number of actual workyears executed for the Satellites CSF in FY93 for each of the following: government civilian; military; on-site FFRDCs; and on-site SETA'S

SATELLITES		Fis	cal Year 19	993 Actual
[Civilian	Military	FFRDC	SETA
Science &				
Technology	21.7	0	0	8.7
Engineering				
Development	213.3	0	0	158.6
In-Service				
Engineering	0	0	_ 0	0

3.3.1.2 Engineering Development by ACAT: No CSF's to report in this area.

3.3.1.3 In-Service Engineering: No CSF's to report in this area.

3.3.2 Projected Funding

3.3.2.1 Direct Funding: The are no direct appropriations to the satellites CSF.

3.3.2.2 Other Obligation Authority: For The Satellites CF we have identified funding from FY94-FY97.

	\$K	\$K	\$K	\$K
CSF	FY94	FY95	FY96	FY97
Satellites	111092.6	114174.4	121270.2	126307.3

3.4 Facilities and Equipment

3.4.1 Major Equipment and Facilities: The major facilities and equipment necessary to support the Satellites CSF are listed in the table below. None of the facilities are shared with other CSF's. Many of these facilities are SCIF's and therefore no photographs can be supplied.

		CSF	1			Uniqu	e to	Repacemen
	%	or	8			Fød.		Cost
	Utii.	Pervasive	Util.	Major Facility or Equipment Description	DOD	Gov't	U.S.	(\$K)
Satellite	50	Ground Control	50	SCI Data Storage and Media Management Vault				500
Satellite	50	Ground Control	50	SCI Management Information System				200
Satellite	50	Ground Control	50	SCI Data Processing Center				800
Satellite	40	Electronic Devices	30	Laser Physics Lab	Ι			1300
		Adv Materials	30					1300
Satellite	50	Ground Control	50	NCST Management Information System				1000
Satellite	80	Electronic Devices	10	SCI Payload Test Facility/Processor Development Laboratory	×			10000
		Adv Materials	10					
Satellite	50	Ground Control	50	Space Systems Development Department Computation Facility				1000
Satellite	100			Spacecraft Battery Laboratory		X		200
Satellite	50	Ground Control	50	Precision Oscillator Test Facility			х	4800
Satellite	80	Electronic Devices	10	Precision RF Anechoic Chamber	X			3000
		Adv Materials	10					
Satellite	100			Secure Payload Development Facility				1000
Satellite	100			Reshape Facility			х	250
Satellite	100			Secure Spacecraft Assembly/Test Facility(SCI)				1000
Satellite	80	Electronic Devices	10	Spacecraft Acoustic Reverberation Chamber	×			5000
		Adv Materials	10					
Satellite	80	Electronic Devices	10	Spacecraft Vibration Test Facility	[1500
		Adv Materials	10					
Satellite	80	Electronic Devices	10	Class-100 Clean Room				400
		Adv Materials	10					
Satellite	100			Spacecraft Propulsion System Welding Facility	×			500
Satellite	80	Electronic Devices	10	Thermal High Vacuum Chambers				2500
		Adv Materials	10					
Satellite	100			RF Compact Range				2000
Satellite	90	Adv Materials	10	Spacecraft Static Test Loads Facility	×			500
Satellite	80	Electronic Devices	10	Spacecraft Assembly and Test Facility				2000
		Adv Materials	10					
Satellite	100			Spacecraft Spin Balance Facility				500
Satellite	100			Spacecraft Optical Alignment Facility				200
Satellite	100			Spacecraft Thermal Blanket Facility				100
Satellite	90	Ground Control	10	RF Anechoic Chamber	Х			3000
Satellite	100			Microelectronics Clean Room				200
Satellite	100			EMI/EMC Screen Room				200
Sateilite	100			RF Anechoic Chamber SCIF				30
Satellite	100			Spacecraft Storage SCIF				70

Satellite	100	Spacecraft Design SCIF	1200	
Satellite	100	Payload Exploitation SCIF	430	
Satellite	100	Mission Development SCIF	100	
Satellite	100	Advanced Systems SCIF	80	
Satellite	100	Space Applications SCIF	235	
Satellite	100	Fuels Testing Laboratory	100	
	Total			

3.5 Expansion Potential:

3.5.1 Laboratory Facilities: The facilities required to perform the Satellites CSF at this activity are listed below. For those facilities located at the NRL main base, NRL's MIS data were used. For facilities located at NRL's field sites, local data were used.

Common					
Support		Type Of		(KSF)	
Function	Major Facility or Equipment Description	Space	Curren	Used	Excess
Satellite	SCI Data Storage and Media Management Vault	Technical	2.0	2.0	0
Satellite	SCI Management Information System	Technical	0.3	0.3	0
Satellite	SCI Data Processing Center	Technical	1.0	1.0	0
Satellite	Laser Physics Lab	Technical	0.5	0.5	0
Satellite	NCST Management Information System	Technical	1.4	1.4	0
Satellite	SCI Payload Test Facility/Processor Development Laboratory	Technical	2.4	2.4	0
Satellite	Space Systems Development Department Computation Facility	Technical	0.9	0.9	0
Satellite	Spacecraft Battery Laboratory	Technical	2.4	2.4	0
Satellite	Precision Oscillator Test Facility	Technical	5.8	5.8	0
Satellite	Precision RF Anechoic Chamber	Technical	2.3	2.3	0
Satellite	Secure Payload Development Facility	Technical	1.9	1.9	0
Satellite	Reshape Facility	Technical	0.9	0.9	0
Satellite	Secure Spacecraft Assembly/Test Facility(SCI)	Technical	12.0	12.0	0
Satellite	Spacecraft Acoustic Reverberation Chamber	Technical	1.4	1.4	0
Satellite	Spacecraft Vibration Test Facility	Technical	2.6	2.6	0
Satellite	Class-100 Clean Room	Technical	1.6	1.6	0
Satellite	Spacecraft Propulsion System Welding Facility	Technical	1.0	1.0	0
Satellite	Thermal High Vacuum Chambers	Technical	6.1	6.1	0
Satellite	RF Compact Range	Technical	0.5	0.5	0
Satellite	Spacecraft Static Test Loads Facility	Technical	2.6	2.6	0
Satellite	Spacecraft Assembly and Test Facility	Technical	4.9	4.9	0
Satellite	Spacecraft Spin Balance Facility	Technical	1.0	1.0	0
Satellite	Spacecraft Optical Alignment Facility	Technical	1.0	1.0	0
Satellite	Spacecraft Thermal Blanket Facility	Technical	1.0	1.0	0
Satellite	RF Anechoic Chamber	Technical	7.7	7.7	0
Satellite	Microelectronics Clean Room	Technical	0.5	0.5	0
Satellite	EMI/EMC Screen Room	Technical	1.0	1.0	0
Satellite	RF Anechoic Chamber SCIF	Technical	0.2	0.2	0
Satellite	Spacecraft Storage SCIF	Storage	0.3	0.3	0

R

Satellite	Spacecraft Design SCIF	Technical	6.0	6.0	0
Satellite	Payload Exploitation SCIF	Technical	2.1	2.1	0
Satellite	Mission Development SCIF	Technical	0.5	0.5	0
Satellite	Advanced Systems SCIF	Technical	0.4	0.4	0
Satellite	Space Applications SCIF	Technical	1.2	1.2	0
Satellite	Fuels Testing Laboratory	Technical	1.6	1.6	0
Satellite	General Laboratories	Technical	10.8	10.8	0
Satellite	General Design Space	Technical	62.7	62.7	0
Satellite	General Office Space	Administrative	22.5	22.5	0
Satellite	Storage	Storage	31.4	31.4	0
Satellite	Utility	Utility	1.5	1.5	0
	Total		207.9	207.9	0

3.5.1.1 This activity has the capacity to absorb about 85% more work years in the Satellites CSF with minor facility modification. Even though the table above indicates that there is no excess capacity in our facilities square footage, this additional work load is achievable through the use of multiple shifts and overtime, which is the standard mode of operation for assembly, testing and qualification of spacecraft. In other words, the amount of facility space would not increase, but the percentage of time that the facility was utilized would increase. This additional workload would be distributed among the on-base test facilities and the off-base operational field sites. The peak loading of head count during the day at any one facility would be minimal.

3.5.1.2 This activity has the capability to absorb an additional 320 work years in the Satellites CSF.

3.5.1.3 There would be no impact of 3.5.1.1 and 3.5.1.2 (above) to military construction programs or other alteration projects programmed in the FY95 PBS at this activity for the Satellites CSF.

3.5.2 Land Use: For the Satellites CSF, approximately 50 acres are available for additional Satellites CSF construction at the NRL field sites.

3.5.3 Utilities: There is no restriction or limit to expand the utility services for the Satellites CSF at the NRL field sites.

SECTION III: CAPABILITY OF ACTIVITIES PERFORM COMMON SUPPORT FUNCTIONS (CFSs)

3.0 Mission: Major capabilities contributing to the common support function.

Satellites

- o Navy's Lead Laboratory For Space
- o Systems And Missions Analyses
- o Technology Assessment/Advancement
- o Systems Engineering
- o Spacecraft Electronic Systems Development
- o Spacecraft Integration, Test, And Launch Operations
- o Mission Operations
- o Payload Data Management System Design
- o Spacecraft On-Board Processor Design
- o Spacecraft Software Technology Development
- o Spacecraft Electrical Power System Design
- o Spacecraft Telemetry And Command Systems Design
- o Spacecraft Networking Systems Design
- o Space Systems Architecture Development
- o Space Systems Astrodynamics Analysis
- o Space Surveillance Systems Design
- o Orbitology Technology Development
- o Parallel Processing For Space Surveillance Applications Technology Development
- o On-Orbit Performance Analysis
- o Space Based Laser Communications Technology Development
- o Laser Ranging Technology Development

Revision 262/0NR91 7/17/99

ENCLOSURE (2)

Zeplaced in its stirety with SATELLITES"

SECTION datal 8.19-94

1994 I

- Space Based High Temperature Superconductivity Technology Development
- o Launch Vehicle Propulsion Technology Development
- o Transfer Stage Technology Development And Systems Design
- o Time And Frequency Technology Development
- o Space Based Navigation Systems Technology Development
- o Spacecraft Structures And Mass Properties Analysis And Design
- o Spacecraft Environmental Testing
- o Spacecraft Mechanism And Space Borne Robotics Systems Design
- o Spacecraft Attitude And Orbit Control Systems Analysis And Design
- o Spacecraft Reaction Control Systems Design
- o Spacecraft Propulsion Systems Design
- o Spacecraft Thermal Control Systems Design
- o Spacecraft Launch Vehicle Integration
- o Space Expert Systems Design
- o Large Space Structures Control Analysis And Design
- o Advanced Data Modem Design
- o Advanced Spacecraft Materials Technology Development

Describe any relationship and interconnectivity with other function (common or otherwise) in support of the overall activity mission.

The Naval Center for Space Technology (NCST), in performing the mission detailed herein, relies very heavily on the basic research and exploratory development work conducted in the other research divisions of NRL, in that the systems developed by the NCST to solve DOD problems and requirements integrate these technologies into operational systems. Conversely, these research divisions of NRL rely on the NCST to provide a "product line" for these technologies to be demonstrated or integrated into the military service or transitioned to commercial or industrial applications. Having the vertical integration of 6.1 research with the systems design, systems

Reusian 7CC/ONR9(17Aug94

engineering, and systems integration capability for Satellites collocated at the laboratory allows for the very rapid infusion of Laboratory technology into operational satellites.

Specific Pervasive Functions that are intimately linked to satellites are Electronic Devices, Environmental Sciences, and Advanced Materials. Large cooperative efforts exist in all of these areas. For example, the High Temperature Superconductivity Space Experiment is a classic example that is held as a model for managing technology development and bringing laboratory research into operational use in record time. This will result in the first use of high temperature superconducting devices in space. Another example in the utilization of Advanced Composite Materials in spacecraft applications. The use of these materials developed in the laboratory in experimental space craft fabricated, integrated, and most importantly, qualified here at NRL could not be accomplished effectively without having the pervasive functions and the common support colocated in one facility.

In addition, there is a significant, pervasive and inseverable coupling of technology development, analysis and engineering between the Product Functions of Satellites and C4I Systems. The primary technology effort of NRL in Satellites is devoted to surveillance and sensor systems. The application of these systems in defense is to provide combat data to the war fighter. The systems must be treated as complete "sensor- to-shooter" architectures, including the requirements determination, performance analysis, engineering design, acquisition, and operations. Inherent in this treatment is the sensor portion and the C4I portion; the space portion and the ground portion; the tactical terminal and the satellite command and control portion. All engineering, trade studies, performance analysis, and indeed the operation of the system must be optimized across the entire system. The successful function of the system requires this. Separation the functions of C4I and Satellites Technology development would seriously jeopardize the development of future systems such as those which NRL has been so highly successful at developing and deploying in the past.

Revision

3.4 Facilities and Equipment

3.4.1 Major Equipment and Facilities: The major facilities and equipment necessary to support the Satellites CSF are listed in the table below. None of the facilities are shared with other CSF's. Many of these facilities are SCIF's and therefore no photographs can be supplied.

		CSF				Uniqu	e to	Repacement
	%	مر	%			Fed.		Cost
	Util.	Pervasive	Util.	Major Facility or Equipment Description	DOD	Gov't	U.S.	(\$K)
Satellite	50	Ground Control	50	SCI Data Storage and Media Management Vault				500
Satellite	50	Ground Control	50	SCI Management Information System				200
Satellite	50	Ground Control	50	SCI Data Processing Center				800
Satellite	40	Electronic Devices	30	Laser Physics Lab	1			1300
		Ad∨ Materials	30					1300
Satellite	50	Ground Control	50	NCST Management Information System				1000
Satellite	80	Electronic Devices	10	SCI Rayload Test Facility/Processor Development Laboratory	×			1000
		Adv Materials	10					
Satellite	50	Ground Control	50	Space Systems Development Department Computation Facility	1			1000
Satellite	100			Spacecraft Battery Laboratory		x		200
Satellite	50	Ground Control	50	Precision Oscillator Test Facility	1		X	480
Satellite	80	Electronic Devices	10	Precision RF Anechoic Chamber	×	[3000
		Adv Materials	10		1			
Satellite	100			Secure Payload Development Facility				1000
Satellite	100			Reshape Facility			Х	250
Satellite	100			Secure Spacecraft Assembly/Test Facility(SCI)				100
Satellite	80	Electronic Devices	10	Spacecraft Acoustic Reverberation Chamber	X	†		5000
		Adv Materials	10]	ļ		
Satellite	80	Electronic Devices	10	Spacecraft Vibration Test Facility	1			1500
		Adv Materials	10					
Satellite	80	Electronic Devices	10	Class-100 Clean Room	1			400
		Adv Materials	10					
Satellite	100			Spacecraft Propulsion System Welding Facility	×			50
Satellite	80	Electronic Devices	10	Thermal High Vacuum Chambers				250
		Adv Materials	10					
Satellite	100			RF Compact Range	1			2000
Satellite	90	Adv Materials	10	Spacecraft Static Test Loads Facility	X			500
Satellite	80	Electronic Devices	10	Spacecraft Assembly and Test Facility	Ň			200
		Adv Materials	10		$ \rangle$]		
Satellite	100			Spacecraft Spin Balance Facility	\top			500
Satellite	100			Spacecraft Optical Alignment Facility	· · · · · · · · · · · · · · · · · · ·			200
Satellite	100			Spacecraft Thermal Blanket Facility	+	$\left \right\rangle$		10
Satellite	90	Ground Control	10	RF Anechoic Chamber	X	\vdash		3000
Satellite	100			Microelectronics Clean Room	1	<u>├\</u>		200
Satellite	100	<u> </u>		EMI/EMC Screen Room	+			200
Satellite	100			RF Anechoic Chamber SCIF	+		\vdash	3
Satellite	100			Spacecraft Storage SCIF	 		\vdash	7
Jarenie			L		1		<u> </u>	<u> </u>

Revision CE (ON RAL TCE (ON RAL

ENCLOSURE (3)

🔚 8 AUG 1994

		·	Total	4719
Satellite	100		Fuels Testing Laboratory	10
Satellite	100		Space Applications SCIF	23
Satellite	100	X	Advanced Systems SCIF	8
Satellite	100		Mission Development SCIF	10
Satellite	200		Payload Exploitation SCIF	430
Satellite	100		Spacecraft Design SCIF	120

3.5 Expansion Potential:

3.5.1 Laboratory Facilities: The facilities required to perform the Satellites CSF at this activity are listed below. For those facilities located at the NRL main base, NRL's MIS data were used. For facilities located at NRL's field sites, local data were used.

Common		Turn Of		(1005)	
Support		Type Of		(KSF)	r
	Major Facility or Equipment Description	Space	Current		Excess
Satellite	SCI Data Storage and Media Management Vault	Technical	2.0	2.0	
Satellite	SCI Management Information System	Technical	0.3	0.3	(
Satellite	SCI Data Processing Center	Technical	1.0	1.0	(
Satellite	Laser Physics Lab	Technical	0,5	0.5	(
Satellite	NCST Management Information System	Technical	1.4	1.4	(
Satellite	SCI Payload Test Facility/Processor Development Laboratory	Technical	2.4	2.4	(
Satellite	Space Systems Development Department Computation Facility	Technical	0.9	0.9	(
Satellite	Spacecraft Battery Laboratory	Technical	2.4	2.4	(
Satellite	Precision Oscillator Test Facility	Technical	5.8	5.8	
Satellite	Precision RF Anechoic Chamber	Technical	2.3	2.3	
Satellite	Secure Payload Development Facility	Technica	1.9	1.9	
Satellite	Reshape Facility	Technical	0.9	0.9	
Satellite	Secure Spacecraft Assembly/Test Facility(SCI)	Technical	12.0	12.0	
Satellite	Spacecraft Acoustic Reverberation Chamber	Technical	1.4	1.4	
Satellite	Spacecraft Vibration Test Facility	Technical	Q .6	2.6	
Satellite	Class-100 Clean Room	Technical	1.8	1.6	
Satellite	Spacecraft Propulsion System Welding Facility	Technical	1.0	1.0	
Satellite	Thermal High Vacuum Chambers	Technical	6.1	6.1	
Satellite	RF Compact Range	Technical	0.5	0,5	
Satellite	Spacecraft Static Test Loads Facility	Technical	2.6	2.6	
Satellite	Spacecraft Assembly and Test Facility	Technical	4.9	4.9	\mathbf{h}
Satellite	Spacecraft Spin Balance Facility	Technical	1.0	1.0	
Satellite	Spacecraft Optical Alignment Facility	Technical	1.0	1.0	
Satellite	Spacecraft Thermal Blanket Facility	Technical	1.0	1.0	\vdash
Satellite	RF Anechoic Chamber	Technical	7.7	7.7	`
Satellite	Microelectronics Clean Room	Technical	0.5	0.5	
Satellite	EMI/EMC Screen Room	Technical	1.0	1.0	
Satellite	RF Anechoic Chamber SCIF	Technical	0.2	0.2	
Satellite	Spacecraft Storage SCIF	Storage	0.3	0.3	

Revision 291 702/001291 9117/94

Satellite	Spacecraft Design SCIF	Technical	6.0	6.0	0
Satellite	Payload Exploitation SCIF	Technical	2.1	2.1	0
Satellite	Mission Development SCIF	Technical	0.5	0.5	0
Satellite	Advanced Systems SCIF	Technical	0.4	0.4	0
Satellite	Space Applications SCIF	Technical	1.2	1.2	ō
Satellite	Fuels Testing Laboratory	Technical	1.6	1.6	0
Satellite	General Laboratories	Technical	10.8	10.8	0
Satellite	General Design Space	Technical	62.7	62.7	0
Satellite	General Office Space	Administrative	22.5	22.5	0
Satellite	Storage	Storage	31.4	31.4	0
Satellite	Utility	Utility	1.5	1.5	0
	Total		207.9	207.9	0

3.5.1.1 This activity has the capacity to absorb about 85% more work years in the Satellites CSF with minor facility modification. Even though the table above indicates that there is no excess capacity in our facilities square footage, this additional work load is achievable through the use of multiple shifts and overtime, which is the standard mode of operation for assembly, testing and qualification of spacecraft. In other words, the amount of facility space would not increase, but the percentage of time that the facility was utilized would increase. This additional workload would be distributed among the on-base test facilities and the off-base operational field sites. The peak loading of head count during the day at any one facility would be minimal.

3.5.1.2 This activity has the capability to absorb an additional 320 work years in the Satellites CSF.

3.5.1.3 There would be no impact of 3.5.1.1 and 3.5.1.2 (above) to military construction programs or other alteration projects programmed in the FY95 RBS at this activity for the Satellites CSF.

3.5.2 Land Use: For the Satellites CSF, approximately 50 acres are available for additional Satellites CSF construction at the NRL field sites.

3.5.3 Utilities: There is no restriction or limit to expand the utility services for the Satellites CSF at the NRL field sites.

Revision Ral Jur low Ralingat

38 AUG 1994

SECTION III: CAPABILITY OF ACTIVITIES PERFORM COMMON SUPPORT FUNCTIONS (CFSs)

3.0 Mission: Major capabilities contributing to the common support function.

Satellites

- o Navy's Lead Laboratory For Space
- o Systems And Missions Analyses
- o Technology Assessment/Advancement
- o Systems Engineering
- o Spacecraft Electronic Systems Development
- o Spacecraft Integration, Test, And Launch Operations
- o Mission Operations
- o Payload Data Management Systems Design
- o Spacecraft On-Board Processor Design
- o Spacecraft Software Technology Development
- o Spacecraft Electrical Power System Design
- o Spacecraft Telemetry And Command Systems Design
- o Spacecraft Networking Systems Design
- o Space Systems Architecture Development
- o Space Systems Astrodynamics Analysis
- o Space Surveillance Systems Design
- o Orbitology Technology Development
- o Parallel Processing For Space Surveillance Applications Technology Development
- o On-Orbit Performance Analysis
- o Space Based Laser Communications Technology Development
- o Laser Ranging Technology Development

This Section Replaced in its hivitz with "SATELLITES" Section dated 8-8-94

- o Space Based High Temperature Superconductivity Technology Development
- A Launch Vehicle Propulsion Technology Development
- o Transfer Stage Technology Development And Systems Design
- o Time And Frequency Technology Development
- o Space Based Navigation Systems Technology Development
- o Spacecraft Structures And Mass Properties Analysis And Design
- o Spacecraft Environmental Testing
- o Spacecraft Mechanism And Space Borne Robotics Systems Design
- o Spacecraft Attitude And Orbit Control Systems Analysis And Design
- o Spacecraft Reaction Control Systems Design
- o Spacecraft Propulsion Systems Design
- o Spacecraft Thermal Control Systems Design
- o Spacecraft Launch Vehicle Integration
- o Space Expert Systems Design
- o Large Space Structures Control Analysis And Design
- o Advanced Data Modem Design
- o Advanced Spacecraft Materials Technology Development

Describe any relationship and interconnectivity with other function (common or otherwise) in support of the overall activity mission.

The Naval Center for Space Technology (NCST), in performing the mission detailed herein, relies very heavily on the basic research and exploratory development work conducted in the other research divisions of NRL, in that the systems developed by the NCST to solve DOD problems and requirements integrate these technologies into operational systems. Conversely, these research divisions of NRL rely on the NCST to provide a "product line" for these technologies to be demonstrated or integrated into the military service or transitioned to commercial or industrial applications. Having the vertical integration of 6.1 research with the systems design, systems

engineering, and systems integration capability for Satellites collocated at the laboratory allows for the very rapid infusion of Laboratory technology into operational satellites.

Specific Pervasive Functions that are intimately linked to satellites are Electronic Devices, Environmental Sciences, and Advanced Materials. Large cooperative efforts exist in all of these areas. For example, the High Temperature Superconductivity Space Experiment is a classic example that is held as a model for managing technology development and bringing laboratory research into operational use in record time. This will result in the first use of high temperature superconducting devices in space.

In addition, there is a significant, pervasive and inseverable coupling of technology development, analysis and engineering between the Product Functions of Satellites and C4I Systems. The primary technology effort of NRL in Satellites is devoted to surveillance and sensor systems. The application of these systems in defense is to provide combat data to the war fighter. The systems must be treated as complete "sensor- to-shooter" architectures, including the requirements determination, performance analysis, engineering design, acquisition, and operations. Inherent in this treatment is the sensor portion and the C4I portion; the space portion and the ground portion; the tactical terminal portion and the satellite command and control portion. All engineering, trade studies, performance analysis, and indeed the operation of the system must be optimized across the entire system. The successful function of the system requires this. Separation the functions of C4I and Satellites Technology development would seriously jeopardize the development of future systems such as those which NRL has been so highly successful at developing and deploying in the past.

3.1 Location

3.1.1 Geographic/Climatological Features: There are no special geographic or climatological features in or around this activity relevant to the Satellites CSF.

3.1.2 Licenses & Permits: The Satellites CSF requires no special licenses or permits for the performance of its function.

3.1.3 Environmental Constraints: There are no environmental constraints to the Satellites CSF at this activity.

3.1.4 Special Support Infrastructure: No special support infrastructure is required for the Satellites CSF at this activity.

3.1.5 Proximity to Mission-Related organizations: The Satellites CSF does not require proximity to any particular mission-related organizations.

3.2 Personnel

3.2.1 Total Personnel: The total number of government (military and civilian), on-site federally funded research and development center (FFRDC) and on-site system engineering technical assistance (SETA) personnel engaged in science and technology (S&T), engineering

development and in-service engineering activities as of the end of FY93 is described on the chart below:

.

CSF-SPACE SYSTEMS

Types of Personnel	Number of Personnel					
			On-Site FFRDC	On-Site SETA		
	Civilian	Military				
Technical	176	0	0	142		
Management (SUPV)	51	0	0	14		
Other	0	0	0	0		

3.2.2 Education: the number of government personnel actively engaged in S&T, engineering and in-service engineering activities by highest degree and type of position is as follows:

CSF-SPACE SYSTEMS

Type of	Number of Government Personnel by Type of Position					
Degree/Diploma						
	Technical	Management (supv)	Qther			
High School or less	35	3				
Associates	8	0				
Bachelor	95	27		$\overline{\}$		
Masters	24	1 7				
Doctorate	14	4				
(incl_med/vet,etc)	0	0				

3.2.3 Experience: The experience level of government personnel is provided below.

CSF-SATELLITES

Type of	Y	ears of Go	vernment a	and/or Minta	ary Service
Position	Less than 3 Years	3-10 Years	11-15 Years	16-20 Years	More than 20 Years
Technical	24	73	15	14	50
Management (supv)	2	9	8	4	28
Total	26	82	23	18	7,8

3.2.4.1 The following patents were awarded or disclosed.

.

•

CSF	Disclosures	Awarded	Patent Titles
Satellites	1	1	Multi-GHZ Frequency Divider Efficient Dynamic Phasefront Modulation System for Free-space Optical Communications

3.2.4.2 The following papers were published in peer reviewed journals.

	NUMBER	
CSF	NUMBER	PAPER TITLES
	PUBLISHED	(LIST)
Satel-	15	Upgrades for efficient three-dimensional ionospheric ray tracing: Investigation of HF
lites		near vertical incidence sky wave effects
		Updated climatological model predictions of ionospheric and HF propagation parameters
		Operating modes of a charge-transfer-plate liquid crystal phase modulator
		Passive stabilization of photorefractive two beam coupling with laser diodes using achromatic grating techniques
		Comparison of photorefractive beam fanning using monochromatic and achromatic two-wave mixing in SBN
		Thin-phase Screen Estimates of TID Effects on Midlatitude Transionospheric Radio Paths Along Track Formation keeping for Satellites With Low Eccentricity
		Determination of the Effective Trap Density of TaKNb03 and BaTi03 at 823NM Using the Shallow Trap Model
		Frozen orbit morphology in Orlov's plane
		Geolocation Accuracy of HERCULES on STS 53
		Painting the Phase Space Portrait of an Integral Dynamical System
		Kinematic and Dynamic Properties of an Elbow Manipulator Mounted on a Satellite
		Paint by Number: Uncovering phase flows of an integrable dynamical system
		Ground-based Ladar Measurements of Satellite Vibrations
		Frozen Orbits for Satellites Close to an Earth-like Planet

3.3 Workload

3.3.1 **FY93** Workload

3.3.1.1 Work Year Lifecycle: Identified below are the number of actual workyears executed for the Satellites CSF in FY93 for each of the following: government civilian; military; onsite FFRDCs; and on-site SETA'S

SATELLITES		Fis	cal Year 19	993 Actual
	Civilian	Military	FFRDC	SETA
Science &				
Technology	21.7	0	0	8.7
Engineering				
Development	213.3	0	0	158.6
In-Service				
Engineering	0	<u>\</u> 0	0	0

3.3.1.2 Engineering Development by ACAT: No CSF's to report in this area.

3.3.1.3 In-Service Engineering: No OSF's to report in this area.

3.3.2 Projected Funding

3.3.2.1 Direct Funding: The are no direct appropriations to the satellites CSF.

3.3.2.2 Other Obligation Authority: For The SateNites CSF, the following funding has been identified for FY94-FY97:

	\$K	\$K	\$K	\$K
CF	FY94	FY95	FY96	FY97
Satellites	111093	114174	121270	126307

3.4.1 Major Equipment and Facilities: The major facilities and equipment necessary to support the Satellites CSF are listed in the table below. None of the facilities are shared with other CSF's. Many of these facilities are SCIF's and therefore no photographs can be supplied.

Common		Shared				Uniqu	• 10		
Support	%	Support	%			Fed.		Cost	
Function	Utli.	Function	Util.	Major Facility or Equipment Description	DOD	Gov't	U.S.	(\$K)	
Satellite	50	Ground Control	50	SCI Data Storage and Media Management Vault				500	
Satellite	50	Ground Control	50	SCI Management Information System				200	
Satellite	50	Ground Control	50	SCI Data Processing Center				800	
Satellite	100			Laser Physics Lab				1300	
Satellite	50	Ground Control	50	NCST Management Information System				1000	
Satellite	100			SCI Rayload Test Facility/Processor Development Laboratory	X			10000	
Satellite	50	Ground Control	50	Space Systems Development Department Computation Facility				1000	
Satellite	100			Spacecraft Battery Laboratory	1	×		200	
Satellite	50	Ground Control	50	Precision Oscillator Test Facility			Х	4800	
Satellite	100			Precision RF Anechoic Chamber	×			3000	
Satellite	100			Secure Payload Development Facility				1000	
Satellite	100			Reshape Facility			х	250	
Satellite	100			Secure Spacecraft Assembly/Test Facility(SCI)	1			1000	
Satellite	100			Spacecraft Acoustic Reverberation Chamber	x			5000	
Satellite	100			Spacecraft Vibration Test Facility	1			1500	
Satellite	100			Class-100 Clean Room				400	
Satellite	100			Spacecraft Propulsion System Welding Facility	X			500	
Satellite	100	· · · · · · · · · · · · · · · · · · ·		Thermal High Vacuum Chambers				2500	
Satellite	100			RF Compact Range	1			2000	
Satellite	100	·		Spacecraft Static Test Loads Facility	x			500	
Satellite	100			Spacecraft Assembly and Test Facility	1			2000	
Satellite	100			Spacecraft Spin Balance Facility	4			500	
Satellite	100			Spacecraft Optical Alignment Facility	\wedge			200	
Satellite	100			Spacecraft Thermal Blanket Facility	+			100	
Satellite	90	Ground Control	10	RF Anechoic Chamber			• • • •	3000	
Satellite	100			Microelectronics Clean Room		\sim	<u>.</u>	200	
Satellite	100			EMI/EMC Screen Room				200	
Satellite	100			RF Anechoic Chamber SCIF			<u></u>	30	
Satellite	100			Spacecraft Storage SCIF				70	
Satellite	100						\rightarrow		
				Spacecraft Design SCIF	 			1200	
Satellite	100			Payload Exploitation SCIF	ļ			430	
Satellite	100			Mission Development SCIF				100	
Satellite	100			Advanced Systems SCIF				80	
Satellite	100			Space Applications SCIF				235	
Satellite	100			Fuels Testing Laboratory				1,00	
· · · · · · · · · · · ·	A			Total				45895	

3.5 Expansion Potential:

.

3.5.1 Laboratory Facilities: The facilities required to perform the Satellites CSF at this activity are listed below. For those facilities located at the NRL main base, NRL's MIS data were used. For facilities located at NRL's field sites, local data were used.

Common			1		
Support		Type Of		(KSF)	
Function	Major Facility or Equipment Description	Space	Current	Used	Excess
Satellite	SCI Data Storage and Media Management Vault	Technical	2.0	2.0	0
Satellite	SCI Management Information System	Technical	0.3	0.3	0
Satellite	SCI Data Processing Center	Technical	1.0	1.0	0
Satellite	Laser Physics Lab	Technical	0.5	0.5	0
Satellite	NCST Management Information System	Technical	1.4	1.4	0
Satellite	SCI Payload Test Facility/Processer Development Laboratory	Technical	2.4	2.4	0
Satellite	Space Systems Development Department Computation Facility	Technical	0.9	0.9	0
Satellite	Spacecraft Battery Laboratory	Technical	2.4	2.4	0
Satellite	Precision Oscillator Test Facility	Technical	5.8	5.8	0
Satellite	Precision RF Anechoic Chamber	Technical	2.3	2.3	0
Satellite	Secure Payload Development Facility	Technical	1.9	1.9	0
Satellite	Reshape Facility	Technical	0.9	0.9	0
Satellite	Secure Spacecraft Assembly/Test Facility(SCI)	Technical	12.0	12.0	0
Satellite	Spacecraft Acoustic Reverberation Chamber	Technical	1.4	1.4	0
Satellite	Spacecraft Vibration Test Facility	Technical	2.6	2.6	0
Satellite	Class-100 Clean Room	Technical	1.6	1.6	0
Satellite	Spacecraft Propulsion System Welding Facility	Technical	1.0	1.0	0
Satellite	Thermal High Vacuum Chambers	Technical	6.1	6.1	0
Satellite	RF Compact Range	Technical	0.5	0.5	0
Satellite	Spacecraft Static Test Loads Facility	Technical	2.6	2.6	0
Satellite	Spacecraft Assembly and Test Facility	Technical	À ,9	4.9	0
Satellite	Spacecraft Spin Balance Facility	Technical	1.0	1.0	0
Satellite	Spacecraft Optical Alignment Facility	Technical	1.0	1.0	0
Satellite	Spacecraft Thermal Blanket Facility	Technical	1.0	<u> </u>	0
Satellite	RF Anechoic Chamber	Technical	7.7	7.7	<u> </u>
Satellite	Microelectronics Clean Room	Technical	0.5	0.5	7 0
Satellite	EMI/EMC Screen Room	Technical	1.0	1.0	70
Satellite	RF Anechoic Chamber SCIF	Technical	0.2	0.2	6
Satellite	Spacecraft Storage SCIF	Storage	0.3	0.3	0
Satellite	Spacecraft Design SCIF	Technical	6.0	6.0	0
Satellite	Payload Exploitation SCIF	Technical	2.1	2.1	0
Satellite	Mission Development SCIF	Technical	0.5	0.5	0
Satellite	Advanced Systems SCIF	Technical	0.4	0.4	. 0
Satellite	Space Applications SCIF	Technical	1.2	1.2	0
Satellite	Fuels Testing Laboratory	Technical	1.6	1.6	0
Satellite	General Laboratories	Technical	10.8	10.8	0
Satellite	General Design Space	Technical	62.7	62.7	0

Satellite	General Office Space	Administrative	22.5	22.5	0
Satellite	Storage	Storage	31.4	31.4	0
Satellite	Utility	Utility	1.5	1.5	0
	Total		207.9	207.9	0

3.5.1.1 This activity has the capacity to absorb about 85% more work years in the Satellites CSF with minor facility modification. Even though the table above indicates that there is no excess capacity in our facilities square footage, this additional work load is achievable through the use of multiple shifts and overtime, which is the standard mode of operation for assembly, testing and qualification of spacecraft. In other words, the amount of facility space would not increase, but the percentage of time that the facility was utilized would increase. This additional workload would be distributed among the on-base test facilities and the off-base operational field sites. The peak loading of head count during the day at any one facility would be minimal.

3.5.1.2 This activity has the capability to absorb an additional 320 work years in the Satellites CSF.

3.5.1.3 There would be no impact of 3.5.1.1 and 3.5.1.2 (above) to military construction programs or other alteration projects programmed in the FY95 PBS at this activity for the Satellites CSF.

3.5.2 Land Use: For the Satellites CSF, approximately 50 acres are available for additional Satellites CSF construction at the NRL field sites.

3.5.3 Utilities: There is no restriction or limit to expand the utility services for the Satellites CSF at the NRL field sites.

B2. <u>Ground Control Systems:</u>

- **3.0 Mission:** Major capabilities contributing to the common support function.
 - o Navy's Lead Laboratory For Space
 - o Systems And Missions Analyses
 - o Technology Assessment/Advancement
 - o Systems Engineering
 - o Ground Station Development
 - o Mission Operations
 - o Space Systems Architecture Development
 - o Mobile Spacecraft Command, Control, And Communications System Design
 - o Space Surveillance Systems Design
 - o Parallel Processing For Space Surveillance Applications Technology Development
 - o Laser Ranging Technology Development
 - o Time And Frequency Technology Development
 - o Space Based Navigation Systems Technology Development
 - o Surveillance of Space Technology Development
 - o Ground Support Equipment Design
 - o Space Expert Systems Design
 - o Advanced Tactical Terminal Design
 - o Advanced Data Modem Design

B-11 R (17 Aug 94)

Describe any relationship and interconnectivity with other function (common or otherwise) in support of the overall activity mission.

The Naval Center for Space Technology (NCST), in performing the mission detailed herein, relies very heavily on the basic research and exploratory development in the majority of the other research divisions of NRL, in that the systems developed by the NCST to solve DOD problems and requirements integrates these technologies into operational systems. Conversely, these research divisions of NRL rely on the NCST to provide a "product line" for these technologies to be demonstrated or integrated into the military service or transitioned to commercial or industrial applications. Having the vertical integration of 6.1 research with the systems design, systems engineering, and systems integration capability for Ground Control Systems collocated at the laboratory allows for the very rapid infusion of laboratory technology into operational Ground Control Systems.

Specific Pervasive Functions that are intimately linked to Ground Control Systems are Electronic Devices, Environmental Sciences, and Advanced Materials. Large cooperative efforts exist in all of these areas. For example, the High Temperature Superconductivity Space R Experiment is a classic example that is held as a model for managing technology development and bringing laboratory research into operational use in record time. This will result in the first use of high temperature superconducting devices in space.

In addition, there is a significant, pervasive and inseverable coupling of technology development, analysis and engineering between the Product Functions of Ground Control Systems and C4I Systems. The primary technology effort of NRL in Ground Control Systems is devoted to surveillance and sensor systems. The application of these systems in the defense role is to provide combat data to the war fighter. The systems must be treated as complete "sensor- to-shooter" architectures, including the requirements determination, performance analysis, engineering design, acquisition, and operations. Inherent in this treatment is the sensor portion and the C4I portion; the space portion and the ground portion; the tactical terminal and the satellite command and control portion. All engineering, trade studies, performance analysis, and indeed the operation of the system must be optimized across the entire system. The successful function of the system requires this. Separation the functions of C4I and Ground Control Systems Technology development would seriously jeopardize the development of future systems such as those which NRL has been so highly successful at developing and deploying in the past.

3.1 Location

3.1.1 Geographic/Climatological Features: There are no special geographic or climatological features in or around this activity relevant to the Ground Control Systems CSF.

3.1.2 Licenses & Permits: The Ground Control Systems CSF requires no special licenses or permits for the performance of its function.

3.1.3 Environmental Constraints: There are no environmental constraints to the Ground Control Systems CSF at this activity.

3.1.4 Special Support Infrastructure: No special support infrastructure is required for the Ground Control Systems CSF at this activity.

B-12 R (8 Aug 94)

3.1.5 Proximity to Mission-Related organizations: There are no nearby outside organizations whose location facilities accomplishing the Ground Control Systems CSF effort.

3.2 Personnel

3.2.1 Total Personnel: The total number of government (military and civilian), on-site federally funded research and development center (FFRDC) and on-site system engineering technical assistance (SETA) personnel engaged in science and technology (S&T), engineering development and in-service engineering activities as of the end of FY93 is described on the chart below:

CSF-GROUND STATION

Types of Personnel	Number of Personnel				
	Government		On-Site FFRDC	On-Site SETA	
	Civilian	Military			
Technical	4 5		0 0	24	
Management (SUPV)	11		0 () 3	
Other	. 0		0 0	0	

3.2.2 Education: the number of government personnel actively engaged in S&T, engineering and in-service engineering activities by highest degree and type of position is as follows:

CSF-GROUND CONTROL SYSTEMS

Type of	Number of Government Personnel by Type of Position			
Degree/Diploma				
	Technical	Management	Other	
		(supv)		
High School or less	9	1		
Associates	3	2		
Bachelo	23	4		
Masters	9	4		
Doctorate	1	0		
(incl med/vet,etc)	0	0		

R

R

B-13 R (17 Aug 94)

3.2.3 Experience: The experience level of government personnel is provided below.

CSF-GROUND CONTROL SYSTEMS

Type of	Y	ears of Go	overnment a	and/or Milit	ary Service
Position	Less than	3-10 Years	11-15 Years	16-20 Years	More than
	3 Years				20 Years
Technical	5	27	/ 1	2	10
Management (supv)	0	0	2	2	7
Total	5	27	3	4	17

3.2.4.1 No patents were awarded in the Ground Control Systems CSF.

3.2.4.2 No papers were published in the Ground Control Systems CSF.

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 Work Year Lifecycle: Identified below are the number of actual workyears executed for each application CSF in FY93 for each of the following: government civilian; military; on-site FFRDCs; and on-site SETA'S

GROUND	<u> </u>	Fis	cal Year 19	993 Actual
	Civilian	Military	FFRDC	SETA
Science & Technology	o	0	0	0
Engineering Development	62.0	0	. 0	2.2
In-Service Engineering	0	0	0	. 0

3.3.1.2 Engineering Development by ACAT: No CSF's to report in this area.

3.3.1.3 In-Service Engineering: No CSF's to report in this area.

3.3.2 Projected Funding

3.3.2.1 Direct Funding: The are no direct appropriations to the Ground Control Systems CSF.

R

3.3.2.2 Other Obligation Authority: For this CSF, the following funding has been identified for FY94-FY97:

	\$K	\$K	\$K	\$K
CSF	FY94	FY95	FY96	FY97
Ground Control Systems	40986.9	42134.6	43356.4	44450.8

3.4 Facilities and Equipment

3.4.1 Major Equipment and Facilities: The major facilities and equipment necessary to support the Ground Control Systems CSF is listed in the table below. None of the facilities are shared with other CSF's. Many of these facilities are SCIF's and therefore no photographs can be supplied.

Common	1	Shared				Unlqu	e to	Repacement
Support	%	Support	%			Fed.		Cost
Function	Ut11.	Function	Util.	Major Facility or Equipment Description	DOD	Gov't	U.S.	(\$K)
Ground Control	-50	Satellite	50	SCI Data Storage and Media Management Vault				500
Ground Control	50	Satellite	50	SCI Management Information System				200
Ground Control	50	Satellite	50	SCI Data Processing Center				800
Ground Control	50	Satellite	50	NCST Management Information System				1000
Ground Control	50	Satellite	50	Space Systems Development Department Computation Facility				1000
Ground Control	100	· .•		SCI Spacecraft Data Processing Development Facility				300
Ground Control	50	Satellite	50	Precision Oscillator Test Facility			Х	4800
Ground Control	100			Ground Station Assembly and Test Facility	1			100
Ground Control	90	Satellite	10	RF Anechoic Chamber	X			3000
Ground Control	100			Ground Station Assembly SCIF				280
Ground Control	100			Systems Management SCIF				4 5
Ground Control	100			Ground Station Configuration Management SCIF				125
Ground Control	100			SCIF Conference Room				150
Ground Control	100			Security Storage SCIF				55
Ground Control	100			MRC Precision Spacecraft Calibration Facility			Х	40000
Ground Control	100			Pomonkey Deep Space Tracking Facility			x	25890
Ground Control	100			Spacecraft Command and Control Facility VAFB				3000
Ground Control	100			Blossom Point Spacecraft Tracking Facility				27000
· · · · · · · · · · · · · · · · · · ·				Total	1	L		108245

R

3.5 Expansion Potential:

3.5.1 Laboratory Facilities: The facilities required to perform the Ground Control Systems CSF at this activity are listed below. For those facilities located at the NRL main base, NRL's MIS data was used. For facilities located at NRL's field sites, local data was used.

Common					
Support		Type Of		(KSF)	
Function	Major Facility or Equipment Description	Space	Current	Used	Excess
Ground Control	SCI Data Storage and Media Management Vault	Technical	2.0	2.0	0
Ground Control	SCI Management Information System	Technical	0.3	0.3	0
Ground Control	SCI Data Processing Center	Technical	1.0	1.0	0
Ground Control	NCST Management Information System	Technical	1.4	1.4	0
Ground Control	Space Systems Development Department Computation Facility	Technical	0.9	0.9	0
Ground Control	SCI Spacecraft Data Processing Development Facility	Technical	6.8	6.8	0
Ground Control	Precision Oscillator Test Facility	Technical	5.8	5.8	0
Ground Control	Ground Station Assembly and Test Facility	Technical	3.4	3.4	0
Ground Control	RF Anechoic Chamber	Technical	7.7	7:7	0
Ground Control	Ground Station Assembly SCIF	Technical	1.4	1.4	0
Ground Control	Systems Management SCIF	Administration	0.2	0.2	0
Ground Control	Ground Station Configuration Management SCIF	Technical	0.6	0.6	0
Ground Control	SCIF Conference Room	Administration	0.7	0.7	0
Ground Control	Security Storage SCIF	Storage	0.3	0.3	0
Ground Control	MRC Precision Spacecraft Calibration Facility	Technical	10.0	10.0	0
Ground Control	Pomonkey Deep Space Tracking Facility	Technical	16.5	16.5	0
Ground Control	Spacecraft Command and Control Facility VAFB	Technical	9.4	9.4	0
Ground Control	Blossom Point Spacecraft Tracking Facility	Technical	61.1	61.1	0
Ground Control	General Laboratories	Technical	10.8	10.8	0
Ground Control	General Design Space	Technical	62.7	62.7	0
Ground Control	General Office Space	Administrative	22.5	22.5	0
Ground Control	Storage	Storage	31.4	31.4	0
Ground Control	Utility	Utility	1.5	1.5	0
	Total		258.5	258.5	0

3.5.1.1 This activity has the capacity to absorb about 85% more work years in the Ground Control Systems CSF with minor. Even though the table above indicates that there is no excess capacity in our facilities square footage, this additional work load is achievable through the use of multiple shifts and overtime which is the standard mode of operation for assembly, testing and qualification of spacecraft. In other words, the amount of space of the facilities does not increase, but the percentage of time that the facility is utilized increases. This additional workload would be distributed among the on-base test facilities and the off-base operational field sites. The peak loading of head count during the day at any one facility would be minimal.

3.5.1.2 This activity has the capability to absorb an additional 80 work years in the Ground Control Systems CSF.

3.5.1.3 There would be no impact of 3.5.1.1 and 3.5.1.2 (above) to military construction programs or other alteration projects programmed in the FY95 PBS at this activity for the Ground Control Systems CSF.

3.5.2 Land Use: For the Ground Control Systems CSF, approximately 50 acres are available ^R foe additional Ground Control Systems CSF construction at the NRL field sites.

3.5.3 Utilities: There is no restriction or limit to expand the utility services for the Ground Control Systems CSF at the NRL field sites.

.

B-17 R (8 Aug 94)

SECTION III: CAPABILITY OF ACTIVITIES PERFORM COMMON SUPPORT FUNCTIONS (CFSs)

3.0 Mission: Major capabilities contributing to the common support function.

Ground Control Systems:

- o Navy's Lead Laboratory For Space
- o Systems And Missions Analyses
- o Technology Assessment/Advancement
- o Systems Engineering
- o Ground Station Development
- o Mission Operations
- o Space Systems Architecture Development
- o Mobile Spacecraft Command, Control, And Communications System Design
- o Space Surveillance Systems Design
- o Parallel Processing For Space Surveillance Applications Technology Development
- o Laser Ranging Technology Development
- o Launch Vehicle Propulsion Technology Development
- o Time And Frequency Technology Development
- o Space Based Navigation Systems Technology Development
- o Surveillance of Space Technology Development
- o Ground Support Equipment Design
- o Space Expert Systems Design
- o Advanced Tactical Terminal Design
- o Advanced Data Modem Design

Describe any relationship and interconnectivity with other function (common or otherwise) in support of the overall activity mission.

The Naval Center for Space Technology (NCST), in performing the mission detailed herein, relies very heavily on the basic research and exploratory development work conducted in the other research divisions of NRL, in that the systems developed by the NCST to solve DOD problems and requirements integrate these technologies into operational systems. Conversely, these research divisions of NRL rely on the NCST to provide a "product line" for these technologies to be demonstrated or integrated into the military service or transitioned to commercial or industrial applications. Having the vertical integration of 6.1 research with the systems design, systems engineering, and systems integration capability for Ground Control Systems collocated at the Laboratory allows for the very rapid infusion of laboratory technology into operational Ground Control Systems.

Specific Pervasive Functions that are intimately linked to Ground Control Systems are Electronic Devices, Environmental Sciences, and Advanced Materials. Large cooperative efforts exist in all of these areas. For example, the High Temperature Superconductivity Space Experiment is a classic example that is held as a model for managing technology development and bringing laboratory research into operational use in record time. This will result in the first use of high temperature superconducting devices in space.

In addition, there is a significant, pervasive and inseverable coupling of technology development, analysis and engineering between the Product Functions of Ground Control Systems and C4I Systems. The primary technology effort of NRL in Ground Control Systems is devoted to surveillance and sensor systems. The application of these systems in defense is to provide combat data to the war fighter. The systems must be treated as complete "sensor- to-shooter" architectures, including the requirements determination, performance analysis, engineering design, acquisition, and operations. Inherent in this treatment is the sensor portion and the C4I portion; the space portion and the ground portion; the tactical terminal portion and the satellite command and control portion. All engineering, trade studies, performance analysis, and indeed the operation of the system must be optimized across the entire system. The successful function of the system requires this. Separation the functions of C4I and Ground Control Systems Technology development would seriously jeopardize the development of future systems such as those which NRL has been so highly successful at developing and deploying in the past.

3.1 Location

3.1.1 Geographic/Climatological Features: There are no special geographic or climatological features in or around this activity relevant to the Ground Control Systems CSF.

3.1.2 Licenses & Permits: The Ground Control Systems CSF requires no special licenses or permits for the performance of its function.

3.1.3 Environmental Constraints: There are no environmental constraints to the Ground Control Systems CSF at this activity.

3.1.4 Special Support Infrastructure: No special support infrastructure is required for the Ground Control Systems CSF at this activity.

3.1.5 Proximity to Mission-Related organizations: The Ground Control Systems CSF does not require proximity to any particular mission-related organizations.

3.2 Personnel

3.2.1 Total Personnel: The total number of government (military and civilian), on-site federally funded research and development center (FFRDC) and on-site system engineering technical assistance (SETA) personnel engaged in science and technology (S&T), engineering development and in-service engineering activities as of the end of FY93 is described on the chart below:

CSF-GROUND STATION

Types of Personnel		Number of Personne		
	Government	1	On-Site FFRDC	On-Site SETA
	Civilian	Military		
Technical	4 5	; (0 0	24
Management (SUPV)	<u> </u>	(0 0	3
Other	9		0 0	0

3.2.2 Education: the number of government personnel actively engaged in S&T, engineering and in-service engineering activities by highest degree and type of position is as follows:

CSF-GROUND CONTROL SYSTEMS

Type of	Number of Government Personnel by Type of Position					
Degree/Diploma		\backslash				
	Technical	Management	Other			
		(supv)				
High School or les	s 9	1				
Associate	s 3	2				
Bachelo	r 23	4				
Master	s 9	4				
Doctorat	ə 1	0				
(incl med/vet,etc) 0	0				

3.2.3 Experience: The experience level of government personnel is provided below.

CSF-GROUND CONTROL SYSTEMS

Type of	Y	ears of Go	vernment a	and/or Milit	ary Service
Position	Less than	3-10 Years	11-15 Years	16-20 Years	More than
	3 Years				20 Years
Technical	5	27	1	2	1 0
Management (supv)	0	0	2	2	7
Total	5	27	3	4	17

3.2.4.1 No patents were awarded in the Ground Control Systems CSF.

3.2.4.2 No papers were published in the Ground Control Systems CSF.

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 Work Year Lifecycle: Identified below are the number of actual workyears executed for each application CSF in FY93 for each of the following: government civilian; military; on-site FFRDCs; and on-site SETA'S

GROUND	(new)	Fis	cal Year 1	993 Actual (old)
	Civilian	Military	FFRDC	SETÀ
Science &				
Technology	0	0	0	Ő
Engineering				
Developmen	62.0	0	0	2.2
In-Service			_	
Engineering	0	0	0	0

3.3.1.2 Engineering Development by ACAT: No CSF's to report in this area.

3.3.1.3 In-Service Engineering: No CSF's to report in this area.

3.3.2 Projected Funding

3.3.2.1 Direct Funding: The are no direct appropriations to the Ground Control Systems CSF.

3.3.2.2 Other Obligation Authority: For this CSF, the following funding has been identified for FY94-FY97:

1	\$K	\$K	\$K	\$K
CSF	FY94	FY95	FY96	FY97
Ground Control Systems	40987	42135	4 3 3 5 6	4 4 4 5 1

3.4 Facilities and Equipment

3.4.1 Major Equipment and Facilities: The major facilities and equipment necessary to support the Ground Control Systems CSF are listed in the table below. None of the facilities are shared with other CSF's. Many of these facilities are SCIF's and therefore no photographs can be supplied.

Common		Shared				Uniqu	e to	Repacemen
Support Function	% Utili.	Support Function	% Util.	Major Facility or Equipment Description	DOD	Fed. Gov't	U.S.	Cost (\$K)
Ground Control	50	Satellite	50	SCI Data Storage and Media Management Vault				50
Ground Control	50	Satellite	50	SCI Management Information System	<u> </u>			20
Ground Control	50	Satellite	50	SCI Data Processing Center				800
Ground Control	50	Satellite	50	NCST Management Information System				1000
Ground Control	50	Satellite	50	Space Systems Development Department Computation Facility				1000
Ground Control	100			SCI Spacecraft Data Processing Development Facility				300
Ground Control	50	Satellite	50	Precision Oscillator Test Facility			Х	4800
Ground Control	100	······································		Ground Station Assembly and Test Facility	1			100
Ground Control	90	Satellite	10	RF Anechoic Chamber	X			3000
Ground Control	100			Ground Station Assembly SCIF				280
Ground Control	100			Systems Management SCIF				4 5
Ground Control	100			Ground Station Configuration Management SCIF			•••	125
Ground Control	100			SCIF Conference Room	f			150
Ground Control	100			Security Storage SCIF				5 5
Ground Control	100			MRC Precision Spacecraft Calibration Facility	$\overline{)}$		X	40000
Ground Control	100			Pomonkey Deep Space Tracking Facility	\vdash		х	25890
Ground Control	100			Spacecraft Command and Control Facility VAFB	<u> </u>			3000
Ground Control	100			Blossom Point Spacecraft Tracking Facility	<u> </u>			2700
				Total	.			108245

3.5 Expansion Potential:

3.5.1 Laboratory Facilities: The facilities required to perform the Ground Control Systems CSF at this activity are listed below. For those facilities located at the NRL main base, NRL's MIS data were used. For facilities located at NRL's field sites, local data were used.

Common Support	$\left \right\rangle$	Type Of		(KSF)	
Function	Major Facility or Equipment Description	Space	Current	Used	Exces
Ground Control	SCI Data Storage and Media Management Vault	Technical	2.0	2.0	c
Ground Control	SCI Management Information System	Technical	0.3	0.3	0
Ground Control	SCI Data Processing Center	Technical	1.0	1.0	0
Ground Control	NCST Management Information System	Technical	1.4	1.4	0
Ground Control	Space Systems Development Department Computation Facility	Technical	0.9	0.9	0
Ground Control	SCI Spacecraft Data Processing Development Facility	Technical	6.8	6.8	0
Ground Control	Precision Oscillator Test Facility	Technical	5.8	5.8	0
Ground Control	Ground Station Assembly and Test Facility	Technical	3.4	3.4	0
Ground Control	RF Anechoic Chamber	Technical	7.7	7.7	0
Ground Control	Ground Station Assembly SCIF	Technical	1.4	1.4	0
Ground Control	Systems Management SCIF	Administration	0.2	0.2	0
Ground Control	Ground Station Configuration Management SCIF	Technical	0.6	0.6	0
Ground Control	SCIF Conference Room	Administration	0.7	0.7	0
Ground Control	Security Storage SCIF	Storage	0.3	0.3	0
Ground Control	MRC Precision Spacecraft Calibration Facility	Technical	10.0	10.0	0
Ground Control	Pomonkey Deep Space Tracking Facility	Technical	16.5	16.5	0
Ground Control	Spacecraft Command and Control Facility VAFB	Technical	9.4	9.4	0
Ground Control	Blossom Point Spacecraft Tracking Facility	Technical	61.1	61.1	0
Ground Control	General Laboratories	Technical	10.8	10.8	0
Ground Control	General Design Space	Technical	62.7	62.7	0
Ground Control	General Office Space	Administrative	22.5	22.5	0
Ground Control	Storage	Storage	31.4	31.4	0
Ground Control	Utility	Utility	1.5	1.5	0
	Total		258.5	258.5	0

3.5.1.1 This activity has the capacity to absorb about 85% more work years in the Ground Control Systems CSF with minor facility modifications. Even though the table above indicates that there is no excess capacity in our facilities square footage, this additional work load is achievable through the use of multiple shifts and overtime, which is the standard mode of operation for assembly, testing and qualification of spacecraft. In other words, the amount of facility space would not increase, but the percentage of time that the facility was utilized would increase. This additional workload would be distributed among the on-base test facilities and the off-base operational field sites. The peak loading of head count during the day at any one facility would be minimal.

3.5.1.2 This activity has the capability to absorb an additional 80 work years in the Ground Contro Systems CSF.

3.5.1.3 There would be no impact of 3.5.1.1 and 3.5.1.2 (above) to military construction programs or other alteration projects programmed in the FY95 PBS at this activity for the Ground Control Systems CSF.

3.5.2 Land Use: For the Ground Control Systems CSF, approximately 50 acres are available foe additional Ground Control Systems CSF construction at the NRL field sites.

3.5.3 Utilities: There is no restriction or limit to expand the utility services for the Ground Control Systems CSF at the NRL field sites.

Fuels Test Facility

Compact Range

Blossom Point Spacecraft Tracking Facility

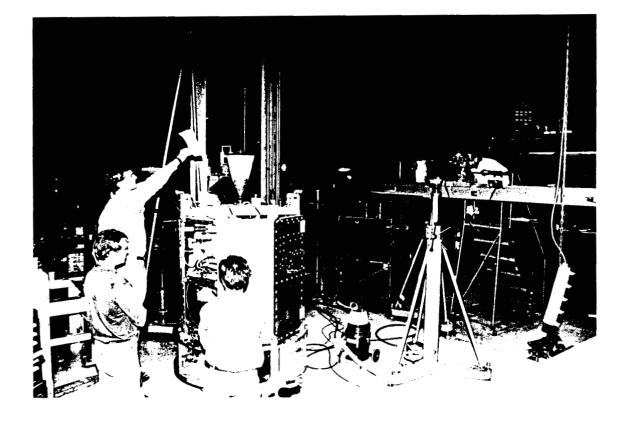
MRC Precision Spacecraft Calibration Facility

NCST FIELD SITES

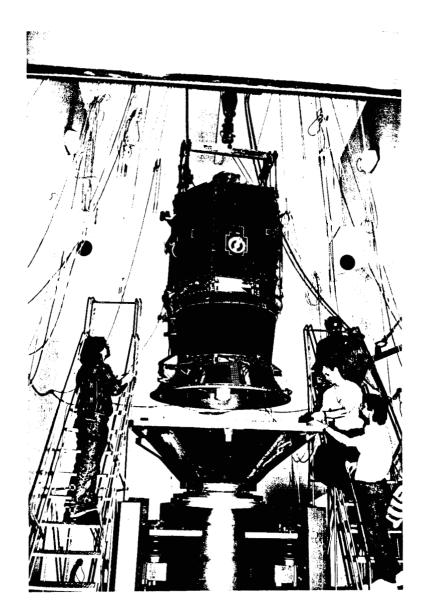
LOG

VI CEN

Midway Research Center, Va.

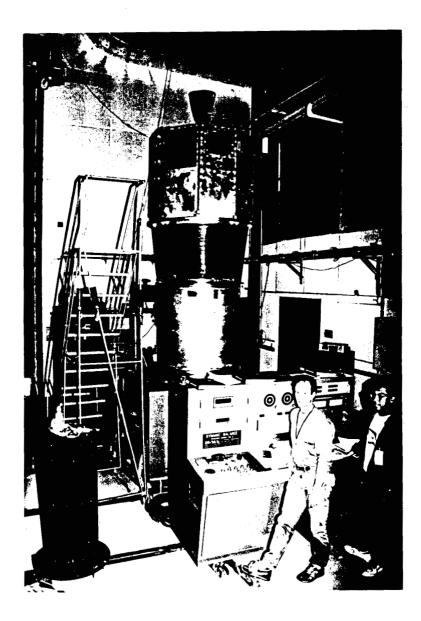

瀫

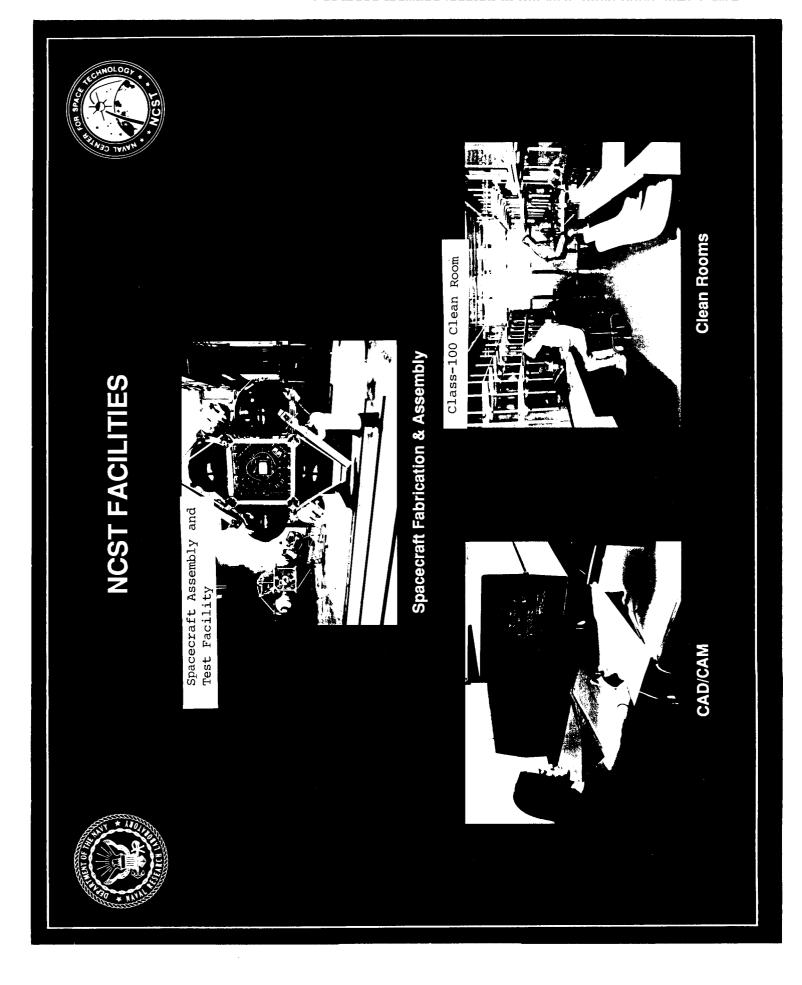
Building 660, VAFB



Blossom Point, Md.

Pomonkey, Md.


Spacecraft Optical Alignment Facility


Spacecraft Acoustic Reverberation Chamber

Spacecraft Static Test Loads Facility

Spacecraft Spin Balance Facility

Pomonkey Deep Space Tracking Facility

Reshape Facility

Same and a strange

RESHAPE

Spacecraft Vibration Test Facility

ľ 1 Λ

Thermal Vacuum Chambers

Shock & Vibration Test

11 È Th

Reverberation Chamber

Thermal High Vacuum

NCST FACILITIES

C. C4I C1. Airborne C4I 3.0 Mission

In this CSF there is significant coupling of technology development, analysis and engineering between the Product Functions of Space Systems and C4I Systems. The primary technology effort of NRL in Space Systems is devoted to surveillance and sensor systems. The application of these systems to defense provides combat data to the war fighter. The systems must be considered as complete "sensor-to-shooter" architectures, including the requirement determination, performance analysis, engineering design, acquisition, and operations. Due to the close coupling and strong interaction of Space Systems and the C4I functions described here it would seriously jeopardize several efforts to consider them in isolation.

• Improved Data Modem

-Short Range Data Communication for :

Close Air Support Suppression of Enemy Air Defense Forward Air Controller Battlefield Air Interdiction Situation Awareness

- Command and Control
- Multi-Service program
- Aircraft Platforms: F-16, A-10, AH-64, OH-58, UH-60, JSTARS
- Interservice interoperability
- Foreign Military Sales : Korea, Taiwan, Greece, Turkey, Denmark, Netherlands; Belgium, and Norway
- Quick Reaction Program, Hardware delivered in 9 months
- Government owned Drawings and Software
- Transitioned to production with two Small business companies
- Over 1000 units first year in production

• Multi-mission Advanced Tactical Terminal

- Satcom and LOS Tactical Terminal
 - Real Time Situation Awareness
 - Multi -Service program
 - Aircraft Platforms: IDAS on MH-53, Combat Talon II, UH-60
 - Quick reaction capability for prototyping of C4I Systems
 - In-house engineering with limited contractual involvement
 - Transitioned to Production
- 3.1 Location: Naval Research Laboratory, Washington DC
- 3.1.1 Geographic/Climatological Features: No special features required
- 3.1.2 Licenses & permits: None

3.1.3 Environmental constraints: None

3.1.4 **Special Support Infrastructure:** Several SCIFs specially equipped for communications investigations are used in these efforts.

3.1.5. **Proximity to Mission-Related organizations:**

Frequent interaction is required both with the sponsors of this work and the various other laboratories and facilities involved in conducting these efforts. The close proximity of these facilities facilitates effective interaction and greatly reduces travel.

3.0 Mission

Common Support Function: Airborne C4I

In this CSF there is significant coupling of technology development, analysis and engineering between the Product Functions of Space Systems and C4I Systems. The primary technology effort of NRL in Space Systems is devoted to surveillance and sensor systems. The application of these systems to defense provides combat data to the war fighter. The systems must be considered as complete "sensor-to-shooter" architectures, including the requirement determination, performance analysis, engineering design, acquisition, and operations. Due to the close coupling and strong interaction of Space Systems and the C4I functions described here it would seriously jeopardize several efforts to consider them in isolation.

• Improved Data Modem

-Short Range Data Communication for :

- Close Air Support Suppression of Enemy Air Defense Forward Air Controller Battlefield Air Interdiction Situation Awareness Command and Control
- Multi-Service program
- Aircraft Platforms: P.16, A-10, AH-64, OH-58, UH-60, JSTARS
- Interservice interoperability

- Foreign Military Sales : Korea, Taiwan, Greece, Turkey, Denmark,

- Netherlands; Belgium, and Norway
- Quick Reaction Program, Hardware delivered in 9 months
- Government owned Drawings and Software
- Transitioned to production with two Small business companies
- Over 1000 units first year in production

Multi-mission Advanced Tactical Terminal

- Satcom and LOS Tactical Terminal
- Real Time Situation Awareness
- Multi -Service program
- Aircraft Platforms: IDAS on MH-53, Combat Talon II, UH-60
- Quick reaction capability for prototyping of C4I Systems
- In-house engineering with limited contractual involvement
- Transitioned to Production

3.1 Location: Naval Research Laboratory, Washington DC

- 3.1.1 Geographic/Climatological Features: No special features required
- 3.1.2 Licenses & permits: None

3.1.3 Environmental constraints: None

3.1.4 **Special Support Infrastructure:** Several SCIFs specially equipped for communications investigations are used in these efforts.

3.1.5. Proximity to Mission-Related organizations:

Frequent interaction is required both with the sponsors of this work and the various other laboratories and facilities involved in conducting these efforts. The close proximity of these facilities facilitates effective interaction and greatly reduces travel.

Revision 705/ONR91 9117/94

C. C4I

3.0 Mission.

Common Support Function: Airborne C4I

In this CSF there is significant coupling of technology development, analysis and engineering between the Product Functions of Space Systems and C4I Systems. The primary technology effort of NRL in Space Systems is devoted to surveillance and sensor systems. The application of these systems to defense provides combat data to the war fighter. The systems must be considered as complete "sensor-to-shooter" architectures, including the requirement determination, performance analysis, engineering design, acquisition, and operations. Due to the close coupling and strong interaction of Space Systems and the CAI functions described here it would seriously jeopardize both efforts to consider them in isolation.

- Improved Data Modem
 - Short Range Data Communication for :

Close Air Support Suppression of Enemy Air Defense Forward Air Controller Battlefield Air Interdiction Situation Awareness Command and Control

- Multi-Service program
- Aircraft Platforms: F-16, A-10, AH-64, OH-58, UH-60, JSTARS
- Interservice interoperability
- Foreign Military Sales : Korea, Taiwan, Greece, Turkey, Denmark, Netherlands; Belgium, and Norway
- Quick Reaction Program, Hardware delivered in 9 months
- Government owned Drawings and Software
- Transitioned to production with two small business companies
- Over 1000 units first year in production

Multi-mission Advanced Tactical Terminal

- Satcom and LOS Tactical Terminal
- Real Time Situation Awareness
- Multi -Service program
- Aircraft Platforms: IDAS on MH-53, Combat Talon II, UH-60
 Quick reaction capability for prototyping of C4I Systems
- In-house engineering with limited contractual involvement
- Transitioned to Production

Common Support Function: Fixed groundbased C4I

The groundbased C4I efforts described are conducted in close coordination with Navyspecific research in networking and communications. The efforts reported here are aimed at shipboard problems even though they were conducted using land-based sites.

Communications

- ROTHR communications investigation
- Digital data retransmission
- Radio frequency interference research

3.1 Location

3.1.1 Geographic/Climatological Features. No special features required

Common Support Functions	Name	Type of Organization	Distance (Miles)	Workyears Performed by Your Activity	Workyears Funded by Your Activity
Airborne C4I	ARINC	NFP Commercial	45		1
Airborne C4I	SPAWAR	MATT Sponsor	1	10	
Airborne C4I	NESSEC	Test Facility	10		1
Airborne C4I	NAWC	Test Facility	90		1
Airborne C4I	NSA	Support & Evaluation	30		1

3.2 Personnel:

3.2.1 Total Personnel:

	Number of Personnel				
Types of personnel	Government		On-Site FFRDC	On-Site SETA	
	Civilian	Military			
Technical	9			15	
Management (Supv)	2				
Other					

R

Common Support Functions	Name	Type of Organization	Distance (Miles)	Workyears Performed by Your Activity	Workyears Funded by Your Activity
Airborne C4I	ARINC	NFP Commercial	45		1
Airborne C4	SPAWAR	MATT Sponsor	1	10	
Airborne C4I	NESSEC	Test Facility	10		1
Airborne C4I	NAWC	Test Facility	90		1
Airborne C4I	NSA	Support & Evaluation	30		1

•

3.2 Personnel:

3.2.1 Total Personnel:

		Numbe	er of Personne	l
Types of personnel	Government		On-Site FFRDC	On-Site SETA
	Civilian	Military		
Technical	9			15
Management (Supv)	2			
Other				

Revision 700291 8/17/19

3.1.2 Licenses & permits. None

3.1.3 Environmental constraints. None

3.1.4 <u>Special Support Infrastructure</u>. Several SCIFs specially equipped for communications investigations are used in these efforts.

3.1.5. <u>Proximity to Mission-Related organizations</u>. Frequent interaction is required both with the sponsors of this work and the various other laboratories and facilities involved in conducting these efforts. The close proximity of these facilities facilitates effective interaction and greatly reduces travel.

Common Support Functions	Name	Type of Organization	Distance (Miles)	Workyears Performed by Your Activity	Workyears Funded by Your Activity
Airborne C4I	ARINC	NFP Commercial	45		1
Airborne C4I	SPAWAR	MATT Sponsor	1	10	
Airborne & Groundbased C4I	NESSEC	Test Facility	10		1
Airborne C4I	NAWC	Test Facility	130		1
Airborne & Groundbased C4I	NSA	Support & Evaluation	30		1

3.2 Personnel

3.2.1 Total Personnel.

		Number of Personnel					
Types of personnel	Gover	rnment	On-Site FFRDC	On-Site SETA			
	Civilian	Military					
Technical	10			15			
Management (Supv)	2						
Other							

3.2.2 Education:

Type of	Number of Government Personnel by Type of Position					
Degree/ Diploma	Technical	Management (Supv)	Other			
High School or Less						
Associates		1				
Bachelor	8	1				
Masters	1					
Doctorate (include Med/Vet/etc.)						

3.2.3 Experience:

	Years of Government and/or Military Service					
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years	
Technical	1	5	2	0	1	
Management (Supv)	0			0	2	
Total	1	5	2	0	3	

3.2.4 Accomplishments During FY91-93: For government personnel answer the following questions.

3.2.4.1 How many patents were awarded and patent disclosures (only count disclosures with issued disclosure numbers) were made? (BRAC Criteria I)

CSF	Disclosur es	Awarded	Patent Titles (List)
Airborne C4I	0	0	
Total	0	0	

3.2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria I)

CSF	Number Published	Paper Titles (List)
Airborne C4I	0	
TOTAL	0	

C-3R (8 Aug 94)

R

3.2.2 Education:

Type of	Number of Government Personnel by Type of Position					
Degree/ Diploma	Technical	Management (Supv)	Other			
High School or Dess			*******			
Associates		1				
Bachelor	8	1				
Masters	1					
Doctorate (include Med/Vet/etc.)						

3.2.3 Experience:

	Years of Government and/or Military Service				
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years
Technical	1	5	2	0	1
Management (Supv)	0			0	2
Total	1	5	2	0	3

3.2.4 Accomplishments During FY91-93: For government personnel answer the following questions.

3.2.4.1 How many patents were awarded and patent disclosures (only count disclosures with issued disclosure numbers) were made? (BRAC Criteria I)

CSF	Disclosur es	Awarded	\backslash	Patent Titles (List)
Airborne C4I	0	0		
Total	0	0		

3.2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria I)

CSF	Number Published	Paper Titles (List)
Airborne C4I	0	
TOTAL	0	

Revision 402/02291 1119

3.2.2 Education.

Type of	Number of Government Personnel by Type of Position				
Degree/ Diploma	Technical	Management (Supv)	Other		
High School or Less					
Associates		1			
Bachelor	8	1			
Masters	2				
Doctorate (include Med/Vet/etc.)					

3.2.3 Experience.

	Years of Government and/or Military Service				
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years
Technical	2	5	2	0	1
Management (Supv)	0			0	2
Total	2	5	2	0	3

3.2.4 <u>Accomplishments During FY91-93</u>. For government personnel answer the following questions.

3.2.4.1 How many patents were awarded and patent disclosures (only count disclosures with issued disclosure numbers) were made? (BRAC Criteria I)

CSF	Disclosures	Awarded	Patent Titles (List)
Airborne C4I	0	0	
Groundbased C4I	0	0	
Total	0	0	

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 Work Year and Lifecycle:

"LAB"	Fiscal Year 1993 Actual				
	Civilian	Military	FFRDC	SETA	
Science & Technology	3			2	
Engineering Development	7			11	
In-Service Engineering	3			2	

3.3.1.2 Engineering Development By ACAT:

Engineering Development	Name or Number	Workyears (FY93 Actual)	FY93 Funds Received (Obligation Authority)	Narrative	
ACAT III/IV	C3 Advanced Technology	18	\$15.562M	Improved Data Modem (IDM), Multi-mission Advanced Tactical Terminal (MATT) (Military, non-Navy Program)	F

3.3.1.3 In-Service Engineering:

.

Common Support Functions	In-Service Engineering Efforts (List)	FY93 Actual		Weapon System(s) Supported
		Funds Received (Obligation Authority)	Workyears	
Airborne C4I	Depot Support Software Maintenance Logistics Support Reliability Demonstration Product Improvements	\$1.3M	5	F-16, A-10, AH-64, UH-60, OH-58, JSTARS

 \mathbf{C}

3.3 Workload

3,3.1 FY93 Workload

3.3.1.1 Work Year and Lifecycle:

"LAB"	Fiscal Year 1993 Actual				
	Civilian	Military	FFRDC	SETA	
Science & Technology	3			2	
Engineering Development	Z			11	
In-Service Engineering	3			2	

3.3.1.2 Engineering Development By ACAT:

Engineering Development	Name or Number	Workyears (FY93 Aotual)	FY93 Funds Received (Obligation Authority)	Narrative
ACAT III/IV	2	18	\$15.562M	Improved Data Modem (IDM), Multi-mission Advanced Tactical Terminal (MATT)

3.3.1.3 In-Service Engineering:

Common Support	In-Service Engineering Efforts	FY93 Actual		Weapon System(s) Supported
Functions	(List)		\mathbf{X}	
		Funds Received (Obligation Authority)	Workyears	
Airborne C4I	Depot Support Software Maintenance Logistics Support Reliability Demonstration Product Improvements	\$1.3M	5	F-16, A-10, AH-64, UH-60, OH-58, JSTARS

3.3 Workload

3.3.1 FY93 Workload

3.3. 1 Work Year and Lifecycle:

"LAB"	Fiscal Year 1993 Actual			
	Civilian	Military	FFRDC	SETA
Science & Technology	3			2
Engineering Development	7			11
In-Service Engineering	3			2

_ _

3.3.1.2 Engineering Development By ACAT:

Engineering Development	Name or Number	Workyears (FY93 Actual)	FY93 Funds Received (Obligation Authority)	Narrative
ACAT III/IV	2	18	\$15.562M	Improved Data Modem (IDM), Multi-mission Advanced Tactical Terminal (MATT)

3.3.1.3 In-Service Engineering:

Funds Received (Obligation Authority)WorkyearsAirborne C4IDepot Support Software Maintenance Logistics Support Reliability Demonstration Product Improvements\$1.3M5F-16, A-10, AH-64, UH-60, OH-58, JSTARS	Common Support Functions	In-Service Engineering Efforts (List)	FY93 Actual		Weapon System(s) Supported
Software Maintenance Logistics Support Reliability Demonstration Product			(Obligation Authority)	Workyears	-
	Airborne C4I	Software Maintenance Logistics Support Reliability Demonstration Product	\$1.3M	5	UH-60, OH-58,

3.2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria I).

CSF	Number Publ	ished Paper Titles (List)
Airborne C4	0	
Groundbased C4I	1	- "NVIS Antenna Investigation" IEE Conference
TOTAL	1	

3.3 Workload

3.3.1 FY93 Workload.

3.3.1.1 Work Year and Lifecycle.

"LAB"	Fiscal Year 1993 Actual				
	Civilian	Military	FFRDC	SETA	
Science & Technology	4			2	
Engineering Development	7			11	
In-Service Engineering	3			2	

3.3.1.2 Engineering Development By ACAT:

Engineering Development	Name or Number	Workyears (FY93 Actual)	FY93 Funds Received (Obligation Authority)	Narrative
ACAT III/IV	2	18	\$15.562M	Improved Data Modem (IDM), Multi-mission Advanced Tactical Terminal (MATT)

3.3.2 **Projected Funding**

3.3.2.1 Direct Funding: For each applicable CSF, identify direct mission funding by appropriation from FY94 to FY97. Use FY95 PBS for FY95-FY97. (BRAC Criteria I)

CSF	FY94	FY95	FY96	FY97
Airborne C4I	0	0	0	0

3.3.2.2 Other Obligation Authority:

CSF	FY94	FY95	FY96	FY97
Airborne C4I	\$9.9M	\$6.2M	\$3.35M	\$2.75M

3.4 Facilities and Equipment

3.4.1 Major Equipment and Facilities:

		Unique To			
Common Support Function	Major Facility or Equipment Description	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)
Airborne C4I	Tactical Terminal Lab	X			\$500K
Airborne C4I	Comsec Lab	X			\$250K

The facilities above and those listed in table 3.5.1 have been used in conjunction with efforts in the Information Technology and Remote Sensing Divisions at NRL and also with DISA, Army and Air Force in many other efforts. During FY93 approximately 25% of the effort within these facilities was devoted to supporting these other functions and demonstrations associated with external efforts.

3.3.2 Projected Funding

3.3.2.1 Direct Funding: For each applicable CSF, identify direct mission funding by appropriation from FY94 to FY97. Use FY95 PBS for FY95-FY97. (BRAC Criteria I)

CSR	FY94	FY95	FY96	FY97
Airborne C4I	0	0	0	0

3.3.2.2 Other Obligation Authority:

CSF	FY94	FY95	FY96	FY97
Airborne C4I	\$9.9M	\$6.2M	\$3.35M	\$2.75M
	<u>`</u>			

3.4 Facilities and Equipment

3.4.1 Major Equipment and FacNities:

		Unique To			
Common Support Function	Major Facility or Equipment Description	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)
Airborne C4I	Tactical Terminal Lab	X			\$500K
Airborne C41	Comsec Lab	X			\$250K

The facilities above and those listed in table 3.5.1 have been used in conjunction with efforts in the Information Technology and Remote Sensing Divisions at NRL and also with DISA, Army and Air Force in many other efforts. During FY93 approximately 25% of the effort within these facilities was devoted to supporting these other functions and demonstrations associated with external efforts.

Revision GCG/ONR91 SIIN/94

3.3.1.3 In-Service Engineering.

Common Support Functions	In-Service Engineering Efforts (List)	FY93 Actual		Weapon System(s) Supported
		Funds Received (Obligation Authority)	Workyears	
Airborne C4I	Depot Support Software Maintenance Logistics Support Reliability Demonstration Product Improvements	\$1.3M	5	F-16, A-10, AH-64, UH-60, OH-58, JSTARS

3.3.2 Projected Funding

3.3.2.1 <u>Direct Funding</u>. For each applicable CSF, identify direct mission funding by appropriation from FY94 to FY97. Use FY95 PBS for FY95-FY97. (BRAC Criteria I)

CSF	FY94	FY95	FY96	FY97
Airborne C4I	0	0	0	0
Groundbased C4I	0	0	0	0

3.3.2.2 <u>Other Obligation Authority</u>:

CSF	FY94	FY95	FY96	FY97
Airborne C4I	\$9.9M	\$6.2M	\$3. 3 5M	\$2.75M
Groundbased C4I	\$0.15M	\$0.15M	\$0.05M	\$0.05M

3.4 Facilities and Equipment

3.4.1 Major Equipment and Facilities.

		<u>, , , , , , , , , , , , , , , , , , , </u>	Unique To		
Common Support Function	Major Facility or Equipment Description	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)
Airborne C4I	Tactical Terminal Lab	Х			\$500 K
Airborne C4I	Comsec Lab	Х			\$250K

3.5 Expansion Potential

	######### <u></u>		Space Capacity (KSF)		
Common Support Function	Facility or Equipment Description	Type of Space*	Current	Used	Excess
Airborne C4I	Office	Administrative	0.6	0.6	0
Airborne C4I	Tactical Lab	Technical	1.5	1.5	0
Airborne C4I	EMI Lab	Technical	0.3	0.3	0
Airborne C4I	Configuration	Administrative	0.3	0.3	0
Airborne C4I	Quality Assurance	Administrative	0.2	0.2	0
Airborne C4I	Library	Storage	0.3	0.3	0
Airborne C4I	Comsec Lab	Technical	2.5	2.5	0

3.5.1 Laboratory Facilities: Use facilities records as of fourth-quarter FY93 in answering the following (in sq ft) for each CSF: (BRAC Criteria II)

* Administrative, Technical, Storage, Utility

3.5.1.1 Capacity to absorb new work: This in-house effort is expected to decrease between now and FY 1997. An additional similar effort could be absorbed with minor facility modification to accommodate uniqueness of additional work.

3.5.1.2 If there is capacity to absorb additional workyears, how many additional workyears can be supported? (BRAC Criteria III)

In excess of 16 work years capacity could be available by FY 1997.

3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II)

Planning activities to more fully utilize available space in Building A-59 through alterations and minor MILCON will enhance facility capacity to absorb additional work.

3.5.2 Land Use: Provide number of buildable acres for additional laboratory/administrative support construction at your installation. (BRAC Criteria II)

NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not

C-6R (8 Aug 94)

R

3.5 Expansion Potential

			Space Capacity (KSF)			
Common Support Function	Facility or Equipment Description	Type of Space*	Current	Used	Excess	
Airborne C4I	Office	Administrative	0.6	0.6	0	
Airborne C4I	Tactical Lab	Technical	1.5	1.5	0	
Airborne C4I	EMI Lab	Technical	0.3	0.3	0	
Airborne C4I	Configuration	Administrative	0.3	0.3	0	
Airborne C4I	Quality Assurance	Administrative	0.2	0.2	0	
Airborne C4I	Library	Storage	0.3	0.3	0	
Airborne C4I	Comsec Lab	Technical	2.5	2.5	0	

3.5.) Laboratory Facilities: Use facilities records as of fourth-quarter FY93 in answering the following (in sq ft) for each CSF: (BRAC Criteria II)

* Administrative, Technical, Storage, Utility

3.5.1.1 Capacity to absorb new work: This in-house effort is expected to decrease between now and FY 1997. An additional similar effort could be absorbed with minor facility modification to accommodate uniqueness of additional work.

3.5.1.2 If there is capacity to absorb additional workyears, how many additional workyears can be supported? (BRAC Criteria III)

In excess of 16 work years capacity could be available by FY 1997.

3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II)

Planning activities to more fully utilize available space in Building A-59 through alterations and minor MILCON will enhance facility capacity to absorb additional work.

3.5.2 Land Use: Provide number of buildable acres for additional laboratory/administrative support construction at your installation. (BRAC Criteria II)

NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not

Revision 705/ONRAL 8/11/94

T. 8 AUG 1994 .

3.5 Expansion Potential

3.5.1 <u>Laboratory Facilities.</u> Use facilities records as of fourth-quarter FY93 in answering the following (in sq ft) for each CSF: (BRAC Criteria II)

		olegona en el Maraño, esperan en en en esperante	Space Capacity (KSF)			
Common Support Function	Facility or Equipment Description	Type of Space*	Current	Used	Excess	
Airborne C4I	Office	Administrative	0.6	0.6	0	
Airborne C4I	Tactical Lab	Technical	1.5	1.5	0	
Airborne C4I	EMNLab	Technical	0.3	0.3	0	
Airborne C4I	Configuration	Administrative	0.3	0.3	0	
Airborne C4I	Quality Assurance	Administrative	0.2	0.2	0	
Airborne C4I	Library	Storage	0.3	0.3	0	
Airborne C4I	Comsec Lab	Technical	2.5	2.5	0	
Groundbased C4I	Secure Labs	Technical	0.3	0.3	0	

* Administrative, Technical, Storage, Utility

3.5.1.1 Both IDM and MATT in-house efforts are planned to decrease between now and FY 1997. An additional similar effort could be absorbed with minor facility modification to accommodate uniqueness of additional work.

3.5.1.2 If there is capacity to absorb additional workyears, how many additional workyears can be supported? (BRAC Criteria III)

In excess of 16 work years capacity could be available by FY 1997.

3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II)

Planning activities to more fully utilize available space in Building A-59 through alterations and minor MILCON will enhance facility capacity to absorb additional work.

3.5.2 <u>Land Use</u>. Provide number of buildable acres for additional laboratory/administrative support construction at your installation. (BRAC Criteria II)

N/A; See response to BRAC Data Call 4

3.5.3 <u>Utilities:</u> Provide an estimate of your installation's capability to expand or procure additional utility services (electric, gas, water). Estimates should be provided in appropriate units -- e.g. KWH of electricity. (BRAC Criteria II)

N/A; See response to BRAC Data Call 4.

practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10%. This would involve minimal reconfiguration.

3.5.3 Utilities: Provide an estimate of your installation's capability to expand or procure additional utility services (electric, gas, water). Estimates should be provided in appropriate units -- e.g., KWH of electricity. (BRAC Criteria II)

9	On Base Capacity		ng Normal Stead	ly Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD)	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr)	² 190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

¹ The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.

² Production plant owned by PWC, Washington

practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10%. This would involve minimal reconfiguration.

3.5.3 Utilities: Provide an estimate of your installation's capability to expand or procure additional utility services (electric, gas, water). Estimates should be provided in appropriate units -- e.g., KWH of electricity. (BRAC Criteria II)

	On Base Capacity		ng Normal Stead	ly Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	1 7,28 0 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	NXA	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD)) N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	² 190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

¹ The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.

² Production plant owned by PWC, Washington

Revision 205/02291 +117/94

C2. Groundbased C4I 3.0 Mission

The groundbased C4I efforts described are conducted in close coordination with Navyspecific research in networking and communications. The efforts reported here are aimed at shipboard problems even though they were conducted using land-based sites.

• Communications

- ROTHR communications investigation
- Digital data retransmission
- Radio frequency interference research

3.1 Location: Naval Research Laboratory, Washington DC

3.1.1 Geographic/Climatological Features: No special features required

3.1.2 Licenses & permits: None

3.1.3 Environmental constraints: None

3.1.4 **Special Support Infrastructure:** Several SCIFs specially equipped for communications investigations are used in these efforts.

3.1.5. Proximity to Mission-Related organizations:

Frequent interaction is required both with the sponsors of this work and the various other laboratories and facilities involved in conducting these efforts. The close proximity of these facilities facilitates effective interaction and greatly reduces travel.

Common Support Functions	Name	Type of Organization	Distance (Miles)	Workyears Performed by Your Activity	Workyears Funded by Your Activity
Groundbased C4I	NESSEC	Test Facility	10		
Groundbased C4I	NSA	Support & Evaluation	30		

3.2 Personnel:

3.2.1 Total Personnel:

	Number of Personnel				
Types of personnel	Government		On-Site FFRDC	On-Site SETA	
	Civilian	Military			
Technical	1				
Management (Supv)	0				
Other	0				

R

3.0 Mission

Common Support Function: Fixed groundbased C4I

The groundbased C4I efforts described are conducted in close coordination with Navyspecific research in networking and communications. The efforts reported here are aimed at shipboard problems even though they were conducted using land-based sites.

• Communications

- ROTHR communications investigation
- Digital data retransmission
- Radio frequency interference research

3.1 Location: Nava Research Laboratory, Washington DC

- 3.1.1 Geographic/Climatological Features: No special features required
- 3.1.2 Licenses & permits: None

3.1.3 Environmental constraints: None

3.1.4 **Special Support Infrastructure:** Several SCIFs specially equipped for communications investigations are used in these efforts.

3.1.5. Proximity to Mission-Related organizations:

Frequent interaction is required both with the sponsors of this work and the various other laboratories and facilities involved in conducting these efforts. The close proximity of these facilities facilitates effective interaction and greatly reduces travel.

Common Support Functions	Name	Type of Organization	Distance (Miles)	Workyears Performed by Your Activity	Workyears Funded by Your Activity
Groundbased C4I	NESSEC	Test Facility	10		
Groundbased C4I	NSA	Support & Evaluation	30		

3.2 Personnel:

3.2.1 Total Personnel:

	Number of Personnel				
Types of personnel	Government		On-Site FFRDC	On-Site SETA	
	Civilian	Military			
Technical	1				
Management (Supv)	0		· · · · · · · · · · · · · · · · · · ·		
Other	0				

ENCLOSURE (5)

3.2.2 Education:

J.Z.Z Education.			
Type of	Number of Government Personnel by Type of Position		
Degree/ Diploma	Technical	Management (Supv)	Other
High School or Less		•	
Associates			
Bachelor			
Masters	1		
Doctorate (include Med/Vet/etc.)			

3.2.3 Experience:

.

	Years of Government and/or Military Service			e	
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years
Technical	1				
Management (Supv)					
Total	1				

3.2.4 Accomplishments During FY91-93: For government personnel answer the following questions.

3.2.4.1 How many patents were awarded and patent disclosures (only count disclosures with issued disclosure numbers) were made? (BRAC Criteria I)

CSF	Disclosur es	Awarded	Patent Titles (List)
Groundbased C4I	0	0	
Total	0	0	

3.2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria I)

CSF	Number Published	Paper Titles (List)
Groundbased C4I		"Near-Vertical Incidence Skywave Antenna Investigation, IEEE Fifth International Conference on HF Radio Systems and Techniques, July 1991"
TOTAL	1	

R

3.2.2 Education:	÷	IS AGE	EE K
Type of	Number of G	overnment Personnel by T	ype of Position
DegreeX Diploma	Technical	Management (Supv)	Other
High School or Less			
Associates			
Bachelor			
Masters	1		
Doctorate (include Med/Vet/etc.)			

3.2.3 Experience:

······································	Years of Government and/or Military Service				
Type of Position	Less than 3 years	3-1Q years	11-15 years	16-20 years	More than 20 years
Technical	1				
Management (Supv)					
Total	1				

3.2.4 Accomplishments During FY91-93: For government personnel answer the following questions.

3.2.4.1 How many patents were awarded and patent disclosures (only count disclosures with issued disclosure numbers) were made? (BRAC Criteria I)

CSF	Disclosur es	Awarded	Patent Titles (List)	
Groundbased C4I	0	0		
Total	0	0		

3.2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria I)

CSF	Number Published	Paper Titles (List)
Groundbased C4I	1	"NVIS Antenna Investigation" IEEE Conference
TOTAL	1	

R

3.2,2 Education:			
Type of	Number of Go	overnment Personnel by Ty	pe of Position
Degree/ Diploma	Technical	Management (Supv)	Other
High School or Less			
Associates			
Bachelor	Ν		
Masters	1		
Doctorate			
(include			
Med/Vet/etc.)			

3.2.3 Experience:

		Years of Govern	ment and/or N	Ailitary Service	e
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years
Technical	1				
Management (Supv)					
Total	1	N N			

3.2.4 Accomplishments During FY91-93: For government personnel answer the following questions.

3.2.4.1 How many patents were awarded and patent disclosures (only count disclosures with issued disclosure numbers) were made? (BRAC Criteria I)

CSF	Disclosur es	Awarded	Patent Titles (List)
Groundbased C4I	0	0	
Total	0	0	

3.2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria I)

CSF	Number Published	Paper Tilles (List)
Groundbased C4I	1	"NVIS Antenna Investigation" IEEE Conference
TOTAL	1	

Revision 264/0NR91 1/1/94

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 Work Year and Lifecycle:

"LAB"	Fiscal Year 1993 Actual				
	Civilian	Military	FFRDC	SETA	
Science & Technology	1				
Engineering Development					
In-Service Engineering					

3.3.1.2 Engineering Development By ACAT:

Engineering Development	Name or Number	Workyears (FY93 Actual)	FY93 Funds Received (Obligation Authority)	Narrative
		None		

3.3.1.3 In-Service Engineering:

Common Support Functions	In-Service Engineering Efforts (List)	FY93 Actual		Weapon System(s) Supported
		Funds Received (Obligation Authority)	Workyears	
Groundbased C4I		None		

R

R

3.3 Workload

3.3.1 FY93 Workload

3.3.1.1 Work Year and Lifecycle:

"LAB"		Fiscal Year	1993 Actual	
	Civilian	Military	FFRDC	SETA
Science & Technology	1			
Engineering Development	\square			
In-Service Engineering				

3.3.1.2 Engineering Development By ACAT:

Engineering Development	Name or Number	Workyears (NY 93 Actual)	FY93 Funds Received (Obligation Authority)	Narrative
		None		

3.3.1.3 In-Service Engineering:

Common Support Functions	In-Service Engineering Efforts (List)	FY93 Actual		Weapon System(s) Supported
		Funds Received (Obligation Authority)	Workyears	
Groundbased C4I		None		

3.3.2 **Projected Funding**

3.3.2.1 **Direct Funding:** For each applicable CSF, identify direct mission funding by appropriation from FY94 to FY97. Use FY95 PBS for FY95-FY97. (BRAC Criteria I)

FY94	FY95	FY96	FY97
0	0	0	0
	FY94 0	FY94 FY95 0 0	FY94 FY95 FY96 0 0 0

3.3.2.2 Other Obligation Authority:

CSF	FY94	FY95	FY96	FY97
Groundbased	\$0.15M	\$0.15M	\$0.05M	\$0.05M
C4I				

3.4 Facilities and Equipment

3.4.1 Major Equipment and Facilities:

			Unique To			
Common Support Function	Major Facility or Equipment Description	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)	R
Groundbased C4I	None					

R

.

3.3.2 Projected Funding

3.3.2.1 Direct Funding: For each applicable CSF, identify direct mission funding by appropriation from FY94 to FY97. Use FY95 PBS for FY95-FY97. (BRAC Criteria I)

ĊŞF	FY94	FY95	FY96	FY97
Groundbased C4I	0	0	0	0

3.3.2.2 Other Obligation Authority:

CSF	\FY94	FY95	FY96	FY97
Groundbased C4I	\$0,15M	\$0.15M	\$0.05M	\$0.05M

3.4 Facilities and Equipment

3.4.1 Major Equipment and Facilities:

		\ 				
			\square	Unique To		
	Common Support Function	Major Facility or Equipment Description	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)
	Groundbased	None		N		
ļ	C4I			$\left \right\rangle$		
		·	•			
		Rev 7 (2/0,	NR91 NR91 8111199	ţ		

3.5 Expansion Potential

3.5.1 Laboratory Facilities: Use facilities records as of fourth-quarter FY93 in answering the following (in sq ft) for each CSF: (BRAC Criteria II)

Common Support Function		Type of Space*	Space Capacity (KSF)			
	Facility or Equipment Description		Current	Used	Excess	
Groundbased C4I	Secure Labs	Technical	0.3	0.3	0	

* Administrative, Technical, Storage, Utility

3.5.1.1 Capacity to absorb additional workyears: An additional similar effort could be absorbed with minor facility modification to accommodate uniqueness of additional work.

3.5.1.2 If there is capacity to absorb additional workyears, how many additional workyears can be supported? (BRAC Criteria III)

A small number (less than 5) of work years capacity could be available by FY 1997.

3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II)

No impact

3.5.2 Land Use: Provide number of buildable acres for additional laboratory/administrative support construction at your installation. (BRAC Criteria II)

NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion. The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10%. This would involve minimal reconfiguration.

3.5.3 Utilities: Provide an estimate of your installation's capability to expand or procure additional utility services (electric, gas, water). Estimates should be provided in appropriate units - e.g., KWH of electricity. (BRAC Criteria II)

R

R

R

R

3.5 Expansion Potential

3.5.1 Laboratory Facilities: Use facilities records as of fourth-quarter FY93 in answering the following (in sq ft) for each CSF: (BRAC Criteria II)

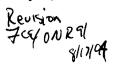
			Space	Capacity (k	(SF)
Common Support Function	Facility or Equipment Description	Type of Space*	Current	Used	Excess
Groundbased	Secure Labs	Technical	0.3	0.3	0
C41		* * .* * .			

* Administrative, Technical, Storage, Utility

3.5.1.1 Capacity to absorb additional workyears: An additional similar effort could be absorbed with minor facility modification to accommodate uniqueness of additional work.

3.5.1.2 If there is capacity to absorb additional workyears, how many additional workyears can be supported? (BRAC Criteria III)

A small number (less than 5) of work years capacity could be available by FY 1997.


3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II)

No impact

3.5.2 Land Use: Provide number of buildable acres for additional laboratory/administrative support construction at your installation. (BRAC Criteria II)

NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion. The building space (class 2 property) currently available for growth opportunities at the NRL DC site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note that NRL facilities can be re-configured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10%. This would involve minimal reconfiguration.

3.5.3 Utilities: Provide an estimate of your installation's capability to expand or procure additional utility services (electric, gas, water). Estimates should be provided in appropriate units - e.g., KWH of electricity. (BRAC Criteria II)

	On Base Capacity		ng Normal Stead <u>ct State Load</u>	ly Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	1 7, 280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD) N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr)	2 190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.
 Production plant owned by PWC, Washington

[1 [9] AUG 1994

\backslash	On Base Capacity		g Normal Stead	iy Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	1 7,28 0 KWH
Natural Gas (CFH)	1 N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GP	R) N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/H1) ² 190,000 lb/Hr	N/A	116,000 lb/Hr	125,000 lb/Hr

¹ The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.
 ² Production plant owned by PWC, Washington

1: 5

Revision 962/0NR91 8/17/94

D. ELECTRONIC DEVICES

3.0 <u>Mission</u>. Describe the major capabilities at your activity contributing to the common support function in bulletized format. Describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity mission.

The Electronic Devices Common Support Function mission is to:

- Participate in the advancement of knowledge, understanding, and technology of Electronic Devices by in-house R&D in: materials, processes, structures, devices, and circuits
- Transform private sector advances into military electronics technologies
- Address unique or predominantly military needs both by in-house performance and by industrial interactions
- Develop new state-of-the-art devices and circuits with emphasis on performance, affordability, and robustness
- Advise Navy on electronic and electro-optics S&T needs, capabilities, and opportunities. Provide S&T advocacy as appropriate
- Perform Technology Transfer to the Private Sector

The major resources present at the NRL-Washington site to conduct electronic devices R&D include:

- A highly educated science and engineering work force;

- State of the art flexible R&D facilities and equipment;

- An efficient Laboratory central support service for administration, maintanance, and minor construction.

The major capabilites at the NRL-Washington site include:

- The planning and execution of a broadly based, balanced, long term, multidiscplinary R&D program

- A proven track record of accomplishment in the creation and transfer of electronics and electro-optics technologies into Naval warfighting systems and into US industrial competitiveness.

- The ability to create, characterize, fabricate and evaluate advanced and novel electronic and electro-optic materials, devices, and circuits and to transition them to the Fleet or to the commercial marketplace.

D-1

3.0 Mission (cont'd). Relationship and Interconnectivity with other NRL R&D Functions

The electronic devices common support function at NRL is part of a multidisciplinary co-located laboratory work environment that is crucial to achieve scientific and technological advances in electronics and to respond to the needs of the Navy for advanced system and operational capabilities paced by electronic and electro-optic requirements. Advances in optical sciences, materials science, bioengineered materials, chemistry, condensed matter physics, and radiation and plasma physics serve to form an intellectual synergy for advancing the state of the art in electronic devices. In a complementary manner, capabilities in electronic devices R&D associated with electronic and electromagnetic characterization of materials and the methods and capabilities of nano/microfabrication serve to enhance the R&D capabilies of other S&T activities at the Laboratory.

The electronic devices capability at NRL also supports directly the mission of the Laboratory in electronic warfare, radar, space systems, and information technology. The co-location of S&E's who are creating new electronic device capability and who are highly knowledgeable about existing and emerging electronic/electro-optic devices with systems engineers who are in need of knowing what is new and what is possible results in a highly efficient transfer of capability from the laboratory bench into systems. It is also imperative that those that create research results are readily available on a continual basis to transistion the results successfully to those that can benefit by its application.

The Electronic Devices capability at NRL also provides Tri-Service Reliance support to the other services in a variety of areas such as device/IC reliability, development of specific processes for RF and microelectronic devices, advanced filters for wideband shared aperture systems, hermetic plastic packages for next generation radar systems, the ferromagnetic consortium, electronic material growth and characterization to name a few. NRL in conjunction with the other services and ARPA is both a performer and coplayer in a number of major DoD initiatives including, for example, MIMIC, DLP, Vacuum Electronics Initiative, HDMP, RASSP and MHDL. NRL works closely with the other services to specify and manage DoD specific technology development at the 6.1, 6.2 and 6.3 levels. NRL makes its excellent design, test and evaluation capabilities available throughout the government. In more than one instance NRL has provided the inspiration and technology base for major initiatives.

3.1 Location

3.1.1 <u>Geographic/Climatological Features.</u> Describe any geographic/climatological features in and around your activity that are relevant to each CSF. Indicate and justify those that are required versus those that just serve to enhance accomplishing the mission of the activity. For example, clear air at high altitude that increases quality of atmospheric, ground-based laser experiments in support of the weapons CSF. (BRAC Criteria I)

There are several geographic features on the NRL-Washington site that are relevant to the satisfactory performance of Electronic Devices R&D. Seismic isolation is easily achieved at this site for advanced electron beam equipments because of the close proximity of bedrock to the surface. The distributed nature of the Laboratory's research buildings on the Washington site also facilitates electromagnetic and rfi isolation. There are no special or unique climatological features.

3.1.2 <u>Licenses & permits</u>. Describe and list the licenses or permits (e.g., environmental, safety, etc.) that your activity currently holds and justify why they are required to allow tests, experiments, or other special capabilities at your location for each CSF. For example, permit to store and use high explosives. (BRAC Criteria I)

D-2R (8 Aug 94)

NRL holds a site license for the acquisition, receipt, possession, use for research purposes, storage, and disposal of radioactive materials. The license is Permit No.-8-001733. Some types of radioactive material are required to perform certain electronic materials and device radiation tests. These tests are required to ensure surviablity of electronic components in ambient radiation and nuclear burst environments.

3.1.3 <u>Environmental constraints.</u> Describe and list the environmental or land use constraints present at your activity which limit or restrict your current scope for each CSF, i.e., would not allow increased "volume" or "spectrum" for the CSF. Example -- Volume: frequency of a type of experiment. Example -- Spectrum: Current permit to detonate high explosives will not allow detonation or storage of increased quantity of explosives without legal waiver (state law) or relocation of surrounding (non-govt) buildings. (BRAC Criteria II)

There are no environmental or land use constraints present at the NRL-Washngton site which limit or restrict the current or perceived future scope of Electronic Devices R&D.

3.1.4 <u>Special Support Infrastructure</u>. List and describe the importance of any mission related special support infrastructure (e.g. utilities) present at your location for your activity. (BRAC Criteria I)

None.

3.1.5. <u>Proximity to Mission-Related organizations</u>. List and describe the importance and impact of not having nearby organizations which facilitate accomplishing or performing your mission -- e.g. operational units, FFRDCs, universities/colleges, other government organizations, and commercial activities. Restrict your response to the top five. Complete the following: (BRAC Criteria I)

Common Support Functions	Name	Type of Organization	Distance	Workyears Performed by Your Activity	Workyears Funded by Your Activity
Electronic Devices					
	Brookhaven National Laboratories Synchrotron Source	DOE and University Consolutium	250	3	3

3.2 Personnel

3.2.1 <u>Total Personnel</u>. What is the total number of government (military and civilian), on-site federally funded research and development center (FFRDC), and on-site system engineering technical assistance (SETA) personnel engaged in science and technology (S&T), engineering development and in-service engineering activities as of end FY93? For individuals that predominantly work in CSFs, involved in more than one CSF, account for those individuals in the CSF that represents the preponderance of their effort. (BRAC Criteria I)

	Number	of Person			
Types of personnel	Government		On-Site FFRDC	On-Site SETA	
Electronic Devices	Civilian	Military			
Technical	192.7			84	
Management (Supv)	20				
Other	32				

3.2.2 <u>Education</u>. What is the number of government personnel actively engaged in S&T, engineering development and in-service engineering activities by highest degree and type of position? Provide the data in the following table: (BRAC Criteria I)

D-3

There are no environmental or land use constraints present at the NRL-Washngton site which limit or restrict the current or perceived future scope of Electronic Devices R&D.

3.1.4 <u>Special Support Infrastructure</u>. List and describe the importance of any mission related special support infrastructure (e.g. utilities) present at your location for your activity. (BRAC Criteria I)

None.

3.1.5. <u>Proximity to Mission-Related organizations</u>. List and describe the importance and impact of not having nearby organizations which facilitate accomplishing or performing your mission -- e.g. operational units, FFRDCs, universities/colleges, other government organizations, and commercial activities. Restrict your response to the top five. Complete the following: (BRAC Criteria I)

Common Support Functions	Name	Type of Organization	Distance	Workyears Performed by Your Activity	Workyears Funded by Your Activity
Electronic Devices					
	Brookhaven National Laboratories Synchrotron Source	DOE and University Consortium	250	3	3

3.2 Personnel

3.2.1 <u>Total Personnel</u>. What is the total number of government (military and civilian), on-site federally funded research and development center (FFRDC), and on-site system engineering technical assistance (SETA) personnel engaged in science and technology (S&T), engineering development and in-service engineering activities as of end FY93? For individuals that predominantly work in CSFs, involved in more than one CSF, account for those individuals in the CSF that represents the preponderance of their effort. (BRAC Criteria I)

Number of Personnel						
Types of personnel	Government		On-Site FFRDC	On-Site SETA		
Electronic Devices	Civilian	Military				
Technical	195.7			84		
Management (Supv)	20					
Other	1					

R

3.2.2 <u>Education</u>. What is the number of government personnel actively engaged in S&T, engineering development and in-service engineering activities by highest degree and type of position? Provide the data in the following table: (BRAC Criteria I) D-3R (14 Sep 94)

Electronic Devices						
Type of	Number of Governr	Number of Government Personnel by Type of Position				
Degree/ Diploma	Technical	Management (Supv)	Other			
High School or Less	24.7		1			
Associates	7		3			
Bachelor	8					
Masters	26	3				
Doctorate (include Med/Vet/etc.)	130	17				

3.2.3 <u>Experience</u>. What is the experience level of government personnel? Fill in the number of government personnel in the appropriate boxes of the following table. (BRAC Criteria I)

Years of Government and/or Military Service						
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years	
Technical	19	69	30.7	16	61	
Management (Supv)	0	2	1	1	16	
Total	19	71	31.7	17	77	

Electronic Devices

NOTE: Table does not include personnel in the "Other" category.

3.2.4.1 Patents - See Tab A.

3.2.4.2 Published Papers - See Tab B.

3.3 Workload

3.3.1 FY93 Workload.

3.3.1.1 <u>Work Year and Lifecycle.</u> Identify the number of actual workyears executed for each applicable CSF in FY93 for each of the following: government civilian; military; onsite FFRDCs; and on-site SETAs. (BRAC Criteria I)

"LAB"	Fiscal Year 1993 Actual					
	Civilian Military FFRDC SETA					
Science & Technology	181	0	0	42.2		
Engineering Development						
In-Service Engineering						

Science and Technology = 6.1, 6.2, 6.3A

'1 '6 SEP 1994

R

Electronic Devices Type of Number of Government Personnel by Type of Position					
Degree/ Diploma	Technical	Management (Supv)	Other		
High School or Less	24.7		29		
Associates Bachelor	4		3		
Masters	26	3			
Doctorate (include Med/Vet/etc.)	130	17			

3.2.3 <u>Experience</u>. What is the experience level of government personnel? Fill in the number of government personnel in the appropriate boxes of the following table. (BRAC Criteria I)

Electronic Devices						
Years of Government and/or Military Service						
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years	
Technical	19	69	30.7	16	58	
Management (Supv)	0	2	1	1	16	
Total	19	71	31.7	17	74	

NOTE: Table does not include personnel in the "Other" category.

3.2.4.1 Patents - See Tab A.

3.2.4.2 Published Papers - See Tab B.

3.3 Workload

3.3.1 FY93 Workload.

3.3.1.1 <u>Work Year and Lifecycle.</u> Identify the number of actual workyears executed for each applicable CSF in FY93 for each of the following: government civilian; military; onsite FFRDCs; and on-site SETAs. (BRAC Criteria I)

"LAB"	······································	1993 Actual	<u> </u>	
	Civilian	Military	FFRDC	SETA
Science & Technology	181	0	0	42.2
Engineering Development		· · · · · · · · · · · · · · · · · · ·		
In-Service Engineering				

Science and Technology = 6.1, 6.2, 6.3A

3.3.1.2 <u>Engineering Development By ACAT.</u> For each Common Support Function (e.g. airborne C4I) at each activity engaged in engineering development, provide:

- For each ACAT IC, ID, and II program (as defined in DODI 5000.2):

- The name of the program
- A brief program description
- For each ACAT III and IV programs:
- The number of such programs
- A list of program names
- For each program not an ACAT I, II, III, IV:
 - The number of such programs
 - A list of program names

- For the purpose of this question, any program between Milestone I and IV and containing demonstration and validation (Dem/Val 6.4)/Engineering and Manufacturing Development (EMD 6.5) funds in the FY95 PBS is considered to be engaged in engineering development (BRAC Criteria I).

Engineering Development	Name or Number	Workyears (FY93 Actual)	FY93 Funds Received (Obligation Authority)	Narrative
ACAT IC	(Name)	NONE		(Description)
ACAT ID	(Name)	NONE		(Description)
ACATI	(Name)	NONE		(Description)
ACAT III/IV	(Number)	NONE		(List)
Other	(Number)	NONE		(List)

3.3.1.3 <u>In-Service Engineering</u>. For each Common Support Function at each activity engaged in in-service engineering, list the in-service engineering efforts, the FY93 funds (from all sources) obligated for these efforts, the FY93 workyears for these efforts, and the weapon system(s) supported by these efforts. In-service engineering consists of all engineering support of fielded and/or out of production systems and includes efforts to improve cost, throughput, and schedule to support customer requirements as well as mods and upgrades for reliability, maintainability, and performance enhancements. (BRAC Criteria I)

Common Support Functions	In-Service Engineering Efforts (List)	FY93 Actual		Weapon System(s) Supported
ED		Funds Received (Obligation Authority)	Workyears	
	NONE			

3.3.2 Projected Funding.

3.3.2.1 <u>Direct Funding</u>. For each applicable CSF, identify direct mission funding by appropriation from FY94 to FY97. Use FY95 PBS for FY95-FY97. (BRAC Criteria I)

Does not apply to DBOF Laboratories.

CSF	FY94	FY95	FY96	FY97
ED	-	-	-	•

3.3.2.2 <u>Other Obligation Authority</u>. For each applicable CSF, identify reimbursable and direct-cite funding (other obligation authority expected) from FY94 to FY97. Funding allocation must be traceable to FY95 PBS. (BRAC Criteria I) (\$K)

CSF	FY94	FY95	FY96	FY97
ED	86,305.3	91,296.2	94,594.0	96,368.943

3.4 Facilities and Equipment

3.4.1 <u>Major Equipment and Facilities</u>. Describe major facilities and equipment necessary to support each Common Support Function (include SCIFs). If the facilities and equipment are shared with other functions, identify those functions and the percentage of total time used by each of the functions. Provide labeled photographs that picture the breadth and scope of the equipment and facilities described. If it is unique to DOD, to the Federal Government, or to the US, describe why it is unique. Insert the replacement cost. For this exercise, Replacement cost = (Initial cost + capital investment) multiplied by the inflation factor for the original year of construction. (BRAC Criteria II)

		Unique	То	· · · · · · · · · · · · · · · · · · ·	
Common Support Function	Major Facility or Equipment Description*	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)
ELECTRON	IC DEVICES				1.415
	Nanochannel Glass Technology Facility	X			1,415
	Laser Probe Facility				2,000
	Pulsed Chemical Laser Facility			X	4,000
	Argon-Pumped Ti:Sapphire Laser				750
	Ultrashort Pulse Generation Facility				1,000
	Fiber Optic Sensor Facility			X	2,100
	Optical Devices & Thin Film Fabrication Facilites				1,585
	Fiber Optic Optical- Microwave Laboratory		X		1,500
	Relativistic Klystron Laboratory			X	3,000
	Gyrotron Laboratory			X	2,000
	Long Pulse Accelerator Laboratory				500
· · · ·	Nanoelectronics Processing Facility	Х			19,870
	High Resolution Transmission Electron Microscope				700
	Si MBE & Surface Analysis System	X			1,200
	Vacuum Electronics Design Processing Facility	X			3,200
	III-V MBE Facilities			1	820
	Surface & Interface Science Facility				1,200
	Organometallic VPE	X	· · · · · · · · · · · · · · · · · · ·	11-	2,400
	Optical Characterization Facility				670
	Electronic Properties Facility				725
	Epicenter Facility	X	X		3,000
	Magnetic Resonance Facility				704

•

•

Optical Properties Facility			843
Crystal Growth Facility			2,250
Far Infrared Spectroscopy Facility			685
Reliability Facility	X	X	1,800
Microwave Technology Facility			2,000
 Computers/Software/N etworks/Test Equipment			1,500

3.5 Expansion Potential

3.5.1 Laboratory Facilities: Use facilities records as of fourth-quarter FY93 in answering the following (in sq ft) for each CSF: (BRAC Criteria II)

			Space	e Capacity (K	SF)
Common Support Function	Facility or Equipment Description	Type of Space*	Current	Used	Excess
	Lasers	Technical	14,183	12,765	1,418
	Fiber Optics	Technical	8,892	8,002	890
	Optical Microwave Systems	Technical	4,969	4,472	497
	Sensors	Technical	6,560	5,904	656
	Relativistic Klystron Laboratory	Technical	4,200	3,800	400
-	Gyrotron Laboratory	Technical	6,000	5,400	600
	Long Pulse Accelerator Laboratory	Technical	1,500	1,300	200
	Nanoelectronics Processing Facility	Technical	4,000	4,000	0
	High Resolution Transmission Electron Microscope	Technical	528	528	0
	Si MBE & Surface Analysis System	Technical	792	792.	0
	Vacuum Electronics Design Processing Facility	Technical	1,771	1,771	0

III-V MBE Facilities	Technical	506	506	0
Surface & Interface Science Facility	Technical	1,265	1,265	0
 Organometallic VPE	Technical	1,697	1,697	0
Optical Characterization Facility	Technical	1,265	1,265	0
Electronic Properties Facility	Technical	1,012	1,012	0
Epicenter Facility	Technical	1,012	1,012	0
 Magnetic Resonance Facility	Technical	759	759	0
Optical Properties Facility	Technical	1,265	1,265	0
Crystal Growth Facility	Technical	3,289	3,289	0
 Far Infrared Spectroscopy Facility	Technical	1,265	1,265	0
Reliability Facility	Technical	1,392	1,392	0
 Microwave Technology Facility	Technical	3,542	3,542	0
Computers/Soft ware/Networks/T est Equipment	Technical	2,500	2,500	0
General Laboratory	Technical	26,556	16,202	1,353
Office	Administrative	36, 807	34,977	1,830
Utility	Utility	300	300	0
Storage	Storage	8,348	7,999	1,699

* Type of Space = Administrative, Technical, Storage, Utility

3.5.1.1 Describe the capacity of your activity to absorb additional similar workyears categorized in the same common support function with minor facility modification. If major modification is required, describe to what extent the facilities would have to be modified. (Use FY97 workyears as your requirement) (BRAC Criteria III)

A modest increase in work force size (about 10%) can be accomodated without major facility modification. Administrative and office space is available.

3.5.1.2 If there is capacity to absorb additional workyears, how many additional workyears can be supported? (BRAC Criteria III)

· D-9

NRL is industrially funded. The 27.87 workyears in Electronic Devices can be supported if additional funding is supplied.

3.5.1.3 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II)

There is no military construction or other alteration projects programmed in the FY95 PBS that impact the electronic devices common support function at NRL-Washington.

3.5.2 Land Use: Provide number of buildable acres for additional laboratory/administrative support construction at your installation. (BRAC Criteria II)

NRL has 11.2 acres available for unrestricted expansion located at its Chesapeake Bay Detachment. Parking would have to be included as part of any expansion project. Utilities, while available, are aged and would be required to be upgraded to accommodate any expansion.

The building space (class 2 property) currently available for growth opportunities at the NRL DC R site, either constrained or unconstrained, represents a total of multiple small areas located throughout the Laboratory which cannot be effectively utilized by any other functions other than the primary occupant of the facility. It is important to note however, that NRL facilities can be reconfigured, e.g., demolished and rebuilt, altered, fitted with capital equipment, etc. to accommodate new or expanded mission assignments. However, accurate quantification of the maximum amount of space available for expansion is not practical without the benefit of revised mission/program planning guidance. For planning purposes, a rough order of magnitude estimate of the minimum class 2 space available for expansion is 10 percent. This would involve minimal reconfiguration.

3.5.3 Utilities: Provide an estimate of your installation's capability to expand or procure additional utility services (electric, gas, water). Estimates should be provided in appropriate units -- e.g. KWH of electricity. (BRAC Criteria II)

Utility service capacities are depicted in the following table:

-	n Base pacity	Off Base Long Term Contract	Normal Steady <u>State Load</u>	Peak <u>Demand</u>
Electrical Supply (KWH)	N/A	54,000 KWH	13,098 KWH	17,280 KWH
Natural Gas (CFH) ¹	N/A	2,961 CFH	141 CFH	1,868 CFH
Sewage (GPD)	N/A	Unlimited	847,583 GPD	1,017,100 GPD
Potable Water (GPD)	N/A	9,740,978 GPD	1,118,911 GPD	1,342,693 GPD
Steam (PSI & lb/Hr) ²	190,000 lb,	/Hr N/A	116,000 lb/Hr	125,000 lbr/Hr

1 The availability of natural gas is controlled by the Washington Gas Light Company. It cannot be relied on as a primary fuel.

2 Production plant owned by PWC, Washington. D-10R (8 Aug 94) R

FOR OFFICIAL USE ONLY

This section replaced in its entirely by Pages D-1 the D-10R doted 19 AVG 94

3.0 \Mission :

Describe the major capabilities at your activity contributing to the common support function in bulletized format. Describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity mission.

The Electronic Devices Common Support Function mission is to:

- Participate in the advancement of knowledge, understanding, and technology of Electronic Devices by in-house R&D in: materials, processes, structures, devices, and circuits
- Transform private sector advances into military electronics technologies
- Address unique or predominantly military needs both by in-house performance and by industrial interactions
- Develop new state-of the-art devices and circuits with emphasis on performance, affordability, and robustness
- Advise Navy on Electronic and Electro-Optics S&T needs, capabilities, and opportunities. Provide S&T advocacy as appropriate
- Perform Technology Transfer t λ the Private Sector

The major resources present at the NRL Washington site to conduct electronic devices R&D include:

- A highly educated science and engineering work force;
- State of the art flexible R&D facilities and equipment;

- An efficient Laboratory central support service for administration, maintanance, and minor construction.

The major capabilites at the NRL-Washington site\include:

- The planning and execution of a broadly based, balanced, long term, multidiscplinary R&D program

- A proven track record of accomplishment in the creation and transfer of electronics and electro-optics technologies into DoD warfighting systems and into US industrial competetiveness.

- The ability to create, characterize, fabricate and evaluate advanced and novel electronic and electro-optic materials, devices, and circuits and to transistion them to the Fleet, the other Services, or to the commercial marketplace.

Revision

7CE/OXR91

PAGE 31 March 1994 FOR OFFICIAL USE ONLY

ENCLOSURE (6)

8 AUG 1994

FOR OFFICIAL USE ONLY

Relationship and Interconnectivity with other NRL R&D Functions

The electronic devices common support function at NRL is part of a multidisciplinary co-located laboratory work environment that is drucial to achieve scientific and technological advances in electronics and to respond to the needs of the Navy for advanced system, and operational capabilities paced by electronic and electro-optic requirements. Advances in optical sciences, material's science, bioengineered materials, chemistry, condensed matter physics, and radiation and plasma physics serve to form an intellectual synergy for advancing the state of the art in electronic \devices. In a complementary manner, capabilities in electronic \devices R&D associated with electronic and electromagnetic characterization of materials and the methods and capabilities of nano/microfabrication serve to enhance the R&D capabilies of other S&T activities at the Laboratory.

The electronic devices capability at NRL also supports directly the mission of the Laboratory in electronic warfare, radar, space systems and information technology. The co-location of S&E's who are creating new electronic device capability and who are highly knowledgeable about existing and emerging electronic/electro-optic devices with systems engineers who are in need of knowing what is new and what is possible results in a highly efficient transfer of capability from the laboratory bench into systems. It is also imperative that those that create research results are readily available on a continual basis to transistion the results successfully to those that can benefit by its application.

Relationship and Interconnectivity with Other Service R&D Functions

The Electronic Devices capability at NRL also provides Tri-Service Reliance support to the other services in a variety of areas such as device/IC reliability, development of specific processes for RF and microelectronic devices, advanced filters for wideband shared aperture systems, hermetic plastic packages for next generation radar systems, the ferromagnetic consortium, electronic material growth and characterization to name a few λ NRL in conjunction with the other services and ARPA is both a performer and a coplayer in a number of major DoD initiatives including, for example, MIMIC, DLP, Vacuum Electronics Initiative, HDMP, RASSP and MHDL. NRL works closely with the other services to specify and manage DoD specific technology development at the 6.1, 6.2 and NRL makes its excellent design, test and evaluation 6.3 levels. capabilities available throughout the government. \In more than one instance NRL has provided the inspiration and technology base for major initiatives.

PAGE 31 March 1994 FOR OFFICIAL USE ONLY

Revision 704/04/291 8/17/94

Q. ELECTRONIC DEVICES

3.0 <u>Mission.</u> Describe the major capabilities at your activity contributing to the common support function in bulletized format. Describe any relationship and interconnectivity with other functions (common or otherwise) in support of the overall activity mission.

The Electronic Devices Common Support Function mission is to:

- Participate in the advancement of knowledge, understanding, and technology of Electronic Devices by in-house R&D in: materials, processes, structures, devices, and circuits
- Transform private sector advances into military electronics technologies
- Address unique or predominantly military needs both by in-house performance and by industrial interactions
- Develop new state-of-the-art devices and circuits with emphasis on performance, affordability, and robustness
- Advise Navy on electronic and electro-optics S&T needs, capabilities, and opportunities. Provide S&T advocacy as appropriate
- Perform Technology Transfer to the Private Sector

The major resources present at the NRL-Washington site to conduct electronic devices R&D include:

- A highly educated science and engineering work force;
- State of the art flexible R&D facilities and equipment;

- An efficient Laboratory central support service for administration, maintanance, and minor construction.

The major capabilites at the NRL-Washington site include:

- The planning and execution of a broadly based, balanced, long term, multidiscplinary R&D program

- A proven track record of accomplishment in the creation and transfer of electronics and electro-optics technologies into Naval warfighting systems and into US industrial competitiveness.

- The ability to create, characterize, fabricate and evaluate advanced and novel electronic and electro-optic materials, devices, and circuits and to transition them to the Fleet or to the commercial marketplace. 3.0 <u>Mission (cont'd)</u>. Relationship and Interconnectivity with other NRL R&D Functions

The electronic devices common support function at NRL is part of a multidisciplinary co-located laboratory work environment that is crucial to achieve scientific and technological advances in electronics and to respond to the needs of the Navy for advanced system and operational capabilities paced by electronic and electro-optic requirements. Advances in optical sciences, materials science, bioengineered materials, chemistry, condensed matter physics, and radiation and plasma physics serve to form an intellectual synergy for advancing the state of the art in electronic devices. In a complementary manner, capabilities in electronic devices R&D associated with electronic and electromagnetic characterization of materials and the methods and capabilities of nano/microfabrication serve to enhance the R&D capabilies of other S&T activities at the Laboratory.

The electronic devices capability at NRL also supports directly the mission of the Laboratory in electronic warfare, radar, space systems, and information technology. The co-location of S&E's who are creating new electronic device capability and who are highly knowledgeable about existing and emerging electronic/electro-optic devices with systems engineers who are in need of knowing what is new and what is possible results in a highly efficient transfer of capability from the laboratory bench into systems. It is also imperative that those that create research results are readily available on a continual basis to transistion the results successfully to those that can benefit by its application.

3.1 Location

3.1.1 Geographic/Climatological Features. Describe any geographic/climatological features in and around your activity that are relevant to each CSF. Indicate and justify those that are required versus those that just serve to enhance accomplishing the mission of the activity. For example, clear air at high altitude that increases quality of atmospheric, ground-based laser experiments in support of the weapons CSF. (BRAC Criteria I)

There are several geographic features on the NRL-Washington site that are relevant to the satisfactory performance of Electronic Devices R&D. Seismic isolation is easily achieved at this site for advanced electron beam equipments because of the close proximity of bedrock to the surface. The distributed nature of the Laboratory's research buildings on the Washington site also facilitates electromagnetic and rfi isolation. There are no special or unique climatological features.

3.1.2 <u>Licenses & permits</u>. Describe and list the licenses or permits (e.g., environmental, safety, etc.) that your activity currently holds and justify why they are required to allow tests, experiments, or other special capabilities at your location for each CSF. For example, permit to store and use high explosives. (BRAC Criteria I)

NRL holds a site license for the acquisition, receipt, possession, use for research purposes, storage, and disposal of radioactive materials. The license is Permit No.-8-001733. Some types of radioactive material are required to perform certain electronic materials and device radiation tests. These tests are required to ensure surviablity of electronic components in ambient radiation and nuclear burst environments.

3.1.3 <u>Environmental constraints.</u> Describe and list the environmental or land use constraints present at your activity which limit or restrict your current scope for each CSF, i.e., would not allow increased "volume" or "spectrum" for the CSF. Example -- Volume: frequency of a type of experiment. Example -- Spectrum: Current permit to detonate high explosives will not allow detonation or storage of increased quantity of explosives without legal waiver (state law) or relocation of surrounding (non-govt) buildings. (BRAC Criteria II)

There are no environmental or land use constraints present at the NRL-Washngton site which limit or restrict the current or perceived future scope of Electronic Devices R&D.

3.1.4 <u>Special Support Infrastructure</u>. List and describe the importance of any mission related special support infrastructure (e.g. utilities) present at your location for your activity. (BRAC Criteria I)

None.

3.1.5. <u>Proximity to Mission-Related organizations</u>. List and describe the importance and impact of not having nearby organizations which facilitate accomplishing or performing your mission - e.g. operational units, FFRDCs, universities/colleges, other government organizations, and commercial activities. Restrict your response to the top five. Complete the following: (BRAC Criteria I)

Common Support Functions	Name	Type of Organization	Distance	Workyears Performed by Your Activity	Workyears Funded by Your Activity
Electronic Devices					
	Brookhaven National Laboratories Synchrotron Source	DOE and University Consortium	250	3	3

3.2 Personnel

3.2.1 <u>Total Personnel</u>. What is the total number of government (military and civilian), on-site federally funded research and development center (FFRDC), and on-site system engineering technical assistance (SETA) personnel engaged in science and technology (S&T), engineering development and in-service engineering activities as of end FY93? For individuals that predominantly work in CSFs, involved in more than one CSF, account for those individuals in the CSF that represents the preponderance of their effort. (BRAC Criteria I)

	Number of Personnel				
Types of personnel	Governn	nent	On-Site FFRDC	On-Site SETA	
Electronic Devices	Civilian	Military			
Technical	192.7			84	
Management (Supv)	20				
Other	32				

3.2.2 <u>Education</u>. What is the number of government personnel actively engaged in S&T, engineering development and in-service engineering activities by highest degree and type of position? Provide the data in the following table: (BRAC Criteria I)

Type of	Number of Government Personnel by Type of Position				
Degree/ Diploma	Technical	Management (Supv)	Other		
High School or Less	24.7		29		
Associates	4		3		
Bachelor	- 8				
Masters	26	3			
Doctorate (include Med/Vet/etc.)	130	17			

Electronic Devices

3.2.3 <u>Experience</u>. What is the experience level of government personnel? Fill in the number of government personnel in the appropriate boxes of the following table. (BRAC Criteria I)

Electronic Devices					
Years of Government and/or Military Service					
Type of Position	Less than 3 years	3-10 years	11-15 years	16-20 years	More than 20 years
Technical	19	69	30.7	16	58
Management (Supv)	0	2	1	1	16
Total	19	71	31.7	17	74

NOTE: Table does not include personnel in the "Qther" category.

3.2.4.1 Patents - See Tab A.

3.2.4.2 Published Papers - See Tab B.

3.3 Workload

3.3.1 FY93 Workload.

3.3.1.1 <u>Work Year and Lifecycle.</u> Identify the number of actual workyears executed for each applicable CSF in FY93 for each of the following: government civilian; military; onsite FFRDCs; and on-site SETAs. (BRAC Criteria I)

"LAB"	Fiscal Year 1993 Actual				
	Civilian	Military	FFRDC	SETA	
Science & Technology	181	0	0	42.2	
Engineering Development					
In-Service Engineering					

Science and Technology = 6.1, 6.2, 6.3A

3.3.1.2 <u>Engineering Development By ACAT.</u> For each Common Support Function (e.g. airborne C4I) at each activity engaged in engineering development, provide:

- Fox each ACAT IC, ID, and II program (as defined in DODI 5000.2):

- The name of the program

- A brief program description

- For each ACAT III and IV programs:

- The number of such programs

- A list of program names

- For each program not an ACAT I, II, III, IV:

- The number of such programs

- A list of program names

- For the purpose of this question, any program between Milestone I and IV and containing demonstration and validation (Dem/Val 6.4)/Engineering and Manufacturing Development (EMD 6.5) funds in the FY95 PBS is considered to be engaged in engineering development (BRAC Criteria I).

Engineering Development	Name or Number	Workyears (FY93 Actual)	FY93 Funds Received (Obligation Authority)	Narrative
ACAT IC	(Name)	NONE		(Description)
ACAT ID	(Name)	NONE		(Description)
ACAT II	(Name)	NONE		(Description)
ACAT III/IV	(Number)	NONE		(List)
Other	(Number)	NONE		(List)

3.3.1.3 <u>In-Service Engineering</u>. For each Common Support Function at each activity engaged in in-service engineering, list the in-service engineering efforts, the FY93 funds (from all sources) obligated for these efforts, the FY93 workyears for these efforts, and the weapon system(s) supported by these efforts. In-service engineering consists of all engineering support of fielded and/or out of production systems and includes efforts to improve cost, throughput, and schedule to support customer requirements as well as mods and upgrades for reliability, maintainability, and performance enhancements. (BRAC Criteria I)

Common Support Functions	In-Service Engineering Efforts (List)	FY93 Actual	Weapon System(s) Supported
ED		FundsWorkyearsReceived(ObligationAuthority)	
	NONE		

3.3.2 Projected Funding.

3.3.2.1 <u>Direct Funding</u>. For each applicable CSF, identify direct mission funding by appropriation from FY94 to FY97. Use FY95 PBS for FY95-FY97. (BRAC Criteria I)

Does not apply to DBOF Laboratories.

CSF	FY94	FY95	FY96	FY97
ED	-	- \	-	-

3.3.2.2 <u>Other Obligation Authority</u>. For each applicable CSF, identify reimbursable and direct-cite funding (other obligation authority expected) from FY94 to FY97. Funding allocation must be traceable to FY95 PBS. (BRAC Criteria I) (\$K)

CSF	FY94	FY95	FY96	FY97
ED	86,305.3	91,296.2	9,4,594.0	96,368.943

3.4 Facilities and Equipment

3.4.1 <u>Major Equipment and Facilities.</u> Describe major facilities and equipment necessary to support each Common Support Function (include SCIPs). If the facilities and equipment are shared with other functions, identify those functions and the percentage of total time used by each of the functions. Provide labeled photographs that picture the breadth and scope of the equipment and facilities described. If it is unique to DOD, to the Federal Government, or to the US, describe why it is unique. Insert the replacement cost. For this exercise, Replacement cost = (Initial cost + capital investment) multiplied by the inflation factor for the original year of construction. (BRAC Criteria II)

		Unique	То		
Common Support Function	Major Facility or Equipment Description*	DOD	Federal Gov't	U. S.	Replacement Cost (\$K)
	IC DEVICES		0001		
ELECINO	Nanochannel Glass	X			1,415
	Technology Facility	Л			1,415
<u></u>	Laser Probe Facility			+	2,000
	Pulsed Chemical Laser			X	4,000
	Facility				4,000
	Argon-Pumped				750
	Ti:Sapphire Laser				750
	Ultrashort Pulse			1	1,000
	Generation Facility				1,000
	Fiber Optic Sensor			X	2,100
	Facility				_,_ 0
	Optical Devices & Thin				1,585
	Film Fabrication				·
	Facilites				
	Fiber Optic Optical-	\backslash	Х		1,500
	Microwave Laboratory				
	Relativistic Klystron			X	3,000
	Laboratory				
	Gyrotron Laboratory			X	2,000
	Long Pulse Accelerator		\mathbf{X}		500
	Laboratory				
	Nanoelectronics	Х			19,870
	Processing Facility				-
	High Resolution		\backslash		700
	Transmission Electron				
	Microscope Si MBE & Surface	X		╉───┤	1,200
	Analysis System	Λ		N I	1,200
	Vacuum Electronics	X		+ - +	3,200
	Design Processing	Λ		$ \rangle $	5,200
	Facility				
	III-V MBE Facilities			$ \rightarrow \uparrow \uparrow$	820
	Surface & Interface			<u>├\</u>	1,200
	Science Facility				\
	Organometallic VPE	X		<u>├──</u> ┼	2,400
	Optical Characterization			<u>├</u> ──┼	670
	Facility				
	Electronic Properties				725
	Facility				
	Epicenter Facility	Х	Х		3,000
	Magnetic Resonance				704
	Facility				\backslash

	Optical Properties Facility			843	a,
· · · · · · · · · · · · · · · · · · ·	Crystal Growth Facility			2,250	
	Far Infrared Spectroscopy Facility			685	
	Reliability Facility	Х	X	1,800	
	Microwave Technology Facility			2,000	
	Computers/Software/N etworks/Test Equipment			1,500	

3.5 Expansion Potential

•

3.5.1 Laboratory Facilities: Use facilities records as of fourth-quarter FY93 in answering the following (in sq ft) for each CSF: (BRAC Criteria II)

			Space	e Capacity (KS	SF)
Common	Facility or		· · · ·		
Support	Equipment	Type of			
Function	Description	Space*	Current	Used	Excess
	Lasers	Technical	14,183	12,765	1,418
	Fiber Optics	Technical	8,892	8,002	890
	Optical	Technical	4,969	4,472	497
	Microwave				
	Systems				
	Sensors	Technical	6,560	5,904	656
	Relativistic	Technical	4,200	3,800	400
	Klystron		Ν		
·	Laboratory			-	(0.0
	Gyrotron	Technical	\$,000	5,400	600
- <u></u>	Laboratory				
	Long Pulse	Technical	1,580	1,300	200
	Accelerator				
	Laboratory	Technical	4 000	1.000	0
	Nanoelectronics	Tecnnical	4,000	4,000	0
	Processing			\backslash	
	Facility	Technical	528	\$28	0
	High Resolution Transmission	Technical	528	\$20	U
	Electron				
	Microscope				
	Si MBE &	Technical	792	792	0
	Surface Analysis	Teennear	172		
	System				\backslash
	Vacuum	Technical	1,771	1,771	$\overline{)}$
	Electronics		-,	_,,,,_	Ň
	Design				
	Processing				
	Facility				N

	III-V MBE	Technical	506	506	0
1	Facilities				0
	Surface &	Technical	1,265	1,265	0
\backslash	Interface Science				
<u>_</u>	Facility	T	1.07	1.007	
	Organometallic VPE	Technical	1,697	1,697	0
	Optical	Technical	1,265	1,265	0
	Characterization				
	Facility	<u> </u>	1.010		
	Electronic	Technical	1,012	1,012	0
	Properties Facility				
	Epicenter Facility	Technical	1,012	1,012	0
	Magnetic	Technical	759	759	0
	Resonance	reennear	157	155	U
•	Facility				
	Optical	Technical	1,265	1,265	0
	Properties				
	Facility	$\underline{\}$			
	Crystal Growth	Technical	3,289	3,289	0
	Facility		1.075	1.0(5	
	Far Infrared	Technical	1,265	1,265	0
	Spectroscopy Facility				
	Reliability	Technical	1,392	1,392	0
	Facility		1,572	1,574	Ŭ
	Microwave	Technical	3,542	3,542	0
	Technology				
	Facility				
	Computers/Soft	Technical	2,500	2,500	0
	ware/Networks/T				
	est Equipment	— 1 • -			
	General	Technical	26,556	16,202	1,353
	Laboratory		26.007	24.077	1.000
	Office	Administrative	36, 807	34,977	1,830
	Utility	Utility	300	300	0
	Storage	Storage	8,348	7,999	1,699

* Type of Space = Administrative, Technical, Storage, Utility

3.5.1.1 Describe the capacity of your activity to absorb additional similar workyears categorized in the same common support function with minor facility modification. If major modification is required, describe to what extent the facilities would have to be modified. (Use FY97 workyears as your requirement) (BRAC Criteria III)

A modest increase in work force size (about 10%) can be accomodated without major facility modification. Administrative and office space is available.

3.5.1.2 If there is capacity to absorb additional workyears, how many additional workyears can be supported? (BRAC Criteria III)

NRL is industrially funded. The 27.87 workyears in Electronic Devices can be supported if additional funding is supplied.

3.5.13 For 3.5.1.1 and 3.5.1.2 (above) describe the impact of military construction programs or other alteration projects programmed in the FY95 PBS. (BRAC Criteria II)

There is no military construction or other alteration projects programmed in the FY95 PBS that impact the electronic devices common support function at NRL-Washington.

3.5.2 Land Use: Provide number of buildable acres for additional laboratory/administrative support construction at your installation. (BRAC Criteria II)

None

3.5.3 Utilities: Provide an estimate of your installation's capability to expand or procure additional utility services (electric, gas, water). Estimates should be provided in appropriate units -- e.g. KWH of electricity. (BRAC Criteria II)

None

BRAC-95 DATA CALL #12

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Nanochannel Glass
Nomenclature or Title	Technology Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

This Facility is used to fabricate, test and conduct preliminary application studies of Nanochannel Plate structure. Nanochannel glasses and plates contain parallel hollow channels as small as 10nm in diameter and packing densities approaching 10^{12} channels/cm². Individual channels can be positioned with high accuracy to form simple geometric arrays or highly complex architectures. Exact replicas of the channel glass can be made from a variety of materials and a high temperature form of the glass can be fabricated which is stable to greater than 950°C. The glass has a variety of applications. Present emphasis has been on high spatial resolution lithographic mask development. The facility consists of three parts: A fabrication laboratory, an applications laboratory and a characterization laboratory. Primary use is 70% Electron Devices. The other 30% is used by Pervasive Advanced Materials, Environmental Quality, universities, and private industry.

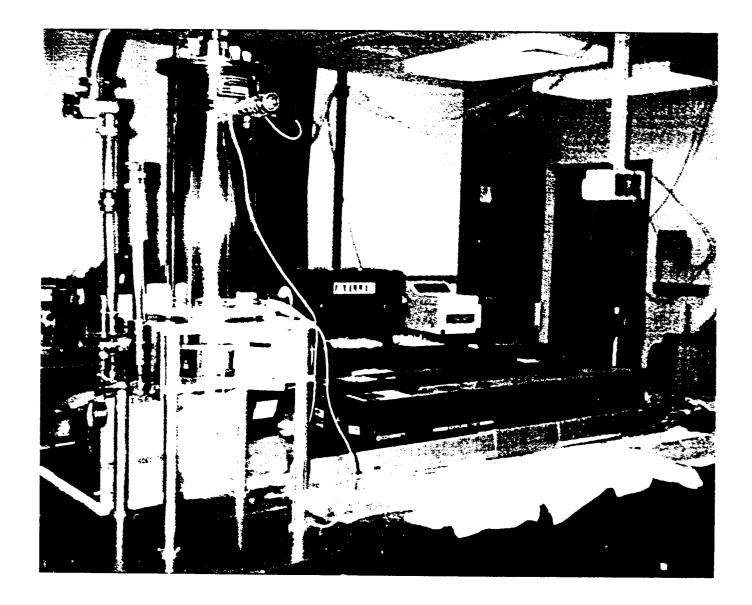
BRAC-95 DATA CALL #12

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Nanochannel Glass
Nomenclature or Title	Technology Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

This Facility is used to fabricate, test and conduct preliminary application studies of Nanochannel Plate structure. Nanochannel glasses and plates contain parallel hollow channels as small as 10nm in diameter and packing densities approaching 10^{12} channels/cm². Individual channels can be positioned with high accuracy to form simple geometric arrays or highly complex architectures. Exact replicas of the channel glass can be made from a variety of materials and a high temperature form of the glass can be fabricated which is stable to greater than 950°C. The glass has a variety of applications. Present emphasis has been on high spatial resolution lithographic mask development. The facility consists of three parts: A fabrication laboratory, an applications laboratory and a characterization laboratory. Primary use is 70% Electron Devices. The other 30% is used by Pervasive Advanced Materials, Environmental Quality, universities, and private industry.

Revision 7-4/0NR91 8/17/94


ENCLOSURE (7)

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Nanochannel Glass
Nomenclature or Title	Technology Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

This Facility is used to fabricate, test and conduct preliminary application studies of Nanochannel Plate structure. Nanochannel glasses and plates contain parallel hollow channels as small as 10nm in diameter and packing densities approaching 10^{12} channels/cm². Individual channels can be positioned with high accuracy to form simple geometric arrays or highly complex architectures. Exact replicas of the channel glass can be made from a variety of materials and a high temperature form of the glass can be fabricated which is stable to greater than 950°C. The glass has a variety of applications. Present emphasis has been on high spatial resolution lithographic mask development. The facility consists of three parts: A fabrication laboratory, an applications laboratory and a characterization laboratory.

This is the only facility in the world where such nanocomposite structures have been fabricated. The facility has the potential to address a broad range of applications relevant to the Navy and the nation, such as nanoscale lithography, including x ray optics, nanoelectronics, optical switches, pattern development on diamond substrates and DNA mapping.

NANOCHANNEL GLASS TECHNOLOGY FACILITY Associated Draw Dower is not pictured

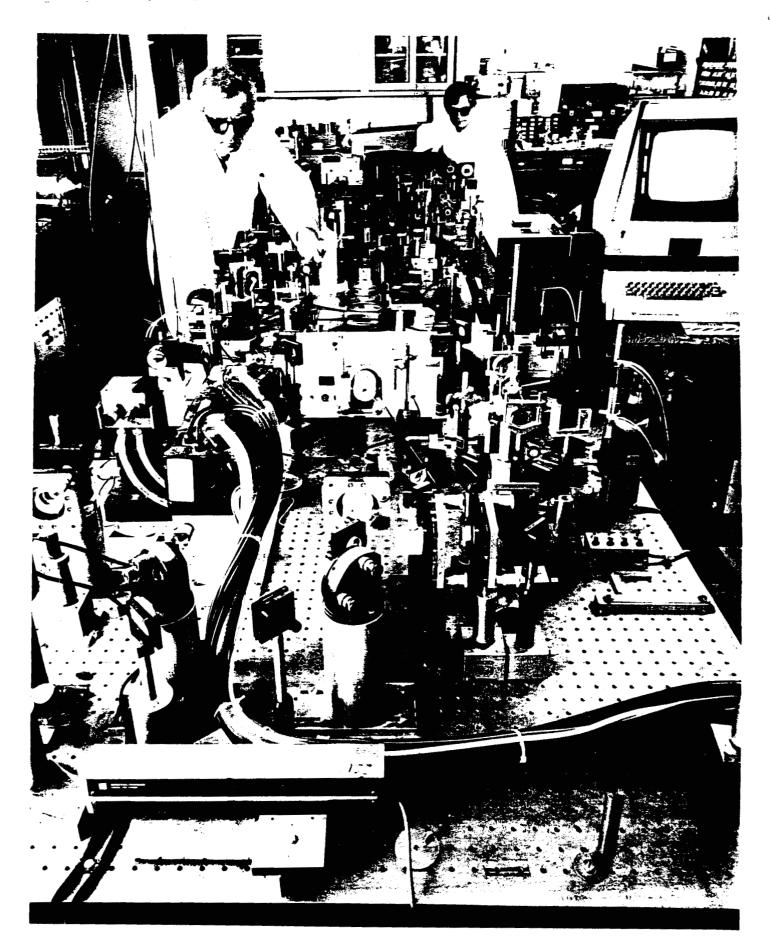
Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment Nomenclature or Title	Laser Probe Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

This Optical Physics Branch Facility is used to characterize the properties of advanced electro-optical materials using a wide range of laser spectroscopic probes. The facility consists presently of seven laser laboratories located throughout buildings 216 and A-50 that are dedicated to a wide range of material parameter measurements and optical characterization spanning wavelengths from the UV to the IR. Material properties investigated include optical transmission, elastic and inelastic scattering, ground and excited state absorption, nonlinear and electro-optical constants, free carrier and photo transport, magneto-optical, band structure, lattice structure, photonic band behavior, quantum confinement and reduced dimensionality, cavity QED behavior, inter-and intramolecular energy transfer rates, electroluminescence and low temperature excitonic behavior. Laser spectroscopies utilized include spontaneous and coherent Raman, degenerate and non-degenerate four wave mixing, photothermal, second and third harmonic generation, two -photon absorption, z-scan, subpicosecond resolution transient absorption, laser induced fluorescence and subpicosecond excite-probe. 70% of this facility is used by Electron Devices. The other 30% is used by Pervasive Advanced Materials, Environmental Quality, universities, and private industrial groups.

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment Nomenclature or Title	Laser Probe Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES


This Optical Physics Branch Facility is used to characterize the properties of advanced electro-optical materials using a wide range of laser spectroscopic probes. The facility consists presently of seven laser laboratories located throughout buildings 216 and A-50 that are dedicated to a wide range of material parameter measurements and optical characterization spanning wavelengths from the UV to the IR. Material properties investigated include optical transmission, elastic and inelastic scattering, ground and excited state absorption, nonlinear and electro-optical constants, free carrier and photo transport, magneto-optical, band structure, lattice structure, photonic band behavior, quantum confinement and reduced dimensionality, cavity QED behavior, inter-and intramolecular energy transfer rates, electroluminescence and low temperature excitonic behavior. Laser spectroscopies utilized include spontaneous and coherent Raman, degenerate and non-degenerate four wave mixing, photothermal, second and third harmonic generation, two -photon absorption, z-scan, subpicosecond resolution transient absorption, laser induced fluorescence and subpicosecond excite-probe. 70% of this facility is used by Electron Devices. The other 30% is used by Pervasive Advanced Materials, Environmental Quality, universities, and private industrial groups.

Revision 764/0NR91 8117/94

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment Nomenclature or Title	Laser Probe Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

This Optical Physics Branch Facility is used to characterize the properties of advanced electro-optical materials using a wide range of laser spectroscopic probes. The facility consists presently of seven laser laboratories located throughout buildings 216 and A-50 that are dedicated to a wide range of material parameter measurements and optical characterization spanning wavelengths from the UV to the IR. Material properties investigated include optical transmission, elastic and inelastic scattering, ground and excited state absorption, nonlinear and electro-optical constants, free carrier and photo transport, magneto-optical, band structure, lattice structure, photonic band behavior, quantum confinement and reduced dimensionality, cavity QED behavior, inter-and intramolecular energy transfer rates, electroluminescence and low temperature excitonic behavior. Laser spectroscopies utilized include spontaneous and coherent Raman, degenerate and non-degenerate four wave mixing, photothermal, second and third harmonic generation, two -photon absorption, z-scan, subpicosecond resolution transient absorption, laser induced fluorescence and subpicosecond excite-probe.

LASER PROBE FACILITY

BRAC-95

DATA CALL #12

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment Nomenclature or Title	Pulsed Chemical Laser Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

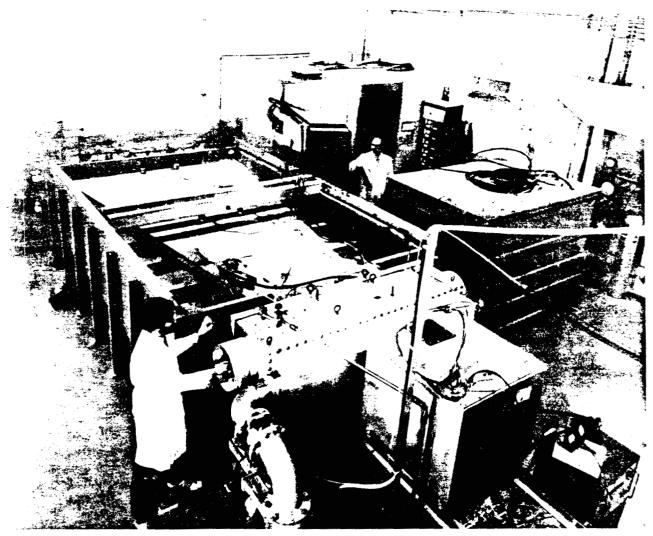
This Facility provides high-energy laser pulses in the 3 to 4um spectral range suitable for investigation of pulsed chemical laser kinetics, optical resonator design, nonlinear optics in the infrared, and laser beam materials interaction. The system consists of two flashlamp-pumped laser cavities, each capable of producing 50 J of energy of hydrogen fluoride laser transitions in the 2.8 to 3.5u spectral region, as well as 30 J of deuterium fluoride lasing in the 3.8 to 4.5u spectral region. Grating control enables operation on over 30 spectral lines separately. Pulse lengths typically are 1 to 2 us. The laser runs on a mix of hydrogen or deuterium and diatomic fluorine buffered by helium. Oxygen is incorporated in the system to eliminate spontaneous chain reactions. 70% of the facility is used for Electron Device research, while the other 30% is used by Advanced Materials and Environmental Quality.

D-13 R (8 Aug 94)

DATA CALL #12

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Pulsed Chemical Laser
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES


This Facility provides high-energy laser pulses in the 3 to 4um spectral range suitable for investigation of pulsed chemical laser kinetics, optical resonator design, nonlinear optics in the infrared, and laser beam materials interaction. The system consists of two flashlamp-pumped laser cavities, each capable of producing 50 J of energy of hydrogen fluoride laser transitions in the 2.8 to 3.5u spectral region, as well as 30 J of deuterium fluoride lasing in the 3.8 to 4 5u spectral region. Grating control enables operation on over 30 spectral lines separately. Pulse lengths typically are 1 to 2 us. The laser runs on a mix of hydrogen or deuterium and diatomic fluorine buffered by helium. Oxygen is incorporated in the system to eliminate spontaneous chain reactions. 70% of the facility is used for Electron Device research, while the other 30% is used by Advanced Materials and Environmental Quality.

Revisión 704/0NR91 SINA4

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Pulsed Chemical Laser
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

This Facility provides high-energy laser pulses in the 3 to 4um spectral range suitable for investigation of pulsed chemical laser kinetics, optical resonator design, nonlinear optics in the infrared, and laser beam materials interaction. The system consists of two flashlamp-pumped laser cavities, each capable of producing 50 J of energy of hydrogen fluoride laser transitions in the 2.8 to 3.5u spectral region, as well as 30 J of deuterium fluoride lasing in the 3.8 to 4.5u spectral region. Grating control enables operation on over 30 spectral lines separately. Pulse lengths typically are 1 to 2 us. The laser runs on a mix of hydrogen or deuterium and diatomic fluorine buffered by helium. Oxygen is incorporated in the system to eliminate spontaneous chain reactions. The tandem pulse chemical laser device is a unique system in which each source produces 50 J per pulse with uniform beam quality. This system has the versatility to conduct master oscillator power amplified research, i.e., a HF/DF main media. It is the only facility of this kind in the country, and perhaps the free world.

PULSED CHEMICAL LASER FACILITY

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Argon-Pumped Titanium:
Nomenclature or Title	Sapphire Laser

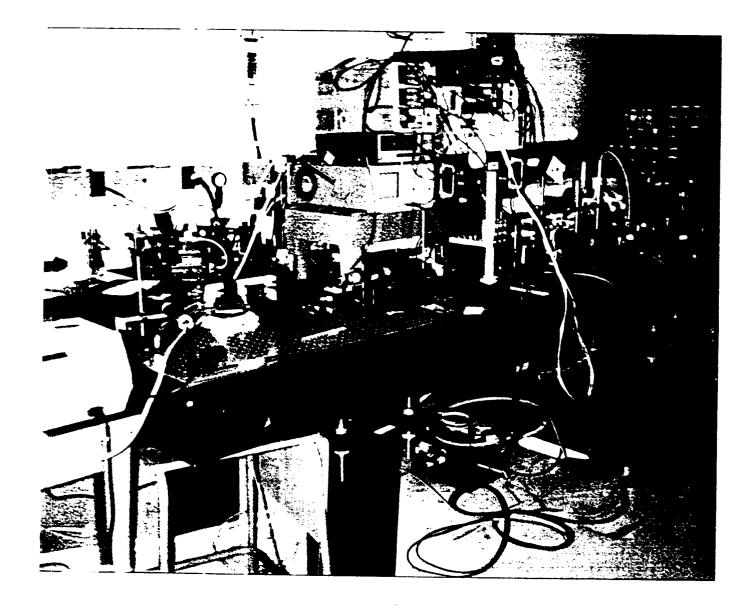
3.4.1 MAJOR EQUIPMENT AND FACILITIES

Provides continuous-wave coherent radiation at powers up to 7 watts, with wavelength continuously tunable between 670 nm and 1100 nm. This source is ideally suited for pumping developmental solid state lasers, and for emulating a wide range of diode laser pump sources. This solid state laser source is based on Ti^{3+} ions in single crystal sapphire. It is longitudinally pumped by a commercial argon ion gas laser. The crystal is actively cooled, and the power attainable in the tuning band depends primarily on the power of the argon ion pump laser. The current NRL design has utilized the highest figure of merit Ti:Sapphire crystals to achieve extremely high efficiencies and low lasing thresholds. When pumped with a 23 watt argon ion laser the NRL Ti:sapphire delivers up to 7 watts of unable radiation to the experimental test bed. 70% of the use is by Electron Devices. The other 30% is used by Advanced Materials, Environmental Quality, and the Army.

R

D-14 R (8 Aug 94)

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Argon-Pumped Titanium:
Nomenclature or Title	Sapphire Laser


3.4.1 MAJOR EQUIPMENT AND FACILITIES

Provides continuous-wave coherent radiation at powers up to 7 watts, with wavelength continuously tunable between 670 nm and 1100 nm. This source is ideally suited for pumping developmental solid state lasers, and for emulating a wide range of diode laser pump sources. This solid state laser source is based on Ti^{3+} ions in single crystal sapphire. It is longitudinally pumped by a commercial argon ion gas laser. The crystal is actively cooled, and the power attainable in the tuning band depends primarily on the power of the argon ion pump laser. The current NRL design has utilized the highest figure of merit Ti:Sapphire crystals to achieve extremely high efficiencies and low lasing thresholds. When pumped with a 23 watt argon ion laser the NRL Ti:sapphire delivers up to 7 watts of unable radiation to the experimental test bed. 70% of the use is by Electron Devices. The other 30% is used by Advanced Materials, Environmental Quality, and the Army.

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Argon-Pumped Titanium:
Nomenclature or Title	Sapphire Laser

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Provides continuous-wave coherent radiation at powers up to 7 watts, with wavelength continuously tunable between 670 nm and 1100 nm. This source is ideally suited for pumping developmental solid state lasers, and for emulating a wide range of diode laser pump sources. This solid state laser source is based on Ti^{3+} ions in single crystal sapphire. It is longitudinally pumped by a commercial argon ion gas laser. The crystal is actively cooled, and the power attainable in the tuning band depends primarily on the power of the argon ion pump laser. The current NRL design has utilized the highest figure of merit Ti:Sapphire crystals to achieve extremely high efficiencies and low lasing thresholds. When pumped with a 23 watt argon ion laser the NRL Ti:sapphire delivers up to 7 watts of unable radiation to the experimental test bed.

ARGON-PUMPED TITANIUM; SAPPHIRE LASER

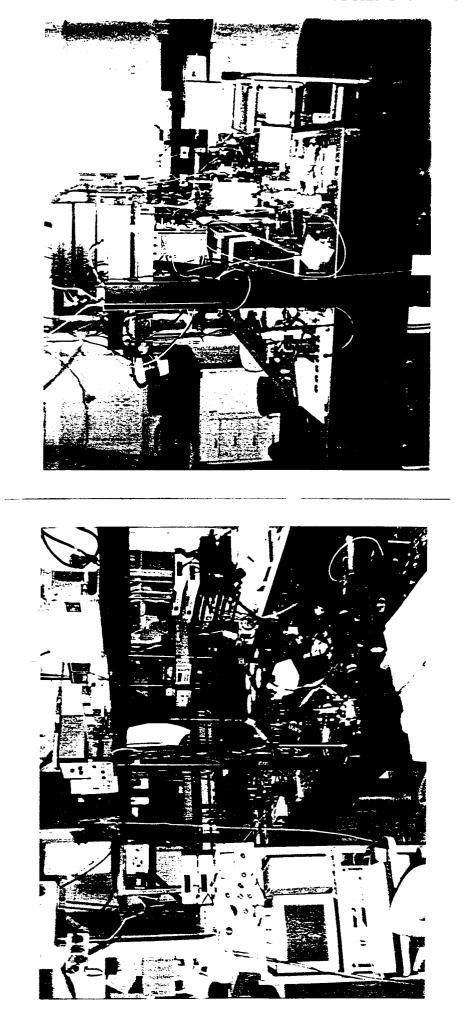
Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Ultrashort Pulse
Nomenclature or Title	Generation Facility

This Facility is used for the production of ultrashort light pulses for the study of material properties, carrier dynamics, nonlinear propagation and ultra-high speed communications. The Facility includes a number of laser systems providing optical pulses in a number of wavelength ranges. The available wavelengths are: 532 nm, 610-630 nm, 781 nm to 1.064 um, and the pulsewidths range from 1 ps down to 50 fs depending on the system. Frequency doubling and mixing crystals are also available to provide other wavelengths. NRL is the primary Navy user, but NASA has evaluated high frequency detectors at the facility. Commercial users have included AT&T, Amoco, Comsat, and Allied Signal. Academic users include University of Nebraska, University of Wisconsin, and the University of Minnesota. All of these make up 25% of the facilities use, primarily in a collaborative mode.

D-15 R (8 Aug 94)

1 9 AUG 1994

R


Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Ultrashort Pulse
Nomenclature or Title	Generation Facility

This Facility is used for the production of ultrashort light pulses for the study of material properties, carrier dynamics, nonlinear propagation and ultra-high speed communications. The Facility includes a number of laser systems providing optical pulses in a number of wavelength ranges. The available wavelengths are: 532 nm, 610-630 nm, 781 nm to 1.064 um, and the pulse widths range from 1 ps down to 50 fs depending on the system. Frequency doubling and mixing crystals are also available to provide other wavelengths. NRL is the primary Navy user, but NASA has evaluated high frequency detectors at the facility. Commercial users have included AT&T, Amoco, Comsat, and Allied Signal. Academic users include University of Nebraska, University of Wisconsin, and the University of Minnesota. All of these make up 25% of the facilities use, primarily in a collaborative mode.

Revision 700 NR91 810/94

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Ultrashort Pulse
Nomenclature or Title	Generation Facility

This Facility is used for the production of ultrashort light pulses for the study of material properties, carrier dynamics, nonlinear propagation and ultra-high speed communications. The Facility includes a number of laser systems providing optical pulses in a number of wavelength ranges. The available wavelengths are: 532 nm, 610-630 nm, 7810 nm to 1.064 um, and the pulsewidths range from 1 ps down to 50 fs depending on the system. Frequency doubling and mixing crystals are also available to provide other wavelengths.

ULTRASHORT PULSE GENERATION FACILITY

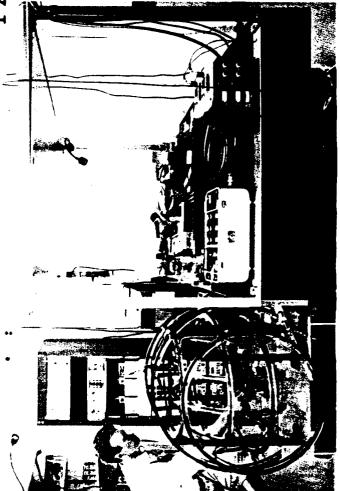
Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Fiber Optic Sensor
Nomenclature or Title	Facility

This Facility is used for the construction and evaluation of fiber optic sensors for a variety of measurands. These measurands include acoustic magnetic and electric field, as well as strain and rate of rotation. The sensor construction facility includes two Accuwinder coil winding machines, seven optical fiber fusion splicers, annealing facilities for magnetic materials, and computer controlled data reduction and analysis stations, one optimized for acoustic sensors and the other optimized for magnetic sensors. There is an environmental chamber which operates from -50 C to 100 C for life testing of prototype sensors. The acoustic sensor evaluation facility also includes a prototype hydrophone designs. The maximum pressure attainable in the chamber is 5000 psi. The evaluation facility for rate of rotation sensors includes a Contraves rate table (1000 deg/sec to Earth rate) and a suite of measurement equipment. The evaluation facility for magnetic sensors includes mumetal magnetic shields for low noise measurements, a superconducting magnetic shield for extremely low noise measurements, and an automated systems for dynamic magnetization and Barkhausen noise measurements. The facility has optical test equipment to evaluate optical sources as well as an OTDR and a SMARTS system to evaluate fiber optic circuitry. The facility is also NUWC, Metrology, the Bureau of Reclamation, and the Department of Transportation are some of the other government users of the facility. Approximately 15% of the facility is used for these groups.

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Fiber Optic Sensor
Nomenclature or Title	Facility

This Facility is used for the construction and evaluation of fiber optic sensors for a variety of measurands. These measurands include acoustic magnetic and electric field, as well as strain and rate of retation. The sensor construction facility includes two Accuwinder coil winding machines, seven optical fiber fusion splicers, annealing facilities for magnetic materials, and computer controlled data reduction and analysis stations, one optimized for acoustic sensors and the other optimized for magnetic sensors. There is an environmental chamber which operates from -50 C to 100 C for life testing of prototype sensors. The acoustic sensor evaluation facility also includes a prototype hydrophone designs. The maximum pressure attainable in the chamber is 5000 psi. The evaluation facility for rate of rotation sensors includes a Contraves rate table (1000 deg/sec to Earth rate) and a suite of measurement equipment. The evaluation facility for magnetic sensors includes mumetal magnetic shields for low noise measurements, a superconducting magnetic shield for extremely low noise measurements, and an automated systems for dynamic magnetization and Barkhausen noise measurements. The facility has optical test equipment to evaluate optical sources as well as an OTDR and a SMARTS system to evaluate fiber optic circuitry. The facility is also NUWC, Metrology, the Bureau of Reclamation, and the Department of Transportation are some of the other government users of the facility. Approximately 15% of the facility is used for these groups.

> Revision 705/0NR91 8/17/94


Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment Nomenclature or Title	Fiber Optic Sensor Facility

This Facility is used for the construction and evaluation of fiber optic sensors for a variety of measurands. These measurands include acoustic magnetic and electric field, as well as strain and rate of rotation. The sensor construction facility includes two Accuwinder coil winding machines, seven optical fiber fusion splicers, annealing facilities for magnetic materials, and computer controlled data reduction and analysis stations, one optimized for acoustic sensors and the other optimized for magnetic sensors. There is an environmental chamber which operates from -50 C to 100 C for life testing of prototype sensors. The acoustic sensor evaluation facility also includes a prototype hydrophone designs. The maximum pressure attainable in the chamber is 5000 psi. The evaluation facility for rate of rotation sensors includes a Contraves rate table (1000 deg/sec to Earth rate) and a suite of measurement equipment. The evaluation facility for magnetic sensors includes mumetal magnetic shields for low noise measurements, a superconducting magnetic shield for extremely low noise measurements, and an automated systems for dynamic magnetization and Barkhausen noise measurements. The facility has optical test equipment to evaluate optical sources as well as an OTDR and a SMARTS system to evaluate fiber optic circuitry. This is the only facility in the US capable of fabricating and evaluating fiber optic sensors, either in a discreet or in an array form, for sensing acoustic fields, magnetic fields, strains rotation, acceleration, pressure and temperature.

SENSOR

FACILITY

ł

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	e Optical Device and Thin
Nomenclature or Title	Film Fabrication Facilities

The thin film fabrication facilities are capable of a variety of thin film deposition techniques for metal and oxide films. These include thermal and electron beam evaporation and RF and magnetron sputtering. Film thicknesses can be controlled from 100's to 10,000 Angstroms. Deposition is done in a class 10,000 clean room. A variety of furnaces are available for thermal diffusion processes, which are primarily used for the fabrication of Ti-diffused or proton exchanged LiNb03. The optical device fabrication facility consists of a Class 1000 clean room primarily designed for the photolithographic processing of LiNbO3/LiTaO3 integrated optical devices. Facilities are available for sample cleaning with ultrapure water, photoresist spinning, pre- and post-bakes, exposure, and development. Critical operations are preformed in Class 100 workstations. Low power plasma etching is available for resist cleaning and hardening. This facility is connected to the one above by a pass-thru. A separate optical polishing capability is available which can end-polish both optical fibers and integrated optical substrates. Besides the Radar and Electronic Warfare Division, the facility is also used by the Naval Postgraduate School for a A/D converter they are developing. The facility has also been used by GTE, AEL, and Harmonic Lightwave for modulator development. That usage makes up approximately 15% of the facility's time and resources.

D-17 R (8 Aug 94)

R

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Optical Device and Thin
Nomenclature or Title	Film Fabrication Facilities

The thin film fabrication facilities are capable of a variety of thin film deposition techniques for metal and oxide films. These include thermal and electron beam evaporation and RP and magnetron sputtering. Film thicknesses can be controlled from 100's to 10,000 Angstroms. Deposition is done in a class 10,000 clean room. A variety of furnaces are available for thermal diffusion processes, which are primarily used for the fabrication of Ti-diffused or proton exchanged LiNb03. The optical device fabrication facility consists of a Class 1000 clean room primarily designed for the photolithographic processing of LiNbO3/LiTaO3 integrated optical devices. Facilities are available for sample cleaning with ultrapure water, photoresist spinning, pre- and post-bakes, exposure, and development. Critical operations are preformed in Class 100 workstations. Low power plasma etching is available for resist cleaning and hardening. This facility is connected to the one above by a pass-thru. A separate optical polishing capability is available which can end-polish both optical fibers and integrated optical substrates. Besides the Radar and Electronic Warfare Division, the facility is also used by the Naval Postgraduate School for a A/D convertex they are developing. The facility has also been used by GTE, AEL, and Harmonic Lightwave for modulator development. That usage makes up approximately 15% of the facility's time and resources.

Revision JCE/ONR91 8117/99

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Optical Device and Thin
Nomenclature or Title	Film Fabrication Facilities

The thin film fabrication facilities are capable of a variety of thin film deposition techniques for metal and oxide films. These include thermal and electron beam evaporation and RF and magnetron sputtering. Film thicknesses can be controlled from 100's to 10,000 Angstroms. Deposition is done in a class 10,000 clean room. A variety of furnaces are available for thermal diffusion processes, which are primarily used for the fabrication of Ti-diffused or proton exchanged LiNb03. The optical device fabrication facility consists of a Class 1000 clean room primarily designed for the photolithographic processing of LiNbO3/LiTaO3 integrated optical devices. Facilities are available for sample cleaning with ultrapure water, photoresist spinning, pre- and post-bakes, exposure, and development. Critical operations are preformed in Class 100 workstations. Low power plasma etching is available for resist cleaning and hardening. This facility is available which can end-polish both optical fibers and integrated optical substrates.

ŧ.

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment Nomenclature or Title	Fiber Optic Optical- Microwave Laboratory

This Facility is used to apply advantages of fiber optics to transmission of microwave signals out to 100 GHz. Fiber optics can be used to transmit microwave signals on an optical carrier with a loss due only to the fiber itself, on the order of 0.2 dB/km. The applications for these optical microwave links include remote antenna operation, optical control of phased array radars, optical-microwave generation out to 40 GHz and beyond with linewidths on the order of sub-mHz, stable local oscillator sources, electric field monitoring, and FIR filters. This facility is also used by the Radar and Electronic Warfare Divisions to evaluate optical-microwave delay lines, optical-microwave phase shifters, and sub-systems employing fiber optics. Detector manufacturers such as Epitaxx, Ortel, Lasertron, and Honeywell have used the facility for evaluating detector and receiver performance as well as measuring the nonlinear response of detectors. Finally, several universities such as Lehigh and the University of California at Santa Barbara have evaluated high frequency optical components and sub-systems at the facility; these components and sub-systems were developed under Navy, Air Force, and ARPA contracts. These other users comprise approximately 25% of the facility use.

R

D-18 R (8 Aug 94)

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Fiber Optic Optical-
Nomenclature or Title	Microwave Laboratory

This Facility is used to apply advantages of fiber optics to transmission of microwave signals out to 100 GHz. Fiber optics can be used to transmit microwave signals on an optical carrier with a loss due only to the fiber itself, on the order of 0.2 dB/km. The applications for these optical microwave links include remote antenna operation, optical control of phased array radars, optical-microwave generation out to 40 GHz and beyond with linewidths on the order of sub-mHz, stable local oscillator sources, electric field monitoring, and FIR filters. This facility is also used by the Radar and Electronic Warfare Divisions to evaluate optical-microwave delay lines, optical-microwave phase shifters, and sub-systems employing fiber optics. Detector manufacturers such as Epitaxx, Ortel, Lasertron, and Honeywell have used the facility for evaluating detector and receiver performance as well as measuring the nonlinear response of detectors. Finally, several universities such as Lehigh and the University of California at Santa Barbara have evaluated high frequency optical components and sub-systems at the facility; these components and sub-systems were developed under Navy, Air Force, and ARPA contracts. These other users comprise approximately 25% of the facility use.

Revision 202/6NR91 9/17/94

Technical Center Site	NRL/OPTICAL SCIENCES DIVISION
Facility/Equipment	Fiber Optic Optical-
Nomenclature or Title	Microwave Laboratory

3.4.1 MAJOR EQUIPMENT AND FACILITIES

This Facility is used to apply advantages of fiber optics to transmission of microwave signals out to 100 GHz. Fiber optics can be used to transmit microwave signals on an optical carrier with a loss due only to the fiber itself, on the order of 0.2 dB/km. The applications for these optical microwave links include remote antenna operation, optical control of phased array radars, optical-microwave generation out to 40 GHz and beyond with linewidths on the order of sub-mHz, stable local oscillator sources, electric field monitoring, and FIR filters. This is the only facility in the Federal Government capable of characterizing optical-microwave components and subsystems operating in the range from DC to 200 GHz.

FIBER OPERC OPERCAL-MICROWAVE

LABORATORY

NRL/PLASMA PHYSICS DIVISION
Relativistic Klystron Laboratory

3.4.1 MAJOR EQUIPMENT AND FACILITIES

None of the facilities listed under 3.4.1 for the Plasma Physics Division are shared with other CSF's.

Laser Plasma Branch

The Laboratory has an intense relativistic electron beam (IREB) source that powers the Relativistic Klystron Amplifier (RKA). The electrical parameters of this source are: peak voltage 1.2 MV, current 40kA, 160 nanoseconds duration. A high power >10 GW RKA is connected to this generator. A second IREB generator is in the construction stage. This generator is of a triaxial shape and can generate a 60 cm diameter low impedance IREB. A future RKA will operate at a frequency of 10 GHz with a power level of 30 GW; currently the frequency range is in the 1-3.5 GHz range. This facility is unique because the PI is the inventor of the RKA device and because it is the only facility that has produced > 1 kJ/pulse at 1.3 GHz.

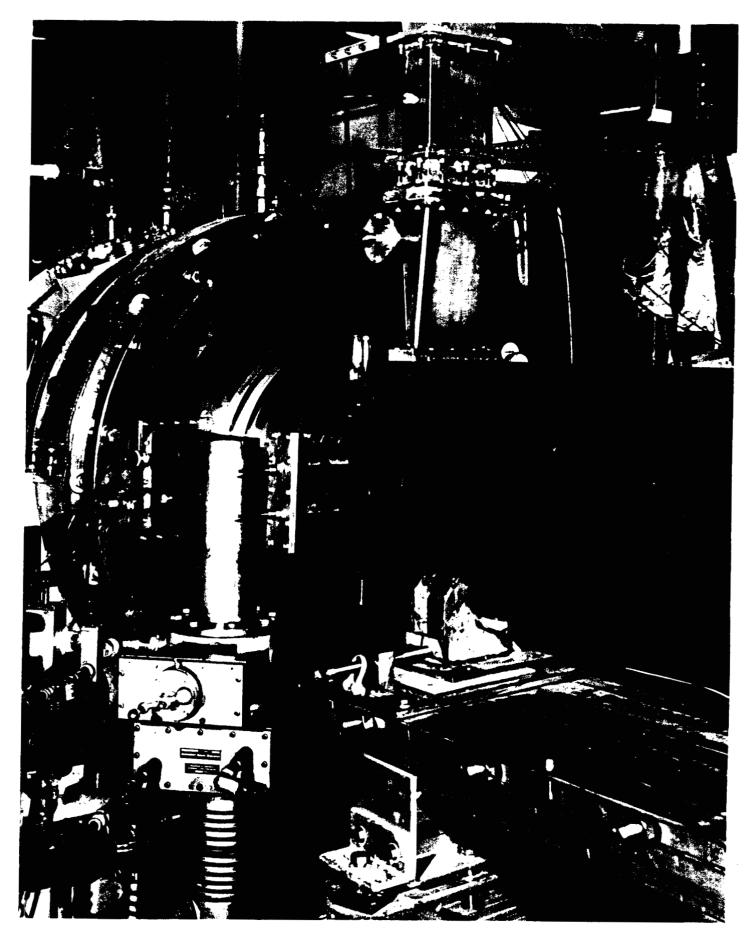
Technical Center Site	NRL/PLASMA PHYSICS DIVISION	
Facility/Equipment Nomenclature or Title	Relativistic Klystron Laboratory	

3.4.1 MAJOR EQUIPMENT AND FACILITIES

None of the facilities listed under 3.4.1 for the Plasma Physics Division are shared with other CSF's.

Laser Plasma Branch

The Laboratory has an intense relativistic electron beam (IREB) source that powers the Relativistic Klystron Amplifier (RKA). The electrical parameters of this source are: peak voltage 1.2 MV, current 40kA, 160 nanoseconds duration. A high power >10 GW RKA is connected to this generator. A second IREB generator is in the construction stage. This generator is of a triaxial shape and can generate a 60 cm diameter low impedance IREB. A future RKA will operate at a frequency of 10 GHz with a power level of 30 GW; currently the frequency range is in the 1-3.5 GHz range. This facility is unique because the PI is the inventor of the RKA device and because it is the only facility that has produced > 1 kJ/pulse at 1.3 GHz.


Rovision 702/0N291 8117/99

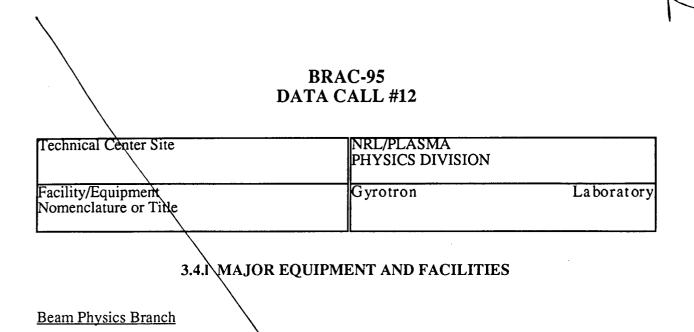
Technical Center Site	NRL/PLASMA PHYSICS DIVISION
Facility/Equipment	Relativistic Klystron
Nomenclature or Title	Laboratory

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Laser Plasma Branch

The Laboratory has an intense relativistic electron beam (IREB) source that powers the Relativistic Klystron Amplifier (RKA). The electrical parameters of this source are: peak voltage 1.2 MV, current 40kA, 160 nanoseconds duration. A high power >10 GW RKA is connected to this generator. A second IREB generator is in the construction stage. This generator is of a triaxial shape and can generate a 60 cm diameter low impedance IREB. A future RKA will operate at a frequency of 10 GHz with a power level of 30 GW; currently the frequency range is in the 1-3.5 GHz range. This facility is unique because the PI is the inventor of the RKA device and because it is the only facility that has produced > 1 kJ/pulse at 1.3 GHz.

RELATIVISTIC KLYSTRON LABORATORY


Technical Center Site	NRL/PLASMA • PHYSICS DIVISION		
Facility/Equipment Nomenclature or Title	Gyrotron	Laboratory	

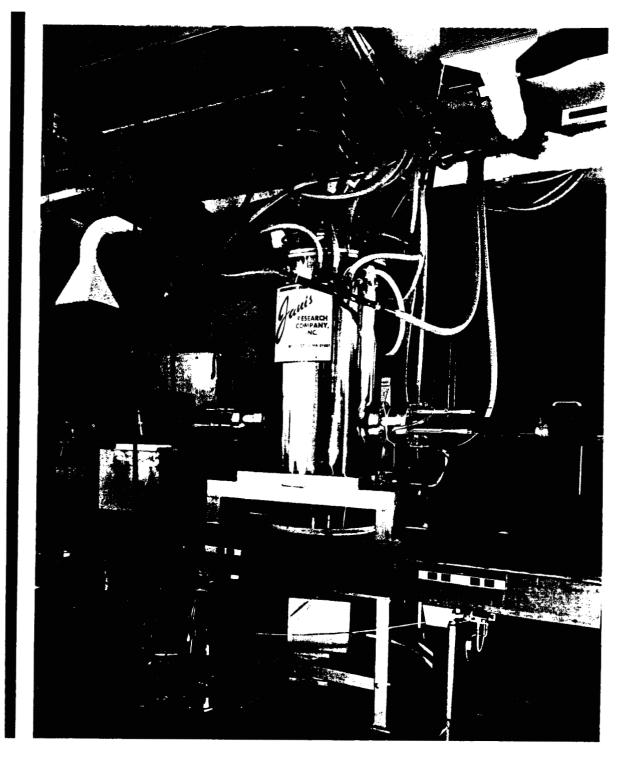
3.4.1 MAJOR EQUIPMENT AND FACILITIES

Beam Physics Branch

.

The Laboratory has a 600kW, 80-130 GHz, 13 microsecond rep-rated experimental quasioptical gyrotron (QOG), as well as 100 kW, 1 microsecond, 1000 Hz rep-rate 35 and 94 GHz waveguide cavity gyrotrons. A tunable (60-120GHz), multi-kW CW QOG is under development for use in research on ceramic materials processing. This facility is unique in that it has the only operational QOG in the U.S.

The Laboratory has a 600kW, 80-130 GHz, 13 microsecond rep-rated experimental quasioptical gyrotron (QOG), as well as 100 kW, 1 microsecond, 1000 Hz rep-rate 35 and 94 GHz waveguide cavity gyrotrons. A tunable (60-120GHz), multi-kW CW QOG is under development for use in research on ceramic materials processing. This facility is unique in that it has the only operational QOG in the U.S.


Revision 2CE (ONR & girage

Technical Center Site	NRL/PLASMA PHYSICS DIVISION
Facility/Equipment Nomenclature or Title	Gyrotron Laboratory

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Beam Physics Branch

The Laboratory has a 600kW, 80-130 GHz, 13 microsecond rep-rated experimental quasioptical gyrotron (QOG), as well as 100 kW, 1 microsecond, 1000 Hz rep-rate 35 and 94 GHz waveguide cavity gyrotrons. A tunable (60-120GHz), multi-kW CW QOG is under development for use in research on ceramic materials processing. This facility is unique in that it has the only operational QOG in the U.S.

- ---- - ----

Photograph of currently operational 85-130 GHz NRL quasi optical gyrotron

	NRL/PLASMA PHYSICS DIVISION
Facility/Equipment Nomenclature or Title	Long Pulse Accelerator Laboratory

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Long Pulse Accelerator Laboratory

The accelerator is a Marx generator with variable shunt and crowbar, with voltage adjustable from 250 kV - 1 MV, and up to 10 microseconds for 250 kV- 500 kV. The voltage flatness is +1% ripple, 2% droop for a 1 microsecond pulse into a 1000 ohm load. The present research concentrates on long pulse (≥ 1 microsecond) microwave generation.

BRAC-95 DATA CALL #12 Technical Center Site NRL/PLASMA PHYSICS DIVISION Facility/Equipment Nomenclature or Nitle Long Pulse Accelerator Laboratory

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Long Pulse Accelerator Laboratory

The accelerator is a Marx generator with variable shunt and crowbar, with voltage adjustable from 250 kV - 1 MV, and up to 10 microseconds for 250 kV - 500 kV. The voltage flatness is +1% ripple, 2% droop for a 1 microsecond pulse into a 1000 ohm load. The present research concentrates on long pulse (≥ 1 microsecond) microwave generation.


Revision 7-E/ONR9 8/17/44

Technical Center Site	NRL/PLASMA PHYSICS DIVISION
Facility/Equipment	Long Pulse Accelerator
Nomenclature or Title	Laboratory

3.4 MAJOR EQUIPMENT AND FACILITIES

Long Pulse Accelerator Laboratory

The accelerator is a Marx generator with variable shunt and crowbar, with voltage adjustable from 250 kV - 1 MV, and up to 10 microseconds for 250 kV - 500 kV. The voltage flatness is +1% ripple, 2% droop for a 1 microsecond pulse into a 1000 ohm load. The present research concentrates on long pulse (≥ 1 microsecond) microwave generation.

Technical Center Site	NRL/ESTD
Facility/Equipment	Nanœlectronics •
Nomenclature or Title	Processing Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Nanoelectronics Processing Facility

1. The Nanoelectronics Processing Facility (NPF) is dedicated to developing and providing state-ofthe-art nanofabrication/microfabrication processing for a wide range of electronic, optoelectronic, optical, chemical and biomolecular materials. The NPF contains 4200 sq ft of class 1000 clean area housing a complete spectrum of microelectronics processing including ultra-high resolution lithography (e-beam and deep UV), plasma etching, deposition furnaces for polysilicon, silicon oxide and silicon nitride, annealing, ultra-clean metalization, inspection and packaging. Laminar flow bech areas provide class 100 areas for wet processing and cleaning. No government facility has such a wide breadth of these facilities. In particular, the combination of processing capabilities and the ability to process the wide range of materials and sized samples (5mm to 5") is unique within DoD and the Federal governemnt. The replacement cost is about 25M\$. Support of the Electronic Materials CSF is the primary mission of the NPF and represents 60% of its total activity.

2. The NPF is housed in Building A-69 at NRL. It is fixed and not moveable or portable.

3.	Building	1.67M\$	(8370 sq. ft. x \$200)
	Cleanroom	1.2M\$	(4000 sq. ft. x \$300)
	Equipment	17M\$	· · · · · · · · · · · · · · · · · · ·

- 4. The facility has a floor area of 8370 sq. ft. of which 4000 sq. ft. is a class 1000 clean area.
- 5. Dry Nitrogen, Temperature & Humidity Control, Compressed Air 90 P.S.I.
- 6. Clean Room Facility Shielded Testing/Characterization Labs Stable Foundations
- 7. Clean Room Facility requires tight environmental control.

Temperature \pm °1 C. \pm •1°C in e-beam areas (800 sq. ft.) Humidity Control $45 \pm 5\%$ Class 1000 Clean Areas Air Scrubbing

8. Scientists and Engineers at NRL require access to the NPF on a day to day basis. Many collaborative projects involve S & Es working in the NPF. The Facility has many state-of-the-art capabilities (ultra high resolution lithography, anisotropic plasma etching, high temperature deposition, ultra clean metalization) which are unavailable at commercial institutions. No government facility has such

D-22 R (8 Aug 94)

Technical Center Site	NRL/ESTD
Facility/Equipment	Nanoelectronics
Nomenclature or Title	Processing Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Nanoelectronics Processing Facility

1. The Nanoelectronics Processing Facility (NPF) is dedicated to developing and providing state-ofthe-art nanofabrication/microfabrication processing for a wide range of electronic, optoelectronic, optical, chemical and biomolecular materials. The NPF contains 4200 sq ft of class 1000 clean area housing a complete spectrum of microelectronics processing including ultra-high resolution lithography (e-beam and deep UV), plasma etching, deposition furnaces for polysilicon, silicon oxide and silicon nitride, annealing, ultra-clean metalization, inspection and packaging. Laminar flow bech areas provide class 100 areas for wet processing and cleaning. No government facility has such a wide breadth of these facilities. In particular, the combination of processing capabilities and the ability to process the wide range of materials and sized samples (5mm to 5") is unique within DoD and the Federal governemnt. The replacement cost is about 25M\$. Support of the Electronic Materials CSF is the primary mission of the NPF and represents 60% of its total activity.

2. The NPF is housed in Building A-69 at NRL. It is fixed and not moveable or portable.

3.	Building	1.67M\$	(8370 sq. ft. x \$200)
	Cleanroom	1.2M\$	(4000 sq. ft. x \$300)
	Equipment	17M\$	$\sum_{i=1}^{n}$

- 4. The facility has a floor area of 8370 sq. ft. of which 4000 sq. ft. is a class 1000 clean area.
- 5. Dry Nitrogen, Temperature & Humidity Control, Compressed Air 90 P.S.I.
- 6. Clean Room Facility Shielded Testing/Characterization Labs Stable Foundations
- 7. Clean Room Facility requires tight environmental control.

Temperature \pm °1 C. \pm •1°C in e-beam areas (800 sq. ft.) Humidity Control $45 \pm 5\%$ Class 1000 Clean Areas Air Scrubbing

8. Scientists and Engineers at NRL require access to the NPF on a day to day basis. Many collaborative projects involve S & Es working in the NPF. The Facility has many state of the art capabilities (ultra high resolution lithography, anisotropic plasma etching, high temperature deposition, ultra clean metalization) which are unavailable at commercial institutions. No government facility has such

Technical Center Site	NRL/ESTD
Facility/Equipment	Nanoelectronics
Nomenclature or Title	Processing Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Nanoelectronics Processing Facility

1. The Nanoelectronics Processing Facility (NPF) is dedicated to developing and providing state-ofthe-art nanofabrication/microfabrication processing for a wide range of both electronic and non-electronic materials.

2. The NPF is housed in Building A-69 at NRL. It is fixed and not moveable or portable.

3.	Building	1.67M\$	(8370 sq. ft. x \$200)
	Cleanroom	1.2M\$ 🔪	(4000 sq. ft. x \$300)
	Equipment	17M\$	

- 4. The facility has a floor area of 8370 sq. ft. of which 4000 sq. ft. is a class 1000 clean area.
- 5. Dry Nitrogen, Temperature & Humidity Control, Compressed Air 90 P.S.I.
- 6. Clean Room Facility Shielded Testing/Characterization Labs Stable Foundations
- 7. Clean Room Facility requires tight environmental control.

Temperature \pm °1 C. \pm •1°C in e-beam areas (800 sq. ft.) Humidity Control $45 \pm 5\%$ Class 1000 Clean Areas Air Scrubbing

8. Scientists and Engineers at NRL require access to the NPF on a day to day basis. Many collaborative projects involve S & Es working in the NPF. The Facility has many state-of-the-art capabilities (ultra high resolution lithography, anisotropic plasma etching, high temperature deposition, ultra clean metalization) which are unavailable at commercial institutions. No government facility has such a wide breadth of these capabilities in a single facility. The loss of the NPF would have a dramatic and detrimental effect on 50% of the R&D programs of the ESTD and on 15% of the R&D programs of the rest of NRL.

9. Individual items have been purchased under CPP. Transportation arrangements are made on a case by case basis.

a wide breadth of these capabilities in a single facility. The loss of the NPF would have a dramatic and detrimental effect on 50% of the R&D programs of the ESTD and on 15% of the R&D programs of the rest of NRL.

9. Individual items have been purchased under CPP. Transportation arrangements are made on a case by case basis.

The NPF moved into Building A-69 in February 1979. A-69 was modified under contract N00173-78-C-0456.

10. 11.4 Electronic Devices

11.5 Materials and Processes

11. The NPF has a staff of 17 personnel. It is used every working day (and on weekends) throughout the year.

12. The NPF will be used every working day (and on 10 weekends/year) through FY97 and beyond.

13. 17

14. 17

15. Facility Photo Attached

16. The Nanoelectronics Processing Facility (NPF) has unique lithographic capabilities and is therefore unique to DoD.Support of the Electronic Materials CSF is the primary mission of the NPF and represents 60% of its total activity. A further 30% is in support of other multidisciplinary Navy specific activities and 10% for crossdisciplinary activities in academic institutions participating in DoD programs. a wide breadth of these capabilities in a single facility. The loss of the NPF would have a dramatic and detrimental effect on 50% of the R&D programs of the ESTD and on 15% of the R&D programs of the rest of NRL.

9. Individual items have been purchased under CPP. Transportation arrangements are made on a case by case basis.

The NPF moved into Building A-69 in February 1979. A-69 was modified under contract N00173-78-C 0456.

10. 11.4 Electronic Devices

11.5 Materials and Processes

11. The NPF has a staff of 17 personnel. It is used every working day (and on weekends) throughout the year.

12. The NPF will be used every working day (and on 10 weekends/year) through FY97 and beyond.

- 13. 17
- 14. 17
- 15. Facility Photo Attached

16. The Nanoelectronics Processing Facility (NPF) has unique lithographic capabilities and is therefore unique to DoD.Support of the Electronic Materials CSF is the primary mission of the NPF and represents 60% of its total activity. A further 30% is in support of other multidisciplinary Navy specific activities and 10% for crossdisciplinary activities in academic institutions participating in DoD programs.

> Revision 70 YON R91 8117199

The NPF moved into Building A-69 in February 1979. A-69 was modified under contract N00173-78-C-0456.

10. 11.4 Electronic Devices 11.5 Materials and Processes

11. The NPF has a staff of 17 personnel. It is used every working day (and on weekends) throughout the year.

12. The NPF will be used every working day (and on 10 weekends/year) through FY97 and beyond.

13. 17

- 14. 17
- 15. Facility Photo Attached

16. This facility is not shared with any other function. It has unique lithographic capabilities and is therefore unique to DoD.

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	High Resolution Transmission Electron Microscope

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Solid State Devices Branch

1. The High Resolution Transmission Electron Microscope (HRTEM) is dedicated to providing atomic-scale analysis for a wide range of electronic, optoelectronic, nanostructural, biomolecular, metallurgical and ceramic materials. The 7100 lb. HRTEM is housed in a 480 sq. ft. facility specially modified to reduce vibration. Presently, this facility provides the only direct means of measuring atomic scale materials parameters, such as interface widths, for electronic materials and electron device structures at NRL and is unique within DOD.

2. The equipment is fixed.

3. The facility replacement cost is \$700K

4. The gross weight of the equipment is 7100 lbs. 2700 cu. ft. are needed to house the facility.

5. Electrical power at the level of 240 volts and 100 amperes is needed for the instrument. In addition to electric power, water and a water chiller are needed to cool the instrument. A proper photographic dark room, with a sink designed for developing large cut film negatives is also necessary. Acoustical foam must be attached to walls to prevent noise in room from contributing to sample vibration.

6. It is essential that the electron microscope be sited on a ground or first floor so as to minimize vibration. The floor must be sufficiently stable that the floor vibration does not exceed these levels over the associated frequency range: 0.5 mm (2-3 Hz), 1 m m(3-5 Hz), 2 mm (5-9 Hz), and 3 mm (10 Hz and over). Stray AC magnetic fields must be less than 3 mG measured peak to peak (1 mG RMS). Horizontal DC magnetic fields must be less than 10 mG. This electron microscope has a resolution of 1.8 Angstoms, so that the sample cannot be allowed to move even a small fraction of this distance during the 2 seconds required to record the image. The noise environment of an ordinary room would cause the sample to move while the image is being recorded and in so doing make atomic scale imaging impossible.

7. The water temperature must lie between $15^0 - 20^0$ C with a fluctuation of less than 0.1^0 C/hr. The room temperature must lie between $150 - 20^0$ C with a fluctuation of less

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	High Resolution Transmission Electron Microscope

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Solid State Devices Branch

1. The High Resolution Transmission Electron Microscope (HRTEM) is dedicated to providing atomic-scale analysis for a wide range of electronic, optoelectronic, nanostructural, biomolecular, metallurgical and ceramic materials. The 7100 lb. HRTEM is housed in a 480 sq. ft. facility specially modified to reduce vibration. Presently, this facility provides the only direct means of measuring atomic scale materials parameters, such as interface widths, for electronic materials and electron device structures at NRL and is unique within DOD.

2. The equipment is fixed.

3. The facility replacement cost is \$700K

4. The gross weight of the equipment is 7100 bs. 2700 cu. ft. are needed to house the facility.

5. Electrical power at the level of 240 volts and 100 amperes is needed for the instrument. In addition to electric power, water and a water chiller are needed to cool the instrument. A proper photographic dark room, with a sink designed for developing large cut film negatives is also necessary. Acoustical foam must be attached to walls to prevent noise in room from contributing to sample vibration.

6. It is essential that the electron microscope be sited on a ground or first floor so as to minimize vibration. The floor must be sufficiently stable that the floor vibration does not exceed these levels over the associated frequency range: 0.5 mm (2-3 Hz), 1 m m(3-5 Hz), 2 mm (5-9 Hz), and 3 mm (10 Hz and over). Stray AC magnetic fields must be less than 3 mG measured peak to peak (1 mG RMS). Horizontal DC magnetic fields must be less than 10 mG. This electron microscope has a resolution of 1.8 Angstoms, so that the sample cannot be allowed to move even a small fraction of this distance during the 2 seconds required to record the image. The noise environment of an ordinary room would cause the sample to move while the image is being recorded and in so doing make atomic scale imaging impossible.

7. The water temperature must lie between $15^{\circ} - 20^{\circ}$ C with a fluctuation of less than 0.1° C/hr. The room temperature must lie between $150 - 20^{\circ}$ C with a fluctuation of less

Revision 7CE/ONR91 8/17/94

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	High Resolution Transmission Electron Microscope

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Solid State Devices Branch

1. The purpose of the equipment is to quantify and characterize defects, second phase precipitates, and interfaces in solid state materials on an atomic scale. The materials investigated are used in research programs on the structure of materials and in research programs on electronic and optoelectronic devices at NRL and other DOD laboratories.

2. The equipment is fixed.

3. The facility replacement cost is \$700K

4. The gross weight of the equipment is 7100 lbs. 2700 cu. ft. are needed to house the facility.

5. Electrical power at the level of 240 volts and 100 amperes is needed for the instrument. In addition to electric power, water and a water chiller are needed to cool the instrument. A proper photographic dark room, with a sink designed for developing large cut film negatives is also necessary. Acoustical foam must be attached to walls to prevent noise in room from contributing to sample vibration.

6. It is essential that the electron microscope be sited on a ground or first floor so as to minimize vibration. The floor must be sufficiently stable that the floor vibration does not exceed these levels over the associated frequency range: 0.5 mm (2-3 Hz), 1 m m(3-5 Hz), 2 mm (5-9 Hz), and 3 mm (10 Hz and over). Stray AC magnetic fields must be less than 3 mG measured peak to peak (1 mG RMS). Horizontal DC magnetic fields must be less than 10 mG. This electron microscope has a resolution of 1.8 Angstoms, so that the sample cannot be allowed to move even a small fraction of this distance during the 2 seconds required to record the image. The noise environment of an ordinary room would cause the sample to move while the image is being recorded and in so doing make atomic scale imaging impossible.

7. The water temperature must lie between $15^0 - 20^{\circ}$ C with a fluctuation of less than 0.1° C/hr. The room temperature must lie between $150 - 20^{\circ}$ C with a fluctuation of less than 1° C/hr. The air flow in the room must establish a positive pressure to prevent dust from entering the room. The drop ceiling of a room must be removed to prevent trapping of dust. Because the electron gun of the microscope operates at a 300,000 volts, dust

than 1^{0} C/hr. The air flow in the room must establish a positive pressure to prevent dust from entering the room. The drop ceiling of a room must be removed to prevent trapping of dust. Because the electron gun of the microscope operates at a 300,000 volts, dust contamination of the electron gun vacuum system during the change of a filament would cause electrical discharges that would make electron microscope operation impossible.

8. This facility could not be relocated to another site. Even finding a site with the proper degree of mechanical stability, temperature control, and low magnetic field environment would be extremely difficult. The microscope would need to be completely disassembled in order to remove it from its present site. Due to its extremely delicate sample manipulation system, the microscope could not be moved without the danger of harming the mechanisms that prevent the sample from drifting less than a fraction of an Angstrom per second. Disassembly would also degrade the high vacuum system of the electron microscope that has been successfully relocated.

Presently, this facility provides the only direct means of measuring atomic scale materials parameters, such as interface widths, for electronic materials and electron device structures at NRL. If this facility were lost, NRL would loose access to this important class of electronic materials parameters and thereby hinder the development of state of the art electronic materials that NRL provides for the Navy. Given the Navy's need for state of the art electronics for the next generation of weapons systems, the termination of this facility would have a deleterious effect on the Navy's capabilities.

9. The equipment was transported by ship and by truck. It arrived here in March 1991.

10. This facility supports the Generic Technology Base: Electronic Devices (11.4) and Materials and Processes (11.5).

11. Since it first arrived at NRL, the microscope has been used on a daily basis.

12. It is anticipated that the microscope will continue to be used on a daily basis through FY1997.

13. There are currently four government researchers and a government technician who use the equipment in their research program.

14. One government scientist and one government technician maintain the facility (in addition to Hitachi Service Engineers under the service contract).

15. Facility Photo Attached.

16. Support of the electronic materials effort at NRL represents 70% of HRTEM use. A further 20% is in support of the Defense Nuclear Agency programs with the remaining 10% in support of other multidisciplinary activities at NRL.

1 9 AUG 1994

than 1^{0} C/hr. The air flow in the room must establish a positive pressure to prevent dust from entering the room. The drop ceiling of a room must be removed to prevent trapping of dust. Because the electron gun of the microscope operates at a 300,000 volts, dust contamination of the electron gun vacuum system during the change of a filament would cause electrical discharges that would make electron microscope operation impossible.

8. This facility could not be relocated to another site. Even finding a site with the proper degree of mechanical stability, temperature control, and low magnetic field environment would be extremely difficult. The microscope would need to be completely disassembled in order to remove it from its present site. Due to its extremely delicate sample manipulation system, the microscope could not be moved without the danger of harming the mechanisms that prevent the sample from drifting less than a fraction of an Angstrom per second. Disassembly would also degrade the high vacuum system of the electron microscope and promote sample contamination. We know of no high-resolution electron microscope that has been successfully relocated.

Presently, this facility provides the only direct means of measuring atomic scale materials parameters, such as interface widths, for electronic materials and electron device structures at NRL. If this facility were lost, NRL would loose access to this important class of electronic materials parameters and thereby hinder the development of state of the art electronic materials that NRL provides for the Navy. Given the Navy's need for state of the art electronics for the next generation of weapons systems, the termination of this facility would have a deleterious effect on the Navy's capabilities.

9. The equipment was transported by ship and by truck. It arrived here in March 1991.

10. This facility supports the Generic Technology Base: Electronic Devices (11.4) and Materials and Processes (11.5).

11. Since it first arrived at NRL, the microscope has been used on a daily basis.

12. It is anticipated that the microscope will continue to be used on a daily basis through FY1997.

13. There are currently four government researchers and a government technician who use the equipment in their research program.

14. One government scientist and one government technician maintain the facility (in addition to Hitachi Service Engineers under the service contract).

15. Facility Photo Attached.

12

16. Support of the electronic materials effort at NRL represents 70% of HR TEM use. A further 20% is in support of the Defense Nuclear Agency programs with the remaining 10% in support of other multidisciplinary activities at NRL.

Revison 7CE/GNR91 8117/94 contamination of the electron gun vacuum system during the change of a filament would cause electrical discharges that would make electron microscope operation impossible.

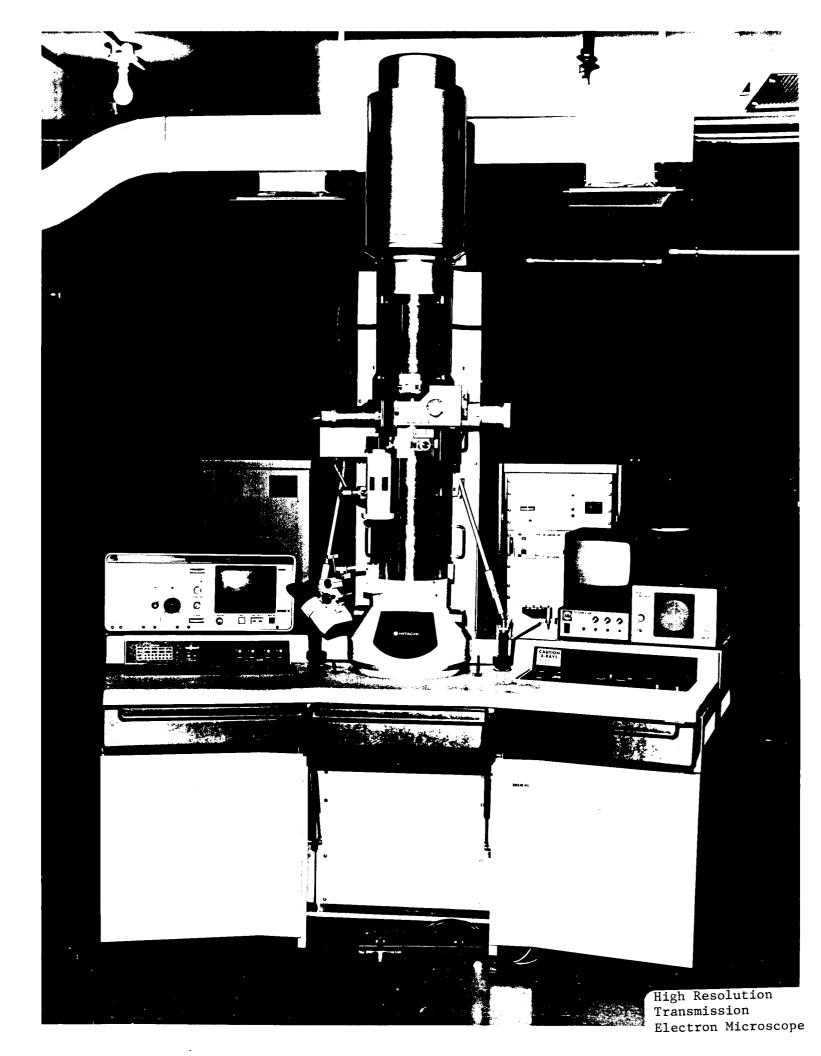
8. This facility could not be relocated to another site. Even finding a site with the proper degree of mechanical stability, temperature control, and low magnetic field environment would be extremely difficult. The microscope would need to be completely disassembled in order to remove it from its present site. Due to its extremely delicate sample manipulation system, the microscope could not be moved without the danger of harming the mechanisms that prevent the sample from drifting less than a fraction of an Angstrom per second. Disassembly would also degrade the high vacuum system of the electron microscope that has been successfully relocated.

Presently, this facility provides the only direct means of measuring atomic scale materials parameters, such as interface widths, for electronic materials and electron device structures at NRL. If this facility were lost, NRL would lose access to this important class of electronic materials parameters and thereby hinder the development of state of the art electronic materials that NRL provides for the Navy. Given the Navy's need for state of the art electronics for the next generation of weapons systems, the termination of this facility would have a deleterious effect on the Navy's capabilities.

9. The equipment was transported by ship and by truck. It arrived here in March 1991.

10. This facility supports the Generic Technology Base: Electronic Devices (11.4) and Materials and Processes (11.5).

11. Since it first arrived at NRL, the microscope has been used on a daily basis.


12. It is anticipated that the microscope will continue to be used on a daily basis through FY1997.

13. There are currently four government researchers and a government technician who use the equipment in their research program.

14. One government scientist and one government technician maintain the facility (in addition to Hitachi Service Engineers under the service contract).

15. Facility Photo Attached.

16. This facility is not shared with any other function.

Technical Center Site	NRL/ESTD
Facility/Equipment	Si MBE & Surface
Nomenclature or Title	Analysis System

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Solid State Devices Branch

1. The Si molecular beam epitaxy (MBE) growth system and surface analysis laboratory is a combined system, designed so that each component can be used independently, or so that a sample can be fabricated in the growth system and be investigated in the surface analysis system without exposure to atmosphere. The Si MBE growth system is used to grow epitaxial films, composed of Si, Ge, or $Si_{1-x}Ge_x$, which are doped n- or p-type or undoped, on Si substrates. These films are investigated in basic research programs on the structure of materials and are used in research programs on electronic and optoelectronic devices at NRL and other DOD laboratories. The Surface Analysis System, which is connected to the Si MBE Growth System, is employed in the fundamental study of the chemistry and physics of heterostructure interfaces. The replacement cost of the facility is \$1.2M. The approximate gross weight of the equipment is 6000 lbs and the volume is 600 ft^3 .

2. The equipment is fixed

3. The replacement cost of the facility is \$1.2M.

4. The approximate gross weight of the equipment is 6000 lbs and the volume is 600 ft³.

5. Portions of the system must be water cooled. The Si MBE Growth system and surface analysis laboratory are connected to a closed cycle chilled water system which pumps a cooled mixture of water and ethylene-glychol through the system.

6. None

7. Humidity, particulate, and temperature control are important for the effective use of this equipment, primarily in the handling of the samples which are put into the equipment.

8. This is an ultra-high vacuum system. The base pressure is 10⁻¹¹ mbar. In order to move the system it would have to be dismantled. Accumulated moisture and other impurities would have a deleterious effect on the quality of the vacuum. It would be very difficult to replicate this system. The initial building block is the VG-V80 Si MBE growth system and ESCA lab. Over the years incremental improvements have been added to enhance the performance of the system. This facility is a unique facility in DOD. As such it has been used in research programs of interest to the Navy, DNA, and

Technical Center Site	NRL/ESTD
Facility/Equipment	Si MBE & Surface
Nomenclature or Title	Analysis System

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Solid State Devices Branch

1. The Si molecular beam epitaxy (MBE) growth system and surface analysis laboratory is a combined system, designed so that each component can be used independently, or so that a sample can be fabricated in the growth system and be investigated in the surface analysis system without exposure to atmosphere. The Si MBE growth system is used to grow epitaxial films, composed of Si, Ge, or $Si_{1-x}Ge_x$, which are doped n- or p-type or undoped, on Si substrates. These films are investigated in basic research programs on the structure of materials and are used in research programs on electronic and optoelectronic devices at NRL and other DOD laboratories. The Surface Analysis System, which is connected to the Si MBE Growth System, is employed in the fundamental study of the chemistry and physics of heterostructure interfaces. The replacement cost of the facility is \$1.2M. The approximate gross weight of the equipment is 6000 lbs and the volume is 600 ft^3 .

2. The equipment is fixed

3. The replacement cost of the facility is \$1.2M.

4. The approximate gross weight of the equipment is 6000 lbs and the volume is 600 ft³.

5. Portions of the system must be water cooled. The Si MBE Growth system and surface analysis laboratory are connected to a closed cycle chilled water system which pumps a cooled mixture of water and ethylene-glychol through the system.

6. None

7. Humidity, particulate, and temperature control are important for the effective use of this equipment, primarily in the handling of the samples which are put into the equipment.

8. This is an ultra-high vacuum system. The base pressure is 10⁻¹¹ mbar. In order to move the system it would have to be dismantled. Accumulated moisture and other impurities would have a deleterious effect on the quality of the vacuum. It would be very difficult to replicate this system. The initial building block is the VG-V80 Si MBE growth system and ESCA lab. Over the years incremental improvements have been added to enhance the performance of the system. This facility is a unique facility in DOD. As such it has been used in research programs of interest to the Navy, DNA, and

7CE/0NR91

Technical Center Site	NRL/ESTD
Facility/Equipment	Si MBE & Surface
Nomenclature or Title	Analysis System

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Solid State Devices Branch

1. Primary purpose of the facility. The Si MBE growth system is used to grow epitaxial films, composed of Si, Ge, or $Si_{1-x}Ge_x$, which are doped n- or p-type or undoped, on Si substrates. These films are investigated in basic research programs on the structure of materials and are used in research programs on electronic and optoelectronic devices at NRL and other DOD laboratories. The Surface Analysis System, which is connected to the Si MBE Growth System, is employed in the fundamental study of the chemistry and physics of heterostructure interfaces.

2. The equipment is fixed

3. The replacement cost of the facility is 1.2M.

4. The approximate gross weight of the equipment is 6000 lbs and the volume is 600 ft³.

5. Portions of the system must be water cooled. The Si MBE Growth system and surface analysis laboratory are connected to a closed cycle chilled water system which pumps a cooled mixture of water and ethylene-glychol through the system.

6. None

7. Humidity, particulate, and temperature control are important for the effective use of this equipment, primarily in the handling of the samples which are put into the equipment.

8. This is an ultra-high vacuum system. The base pressure is 10⁻¹¹ mbar. In order to move the system it would have to be dismantled. Accumulated moisture and other impurities would have a deleterious effect on the quality of the vacuum. It would be very difficult to replicate this system. The initial building block is the VO-V80 Si MBE growth system and ESCA lab. Over the years incremental improvements have been added to enhance the performance of the system. This facility is a unique facility in DOD. As such it has been used in research programs of interest to the Navy, DNA, and the Air Force. At this point in time there are no commercial facilities which can perform the functions of this equipment.

the Air Force. At this point in time there are no commercial facilities which can perform the functions of this equipment.

9. The equipment was transported to the site by air and truck in pieces. It was constructed on site by technicians from the company and NRL scientists. The major portion of the system was delivered in 1986.

10. This facility supports the Generic Technology Base; 11.4 Electronic Devices.

11. The equipment has been used on a daily basis for the past five fiscal years.

12. It is anticipated that the facility will be used on a daily basis out through FY1997.

13. There are three government research scientists, a government technician, and a onsite contractor research engineer who use the equipment as the primary part of their research program.

14. The primary responsibility for the daily maintenance of the equipment is the government technician. However, the three scientists and the research engineer all take an active role in repairs, non-routine maintenance, and system upgrades.

15. Facility Photo Attached.

16. This facility is unique in DOD and is only approximately matched in several corporate laboratories, such as IBM and AT&T. Support of the Electronic Materials CSF is the primary mission and represents 55% of its total activity. A further 30% is spent in support of the electronic devices programs, both at NRL and in Air Force Laboratories. 15% is spent in support of academic institutions participating in DOD programs.

the Air Force. At this point in time there are no commercial facilities which can perform the functions of this equipment.

9. The equipment was transported to the site by air and truck in pieces. It was constructed on site by technicians from the company and NRL scientists. The major portion of the system was delivered in 1986.

10. This facility supports the Generic Technology Base; 11.4 Electronic Devices.

11. The equipment has been used on a daily basis for the past five fiscal years.

12. It is anticipated that the facility will be used on a daily basis out through FY1997.

13. There are three government research scientists, a government technician, and a onsite contractor research engineer who use the equipment as the primary part of their research program.

14. The primary responsibility for the daily maintenance of the equipment is the government technician. However, the three scientists and the research engineer all take an active role in repairs, non-routine maintenance, and system upgrades.

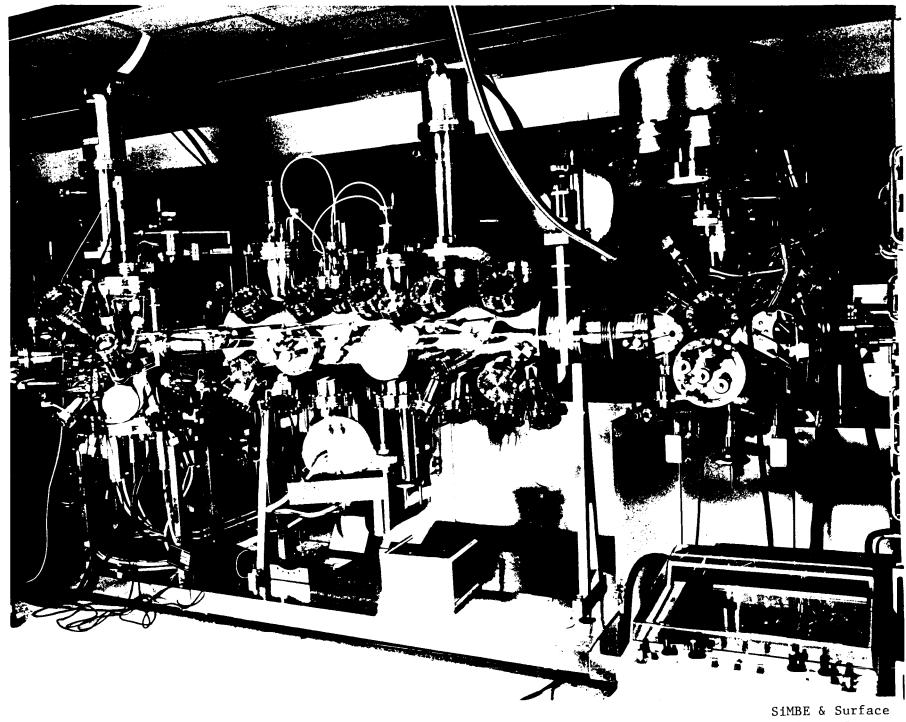
15. Facility Photo Attached.

16. This facility is unique in DOD and is only approximately matched in several corporate laboratories, such as IBM and AT&T. Support of the Electronic Materials CSF is the primary mission and represents 55% of its total activity. A further 30% is spent in support of the electronic devices programs, both at NRL and in Air Force Laboratories. 15% is spent in support of academic institutions participating in DOD programs.

Revision ICE/BNRAI SII7/94 9. The equipment was transported to the site by air and truck in pieces. It was constructed on site by technicians from the company and NRL scientists. The major portion of the system was delivered in 1986.

10. This facility supports the Generic Technology Base; 11.4 Electronic Devices.

11. The equipment has been used on a daily basis for the past five fiscal years.


12. It is anticipated that the facility will be used on a daily basis out through FY1997.

13. There are three government research scientists, a government technician, and a onsite contractor research engineer who use the equipment as the primary part of their research program.

14. The primary responsibility for the daily maintenance of the equipment is the government technician. However, the three scientists and the research engineer all take an active role in repairs, non-routine maintenance, and system upgrades.

15. Facility Photo Attached.

16. This facility is not shared with any other function. This facility is unique to DoD since no one else has silicon MBE capability.

Analysis System

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Vacuum Electronics Engineering Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Vacuum Electronics Branch

. 7

1. VACUUM ELECTRONICS ENGINEERING FACILITY...Provides electrical and mechanical design, fabrication, assembly, modification, and repair, as well as processing, services for vacuum electronic devices and maintains support equipment primarily for the tri-Service vacuum electronics research and development program conducted at NRL as the lead laboratory. The facility supports other functions on a not-to-interfere basis.

DESCRIPTION: The Vacuum Electronics Engineering Facility (VEEF) staff collaborates with Principal Investigators and initiates the experimental device production process based on theoretical design data. VEEF engineers then create assembly and detail parts drawing packages and coordinate a broad spectrum of shop activities to produce unique components. In-house preparation of these specialized components includes heat treatment, surface preparation, micro-cleaning, vacuum firing, and extensive quality assessment. Leak-tight joining of high-purity alloys and refractory metals and ceramics is accomplished using brazing, welding, diffusion bonding, and other specialized processes. Specialized fixtures and jigs are fabricated where required. Completed experimental assemblies are evacuated, baked out, and delivered to the investigator's lab, ready for experimentation. The VEEF is frequently called upon to provide expertise and equipment to perform repair, overhaul, or major modification to an existing experimental or commercially-produced microwave or millimeter-wave vacuum electronic device. VEEF staff also produce drawings and parts as described above, for a "cold" test of experimental circuits, couplers, calorimeters, etc. These tasks frequently include data acquisition and analyses.

EQUIPMENT: The facility maintains and operates the following pieces of equipment for the fabrication, modification, and repair of vacuum electronic devices.

- Hydrogen Furnace...A permanently installed hydrogen-atmosphere furnace with a working zone volume measuring 10 x 10 x 36 inches, capable of temperatures of up to 1,200 degrees C is used to fire, braze, and clean metals and ceramics during assembly or in preparation for assembly. The building structure, plumbing, and HVAC systems have been extensively modified to accommodate the furnace.
- High Vacuum Furnace...A high-vacuum furnace utilizing a cryogenically-pumped bell jar 18 inches in diameter, 36 inches high is used for vacuum firing and brazing of experimental UHV tube components and assemblies.
- Induction Heating System...An industrial RF induction heating system is used for brazing or firing small parts in either hydrogen atmosphere at atmospheric pressure

R

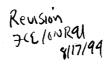
R

R

R

Technical Center Site	NRL/ESTD
Facility/Equipment	Vacuum Electronics
Nomenclature or Title	Engineering Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES


Vacuum Electronics Branch

1. VACUUM ELECTRONICS ENGINEERING FACILITY...Provides electrical and mechanical design, fabrication, assembly, modification, and repair, as well as processing, services for vacuum electronic devices and maintains support equipment primarily for the tri-Service vacuum electronics research and development program conducted at NRL as the lead laboratory. The facility supports other functions on a not-to-interfere basis.

DESCRIPTION: The Vacuum Electronics Engineering Facility (VEEF) staff collaborates with Principal Investigators and initiates the experimental device production process based on theoretical design data. VEEF engineers then create assembly and detail parts drawing packages and coordinate a broad spectrum of shop activities to produce unique components. In-house preparation of these specialized components includes heat treatment, surface preparation, micro-cleaning, vacuum firing, and extensive quality assessment. Leak-tight joining of high-purity alloys and refractory metals and ceramics is accomplished using brazing, welding, diffusion bonding, and other specialized processes. Specialized fixtures and jigs are fabricated where required. Completed experimental assemblies are evacuated, baked out, and delivered to the investigator's lab, ready for experimentation. The VEEF is frequently called upon to provide expertise and equipment to perform repair, overhaul, or major modification to an existing experimental or commercially-produced microwave or millimeter-wave vacuum electronic device. VEEF staff also produce drawings and parts as described above, for a "cold" test of experimental circuits, couplers, calorimeters, etc. These tasks frequently include data acquisition and analyses.

EQUIPMENT: The facility maintains and operates the following pieces of equipment for the fabrication, modification, and repair of vacuum electronic devices.

- Hydrogen Furnace...A permanently installed hydrogen-atmosphere furnace with a working zone volume measuring 10 x 10 x 36 inches, capable of temperatures of up to 1,200 degrees C is used to fire, braze, and clean metals and ceramics during assembly or in preparation for assembly. The building structure, plumbing, and HVAC systems have been extensively modified to accommodate the furnace.
- High Vacuum Furnace...A high-vacuum furnace utilizing a cryogenically-pumped bell jar 18 inches in diameter, 36 inches high is used for vacuum firing and brazing of experimental UHV tube components and assemblies.
- Induction Heating System...An industrial RF induction heating system is used for brazing or firing small parts in either hydrogen atmosphere at atmospheric pressure

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Vacuum Electronics Design Processing Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Vacuum Electronics Branch

1. VACUUM ELECTRONICS DESIGN PROCESSING FACILITY: Provides mechanical design, construction, repair, and processing services of vacuum electronic devices.

DESCRIPTION: The vacuum electronic processing facility has a core staff of engineers with degrees in physics, electronics, electricity, mechanics, and materials. The staff obtains theoretical design data from the principal investigator of a project in the form of computer printouts, sketches, or discussion notes; makes all assembly and detail parts drawings; has parts made per print then cleans, processes, and assembles the parts. For vacuum tubes, the staff bakes out and evacuates the tube as required, or to the limits dictated by the tube. Repairs and/or modifications to existing devices follow the same format.

EQUIPMENT: The facility maintains and operates the following pieces of equipment for the fabrication, modification, and repair of vacuum electronic devices.

• a hydrogen furnace for firing, brazing, or cleaning metals or ceramics up to 1200 degrees C; the hot zone is about 10 X 10 X 36 inches;

• a high-vacuum system for vacuum brazing or firing metals or ceramics up to 1000 degree C; the Bell Jar is 18 inches in diameter by 36 inches in height;

• an RF induction heating system for brazing or firing small parts in hydrogen or in a vacuum;

• an air oven with inside dimensions of 10 X 10 X 10 inches volume for firing metals or ceramics up to 1000 degrees C;

• a bakeout system for processing electron tubes to 15 feet in length at temperatures up to 500 degrees C;

• two helium leak detectors capable of measuring vacuum leaks as small as 10 E - 10 cc/s;

• two gas analyzers capable of detecting masses up to 100 units at partial pressures down to 10 E -13 Tor;

or in vacuum (partial or high). This system is also used to heat subassemblies locally for precise control of complex components.

• High Vacuum Laboratory /Processing Facility...A high-vacuum bake-out system with capacity to process vacuum electronic devices measuring up to 15 feet in length at temperatures up to 500 degrees C is equipped with gas analyzers for monitoring exhaust gas constituents and helium mass spectrometer leak detectors for locating leak sources.

 Precision Assembly Facility...A clean-room environment (particle count <200K) is available for the final processing of unassembled parts and for their assembly into vacuum enclosures. This facility is equipped with spot welders (continuously variable between 2 and 100 watts and between 2 and 250 watts), a heliarc welder, two assembly stereo microscopes with variable magnification (X9 to X40), a threeaxis high-resolution (1 micron) measurement microscope, and an array of nitrogenpurged humidity-controlled storage chambers for unfinished parts and assemblies.

2. The facility/equipment is not portable.

3. The replacement value of the facility/equipment is approximately \$3.2M.

4. The gross weight of the hydrogen furnace (which is the largest piece of equipment that the facility maintains) is 6000 lbs. with dimensions of approximately 13 feet in length, by 10 feet in height, by 5 feet wide.

5. The hydrogen furnace requires hydrogen at 100 lbs. per hour, nitrogen for purging, and water for cooling.

6. RF shielding is required in the area for hydrogen and RF brazing and heating processes.

7. Clean room environmental conditions (particle count <200K) are required for the processing of piece parts and assemblies.

8. Facility/equipment could be replicated or relocated at another site. The impact to the Department of the Navy, if this facility were lost, would exceed \$3.2M.

9. Facility/equipment was transported by truck and was constructed over a period of 5 years.

10. Supports the design, fabrication, and processing of category 11.4 Electron Devices.

11. The historical utilization average for the past five years has been 4.2 (unique, one-ofa-kind experimental) vacuum devices per year.

12. Projected utilization data to FY 1997:

	<u>1994</u>	<u>1995</u>	<u>1996</u>	<u>1997</u>
Number of devices	4.0	5.0	5.0	6.0

13. The number of personnel used to operate the facility/equipment is 7.

14. The facility/equipment is maintained under contract.

15. Photo of Hydrogen Furnace is attached.

D-29 R (8 Aug 94)

R

or in vacuum (partial or high). This system is also used to heat subassemblies locally for precise control of complex components.

High Vacuum Laboratory /Processing Facility...A high-vacuum bake-out system with capacity to process vacuum electronic devices measuring up to 15 feet in length at temperatures up to 500 degrees C is equipped with gas analyzers for monitoring exhaust gas constituents and helium mass spectrometer leak detectors for locating leak sources.

 Precision Assembly Facility...A clean-room environment (particle count <200K) is available for the final processing of unassembled parts and for their assembly into vacuum enclosures. This facility is equipped with spot welders (continuously variable between 2 and 100 watts and between 2 and 250 watts), a heliarc welder, two assembly stereo microscopes with variable magnification (X9 to X40), a threeaxis high-resolution (1 micron) measurement microscope, and an array of nitrogenpurged humidity-controlled storage chambers for unfinished parts and assemblies.

2. The facility/equipment is not portable.

3. The replacement value of the facility/equipment is approximately \$3.2M.

4. The gross weight of the hydrogen furnace (which is the largest piece of equipment that the facility maintains) is 6000 lbs, with dimensions of approximately 13 feet in length, by 10 feet in height, by 5 feet wide.

5. The hydrogen furnace requires hydrogen at 100 lbs. per hour, nitrogen for purging, and water for cooling.

6. RF shielding is required in the area for hydrogen and RF brazing and heating processes.

7. Clean room environmental conditions (particle count <200K) are required for the processing of piece parts and assemblies.

8. Facility/equipment could be replicated or relocated at another site. The impact to the Department of the Navy, if this facility were lost, would exceed \$3.2M.

9. Facility/equipment was transported by truck and was constructed over a period of 5 years.

10. Supports the design, fabrication, and processing of category 11.4 Electron Devices.

11. The historical utilization average for the past five years has been 4.2 (unique, one-ofa-kind experimental) vacuum devices per year.

12. Projected utilization data to FY 1997:

1994199519961997Number of devices4.05.05.06.0

13. The number of personnel used to operate the facility/equipment is 7.

14. The facility/equipment is maintained under contract.

15. Photo of Hydrogen Furnace is attached.

Kevision 764/ ONR9/

• two spot welders continuously variable between 2 and 100 watts; or 2 and 250 watts;

- two assembly microscopes with variable magnification
- one three axis high power digital measure microscope;
- one heliarc welder for welding stainless steel;
- three Auto CAD work stations for generation of mechanical designs;
- five vacuum pumps for evacuating vacuum devices;
- three nitrogen/humidity controlled chamber for storage of clean parts/assemblies.
- 2. The facility/equipment is not portable.
- 3. The replacement value of the facility/equipment is approximately \$3.2 M.

4. The gross weight of the hydrogen furnace (which is the largest piece of equipment that the facility maintains) is 6000 Lbs with dimensions of approximately 13 feet in length, by 10 feet in height, by 5 feet wide.

5. The hydrogen furnace requires hydrogen at 100 Lbs per hour, nitrogen for purging, and water for cooling.

6. RF shielding is required in the area for hydrogen and RF brazing and heating processes

7. Clean room environmental conditions (particle count <200k) are required for the processing of piece parts and assemblies.

8. Facility/equipment could be replicated or relocated at a another site. The impact to the Department of the Navy if this facility were lost, would exceed \$3.2 M.

9. Facility /equipment was transported by truck and was constructed over a period of 5 years.

10. Supports the design, fabrication, and processing of category 11.4 Electron Devices.

11. The historical utilization average for the past five years has been 4.2 (unique, one-ofa-kind experimental) vacuum devices per year.

12. Projected utilization data to FY 1997:

No. Dev

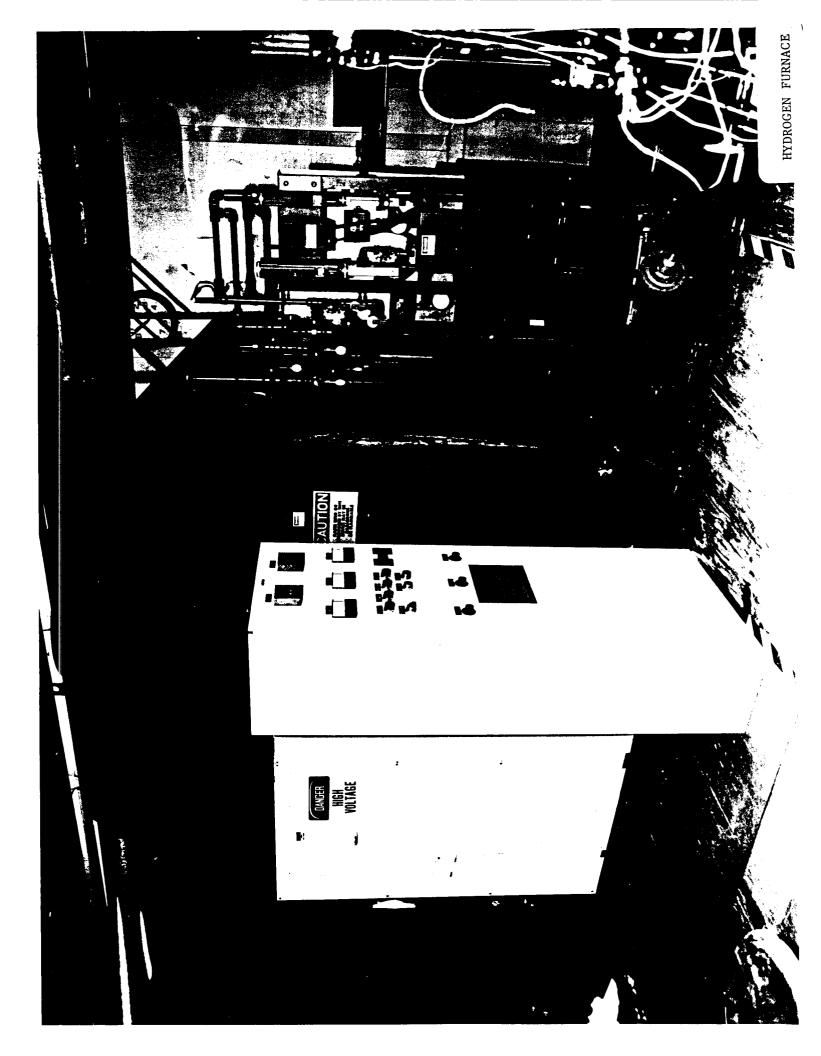
	<u>1994</u>	<u>1995</u>	<u>1996</u>	<u>1997</u>
rices	4.0	5.0	5.0	6.0

13. The number of personnel used to operate the facility/equipment is 7.

14. The facility/equipment is maintained under contract.

16. This facility is unique in DoD.; it's ability to handle unique, one-of-a-kind vacuum electronic and UHV devices may be unique in the Federal Government. The VEEF's specialized fabrication and surface treatment capabilities have attracted clientele from among other NRL tenants and from scientists at national labs throughout the country who are involved with high to ultra-high vacuum devices; their requests on handled on a time-available basis, generally not exceeding 10% of VEEF project time.

D-30 R (8 Aug 94)


1 9 AUG 1994

6. This facility is unique in DoD.; it's ability to handle unique, one-of-a-kind vacuum electronic and UHV devices may be unique in the Federal Government. The VEEF's specialized fabrication and surface treatment capabilities have attracted clientele from among other NRL tenants and from scientists at national labs throughout the country who are involved with high to ultra-high vacuum devices; their requests on handled on a time-available basis, generally not exceeding 10% of VEEF project time.

Reinsion 704/01/18 81 8/17/94 15 Photo of Hydrogen Furnace Attached.

16. This facility is not shared with any other function. This facility is unique because no other facility such as this is available in DoD.

•

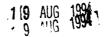
Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	III-V MBE Facilities

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

- 1. Purpose of Facility/Equipment.
 - Operates and maintains two Molecular Beam Epitaxy (MBE) systems for the growth of III-V compound semiconductors.

VG (Fisons) V80H:


The first system is a VG (Fisons) V80H system whose purpose is to provide high-quality, uniform, and reproducible Al/In/Ga/As material system with Si or Be doping on wafers up to 3-inches in diameter. This machine has produced material with state-of-the-art optical quality. These materials are used to support research at NRL in: 1) novel electronic and optoelectronic devices; 2) atomic-scale investigation of the effect of growth conditions on the electrical and optical properties of materials and devices; and 3) investigation of new growth techniques for microstructures and three-dimensional structures.

Varian (EPI) 360:

The second system is a Varian (EPI) 360 system whose purpose is to act as an experimental system for the growth of new and/or materials incompatible with highquality growth of other materials on substrates up to 1-inch in diameter. It is currently used for research in the Al/In/Ga/As/Sb material system with Si, Be and GaTe doping capability.

The purpose of these systems are to support 6800 and NRL research and development programs with: 1) state-of-the-art III-V epitaxial material and 2) the capability to do basic and applied work that advances the state-of-the-art in III-V epitaxial material suitable for electronic, optoelectronic and optical applications.

The primary user of the facility and its product, external to 6800 is the Optical Science Division, Code 5600. The growth capabilities were not duplicated in the Optical Science Division even thought they have extensive needs for the material. The need has been historically addressed through strongly interactive programs. Currently programs dealing with: 1) optical correlators, 2) fast optical detectors, 3) UV optical detectors and nanostructures are carried out in conjunction with Code 5600. In addition this facility supports a number of other Divisions with material and research. A table of utilization is shown below.

R

R

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	III-V MBE Facilities

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

1. Purpose of Facility/Equipment.

Operates and maintains two Molecular Beam Epitaxy (MBE) systems for the growth of III-V compound semiconductors.

VG (Fisons) V80H:

The first system is a VG (Fisons) V80H system whose purpose is to provide high-quality, uniform, and reproducible Al/In/Ga/As material system with Si or Be doping on wafers up to 3-inches in diameter. This machine has produced material with state-of-the-art optical quality. These materials are used to support research at NRL in: 1) novel electronic and optoelectronic devices; 2) atomic-scale investigation of the effect of growth conditions on the electrical and optical properties of materials and devices; and 3) investigation of new growth techniques for microstructures and three-dimensional structures.

Varian (EPI) 360:

The second system is a Varian (EPI) 360 system whose purpose is to act as an experimental system for the growth of new and/or materials incompatible with highquality growth of other materials on substrates up to 1-inch in diameter. It is currently used for research in the Al/In/Ga/As/Sb material system with Si, Be and GaTe doping capability.

The purpose of these systems are to support 6800 and NRL research and development programs with: 1) state-of-the-art III-V epitaxial material and 2) the capability to do basic and applied work that advances the state-of-the-art in III-V epitaxial material suitable for electronic, optoelectronic and optical applications.

The primary user of the facility and its product, external to 6800 is the Optical Science Division, Code 5600. The growth capabilities were not duplicated in the Optical Science Division even thought they have extensive needs for the material. The need has been historically addressed through strongly interactive programs. Currently programs dealing with: 1) optical correlators, 2) fast optical detectors, 3) UV optical detectors and nanostructures are carried out in conjunction with Code 5600. In addition this facility supports a number of other Divisions with material and research. A table of utilization is shown below.

Revision 704/6NR91 8/17494

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	III-V MBE Facilities

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

1. Purpose of Facility/Equipment.

Operates and maintains two Molecular Beam Epitaxy (MBE) systems for the growth of III-V compound semiconductors.

VG (Fisons) V80H:

The first system is a VG (Fisons) V80H system whose purpose is to provide high-quality, uniform, and reproducible Al/In/Ga/As material system with Si or Be doping on wafers up to 3-inches in diameter. This machine has produced material with state-of-the-art optical quality. These materials are used to support research at NRL in: 1) novel electronic and optoelectronic devices; 2) atomic-scale investigation of the effect of growth conditions on the electrical and optical properties of materials and devices; and 3) investigation of new growth techniques for microstructures and three-dimensional structures.

Varian (EPI) 360:

The second system is a Varian (EPI) 360 system whose purpose is to act as an experimental system for the growth of new and/or materials incompatible with highquality growth of other materials on substrates up to 1-inch in diameter. It is currently used for research in the Al/In/Ga/As/Sb material system with Si, Be and GaTe doping capability.

- 2. Both of these MBE systems are movable (Class 2). However, movement of the systems is extremely difficult due to their size and weight and the requirement that these systems must remain under high-vacuum conditions during movement. These MBE systems are used for the growth of potentially toxic materials (As and Sb compounds), so special safety precautions may be required for their shipment.
- 3. Replacement value.

The cost to replace the basic VG (Fisons) V80H system is approximately \$750,000. The cost to duplicate the optical substrate temperature measurement system is approximately \$15,000. Approximately \$5,000 would be required to replace the LN₂ control system, and the water filtration and cooling system. Approximately \$50,000 would be needed for replacement spare effusion cells, temperature controllers, and spare parts. Thus, the total replacement cost for our VG (Fisons) V80H MBE system with necessary spares and enhancements would be about \$820,000.

User %	6800	5600	Other/NRL	University
of Time	60%	25%	10%	5%

- 2. Both of these MBE systems are movable (Class 2). However, movement of the systems is extremely difficult due to their size and weight and the requirement that these systems must remain under high-vacuum conditions during movement. These MBE systems are used for the growth of potentially toxic materials (As and Sb compounds), so special safety precautions may be required for their shipment.
- 3. Replacement value.

The cost to replace the basic VG (Fisons) V80H system is approximately \$750,000. The cost to duplicate the optical substrate temperature measurement system is approximately \$15,000. Approximately \$5,000 would be required to replace the LN₂ control system, and the water filtration and cooling system. Approximately \$50,000 would be needed for replacement spare effusion cells, temperature controllers, and spare parts. Thus, the total replacement cost for our VG (Fisons) V80H MBE system with necessary spares and enhancements would be about \$820,000.

The cost of a basic system similar to the Varian (EPI) 360 system is approximately \$500,000. The Varian system also includes an Auger electron spectroscopy system, two residual gas analyzers and a data acquisition system which would cost approximately \$50,000 to duplicate. Spare effusion cells, spare parts, the LN₂ control system, and the water filtration and cooling system would cost an additional \$75,000 to duplicate. Thus, the total replacement cost for our Varian (EPI) 360 system with necessary spares and enhancements would be about \$625,000.

4. Gross weight and cubic volume.

The gross weight of the VG (Fisons) V80H system is 4500 pounds. The basic system requires about 1800 cubic feet of space.

The gross weight of the Varian (EPI) 360 is 5000 pounds. The basic system requires about 1500 cubic feet of space.

5. Special Utilities.

The VG (Fisons) V80H system requires 220 V, 3-phase, 60 ampere, electrical service in addition to standard 110 V electricity for instrumentation. In addition, filtered chilled water must be provided to the system continuously to cool the effusion cells. During operation of the system, LN_2 must be provided to the system continuously. Ultra pure de-ionized water must be available in the MBE facility for cleaning substrates prior to growth. The cleaning must be done under fume hoods with HEPA filters to minimize contamination of the cleaned surface. 100 psi dry, filtered compressed air is also required for operation of pneumatic valves and shutter actuactors.

The Varian (EPI) 360 system requires 208 V, single phase electrical service in addition to standard 110V electricity for instrumentation. In addition, filtered chilled water and LN₂ must be provided to the system continuously during operation (typically 10 hours/day). Ultra pure de-ionized water must be available in the MBE facility for cleaning substrates

	User %	6800	5600	Other/NRL	University
X	of Time	60%	25%	10%	5%

- 2. Both of these MBE systems are movable (Class 2). However, movement of the systems is extremely difficult due to their size and weight and the requirement that these systems must remain under high-vacuum conditions during movement. These MBE systems are used for the growth of potentially toxic materials (As and Sb compounds), so special safety precautions may be required for their shipment.
- 3. Replacement value.

The cost to replace the basic VG (Fisons) V80H system is approximately \$750,000. The cost to duplicate the optical substrate temperature measurement system is approximately \$15,000. Approximately \$5,000 would be required to replace the LN_2 control system, and the water filtration and cooling system. Approximately \$50,000 would be needed for replacement spare effusion cells, temperature controllers, and spare parts. Thus, the total replacement cost for our VG (Fisons) V80H MBE system with necessary spares and enhancements would be about \$820,000.

The cost of a basic system similar to the Varian (EPI) 360 system is approximately \$500,000. The Varian system also includes an Auger electron spectroscopy system, two residual gas analyzers and a data acquisition system which would cost approximately \$50,000 to duplicate. Spare effusion cells, spare parts, the LN₂ control system, and the water filtration and cooling system would cost an additional \$75,000 to duplicate. Thus, the total replacement cost for our Varian (EPI) 360 system with necessary spares and enhancements would be about \$625,000.

4. Gross weight and cubic volume. The gross weight of the VG (Fisons) V80H system is 4500 pounds. The basic system requires about 1800 cubic feet of space.

The gross weight of the Varian (EPI) 360 is 5000 pounds. The basic system requires about 1500 cubic feet of space.

5. Special Utilities.

The VG (Fisons) V80H system requires 220 V, 3-phase, 60 ampere, electrical service in addition to standard 110 V electricity for instrumentation. In addition, filtered chilled water must be provided to the system continuously to cool the effusion cells. During operation of the system, LN_2 must be provided to the system continuously. Ultra pure de-ionized water must be available in the MBE facility for cleaning substrates prior to growth. The cleaning must be done under fume hoods with HEPA filters to minimize contamination of the cleaned surface. 100 psi dry, filtered compressed air is also required for operation of pneumatic valves and shutter actuactors.

The Varian (EPI) 360 system requires 208 V, single phase electrical service in addition to standard 110V electricity for instrumentation. In addition, filtered chilled water and LN_2 must be provided to the system continuously during operation (typically 10 hours/day). Ultra pure de-ionized water must be available in the MBE facility for cleaning substrates

Ke uision KG/GNR9/ 8/17/94

prior to growth. The cleaning must be done under fume hoods with HEPA filters to minimize contamination of the cleaned surface. 100 psi dry, filtered compressed air is also required for operation of pneumatic valves and shutter actuactors.

6. Special budget requirements.

.

The site for the MBE facility must be clean, have reliable electrical, water, and LN_2 utilities, and have HEPA filtered fume hoods and clean benches available for substrate preparation and system maintenance.

- 7. Environmental control requirements. A proper HEPA filtered fume hood must be available in the facility for substrate preparation. Standard temperature and humidity constraints appropriate for electronic equipment must be met.
- 8. Impact of facility loss.

The VG (Fisons) V80H system and the Varian (EPI) 360 systems would both be extremely difficult to replicate or relocate due to their high cost of replacement, the difficulty in safely moving such large and heavy stainless-steel systems (e.g. the VG system was damaged in transit from the factory), and the extreme difficulty in duplicating the knowledge of the operating characteristics of the systems without extensive retraining and recalibration of the systems. If the systems were to be moved, at least 2 man-years would be required to make them fully operational and as reproducible as they are in their current configuration. There is a broad and ongoing synergy between the MBE scientists and engineers in Codes 6850, 6870, and 6810. This synergy has led to our groups being much more productive than we would be without the collaboration created by interactions between our groups and systems. The Division and the Navy would be very well served by keeping our existing MBE facilities in place in the Division. The loss of these facilities would be a great blow to the capabilities and productivity of the researchers in the Division and to a variety of electronic and optoelectronic device programs of importance to the Navy. The type of research and development done on these systems cannot reasonably be duplicated by other facilities or through the use of outside agencies. The research and development in the Division on semiconductor devices and semiconductor physics requires stringent correlation between the properties of the grown material and the measured characteristics. It is this type of synergism between basic research and development which makes NRL of unique importance to the DOD. Due to the fact that every MBE system is slightly different, unless there is a long history of understanding the characteristics of the machine, it is difficult or impossible to truly understand and correlate the material and electrical/optical properties measured. This historical data can only be obtained through in-house facilities.

9. Facility construction.

The VG (Fisons) V80H system was shipped via air freight from the factory in England and assembled and tested by VG personnel. The Varian (EPI) system was similarly transported and assembled.

10. Areas of functional support: Category 11.4 Electronic Devices.

11. Historical use average.

The VG (Fisons) V80H system has been used to grow 1166 samples since it was installed in January 1987. From October 1988 - October 1993, the system was used to grow 864 samples or averaged 14.4 samples per month. A "sample" in this case is one or more semiconductor layers deposited by MBE on an individual GaAs substrate. The prior to growth. The cleaning must be done under fume hoods with HEPA filters to minimize contamination of the cleaned surface. 100 psi dry, filtered compressed air is also required for operation of pneumatic valves and shutter actuactors.

6. Special budget requirements.

The site for the MBE facility must be clean, have reliable electrical, water, and LN_2 utilities, and have HEPA filtered fume hoods and clean benches available for substrate preparation and system maintenance.

- 7. Environmental control requirements. A proper HEPA filtered fume hood must be available in the facility for substrate preparation. Standard temperature and humidity constraints appropriate for electronic equipment must be net.
- 8. Impact of facility loss.

The VG (Fisons) V80A system and the Varian (EPI) 360 systems would both be extremely difficult to replicate or relocate due to their high cost of replacement, the difficulty in safely moving such large and heavy stainless-steel systems (e.g. the VG system was damaged in transition the factory), and the extreme difficulty in duplicating the knowledge of the operating characteristics of the systems without extensive retraining and recalibration of the systems. If the systems were to be moved, at least 2 man-years would be required to make them fully operational and as reproducible as they are in their current configuration. There is a broad and ongoing synergy between the MBE scientists and engineers in Codes 6850, 6870, and 6810. This synergy has led to our groups being much more productive than we would be without the collaboration created by interactions between our groups and systems. The Division and the Navy would be very well served by keeping our existing MBE facilities in place in the Division. The loss of these facilities would be a great blow to the capabNities and productivity of the researchers in the Division and to a variety of electronic and optoelectronic device programs of importance to the Navy. The type of research and development done on these systems cannot reasonably be duplicated by other facilities or through the use of outside agencies. The research and development in the Division on semiconductor devices and semiconductor physics requires stringent correlation between the properties of the grown material and the measured characteristics. It is this type of synergism between basic research and development which makes NRL of unique importance to the DOD. Due to the fact that every MBE system is slightly different, unless there is a long history of understanding the characteristics of the machine, it is difficult or impossible to truly understand and correlate the material and electrical/optical properties measured. This historical data can only be obtained through in-house facilities.

9. Facility construction.

The VG (Fisons) V80H system was shipped via air freight from the factory in England and assembled and tested by VG personnel. The Varian (EPI) system was similarly transported and assembled.

- 10. Areas of functional support: Category 11.4 Electronic Devices.
- 11. Historical use average.

The VG (Fisons) V80H system has been used to grow 1166 samples since it was installed in January 1987. From October 1988 - October 1993, the system was used to grow 864 samples or averaged 14.4 samples per month. A "sample" in this case is one or more semiconductor layers deposited by MBE on an individual GaAs substrate. The deposition time for each sample varies between 1 and 10+ hours, depending on the complexity of the structure.

The Varian (EPI) 360 system has been used to grow nearly 1900 samples since it was installed at NRL. From October 1988 - October 1993, the system was used to grow 783 samples or averaged 13.0 samples per month.

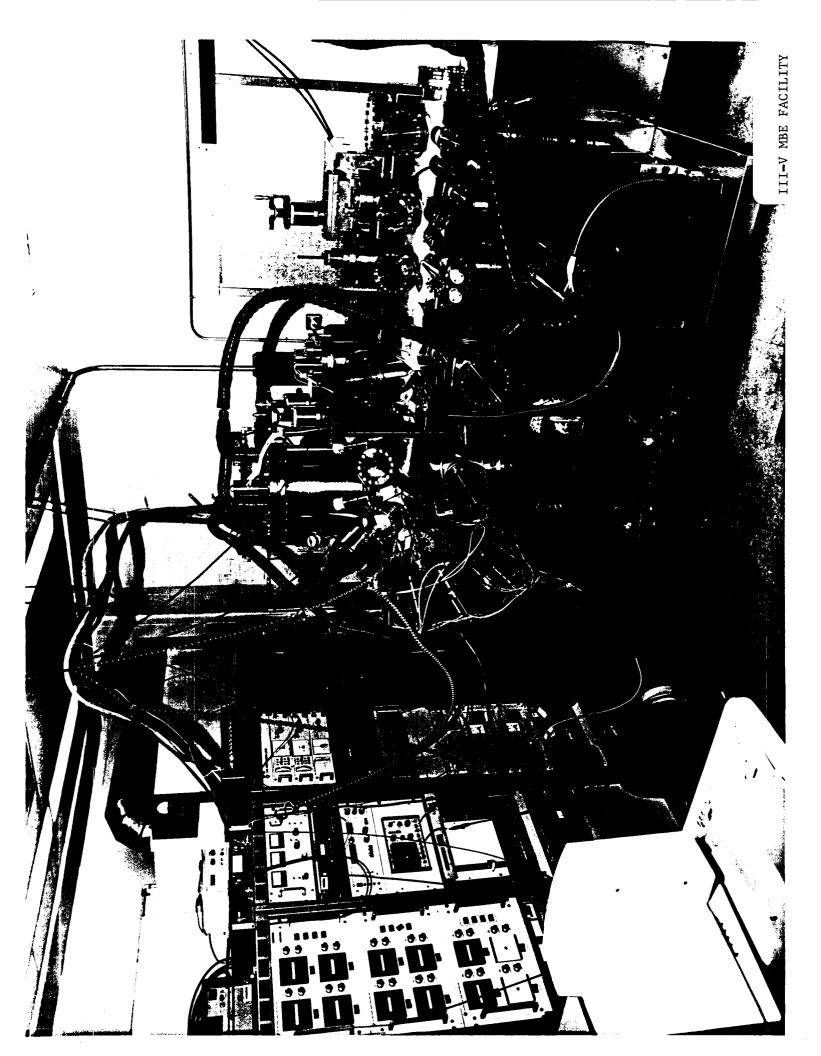
12. Projected use to FY 1997.

We expect these system to continue to increase in productivity due to improvements in the reliability and reproducibility of the systems and due to increased understanding of them on our part. Averaging close to 20 samples per month should be possible with these machines.

- Personnel used to operate the equipment. Both the VG (Fisons) V80H system and the Varian (EPI) 360 systems currently have one principal operator each. Another engineer (Bijan Tadayon) does occasional work on both machines. Thus a reasonable estimate is that each machine is currently requiring 1.25 man-years for their operation.
- 14. Personnel used to maintain the equipment. Each of the 6856 MBE systems is currently maintained by their primary operator.
- 15. Facility Photo Attached.
- 16. This facility is not shared with any other function.

deposition time for each sample varies between 1 and 10+ hours, depending on the complexity of the structure.

The Varian (EPI) 360 system has been used to grow nearly 1900 samples since it was installed at NRL. From October 1988 - October 1993, the system was used to grow 783 samples or averaged 13.0 samples per month.


12. Projected use to FY 1997.

We expect these system to continue to increase in productivity due to improvements in the reliability and reproducibility of the systems and due to increased understanding of them on our part. Averaging close to 20 samples per month should be possible with these machines.

- 13. Personnel used to operate the equipment. Both the VG (Fisons) V80H system and the Varian (EPI) 360 systems currently have one principal operator each Another engineer (Bijan Tadayon) does occasional work on both machines. Thus a reasonable estimate is that each machine is currently requiring 1.25 man-years for their operation.
- 14. Personnel used to maintain the equipment. Each of the 6856 MBE systems is currently maintained by their primary operator.
- 15. Facility Photo Attached.
- 16. This facility is not shared with any other function.

. . .

Revision recionRal 8117A4

Technical Center Site	NRL/ESTD
Facility/Equipment	Surface and Interface
Nomenclature or Title	Science Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. The Surface and Interface Science Laboratory performs measurements in ultra-high vacuum on the structural, chemical, and electronic properties of specially cleaned or prepared surfaces and interfaces. Among the techniques utilized are low energy electron diffraction, Auger and energy loss spectroscopy, and photoemission spectroscopy. Materials investigated include samples grown in other facilities, as well as films deposited in-situ.

2. Equipment is movable.

3. Replacement Value: \$1.2M

4. Gross Weight: Approx. 8000 lbs. Gross Cubage: 5000 cu. ft.

5. Facility requires filtered cooling water and 208 Volt 40 Amp electrical service.

6. None.

7. None.

8. The facility could be replicated or relocated. Relocation would require extreme care to avoid damage to delicate instrumentation. This facility supports programs of materials growth and device fabrication.

9. Equipment acquired during period 1980 to 1994.

10. The Surface and Interface Science Laboratory supports areas 11.4 Electronics Devices and 11.5 Materials and Processes.

11. Average recent utilization was 6WY.

12. Utilization is expected to be 5WY per year for FY94 - FY97.

13. 5 people are required to operate the equipment.

14. No dedicated maintenance personnel are required.

15. Facility Photo Attached.

16. This facility is not shared with any other function.

Technical Center Site	NRL/ESTD
Facility/Equipment	Surface and Interface
Nomenclature or Title	Science Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. The Surface and Interface Science Laboratory performs measurements in ultra-high vacuum on the structural, chemical, and electronic properties of specially cleaned or prepared surfaces and interfaces. Among the techniques utilized are low energy electron diffraction, Auger and energy loss spectroscopy, and photoemission spectroscopy. Materials investigated include samples grown in other facilities, as well as films deposited in-situ.

- 2. Equipment is movable.
- 3. Replacement Value: \$1.2M
- 4. Gross Weight: Approx. 8000 lbs. Gross Cubage: 5000 cu. ft.
- 5. Facility requires filtered cooling water and 208 Volt 40 Amp electrical service.
- 6. None.
- 7. None.

8. The facility could be replicated or relocated. Relocation would require extreme care to avoid damage to delicate instrumentation. This facility supports programs of materials growth and device fabrication.

9. Equipment acquired during period 1980 to 1994.

10. The Surface and Interface Science Laboratory supports areas 11.4 Electronics Devices and 11.5 Materials and Processes.

- 11. Average recent utilization was 6WY.
- 12. Utilization is expected to be 5WY per year for FY94 FY97.
- 13. 5 people are required to operate the equipment.
- 14. No dedicated maintenance personnel are required.
- 15. Facility Photo Attached.
- 16. This facility is not shared with any other function.

Technical Center Site	NRL/ESTD
Facility/Equipment	Surface and Interface
Nomenclature or Title	Science Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. The Surface and Interface Science Laboratory performs measurements in ultra-high vacuum on the structural, chemical, and electronic properties of specially cleaned or prepared surfaces and interfaces. Among the techniques utilized are low energy electron diffraction, Auger and energy loss spectroscopy, and photoemission spectroscopy. Materials investigated include samples grown in other facilities, as well as films deposited in-situ.

- 2. Equipment is movable.
- 3. Replacement Value: \$1.2M
- 4. Gross Weight: Approx. 8000 lbs. Gross Cubage: 5000 cu. ft.
- 5. Facility requires filtered cooling water and 208 Volt 40 Amp electrical service.
- 6. None.
- 7. None.

8. The facility could be replicated or relocated. Relocation would require extreme care to avoid damage to delicate instrumentation. This facility supports programs of materials growth and device fabrication.

9. Equipment acquired during period 1980 to 1994.

10. The Surface and Interface Science Laboratory supports areas 11.4 Electronics Devices and 11.5 Materials and Processes.

- 11. Average recent utilization was 6WY.
- 12. Utilization is expected to be 5WY per year for FY94 FY97.
- 13. 5 people are required to operate the equipment.
- 14. No dedicated maintenance personnel are required.
- 15. Facility Photo Attached.
- 16. This facility is not shared with any other function.

current configuration. There is a broad and ongoing synergy between the MBE scientists and engineers in Codes 6850, 6870, and 6810. This synergy has led to our groups being much more productive than we would be without the collaboration created by interactions between our groups and systems. The Division and the Navy would be very well served by keeping our existing MBE facilities in place in the Division. The loss of these facilities would be a great blow to the capabilities and productivity of the researchers in the Division and to a variety of electronic and optoelectronic device programs of importance to the Navy. The type of research and development done on these systems cannot reasonably be duplicated by other facilities or through the use of outside agencies. The research and development in the Division on semiconductor devices and semiconductor physics requires stringent correlation between the properties of the grown material and the measured characteristics. It is this type of synergism between basic research and development which makes NRL of unique importance to the DOD. Due to the fact that every MBE system is slightly different, unless there is a long history of understanding the characteristics of the machine, it is difficult or impossible to truly understand and correlate the material and electrical/optical properties measured. This historical data can only be obtained through in-house facilities.

9. Facility construction.

The VG (Fisons) V80H system was shipped via air freight from the factory in England and assembled and tested by VG personnel. The Varian (EPI) system was similarly transported and assembled.

- 10. Areas of functional support: Category 11.4 Electronic Devices.
- 11. Historical use average.

The VG (Fisons) V80H system has been used to grow 1166 samples since it was installed in January 1987. From October 1988 - October 1993, the system was used to grow 864 samples or averaged 14.4 samples per month. A "sample" in this case is one or more semiconductor layers deposited by MBE on an individual GaAs substrate. The deposition time for each sample varies between 1 and 10+ hours, depending on the complexity of the structure.

The Varian (EPI) 360 system has been used to grow nearly 1900 samples since it was installed at NRL. From October 1988 - October 1993, the system was used to grow 783 samples or averaged 13.0 samples per month.

12. Projected use to FY 1997.

We expect these system to continue to increase in productivity due to improvements in the reliability and reproducibility of the systems and due to increased understanding of them on our part. Averaging close to 20 samples per month should be possible with these machines.

13. Personnel used to operate the equipment.

Both the VG (Fisons) V80H system and the Varian (EPI) 360 systems currently have one principal operator each. Another engineer (Bijan Tadayon) does occasional work on both machines. Thus a reasonable estimate is that each machine is currently requiring 1.25 man-years for their operation.

14. Personnel used to maintain the equipment. Each of the 6856 MBE systems is currently maintained by their primary operator.

15. Facility Photo Attached.

16. This facility is not shared with any other function.

The cost of a basic system similar to the Varian (EPI) 360 system is approximately \$500,000. The Varian system also includes an Auger electron spectroscopy system, two residual gas analyzers and a data acquisition system which would cost approximately \$50,000 to duplicate. Spare effusion cells, spare parts, the LN₂ control system, and the water filtration and cooling system would cost an additional \$75,000 to duplicate. Thus, the total replacement cost for our Varian (EPI) 360 system with necessary spares and enhancements would be about \$625,000.

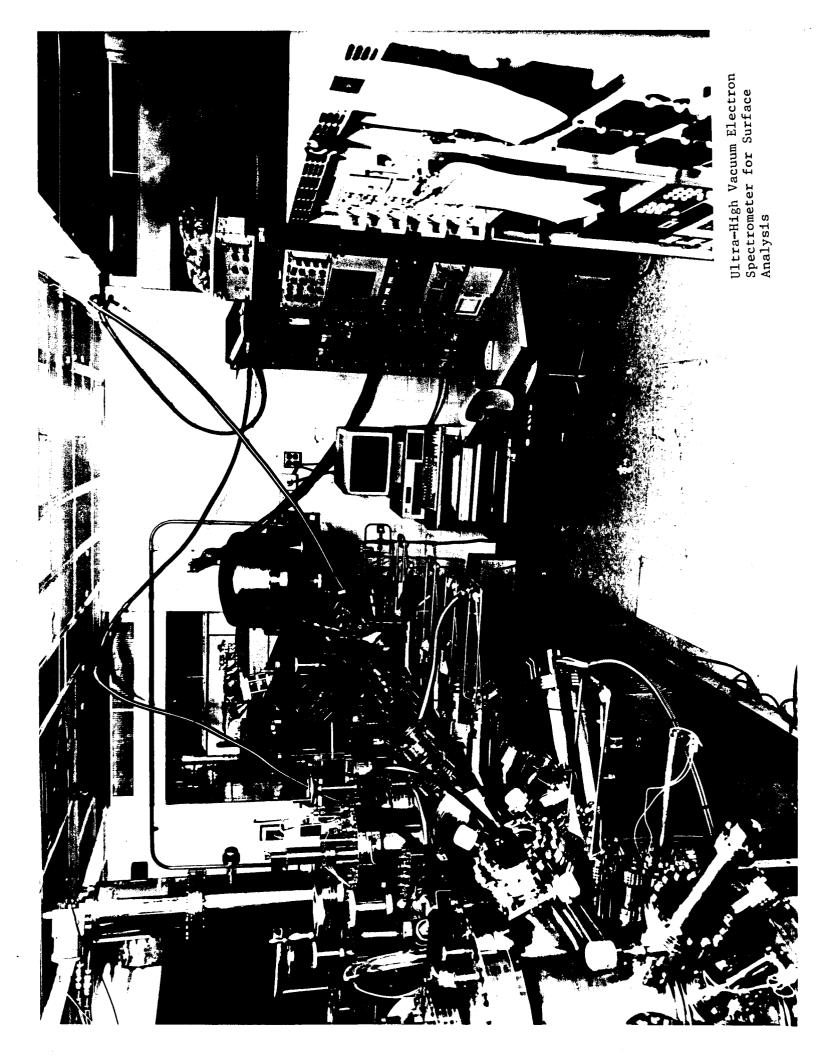
4. Gross weight and cubic volume.

The gross weight of the VG (Fisons) V80H system is 4500 pounds. The basic system requires about 1800 cubic feet of space.

The gross weight of the Varian (EPI) 360 is 5000 pounds. The basic system requires about 1500 cubic feet of space.

5. Special Utilities.

The VG (Fisons) V80H system requires 220 V, 3-phase, 60 ampere, electrical service in addition to standard 110 V electricity for instrumentation. In addition, filtered chilled water must be provided to the system continuously to cool the effusion cells. During operation of the system, LN_2 must be provided to the system continuously. Ultra pure de-ionized water must be available in the MBE facility for cleaning substrates prior to growth. The cleaning must be done under fume hoods with HEPA filters to minimize contamination of the cleaned surface. 100 psi dry, filtered compressed air is also required for operation of pneumatic valves and shutter actuactors.


The Varian (EPI) 360 system requires 208 V, single phase electrical service in addition to standard 110V electricity for instrumentation. In addition, filtered chilled water and LN_2 must be provided to the system continuously during operation (typically 10 hours/day). Ultra pure de-ionized water must be available in the MBE facility for cleaning substrates prior to growth. The cleaning must be done under fume hoods with HEPA filters to minimize contamination of the cleaned surface. 100 psi dry, filtered compressed air is also required for operation of pneumatic valves and shutter actuactors.

6. Special budget requirements.

The site for the MBE facility must be clean, have reliable electrical, water, and LN_2 utilities, and have HEPA filtered fume hoods and clean benches available for substrate preparation and system maintenance.

- 7. Environmental control requirements. A proper HEPA filtered fume hood must be available in the facility for substrate preparation. Standard temperature and humidity constraints appropriate for electronic equipment must be met.
- 8. Impact of facility loss.

The VG (Fisons) V80H system and the Varian (EPI) 360 systems would both be extremely difficult to replicate or relocate due to their high cost of replacement, the difficulty in safely moving such large and heavy stainless-steel systems (e.g. the VG system was damaged in transit from the factory), and the extreme difficulty in duplicating the knowledge of the operating characteristics of the systems without extensive retraining and recalibration of the systems. If the systems were to be moved, at least 2 man-years would be required to make them fully operational and as reproducible as they are in their

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Organometallic VPE

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. Primary Purpose: The equipment is used to fabricate thin epitaxial layers of semiconductors used in fundamental and applied studies of new materials and device concepts.

- 2. Portability: The equipment is not portable.
- 3. Replacement value of facility/equipment: \$2.4 M
- 4. Gross weight and cube: 6000 lbs, 1500 cubic feet.

5. Special utility support: Back up diesel generator, toxic gas scrubbers, integrated safety system, DI water, hydrogen, nitrogen, and air lines, water chiller, acid neutralization tank, and one pass HVAC system.

6. Special budget requirements: Operating budget for facility (solvents, gases, safety consumables, etc..), hydride and organometallic sources for research.

7. Environmental control requirements: Integrated safety system for handling highly toxic gases and hydrogen, real-time toxic gas scrubbers, hoods and fans for exhaust, stainless steel ductwork throughout, one pass HVAC.

8. Relocation: Extremely difficult, would require special site preparation, dismantling of building walls to move equipment, manufacturer support for moving equipment, purchasing of similar equipment that could not be moved because it is delicate and/or to sensitive. No other facilities government wide that could be utilized. Commercial capabilities extremely limit and not amenable to facility/section mission.

9. Indicate how and when equipment was transported or constructed: One piece of equipment was transported to site after removal of wall in 2/92. Other equipment constructed on-site from existing and purchased parts during 1992 and 1993.

10. Functional support areas: Electronic Devices 11.4 and Materials 11.5

11. Historical utilization average for last 5 FY. Used every work day since facility and equipment came on line, mid 1992 for the first piece of equipment.

12. Projected utilization: Same as historical, every work day.

13. Number of personnel: 5

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Organometallic VPE

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. Primary Purpose: The equipment is used to fabricate thin epitaxial layers of semiconductors used in fundamental and applied studies of new materials and device concepts.

2. Portability: The equipment is not portable.

3. Replacement value of facility/equipment: \$2.4 M

4. Gross weight and cube: 6000 lbs, 1500 cubic feet.

5. Special utility support: Back up diesel generator, toxic gas scrubbers, integrated safety system, DI water, hydrogen, nitrogen, and air ines, water chiller, acid neutralization tank, and one pass HVAC system.

6. Special budget requirements: Operating budget for facility (solvents, gases, safety consumables, etc..), hydride and organometallic sources for research.

7. Environmental control requirements: Integrated safety system for handling highly toxic gases and hydrogen, real-time toxic gas scrubbers, hoods and fans for exhaust, stainless steel ductwork throughout, one pass HVAC.

8. Relocation: Extremely difficult, would require special site preparation, dismantling of building walls to move equipment, manufacturer support for moving equipment, purchasing of similar equipment that could not be moved because it is delicate and/or to sensitive. No other facilities government wide that could be utilized. Commercial capabilities extremely limit and not amenable to facility/section mission.

9. Indicate how and when equipment was transported or constructed: One piece of equipment was transported to site after removal of wall in 2/92. Other equipment constructed on-site from existing and purchased parts during 1992 and 1993.

10. Functional support areas: Electronic Devices 11.4 and Materials 11.5

11. Historical utilization average for last 5 FY. Used every work day since facility and equipment came on line, mid 1992 for the first piece of equipment.

12. Projected utilization: Same as historical, every work day.

13. Number of personnel: 5

Rousian AcelONR91

ADDED PAGE

TTO AUG 1994

14. Number to maintain: 5

• . •

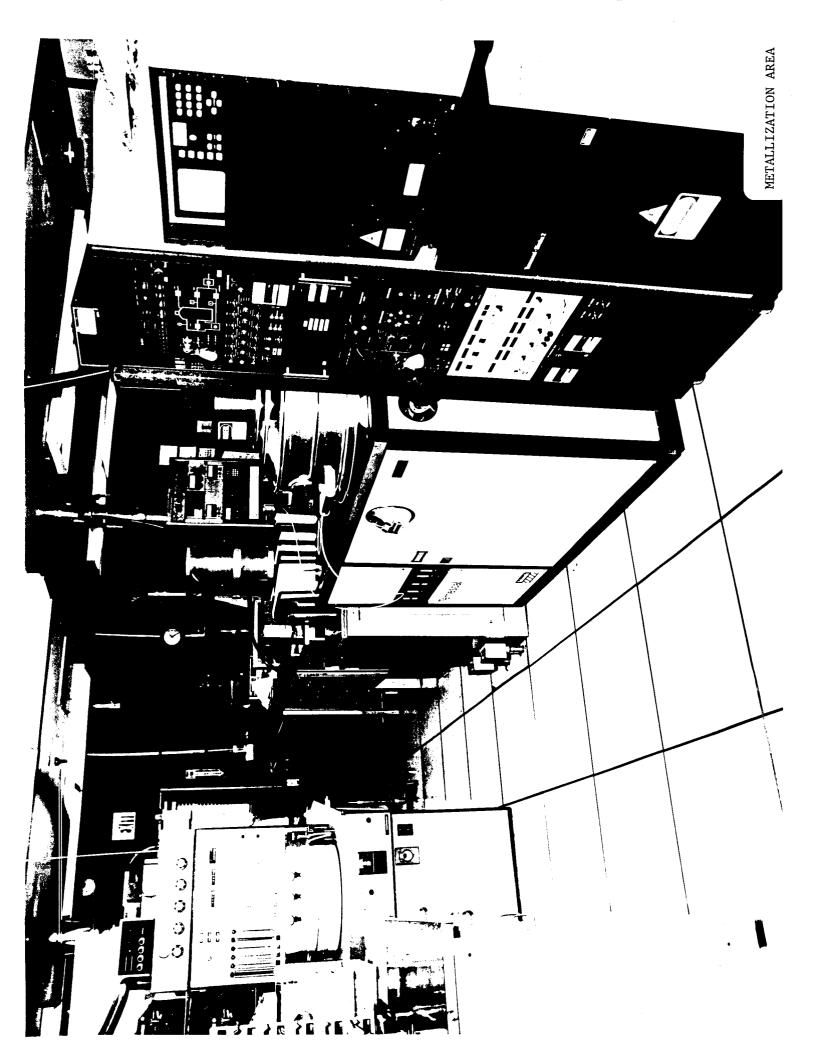
15. Facility Photos Attached.

16. This facility is not shared with any other function. Others may have this capability but this particular facility is unique because of special safety capabilities needed to use the equipment. Therefore, it is unique to DoD.

Î

14. Number to maintain: 5

15. Facility Photos Attached.


16. This facility is not shared with any other function. Others may have this capability but this particular facility is unique because of special safety capabilities needed to use the equipment. Therefore, it is unique to DoD

R

ADDED PAGE

🖾 8 AUG 1994

Revision 74/0NR91 5117/94

Technical Center Site	NRL/ESTD
Facility/Equipment	Optical Characterization
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. The Optical Characterization Facility utilizes visible and infrared spectroscopy to provide information on materials properties and processing. Instrumentation includes Ar ion and Ti sapphire lasers, and Fourier Transform Infrared Spectroscopy. The latter is coupled with a processing chamber and ultra high vacuum chamber to provide information on film deposition, etching, and other chemical processing.

2. Equipment is movable.

3. Replacement Value: \$670K

4. Gross Weight: 1500 lbs. Gross Cubage: 6000 cu. ft.

5. Facility requires gaseous nitrogen, liquid helium, and cooling water.

6. None.

7. None.

8. This facility could be replicated or relocated. Delicate optical components require special care for transportation. Other facilities concerned with materials characterization and processing require timely feedback from this facility.

9. Equipment for this facility was acquired over the time period 1984 to 1994.

10. The Optical Characterization Facility supports areas 11.4 Electronics Devices and 11.5 Materials and Processes.

11. Average utilization from FY89 to FY93 was 5 WY per year.

12. Utilization is expected to be 5 WY per year for FY94 - FY97.

13. 3 people are required to operate the equipment.

14. No dedicated maintenance personnel are required.

15. Facility Photo Attached.

16. This facility is not shared with any other function.

Technical Center Site	NRL/ESTD
Facility/Equipment	Optical Characterization
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Surface and Interface Sciences Branch

1. The Optical Characterization Facility utilizes visible and infrared spectroscopy to provide information on materials properties and processing. Instrumentation includes Ar ion and Ti sapphire lasers, and Fourier Transform Infrared Spectroscopy. The latter is coupled with a processing chamber and ultra high vacuum chamber to provide information on film deposition, etching, and other chemical processing.

- 2. Equipment is movable.
- 3. Replacement Value: \$670K
- 4. Gross Weight: 1500 lbs. Gross Cubage: 6000 cu. ft.
- 5. Facility requires gaseous nitrogen, liquid helium, and cooling water.
- 6. None.
- 7. None.

8. This facility could be replicated or relocated. Delicate optical components require special care for transportation. Other facilities concerned with materials characterization and processing require timely feedback from this facility.

9. Equipment for this facility was acquired over the time period 1984 to 1994.

10. The Optical Characterization Facility supports areas 11.4 Electronics Devices and 11.5 Materials and Processes.

11. Average utilization from FY89 to FY93 was 5 WY per year.

12. Utilization is expected to be 5 WY per year for FY94 - FY97.

13. 3 people are required to operate the equipment.

14. No dedicated maintenance personnel are required.

15. Facility Photo Attached.

16. This facility is not shared with any other function.

Revisión 2004/6NR91 ADDED PAGE 8/19/94

1994 NUG 1994

Technical Center Site	NRL/ESTD
Facility/Equipment	Electronic Properties
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Electronic Properties Facility provides detailed measurements of: a.) electron and hole transport in semiconductor materials and structures using variable-temperature resistivity and Hall effect measurements; b.) bulk and interface trap densities and energies using DLTS; and c.) surface structure, morphology, and electronic density of surface states of semiconductors, metals, insulators, and heterostructures using ambient STM/AFM and low-temperature STM. These measurements are crucial to the evaluation of materials grown and processed in other facilities. In addition, the ambient STM/AFM is crucial for the exploratory research in new approaches to nanometer-scale and atomic-scale lithography, processing, and device fabrication.

2. Equipment is movable.

3. Replacement value: \$725K

4. Gross Weight: 6500 lbs. Gross Cubage: 7600 cu. ft.

5. Facility requires good vibration isolation, including fully-floating isolation table, gaseous and liquid nitrogen, 2000 W power, high pressure nitrogen gas line, gaseous and liquid helium, 208 Volt 40 Amp electrical service. Plans exist to add gaseous hydrogen, chlorine, and fluorine (including vent and detection systems) to the low-temperature system for advanced surface chemistry studies.

6. None.

7. Temperature and humidity stability required to maintain acceptable operating environment for electronics. Vibration-free environment required for STM/AFM.

8. This equipment is unique. Few STM/AFMs have a 130 µm scan field (essential for nanolithography) and virtually no other STMs have low-temperature capability combined with an 8 µm scan field. A move away from NRL would severely impact on Navy electronics R&D because the diagnostic equipment in the electronics properties laboratory is essential for assessment of materials quality and for basic research on electronic materials. In addition, the ambient STM/AFM is essential to the nanometer and atomic scale lithographic research removal of this equipment would bring this research to a complete halt.

9. Equipment was acquired from 1985 - present.

10. The Electronic Properties Facility supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.

Į.

Technical Center Site	NRL/ESTD
Facility/Equipment	Electronic Properties
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Electronic Properties Facility provides detailed measurements of: a.) electron and hole transport in semiconductor materials and structures using variable-temperature resistivity and Hall effect measurements; b.) bulk and interface trap densities and energies using DLTS; and c.) surface structure, morphology, and electronic density of surface states of semiconductors, metals, insulators, and heterostructures using ambient STM/AFM and low-temperature STM. These measurements are crucial to the evaluation of materials grown and processed in other facilities. In addition, the ambient STM/AFM is crucial for the exploratory research in new approaches to nanometer-scale and atomic-scale lithography, processing, and device fabrication.

2. Equipment is movable.

3. Replacement value: \$725K

4. Gross Weight: 6500 lbs. Gross Cubage: 7600 cu. ft.

5. Facility requires good vibration isolation, including fully-floating isolation table, gaseous and liquid nitrogen, 2000 W power, high pressure nitrogen gas line, gaseous and liquid helium, 208 Volt 40 Amp electrical service. Plans exist to add gaseous hydrogen, chlorine, and fluorine (including vent and detection systems) to the low-temperature system for advanced surface chemistry studies.

6. None.

7. Temperature and humidity stability required to maintain acceptable operating environment for electronics. Vibration-free environment required for STM/AFM.

8. This equipment is unique. Few STM/AFMs have a 130 μ m scan field (essential for nanolithography) and virtually no other STMs have low-temperature capability combined with an 8 μ m scan field. A move away from NRL would severely impact on Navy electronics R&D because the diagnostic equipment in the electronics properties laboratory is essential for assessment of materials quality and for basic research on electronic materials. In addition, the ambient STM/AFM is essential to the nanometer and atomic scale lithographic research removal of this equipment would bring this research to a complete halt.

9. Equipment was acquired from 1985 - present.

10. The Electronic Properties Facility supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.

Revision 704/6NR9/ 8/17/94

ADDED PAGE

11. Average utilization from FY89 to FY93 was 6 WY per year.

12. Utilization is expected to be 6 WY per year for FY94 - FY97.

13. 6 people are required to operate the equipment.

14. No dedicated maintenance personnel are required.

15. Facility Photo Attached.

16. This facility is not shared with any other function. The facility is used to characterize semiconductors by other NRL divisions (Condensed Matter and Radiation Sciences Division (10%) and Optical Sciences Division (5%)) in support of electronic and electro-optic device programs.

D-38 R (8 Aug 94)

ŗ.

1) Average utilization from FY89 to FY93 was 6 WY per year.

12. Utilization is expected to be 6 WY per year for FY94 - FY97.

13. 6 people are required to operate the equipment.

14. No dedicated maintenance personnel are required.

15. Facility Photo Attached.

16. This facility is not shared with any other function. The facility is used to characterize semiconductors by other NRL divisions (Condensed Matter and Radiation Sciences Division (10%) and Optical Sciences Division (5%)) in support of electronic and electro-optic device programs.

Revision 705/6NR91 8117/94

ADDED PAGE

4

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	EPICENTER Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

The EPICENTER: A facility for the molecular beam epitaxial growth and characterization of compound semiconductor materials and structures

(This facility is a shared initiative of the Electronics Science and Technology, Materials Science and Technology and Chemistry Division.)

Electronic Materials Branch

1. The facility is dedicated to the growth and physical characterization of both III-V and II-VI semiconductors and selected metal films. In addition to two growth chambers, the facility allows in vacuo transfer from either growth chamber to two analysis chambers; one for scanning tunneling microscopy and the other for angle-resolved electron spectroscopy. While both growth chambers are of commercial design (Riber Model 32P), the analysis chambers are of custom design and commercial manufacture. The focus of effort in III-V film and superlattice growth is on the GaSb, AlSb, and InAs semiconductor family. The focus of effort in II-VI film and superlattice growth is on the diluted magnetic semiconductors MnxZn1-xSe and FexZn1-xSe.

2. The facility is moveable (Class 2). However, moving is complicated by the requirement that the various components be maintained under high vacuum conditions during movement. Since a variety of potentially toxic substances have been used inside the chambers, special safety precautions may be mandatory for shipment.

3. The replacement value is \$3M. (Exclusive of site preparation.)

4. Gross weight: 15,000 lbs. Gross cubage: 2,000 cubic feet.

5. Utility support: Filtered water delivery and drain system. Liquid nitrogen supply and exhaust system. (Either through bulk storage container or on-site liquifaction with peak demand capability of at least 10 gallon/hour. Insulated delivery lines from source to facility.) At least 120 kw of 3 phase, 225 volt electrical power for bake-out shrouds and growth chamber electronic systems. Vacuum exhaust system. Dry nitrogen purge gas. Ultra-pure deionized water for substrate processing. Fume hood with HEPA filters to minimize surface contamination during substrate processing. Pressurized (70 psi) nitrogen or clean, dry air to operate pneumatic valves.

6. Special budget requirements: The facility must be installed on a stable, low vibration floor in order to operate the scanning tunneling microscope which is vibration-sensitive.

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	EPICENTER Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

The EPICENTER: A facility for the molecular beam epitaxial growth and characterization of compound semiconductor materials and structures

(This facility is a shared initiative of the Electronics Science and Technology, Materials Science and Technology and Chemistry Division.)

Electronic Materials Branch

1. The facility is dedicated to the growth and physical characterization of both III-V and II-VI semiconductors and selected metal films. In addition to two growth chambers, the facility allows in vacuo transfer from either growth chamber to two analysis chambers; one for scanning tunneling microscopy and the other for angle-resolved electron spectroscopy. While both growth chambers are of commercial design (Riber Model 32P), the analysis chambers are of custom design and commercial manufacture. The focus of effort in III-V film and superlattice growth is on the GaSb, AlSb, and InAs semiconductor family. The focus of effort in II-VI film and superlattice growth is on the diluted magnetic semiconductors MnxZn1-xSe and FexZn1-xSe.

2. The facility is moveable (Class 2). However, moving is complicated by the requirement that the various components be maintained under high vacuum conditions during movement. Since a variety of potentially toxic substances have been used inside the chambers, special safety precautions may be mandatory for shipment.

3. The replacement value is \$3M. (Exclusive of site preparation.)

4. Gross weight: 15,000 lbs. Gross cubage: 2,000 cubic feet.

5. Utility support: Filtered water delivery and drain system. Liquid nitrogen supply and exhaust system. (Either through bulk storage container or on-site liquifaction with peak demand capability of at least 10 gallon/hour. Insulated delivery lines from source to facility.) At least 120 kw of 3 phase, 225 volt electrical power for bake-out shrouds and growth chamber electronic systems. Vacuum exhaust system. Dry nitrogen purge gas. Ultra-pure deionized water for substrate processing. Fume hood with HEPA filters to minimize surface contamination during substrate processing. Pressurized (70 psi) nitrogen or clean, dry air to operate pneumatic valves.

6. Special budget requirements: The facility must be installed on a stable, low vibration floor in order to operate the scanning tunneling microscope which is vibration-sensitive.

Revision 204/0N/291 8/17/94

ADDED PAGE

🛣 8 AUG 1994

Non-ferrous construction is mandatory adjacent to the magnetic-field sensitive electron spectrometer.

7. Environmental requirements: Temperature stability and sufficiently low relative humidity in order to provide an acceptable operating environment for electronic systems.

8. There is no facility within the U.S. government that is comparable to the Epicenter. In the private sector, a number of universities have facilities of equivalent size. However, each is configured differently from the Epicenter. The configuration of the Epicenter is unique in its combination of surface science techniques with semiconductor film growth capabilities. This emphasis has developed in recognition of the increased importance of interface/surface properties for the successful production of superior quality semiconductor heterostructures for optical and electronic devices of interest to the Navy. This facility could be relocated at another site but the down-time probably would be one year. If the facility were lost, device-oriented programs at NRL would have to find alternate sources of well-characterized semiconductor heterostructures. These device programs are quite diverse, ranging from infrared detectors to digital electronic applications.

9. Facility Construction: The major components of the facility were transported to the site by air/truck freight. However, a number of customized components, such as optical spectroscopy systems, were constructed on site.

10. Functional support areas: 11.4, Electronic devices and 11.5, Materials and processing.

11. Historical utilization average: The unit of measure is scientist work-year (WY). Since this is a new facility, the five year (FY89-93) average of 1.8WY is somewhat misleading: FY89, 0.5WY; FY90, 1.5WY; FY91, 2WY; FY92, 2WY; FY93, 3WY.

11A. Alternate measure of historical utilization average: The unit of measure is the individual semiconductor film, heterostructure or superlattice produced in the III-V and II-VI growth chambers. Since both growth chambers became fully operational (FY91), the facility has produced about 50 samples per month. Since routine maintenance consumes 2 months per year, 500 samples are produced per annum.

12. Projected utilization data out to FY1997 - Work Years (WY)

FY1994: 4WY FY1995: 6WY FY1996: 7WY FY1997: 7WY

13. Personnel to operate equipment in FY1994: 4 scientists (4WY).

14. Personnel to maintain the equipment in FY1994: All equipment is maintained by scientist-users.

15. Facility Photo Attached.

16. This facility is not shared with any other function. The equipment in this facility is unique since there is none other available in DoD or in the Federal government. The facility shared by three NRL divisions (ESTD 60%, MSD 30% and Chemistry Division 10%) in support of tech. base programs. The facility is used to supply state-of-the-art superlattice structures to Air Force and Army electronic device development projects as part of JDL Reliance coordinated programs (5%).

R

1

D-40 R (8 Aug 94)

Non-ferrous construction is mandatory adjacent to the magnetic-field sensitive electron spectrometer.

7. Environmental requirements: Temperature stability and sufficiently low relative humidity in order to provide an acceptable operating environment for electronic systems.

8. There is no facility within the U.S. government that is comparable to the Epicenter. In the private sector, a number of universities have facilities of equivalent size. However, each is configured differently from the Epicenter. The configuration of the Epicenter is unique in its combination of surface science techniques with semiconductor film growth capabilities. This emphasis has developed in recognition of the increased importance of interface/surface properties for the successful production of superior quality semiconductor heterostructures for optical and electronic devices of interest to the Navy. This facility could be relocated at another site but the down-time probably would be one year. If the facility were lost, deviceoriented programs at NRL would have to find alternate sources of well-characterized semiconductor heterostructures. These device programs are quite diverse, ranging from infrared detectors to digital electronic applications.

9. Facility Construction: The major components of the facility were transported to the site by air/truck freight. However, a number of customized components, such as optical spectroscopy systems, were constructed on site.

10. Functional support areas: 11.4, Electronic devices and 11.5, Materials and processing.

11. Historical utilization average: The unit of measure is scientist work-year (WY). Since this is a new facility, the five year (FY89-93) average of 1.8WY is somewhat misleading: FY89, 0.5WY; FY90, 1.5WY; FY91, 2WY; FY92, 2WY; FY93, 3WY.

11A. Alternate measure of historical utilization average: The unit of measure is the individual semiconductor film, heterostructure or superlattice produced in the III-V and II-VI growth chambers. Since both growth chambers became fully operational (FY91), the facility has produced about 50 samples per month. Since routine maintenance consumes 2 months per year, 500 samples are produced per annum.

12. Projected utilization data out to FY1997 - Work Years (WY)

FY1994: 4WY
FY1995: 6WY
FY1996: 7WY
FY1997:7WY

13. Personnel to operate equipment in FY1994: 4 scientists (4WY).

14. Personnel to maintain the equipment in FY1994: All equipment is maintained by scientist-users.

15. Facility Photo Attached.

16. This facility is not shared with any other function. The equipment in this facility is unique since there is none other available in DoD or in the Federal government. The facility shared by three NRL divisions (ESTD 60%, MSD 30% and Chemistry Division 10%) in support of tech. base programs. The facility is used to supply state-of-the-art superlattice structures to Air Force and Army electronic device development projects as part of JDL Reliance coordinated programs (5%).

Revisión 702/01/29| 8/17/84

🛯 8 AUG 1994.

ADD PAGE

Technical Center Site	NRL/ESTD
Facility/Equipment	Microwave Technology
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

1. **Purpose of facility/equipment.**

Code 6850 operates and maintains an extensive state-of-the-art facility for design, fabrication in a research environment, measurement, and modelling of microwave devices and circuits incorporating novel materials and/or topologies to address the needs of next generation electronic warfare, radar, and communication systems.

Design is performed with a networked cluster of four workstations including three stateof-the-art RISC machines (two Hewlett Packard 735s and one Hewlett Packard 710) running microwave CAD software which performs linear and non-linear analysis, electromagnetic simulation, and mask layout.

Research fabrication facilities include all capabilities required for thin film deposition and patterning including mask aligners, deposition systems for metals and dielectrics (thermal and electron beam evaporators as well as sputtering systems), and wet and dry etching processes. Photolithography is performed in a 400 square foot clean room facility. Some special lithography and processes are performed by the Nanoelectronics Processing Facility as needed. Code 6850 is also equipped with facilities for mounting, assembling and packaging microwave circuits and subsystems which are capable of being qualified for space applications

Test and measurement is performed using Code 6850's extensive array of microwave and general purpose test equipment. Major facilities are two laboratories centered around two vector network analyzers. There are facilities for spectrum analysis, noise figure characterization and scalar network analysis. Two closed-cycle refrigeration systems have been specially configured to facilitate the measurement of microwave cryoelectronics, including superconductors and quantum transport devices, over a temperature range from 10K to 400K. On wafer microwave characterization of novel microwave devices and circuits is also part of this facility. In addition, there is extensive general purpose microwave instrumentation to address custom and special purpose test and measurement needs.

Modelling is also performed using the computational tools discussed in the design section as well as custom codes. Special attention is presently focused on novel devices including narrow-band-gap InAs channel HEMTs for very high frequency performance and wide-band-gap GaN FETs for high-temperature operation.

Technical Center Site	NRL/ESTD
Facility/Equipment	Microwave Technology
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

í

1. **Purpose of facility/equipment.**

Code 6850 operates and maintains an extensive state-of-the-art facility for design fabrication in a research environment, measurement, and modelling of microwave device and circuits incorporating novel materials and/or topologies to address the needs of ney generation electronic warfare, radar, and communication systems.

Design is performed with a networked cluster of four workstations including three state of-the-art RISC machines (two Hewlett Packard 735s and one Hewlett Packard 71(running microwave CAD software which performs linear and non-linear analysis electromagnetic simulation, and mask layout.

Research fabrication facilities include all capabilities required for thin film depositio and patterning including mask aligners, deposition systems for metals and dielectric (thermal and electron beam evaporators as well as sputtering systems), and wet and dr etching processes. Photolithography is performed in a 400 square foot clean roor facility. Some special lithography and processes are performed by the Nanoelectronic Processing Facility as needed. Code 6850 is also equipped with facilities for mounting assembling and packaging microwave circuits and subsystems which are capable of bein qualified for space applications

Test and measurement is performed using Code 6850's extensive array of microwav and general purpose test equipment. Major facilities are two laboratories centered aroun two vector network analyzers. There are facilities for spectrum analysis, noise figur characterization and scalar network analysis. Two closed-cycle refrigeration system have been specially configured to facilitate the measurement of microwav cryoelectronics, including superconductors and quantum transport devices, over temperature range from 10K to 400K. On wafer microwave characterization of nove microwave devices and circuits is also part of this facility. In addition, there is extensiv general purpose microwave instrumentation to address custom and special purpose tes and measurement needs.

Modelling is also performed using the computational tools discussed in the design section as well as custom codes. Special attention is presently focused on novel device including narrow-band-gap InAs channel HEMTs for very high frequency performanc and wide-band-gap GaN FETs for high-temperature operation.

Reision 7 cs/ ONR91 8/17/94

ATTE

2. **Portability/movability.**

All of these facilities are, in principle, movable. However, movement of any of the thin film deposition systems is difficult due to their size and weight and the requirement that these systems must remain under high-vacuum conditions during movement. The clean room facility could be dismantled and moved but it would probably be cheaper to build a new one than try to move and reassemble the existing facility whose integrity may be permanently compromised by such handling. Much of the equipment needs extensive utility connections beyond simple electrical hook-up.

3. **Replacement value.**

The cost to replace the three Hewlett Packard workstations is approximately \$75,000. The microwave design software represents a total investment of another \$75,000. The thin film deposition and dry processing facilities represent a replacement cost estimated at \$400,000. The clean room itself would cost \$400,000 to duplicate. The remaining processing and lithography equipment would require another \$100,000 to duplicate. Equipment such as wafer scribers, thermo-compression and ultrasonic bonders, soldering and welding stations used in the assembly, mounting and packaging of microwave circuits would exceed \$75,000. Each of the Hewlett Packard 8510C network analyzers and supporting accessories cost \$160,000 (total: \$320,000). Other microwave (sources, scalar analyzer, spectrum analysis, noise figure measurement, etc.) and general purpose test and measurement electronics in support of this effort represent an investment of over \$250,000. Each of the closed cycle cryogenic refrigeration systems along with their control electronics represents an investment of approximately \$30,000 (total: \$60,000). On-wafer probing facilities would cost approximately \$75,000 to reproduce. Total cost to duplicate existing equipment would be approximately \$2,000,000. Not included in this estimate is the cost of providing standard laboratory equipment such as benches, cabinets, special utilities, etc.

4. **Gross** weight and cubic volume.

Excluding offices for personnel and support facilities, this facility would require 4,000 square feet of floor space, 48,000 cubic feet of space, and the total weight is roughly estimated at 7,500 lbs.

5. **Special utilities.**

In addition to standard single phase 110V and three phase 220V electrical utilities, the following are required: ethernet LAN; LocalTalk LAN; filtered, dry compressed air; vacuum; dry nitrogen gas (standard compressed tank is insufficient), ultra-pure deionized water, filtered water, 400 square foot clean room, fume hoods (one of which must be in the clean room), toxic gas storage, acid storage, solvent storage.

6. **Special budget requirements.**

A 400 square foot HEPA filtered clean room is required. Laboratories must be equipped with lab benches, storage cabinets, etc.

7. Environmental control requirements.

A clean room facility is required for proper photolithographic processes which requires that all air entering the room be extensively filtered. Photolithographic and chemical processes require highly stable temperature and humidity control. Standard temperature

Portability/movability.

2.

All of these facilities are, in principle, movable. However, movement of any of the thi film deposition systems is difficult due to their size and weight and the requirement the these systems must remain under high-vacuum conditions during movement. The clea room facility could be dismantled and moved but it would probably be cheaper to build new one than try to move and reassemble the existing facility whose integrity may b permanently compromised by such handling. Much of the equipment needs extensiv utility connections beyond simple electrical hook-up.

3. **Replacement value.**

The cost to replace the three Hewlett Packard workstations is approximately \$75,00(The microwave design software represents a total investment of another \$75,000. Th thin film deposition and dry processing facilities represent a replacement cost estimated a \$400,000. The clean room itself would cost \$400,000 to duplicate. The remaining processing and lithography equipment would require another \$100,000 to duplicate Equipment such as wafer scribers, thermo-compression and ultrasonic bonders, solderin and welding stations used in the assembly, mounting and packaging of microwav circuits would exceed \$\\$,000. Each of the Hewlett Packard 8510C network analyzer and supporting accessories cost \$160,000 (total: \$320,000). Other microwave (sources scalar analyzer, spectrum analysis, noise figure measurement, etc.) and general purpos test and measurement electronics in support of this effort represent an investment of ove \$250,000. Each of the closed cycle cryogenic refrigeration systems along with the control electronics represents an investment of approximately \$30,000 (total: \$60,000) On-wafer probing facilities would cost approximately \$75,000 to reproduce. Total cos to duplicate existing equipment would be approximately \$2,000,000. Not included in thi estimate is the cost of providing standard laboratory equipment such as benches, cabinets special utilities, etc.

4. **Gross weight and cubic volume.**

Excluding offices for personnel and support facilities, this facility would require 4,00 square feet of floor space, 48,000 cubic feet of space, and the total weight is roughly estimated at 7,500 lbs.

5. **Special utilities.**

In addition to standard single phase 110V and three phase 220V electrical utilities, the following are required: ethernet LAN; LocalTalk LAN; filtered, dry compressed ain vacuum; dry nitrogen gas (standard compressed tank is insufficient), ultra-pure de ionized water, filtered water, 400 square foot clean room, fume hoods (one of which mus be in the clean room), toxic gas storage, acid storage, solvent storage.

6. Special budget requirements.

A 400 square foot HEPA filtered clean room is required. Laboratories must be equipped with lab benches, storage cabinets, etc.

7. Environmental control requirements.

A clean room facility is required for proper photolithographic processes which require that all air entering the room be extensively filtered. Photolithographic and chemice processes require highly stable temperature and humidity control. Standard temperature

Revision 7-21/0NR91 8/17/99

ADDED ROGE 1994 1 AUG 1994 1

and humidity constraints appropriate for computers and electronic equipment must be met in the remainder of the facility. Facilities must be provided for the safe use and storage of toxic gases used in dry processing as well as for acids and solvents.

8. **Impact of facility loss.**

This facility is at the forefront of most of the promising new areas of microwave research including: the DARPA Ferrite Consortium, the SPAWAR High Temperature Superconductor Space Experiment, ONR funded efforts in; InAs and GaN devices, quantum transport devices, novel circuit topologies for narrow-band and other filter topologies, and a CRADA with Superconducting Core Technologies on ferroelectric/superconductor devices and circuits. Relocation of these facilities to another location would result in suspension of the activities performed in these facilities for a considerable length of time. Although certain equipment such as the network analyzers might be down for only a month or two assuming that the physical plant was fully ready to accept them, vacuum systems, cryogenic systems, and, in particular, the clean room photolithographic facility would take more than a year to become operational. It is estimated that to get the facility fully functional would require two years assuming that the present personnel were assigned the task and even longer if new personnel were assigned the task. In the meantime, progress on all of these programs which are critical to next generation electronic warfare, radar, and communication systems will be greatly slowed.

9. **Facility construction.**

The facility/equipment has been assembled over the past several years. All equipment in the facility was shipped via normal ground transportation. Assembly of the clean room facility requires a contractor specialized in that area.

10. Areas of functional support:

Electronic devices and electronic materials.

11. Historical use average.

Use is defined as the number of full-time-equivalent (FTE)/work years (WY) for personnel engaged in sponsor supported research using the facility. The level of utilization has increased steadily over the past five years from approximately 3.5 WY to 6 WY as the facility and its capabilities have been expanded.

12. **Projected use to FY 1997.**

The level of utilization is expected to increase through 1997 as the trend in sponsor interest moves more toward subsystem demonstration and delivery of functional, and in some cases, space qualified, hardware such as that delivered to the HTSSE I and HTSSE II programs. In addition it is expected that measurement and characterization of novel microwave devices, such as InAs channel HEMTs and low-temperature quantum-transport devices will significantly increase the demands placed on this facility.

and humidity constraints appropriate for computers and electronic equipment must be me in the remainder of the facility. Facilities must be provided for the safe use and storage c toxic gases used in dry processing as well as for acids and solvents.

8. \setminus Impact of facility loss.

This facility is at the forefront of most of the promising new areas of microwave researc including: the DARPA Ferrite Consortium, the SPAWAR High Temperatur Superconductor Space Experiment, ONR funded efforts in; InAs and GaN device quantum transport devices, novel circuit topologies for narrow-band and other filte topologies, and a CRADA with Superconducting Core Technologies o ferroelectric/superconductor devices and circuits. Relocation of these facilities to anothe location would result in suspension of the activities performed in these facilities for considerable length of time. Although certain equipment such as the network analyzer might be down for only a month or two assuming that the physical plant was fully read to accept them, vacuum systems, cryogenic systems, and, in particular, the clean roor photolithographic facility would take more than a year to become operational. It is estimated that to get the facility fully functional would require two years assuming the the present personnel were assigned the task and even longer if new personnel wer assigned the task. In the meantime, progress on all of these programs which are critical t next generation electronic warfare, radar, and communication systems will be great slowed.

9. Facility construction.

The facility/equipment has been assembled over the past several years. All equipment is the facility was shipped via normal ground transportation. Assembly of the clean room facility requires a contractor specialized in that area.

10. Areas of functional support:

Electronic devices and electronic materials.

11. Historical use average.

Use is defined as the number of full-time-equivalent (FTE)/work years (WY) fo personnel engaged in sponsor supported research using the facility. The level o utilization has increased steadily over the past five years from approximately 3.5 WY to (WY as the facility and its capabilities have been expanded.

12. Projected use to FY 1997.

The level of utilization is expected to increase through 1997 as the trend in sponso interest moves more toward subsystem demonstration and delivery of functional, and in some cases, space qualified, hardware such as that delivered to the HTSSE I and HTSSI II programs. In addition it is expected that measurement and characterization of nove microwave devices, such as InAs channel HEMTs and low temperature quantum transport devices will significantly increase the demands placed on this facility.

> Kevision ICE /ONR91 8/17/94

ADDED PAGE

🕅 8 AUG 1994

13. **Personnel used to operate the equipment.**

The equipment is operated by the researchers and technicians of Code 6850 and involves approximately 6 work-years.

14. **Personnel** used to maintain the equipment.

With the exception of the Hewlett Packard vector network analyzers which are maintained by a service contract and building utilities maintained by NRL, the researchers and technicians of Code 6850 maintain the facility.

15. **Photos.**

Facility photographs attached.

16. **Facilities Sharing**.

These capabilities of these facilities are shared with a number of other activities and are essential to many interdisciplinary research programs including:

Space Sciences Division, Code 7662, Diamond UV Detector program funded by NASA (5%).

Optical Sciences Division, Code 5642, Multi-quantum well optical correlator program funded by ONR (5%).

Optical Sciences Division, Code 5672, High-speed heterojunction bipolar transistor optical detector project funded by ONR (5%).

Louisiana State University, High-speed complementary heterojunction bipolar transistors funded by a Louisiana State Grant and ONR (5%).

George Mason University, Ion Implantation into SiC and GaN funded by NSF (5%).

Electronics Science and Technology Division, Code 6810, SiG heterojunction bipolar transistors for high frequency high power applications (5%).

Naval Center for Space Technology, Code 8120, High Temperature Superconducting Space Experiment funded by SPAWAR (25%)

Naval Air Warfare Center (China Lake), High Temperature Superconductor Antennas Advanced Technology Initiative funded by ONR (10%)

Superconducting Core Technologies (Golden, CO), CRADA for development of tunable microwave devices using ferroelectrics and high temperature superconductors funded by Superconducting Core Technologies (5%)

George Washington University administered Ferrite Consortium, development of ferrite based nonreciprocal microwave components funded by ARPA (15%).

. .

1 9 AUG 1994

Personnel used to operate the equipment.

The equipment is operated by the researchers and technicians of Code 6850 and involvapproximately 6 work-years.

14. **Personnel used to maintain the equipment.**

With the exception of the Hewlett Packard vector network analyzers which a maintained by a service contract and building utilities maintained by NRL, t researchers and technicians of Code 6850 maintain the facility.

15. Photos.

13.

Facility photographs attached.

16. **Facilities Sharing**.

These capabilities of these facilities are shared with a number of other activities and a essential to many interdisciplinary research programs including:

Space Sciences Division, Code 7662, Diamond UV Detector program funded by NASA (5%).

Optical Sciences Division, Code 5642, Multi-quantum well optical correlator progra funded by ONR (5%).

Optical Sciences Division, Code 3672, High-speed heterojunction bipolar transistor optical detector project funded by ONR (5%).

Louisiana State University, High-speed complementary heterojunction bipolar transistors funded by a Louisiana State Grant and ONR (5%).

George Mason University, Ion Implantation into SiC and GaN funded by NSF (5%).

Electronics Science and Technology Division, Code 6810, SiG heterojunction bipola transistors for high frequency high power applications (5%).

Naval Center for Space Technology, Code 8120, Nigh Temperature Superconducting Space Experiment funded by SPAWAR (25%)

Naval Air Warfare Center (China Lake), High Temperature Superconductor Antenna Advanced Technology Initiative funded by ONR (10%)

Superconducting Core Technologies (Golden, CO), CRADA for development of tunable microwave devices using ferroelectrics and high temperature superconductor funded by Superconducting Core Technologies (5%)

George Washington University administered Ferrite Consortium, development of ferrite based nonreciprocal microwave components funded by ARRA (15%).

Revision 200/0291 8/17/94

ADDED PAGE

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Crystal Growth Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The crystal growth facility grows crystals of semiconductor materials and crystalline layered structures of superconductor materials used in studies of new materials and new device concepts. Electronic device research often requires new materials or materials with electronic properties that are not commercially available. The mission of the crystal growth facility is to engage in the research necessary to study those electronic materials and devices. This research is multi-disciplinary and often involves solid state physicists and device engineers in addition to the crystal growth researchers of the facility.

2. The equipment is moveable as defined by paragraph 6, page 12 of this data call. For all practical purposes, however, much of the equipment in the crystal growth facility is fixed. In addition to being attached to plumbing for water cooling and attached to fume hoods for safety enclosure operation, the crystal growth furnaces are not capable of being moved without breaking fragile heating elements. Moving the furnaces might require replacement of the entire furnace because the heating elements become very brittle after they have been used.

3. Replacement value of the facility/equipment: \$2250K

4. Gross weight : 22000 lbs. Cube: 35000 cu. ft.

5. The facility requires fume hoods for the processing of hazardous materials, water cooling for the crystal growth furnaces, a nitrogen gas supply for the MOCVD reactor, hydrogen and oxygen gas supply for the glass shop, compressed air supply for valve operation in the MOCVD reactor, 208V and 240V electrical supply for the high temperature furnaces and 480V power supply for the RF generator used to heat the high pressure Czochralski furnace.

6. Special budget requirements for the facility/equipment: None.

7. Environmental control requirements for the facility/equipment: None

8. Relocating the facility would likely involve replacement of many of the resistance heated crystal growth furnaces because of expected breakage of brittle heating elements. Replication of the facility would not be entirely possible because certain items such as the high pressure Czochralski crystal growth furnace (sized for research purposes) is no longer manufactured. Replacement of the high pressure furnace would mean that a production sized unit would be substituted for the research sized unit. Future research using the production sized unit would be much more expensive because of the larger quantities of new materials which would be required for the larger furnace.

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Crystal Growth Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The crystal growth facility grows crystals of semiconductor materials and crystalline layered structures of superconductor materials used in studies of new materials and new device concepts. Electronic device research often requires new materials or materials with electronic properties that are not commercially available. The mission of the crystal growth facility is to engage in the research necessary to study those electronic materials and devices. This research is multi-disciplinary and often involves solid state physicists and device engineers in addition to the crystal growth researchers of the facility.

2. The equipment is moveable as defined by paragraph 6, page 12 of this data call. For all practical purposes, however, much of the equipment in the crystal growth facility is fixed. In addition to being attached to plumbing for water cooling and attached to fume hoods for safety enclosure operation, the crystal growth furnaces are not capable of being moved without breaking fragile heating elements. Moving the furnaces might require replacement of the entire furnace because the heating elements become very brittle after they have been used.

3. Replacement value of the facility/equipment: \$2250K

4. Gross weight : 22000 lbs. Cube: 35000 cu. ft.

5. The facility requires fume hoods for the processing of hazardous materials, water cooling for the crystal growth furnaces, a nitrogen gas supply for the MOCVD reactor, hydrogen and oxygen gas supply for the glass shop, compressed air supply for valve operation in the MOCVD reactor, 208V and 240V electrical supply for the high temperature furnaces and 480V power supply for the RF generator used to heat the high pressure Czochralski furnace.

6. Special budget requirements for the facility/equipment: None.

7. Environmental control requirements for the facility/equipment: None

8. Relocating the facility would likely involve replacement of many of the resistance heated crystal growth furnaces because of expected breakage of brittle heating elements. Replication of the facility would not be entirely possible because certain items such as the high pressure Czochralski crystal growth furnace (sized for research purposes) is no longer manufactured. Replacement of the high pressure furnace would mean that a production sized unit would be substituted for the research sized unit. Future research using the production sized unit would be much more expensive because of the larger quantities of new materials which would be required for the larger furnace.

Revisión 705/02/89/ 8/17/94

1994 1

Possible alternative crystal growth facilities at either government or commercial sites do not exist with the depth of capability that is present at NRL. Certain aspects of the capabilities could be obtained at various other facilities, but no other laboratory has the range of crystal growth/processing facilities that is located at NRL. Loss of the crystal growth facility would limit the ability of device engineers to obtain new materials or materials with desired properties for new device experimentation. The performance of electronic devices is oftent limited by the crystalline and chemical perfection of the materials from which the device is fabricated. Continued improvements in the quality of electronic materials is key to better device performance and new applications for the electronic materials. Enhanced electronic materials and enhanced electronics are responsible for providing force multipliers for the US.

9. The equipment of the crystal growth facility was assembled over the period from 1975 through the present. Moving the equipment when it was new did not present a problem. The heating elements become very brittle after they have been heated to high temperatures.

10. The crystal growth facility supports area 11.4 Electronic Devices and 11.5 Materials and Processes

11. Historical utilization average for the past five years (1989-1993): The facility has been used on a continual basis (4 work-years/year) over the past five years.

12. Projected utilization data out to 1997: The facility is expected to be used on a continual basis (4 work-years/year) through 1997.

13. Approximate number of personnel used to operate the facility equipment: 4

14. Approximate number of people to maintain the facility: 1

15. Facility Photo Attached.

16. This facility is not shared with any other function. The facility is used to grow bulk semiconductor crystals in support of Navy Focal Plane Array programs (20%) and to grow high temperature superconductor films for Navy SPAWAR high temperature supercondor space experiment programs (15%). A new effort in FY94 sponsored by a non-DoD agency to utilize VZM GaAs for gamma ray detectors will require 20% of facility time.

R

Possible alternative crystal growth facilities at either government or commercial sites do not exist with the depth of capability that is present at NRL. Certain aspects of the capabilities could be obtained at various other facilities, but no other laboratory has the range of crystal growth/processing facilities that is located at NRL. Loss of the crystal growth facility would limit the ability of device engineers to obtain new materials or materials with desired properties for new device experimentation. The performance of electronic devices is often limited by the crystalline and chemical perfection of the materials from which the device is fabricated. Continued improvements in the quality of electronic materials is key to better device performance and new applications for the electronic materials. Enhanced electronic materials and enhanced electronics are responsible for providing force multipliers for the US.

9. The equipment of the crystal growth facility was assembled over the period from 1975 through the present. Moving the equipment when it was new did not present a problem. The heating elements become very brittle after they have been heated to high temperatures.

10. The crystal growth facility supports area 11.4 Electronic Devices and 11.5 Materials and Processes

11. Historical utilization average for the past five years (1989-1993): The facility has been used on a continual basis (4 work-years/year) over the past five years.

12. Projected utilization data out to 1997: The facility is expected to be used on a continual basis (4 work-years/year) through 1997.

13. Approximate number of personnel used to operate the facility equipment: 4

14. Approximate number of people to maintain the facility: 1

15. Facility Photo Attached.

16. This facility is not shared with any other function. The facility is used to grow bulk semiconductor crystals in support of Navy Focal Plane Array programs (20%) and to grow high temperature superconductor films for Navy SPAWAR high temperature supercondor space experiment programs (15%). A new effort in FY94 sponsored by a non-DoD agency to utilize VZM GaAs for gamma ray detectors will require 20% of facility time.

Revisión 762/6NR91 8/17/94

8 AUG 1994.

ADDED

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Optical Properties Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Optical Properties Laboratory performs interband-impurity, intra-impurity and vibrational spectroscopic measurements on materials used in current and emerging electronic technologies. The materials studied include thin films, superlattices and nanostructures produced by molecular beam epitaxy and organo-metalic vapor deposition, and bulk crystals. These materials are grown as part of electronic device research and development to provide diagnostics and to develop an understanding of basic physical properties of device materials. Specific spectroscopic techniques include pulsed and continuous wave photoluminescence, photoluminescence excitation, optical absorption and reflection, Raman scattering, and modulation spectroscopies. These measurements are performed in the spectral range from the mid infrared to the ultraviolet, at magnetic fields as high as 13 Tesla, and at temperatures between 1.5K and 400K.

2. Equipment is moveable.

3. Replacement Value: \$843K

4. Gross weight: 13800 lbs. Gross Cubage: 8500 cu. ft.

5. Facility requires a high-pressure filtered water delivery system, high pressure nitrogen gas line, hydrogen and fluorine gas delivery (including vent and detection systems), 208 Volt 40 Amp electrical service.

6. None.

7. Temperature and humidity stability are required to maintain alignment of spectroscopic systems and to maintain an acceptable operating environment for electronics equipment.

8. The facility could be replicated or relocated. If this facility were lost to the Department of the Navy, the electronics materials and device development programs would be severely impacted. It is extremely important that all materials growth, diagnostics equipment and device fabrication facilities be colocated in order to provide timely feedback during growth and process development.

9. Equipment was shipped to NRL by overland freight and was installed by NRL personnel and by vendor technical personnel. The facility has been evolving at its present site since 1979. Various parts of the facility have been added over the years as modernization and capability expansion was required.

10. The Optical Properties Laboratory supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Optical Properties Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Optical Properties Laboratory performs interband-impurity, intra-impurity and vibrational spectroscopic measurements on materials used in current and emerging electronic technologies. The materials studied include thin films, superlattices and nanostructures produced by molecular beam epitaxy and organo-metalic vapor deposition, and bulk crystals. These materials are grown as part of electronic device research and development to provide diagnostics and to develop an understanding of basic physical properties of device materials. Specific spectroscopic techniques include pulsed and continuous wave photoluminescence, photoluminescence excitation, optical absorption and reflection, Raman scattering, and modulation spectroscopies. These measurements are performed in the spectral range from the mid infrared to the ultraviolet, at magnetic fields as high as 13 Tesla, and at temperatures between 1.5K and 400K.

2. Equipment is moveable.

3. Replacement Value: \$843K

4. Gross weight: 13800 lbs. Gross Cubage: 8500 cu ft.

5. Facility requires a high-pressure filtered water delivery system, high pressure nitrogen gas line, hydrogen and fluorine gas delivery (including vent and detection systems), 208 Volt 40 Amp electrical service.

6. None.

7. Temperature and humidity stability are required to maintain alignment of spectroscopic systems and to maintain an acceptable operating environment for electronics equipment.

8. The facility could be replicated or relocated. If this facility were lost to the Department of the Navy, the electronics materials and device development programs would be severely impacted. It is extremely important that all materials growth, diagnostics equipment and device fabrication facilities be colocated in order to provide timely feedback during growth and process development.

9. Equipment was shipped to NRL by overland freight and was installed by NRL personnel and by vendor technical personnel. The facility has been evolving at its present site since 1979. Various parts of the facility have been added over the years as modernization and capability expansion was required.

10. The Optical Properties Laboratory supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.

11. Average utilization from FY89 to FY93 was 4 Work Years (WY) per year

12. Utilization is expected to be 4 WY per year for FY94 - FY97.

13. 4 people are required to operate the equipment.

14. No dedicated maintenance personnel are required.

15. Facility Photo Attached.

16. This facility is not shared with any other function. The facility is, however, shared with personnel in the Optical Sciences Division (7%) and the Condensed Matter and Radiation Sciences Division (10%) to characterize semiconductor and optical fiber materials for Navy Tech Base programs. Diabnostics performed at the facility have been used in support of a tri-service program to evaluate p-HEMT devices for the ARPA MMIC program (5%). The facility is used to characterize GaN material grown by a DoD contractor (5%).

D-48 R (8 Aug 94)

R

- 1. Average utilization from FY89 to FY93 was 4 Work Years (WY) per year
- 12. Utilization is expected to be 4 WY per year for FY94 FY97.
- 13. 4 people are required to operate the equipment.
- 14. No dedicated maintenance personnel are required.
- 15. Facility Photo Attached.

16. This facility is not shared with any other function. The facility is, however, shared with personnel in the Optical Sciences Division (7%) and the Condensed Matter and Radiation Sciences Division (10%) to characterize semiconductor and optical fiber materials for Navy Tech Base programs. Diabnostics performed at the facility have been used in support of a tri-service program to evaluate p-HEMT devices for the ARPA MMIC program (5%). The facility is used to characterize GaN material grown by a DoD contractor (5%).

Revisión 7CE/ONR9/

8/17/94

NOD PAGE

AUG

Technical Center Site	NRL/ESTD
Facility/Equipment	Magnetic Resonance
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Magnetic Resonance Facility consists of 3 permanent magnet electron paramagnetic resonance (EPR) spectrometers and one superconducting magnet magnetic resonance spectrometer along with optical tables, lasers, optical monochrometers and detectors, variable temperature apparatus, and ancillary signal processing/control electronics. The spectrometers are used for conventional EPR, optically detected magnetic resonance (ODMR) and electron-nuclear double resonance (ENDOR). These diagnostic techniques are used to determine the effects of point defects on the electronic properties of semiconductors and are used integrally to provide analysis of materials quality for materials development and electronic device development.

2. The facility is moveable.

3. Replacement Value: \$704K

4. Gross Weight: 8500 lb. Cubic Feet: 9320.

5. Equipment requires chilled cooling water for magnets; enhanced pressure city water; 208 Volt, 60 Amp electrical service; liquid helium; liquid nitrogen; and high purity nitrogen gas from liquid boil off.

6. Magnets require some load-spreading but is currently accommodated on flooring rated at 100 lbs/sq. ft.

7. Vacuum pump exhaust lines, temperature control and humidity control are required to maintain alignment of optical equipment and for stability of electronics.

8. The facility could be replicated or relocated. However, much of the facility is unique within the DoD. Loss of the facility would have a significant impact on the Navy because the facility has been tailored to support bulk and epitaxial materials growth programs and electronic device research and development programs for Navy electronics systems. Part of the side of the building will need to be removed to remove large optical tables.

9. Some of the equipment was developed in-house using NRL machine shop but most was delivered to NRL by overland freight and installed by NRL personnel and by manufacturer technical personnel. Major purchases were made in 1979, 1985, 1987 and 1988.

10. The Magnetic Resonance Facility supports area 11.4, Electronic Devices and 11.5, Materials and Processes.

Technical Center Site	NRL/ESTD
Facility/Equipment	Magnetic Resonance
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The Magnetic Resonance Facility consists of 3 permanent magnet electron paramagnetic resonance (EPR) spectrometers and one superconducting magnet magnetic resonance spectrometer along with optical tables, lasers, optical monochrometers and detectors, variable temperature apparatus, and ancillary signal processing/control electronics. The spectrometers are used for conventional EPR, optically detected magnetic resonance (ODMR) and electron-nuclear double resonance (ENDOR). These diagnostic techniques are used to determine the effects of point defects on the electronic properties of semiconductors and are used integrally to provide analysis of materials quality for materials development and electronic device development.

2. The facility is moveable.

3. Replacement Value: \$704K

4. Gross Weight: 8500 lb. Cubic Feet: 9320.

5. Equipment requires chilled cooling water for magnets; enhanced pressure city water; 208 Volt, 60 Amp electrical service; liquid helium; liquid nitrogen; and high purity nitrogen gas from liquid boil off.

6. Magnets require some load-spreading but is currently accommodated on flooring rated at 100 lbs/sq. ft.

7. Vacuum pump exhaust lines, temperature control and humidity control are required to maintain alignment of optical equipment and for stability of electronics.

8. The facility could be replicated or relocated. However, much of the facility is unique within the DoD. Loss of the facility would have a significant impact on the Navy because the facility has been tailored to support bulk and epitaxial materials growth programs and electronic device research and development programs for Navy electronics systems. Part of the side of the building will need to be removed to remove large optical tables.

9. Some of the equipment was developed in-house using NRL machine shop but most was delivered to NRL by overland freight and installed by NRL personnel and by manufacturer technical personnel. Major purchases were made in 1979, 1985, 1987 and 1988.

10. The Magnetic Resonance Facility supports area 11.4, Electronic Devices and 11.5, Materials and Processes.

Revision 7-CE/ONR91 9/17/94

added page

1994 AUG 1994

11. The average useage from FY89 - FY93 was 5 work years per year.

12. Expected usage (WY): FY94: 5; FY95: 5; FY96: 5; FY97: 5.

13. Number of people required to operate equipment: 4

14. Number of people required for maintenance: 0 (No dedicated technician. Service and repair performed by users as required.)

15. Facility Photo Attached.

16. This facility is not shared with any other function. However, the facility is used by other NRL divisions (Materials Science Division (10%) and Condensed Matter and Radiation Science Division (5%)) in support of Navy Tech Base programs. NRL personnel use the facility in support of tri-service Electronic Materials characterization programs. Samples are characterized for the Air Force Institute of Technology in a joint program with AFOSR (2%).

D-50 R (8 Aug 94)

11. The average useage from FY89 - FY93 was 5 work years per year.

12. Expected usage (WY): FY94: 5; FY95: 5; FY96: 5; FY97: 5.

13. Number of people required to operate equipment: 4

14. Number of people required for maintenance: 0 (No dedicated technician. Service and repair performed by users as required.)

15. Facility Photo Attached.

16. This facility is not shared with any other function. However, the facility is used by other NRL divisions (Materials Science Division (10%) and Condensed Matter and Radiation Science Division (5%)) in support of Navy Tech Base programs. NRL personnel use the facility in support of tri-service Electronic Materials characterization programs. Samples are characterized for the Air Force Institute of Technology in a joint program with AFOSR (2%).

Technical Center Site	NRL/ESTD
Facility/Equipment	Far Infrared Spectroscopy
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The far infrared laboratory is used for transient and steady state infrared spectroscopy covering the wavelength range from two microns up to two mm. Experiments are performed on electronic and optical materials used in near-term and far-term Navy electronics systems. This includes semiconductors, superconductors and glasses. Experiments are performed under applied magnetic fields up to 13 Tesla using a number of specialized far infrared lasers and interferometers.

2. The far infrared spectroscopy facility is moveable.

3. Replacement value: \$685K

4. Gross Weight: 13000 lbs. Cubic Feet: 2400

5. Vacuum exhaust system, filtered water delivery and drain systems, chemical fume hood, dry nitrogen purge gas line from liquid boil-off system.

6. None

7. Environmental requirements: Temperature and humidity stability required to maintain alignment of optical systems and to maintain acceptable operating environment for electronics.

8. No government or commercial facility exists that has flexible capabilities afforded by this infrared facility. The facility could be replicated elsewhere but if the equipment were relocated, a part of the building would have to be removed to move large optical tables. Loss of this facility to the Navy would have a serious negative impact on the Navy's ability to develop advanced materials for electronics systems.

9. Delivered to NRL by overland freight, installed by NRL personnel and by factory representatives. Parts of spectrometer built by laboratory personnel. Part of building removed to install parts of the system. (1975 - present)

10. The far infrared spectroscopy facility supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.

11. Average useage over the past 5 fiscal years is 5 work years per year.

12. Projected utilization FY94 - FY95: 5 work years per year

13. Number of personnel used to operate the facility: 5

Technical Center Site	NRL/ESTD
Facility/Equipment	Far Infrared Spectroscopy
Nomenclature or Title	Facility

3.4.1 MAJOR EQUIPMENT AND FACILITIES

Electronic Materials Branch

1. The far infrared laboratory is used for transient and steady state infrared spectroscopy covering the wavelength range from two microns up to two mm. Experiments are performed on electronic and optical materials used in near-term and far-term Navy electronics systems. This includes semiconductors, superconductors and glasses. Experiments are performed under applied magnetic fields up to 13 Tesla using a number of specialized far infrared lasers and interferometers.

2. The far infrared spectroscopy facility is moveable.

3. Replacement value: \$685K

4. Gross Weight: 13000 lbs. Cubic Feet: 2400

5. Vacuum exhaust system, filtered water delivery and drain systems, chemical fume hood, dry nitrogen purge gas line from liquid boil-off system.

6. None

7. Environmental requirements: Temperature and humidity stability required to maintain alignment of optical systems and to maintain acceptable operating environment for electronics.

8. No government or commercial facility exists that has the sible capabilities afforded by this infrared facility. The facility could be replicated elsewhere but if the equipment were relocated, a part of the building would have to be removed to move large optical tables. Loss of this facility to the Navy would have a serious negative impact on the Navy's ability to develop advanced materials for electronics systems.

9. Delivered to NRL by overland freight, installed by NRL personnel and by factory representatives. Parts of spectrometer built by laboratory personnel. Part of building removed to install parts of the system. (1975 - present)

10. The far infrared spectroscopy facility supports areas 11.4 Electronic Devices and 11.5 Materials and Processes.

11. Average useage over the past 5 fiscal years is 5 work years per year.

12. Projected utilization FY94 - FY95: 5 work years per year

13. Number of personnel used to operate the facility: 5

REVISION 7CE/0NR91 8/17/94

ADDDPR E3 8 AUG 1994

14. Number of personnel needed to maintain the equipment: 0 (no dedicated technician required.

15. Facility Photo Attached.

16. This facility is not shared with any other function. The infrared properties facility performs characterization for focal plane array material used by ESTD and the Optical Sciences Division (20%) 6.2 programs. Characterization at this facility supports the tri-service Reliance Electonic Materials and Electro-optics subpanels of the Electronic Devices Panel.

D-52 R (8 Aug 94)

R

14. Number of personnel needed to maintain the equipment: 0 (no dedicated technician required.

15. Facility Photo Attached.

16. This facility is not shared with any other function. The infrared properties facility performs characterization for focal plane array material used by ESTD and the Optical Sciences Division (20%) 6.2 programs. Characterization at this facility supports the tri-service Reliance Electonic Materials and Electro-optics subpanels of the Electronic Devices Panel.

Revisioa 709/08/19/ 8/17/94 ADDED PAGE

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Reliability Facility

- 3.4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

- 1. Purpose of Facility/Equipment.
 - Code 6855 operates and maintains a Reliability and Failure Analysis Facility for the study of semiconductor devices. Operational life times are determined by a number of acceleration and stressing methods. After failure is induced, the physical failure mechanisms are determined by such methods as electrical characterization, optical microscopy, scanning electron microscopy, infrared microscopy, energy dispersive X-ray analysis, and various other X-ray techniques. Failure mechanisms are modeled by the Monte Carlo method and the results are correlated with the experimental results to gain a better understanding of the failure mechanisms and to improve the reliability of the devices.
- 2. The equipment is installed in laboratories and is not portable.
- 3. Replacement value. The cost to replace the reliability and failure analysis equipment is approximately \$1,800,000.
- 4. Gross weight and cubic volume. The gross weight of the reliability and failure analysis equipment is approximately 11,000 pounds. The total laboratory space required is about 4,500 cubic feet.
- 5. Special Utilities. None required.
- 6. Special budget requirements. None required.
- 7. Environmental control requirements. Standard temperature and humidity constraints appropriate for electronic equipment must be met.
- 8. Impact of facility loss.

Certain types of equipment, such as the RF reliability accelerated life testing stations were built at NRL and could only be rebuilt at another location at a large expense. This combination of equipment and the staff trained to use it is unique in the military laboratories and its loss would leave the Navy without the ability to assess the

Technical Center Site	NRL/ESTD
Facility/Equipment Nomenclature or Title	Reliability Facility

3,4.1 MAJOR EQUIPMENT AND FACILITIES

Microwave Technology Branch

- 1. Purpose of Facility/Equipment.
 - Code 6855 operates and maintains a Reliability and Failure Analysis Facility for the study of semiconductor devices. Operational life times are determined by a number of acceleration and stressing methods. After failure is induced, the physical failure mechanisms are determined by such methods as electrical characterization, optical microscopy, scanning electron microscopy, infrared microscopy, energy dispersive X-ray analysis, and various other X-ray techniques. Failure mechanisms are modeled by the Monte Carlo method and the results are correlated with the experimental results to gain a better understanding of the failure mechanisms and to improve the reliability of the devices.
- 2. The equipment is installed in laboratories and is not portable.
- 3. Replacement value. The cost to replace the reliability and failure analysis equipment is approximately \$1,800,000.
- 4. Gross weight and cubic volume. The gross weight of the reliability and failure analysis equipment is approximately 11,000 pounds. The total laboratory space required is about 4,500 cubic feet.
- 5. Special Utilities. None required.
- 6. Special budget requirements. None required.
- 7. Environmental control requirements. Standard temperature and humidity constraints appropriate for electronic equipment must be met.
- 8. Impact of facility loss.

Certain types of equipment, such as the RF reliability accelerated life testing stations were built at NRL and could only be rebuilt at another location at a large expense. This combination of equipment and the staff trained to use it is unique in the military laboratories and its loss would leave the Navy without the ability to assess the

> Revision 7-55/ONR91 8/17/94

ADDED POS-

1994 S AUG 1994

reliability of electronic components and to conduct research in the area of reliability and failure physics.

- Facility construction. Most of the present equipment has been purchased or built over a period of time starting in 1985.
- 10. Areas of functional support: Electronic devices.
- Historical use average.
 Over the period of 1989-1993 the facilities have required utilization of approximately 6 work-years per year.
- 12. Projected use to FY 1997. Out to FY1997 the projected use is expected to be 6 work-years per year.
- 13. Personnel used to operate the equipment. Six professionals are required to operate the equipment.
- 14. Personnel used to maintain the equipment. Four professionals are required to maintain the equipment.

- 15. Facility photo attached.
- 16. This facility is not shared with any other function. This facility is unique to DoD and the Federal Government, because it allows RF life testing at microwave frequencies. No other government owned equipment does this.

reliability of electronic components and to conduct research in the area of reliability and failure physics.

- Facility construction.
 Most of the present equipment has been purchased or built over a period of time starting in 1985.
- 10. Areas of functional support: Electronic devices.
- Historical use average.
 Over the period of 1989-1993 the facilities have required utilization of approximately 6 work-years per year.
- 12. Projected use to FY 1997. Out to FY1997 the projected use is expected to be 6 work-years per year.
- 13. Personnel used to operate the equipment. Six professionals are required to operate the equipment.
- 14. Personnel used to maintain the equipment. Four professionals are required to maintain the equipment.

- 15. Facility photo attached.
- 16. This facility is not shared with any other function. This facility is unique to DoD and the Federal Government, because it allows RF life testing at microwave frequencies. No other government owned equipment does this.

7CS/ONR

ADE> PR AUG 函 8

TAB A

PATENTS

ELECTRONIC DEVICES

3.2.4 Accomplishments During FY91-93: For government personnel answer the following questions.

3.2.4.1 How many patents were awarded and patent disclosures (only count disclosures with issued disclosure numbers) were made? (BRAC Criteria I)

CSF	Disclosures	Awarded	Patent Titles
	1		(List)
FY-91	63	52	See Listing
FY-92	135	52	
FY-93	<u>93</u>	<u>50</u>	
Total	293	155	

Electronic Devices Summary

CY91

CSF	Disclosures	Awarded	Patent Titles (List)
ED	X		Diamond and Diamond-Coated Filaments
	Х		High Temperature, High Rate, Epitaxial Synthesis of Diamond in a Laminated Plasma
	Х		Method For Synthesizing High Quality Doped Diamond Films, Crystals, and Devices
	X		Epitaxial Synthesis of Diamond Crystals at High Growth Rates
	Х		Flame Plasma Synthesis of Diamond Under Turbulent and Transition Flame Conditions
	Х	Х	High Accuracy Digital Acousto-Optic Matrix Computer
	X	Х	Reflectometers
	X	X	Room-Temperature, Flashpumped, 1.96 micron Solid State Laser
	Х	X	Narrow -Bandwidth Diffraction-Limited Coupled Stable-Unstable Resonator Laser Cavity
	Х	X	Laser Diode Pumped, Erbium-Doped, Solid State Laser With High Slope Efficiency
	X	X	Compact Optical RF Spectrum Analyzer
	X	X	Optically Stable, Large Time Bandwidth Acousto- Optic Heterodyne Spectrum Analyzed With Fixed Non-Zero Heterodyne Output
	X	X	Ultraviolet Optical Isolator Utilizing the KDP-Isomorphs
	Х	X	Holmium Laser Pumped With a Neodymium Laser

X	X	Method and Apparatus for Lasing
Х	X	Narrow-Bandwidth Unstable Resonator Laser Cavity
Х	X	Figure Eight Shaped Coherent Optical Pulse Source
X	X	Differential Polarimetric Fiber Optic Sensor
X	X	All-Optical Fiber Faraday Rotation Current Sensor With Heterodyne Detection Technique
Х	X	Bi-Directional Optical Transmission System For RF Electrical Energy
X	X	Method of Growing Diamond Film on Substrates
X		Efficiency Improvement of Wideband Fiber OPtic Signal Process
X	X	Selective Readout of a Detector Array
X	X	Thin Film Magnetic Memory Elements
X	X	Method for Producing Substoichiometric Silicon Nitride of Preselected Proportions
X	X	High Power, HIgh Sensitivity Microwave Calorimeter
X	X	High accuracy digital acousto-optic matrix computer
X	X	Field emitter array integrated distributed amplifiers
X	X	Efficient dynamic phasepront modulation systems for free space optical communications
X	X	Planar fiber-optic interferometric acoustic sensor
Х	X	Room-temperature, flashpumped, 1.96 micron solid state laser
X	Х	Programmable beam transform and beam steering control system for a phased array radar antenna
Х	X	Gas laser and pumping method therefor using a field emitter array
X	Х	Narrow-bandwidth diffraction-limited coupled stable-unstable resonator laser cavity
X	X	Method of producing a thin silicon-on- insulator layer
X	X	Laser diode pumped, erbium-doped, solid state laser with high slope efficiency
X	X	Method for producing substoichiometric silicon nitride of preselected proportions

X	X	TIW diffusion barrier for AUZN ohmic contact to P-type InP
X	X	Thin film magnetic memory elements
X	Х	Compact optical RF spectrum analyzer
X	X	Optically stable, large time bandwidth acousto-optic heterodyne spectrum analyzed with fixed non-zero heterodyne output
X	X	Field emitter array comparator
X	Х	Holmium laser pumped with a neodymium laser
X	Х	Gyroklystron device having multi-slot bunching cavities
X	X	Method and apparatus for lasing
Х	Х	Process for three dimensional lithography in amorphous polymers
X	X	Heterogeneous magneto-resistive layer
X	X	Narrow-bandwidth unstable resonator lase cavity
X	X	Zero cross-correlation complementary radar waveform signal processor for ambiguous range radars
X	X	Sampled data processing
X	X	Differential polarimetric fiber optic sensor
X	X	Low capacitance field emitter array and method of manufacture therefor
X	X	Selective readout of a detector array
X	X	All-optical fiber Faraday rotation current sensor with heterodyne detection technique
X	X	Heterostructure device useable as a far infrared photodector
X	X	Bi-directional optical transmission system for RF electrical energy
X	X	Method of growing diamond film on substrates
X	X	Ultra-low-loss strip-type transmission line formed of bonded substrate layers
X		Metal semiconductor and junction field effect transistor (MESJFET)
X		Systolic multiple channel band-partitioned noise canceller
X		Wideband fiber optic FED array (NFOFA
X		Autonuling AC bridge using differential and integration feedback
X		Epitaxial synthesis of diamond crystals at high growth rates
Х		Flame plasma synthesis of diamond under turbulent and transition flow conditions

<u> </u>	X	T	Single processing technique for increasing
			signal to noise ratio
ED	X		Diode Pumped Catheter With 2.8 micron Laser Source at Distal End
	X		New Glass Composition for Low-Loss Mid-IR Wavelength Transmission
	X		Fiber Optic Michelson Sensor and Arrays With Passive Elimination of Polarization Fading and Source Feedback Isolation
	X		Fiber Optic Electric Field and Voltage Sensor Based On Electrostrictive Effect
	X		Fiber Optic Gyroscopes With Depolarization Light
	Х	1	Plasma Treatment of Glass Surface
	Х		Method For Excess Noise Subtraction in a Fiber Optic Gyroscope
	Х		Permanent Photowritten Optical Gratings in Irradiated Silicate Glasses
	Х		Fiber Grating-Based Sensing System with Interferometric Wavelength Shifted Detection
	X		Fiber Optic Interferometer Configuration With Pump-Induced Phase Carrier
	X		Rare Earth Ion Doped Continuous Wave Cascade Fiber Laser
	X		Semiconductor Device and Method of Forming Such a Device
	X		Time Gated Image Detector Using Correlated Coherent Anti-Stokes Raman Scattering
	Х		Electronic Phase-Tracking Open-Loop Fiber Optic Gyroscope
	X	X	Hot Isostatic Pressing of Fluoride Glass Materials
	X	X	Erbium-Doped Fluorozirconate Fiber Laser Pumped by a Diode Laser Source
	Х	X	Resonantly Pumped, Erbium-Doped, 2.8 micron Solid State Laser With High Slope Efficiency
	X	X	Room-Temperature, Flashpumped, 2.09 micron Solid State Laser
	Х	X	Tunable Solid State Laser With High Wavelength Selectivity Over a Preselected Wavelength Range
	X	X	Antiresonant Nonlinear Mirror for Passive Laser Modelocking
	Х	Х	Interferometer With Two Phase-Conjugate Mirrors
	Х	X	Modulated High-Power Optical Source

- --

n			
	X	X	Inline Fiber Optic Sensor Arrays With
			Delay Elements Coupled Between Senson Units
	*7		
	X	X	Flame or Plasma Synthesis of Diamond
			Under Turbulent and Transition Flow
		Ļ	Conditions
	X	X	System and Method for Minimizing Input
		L	Polarization Induced Phase Noise
	<u> </u>		Optical Signal Selection
	Х		Microwave Detection of a
		<u> </u>	Superconducting Infrared Sensor
	X	X	High Efficiency Fast Neutron Threshold
	·		Deflector
	X	- X	Method of Making Substantially Single
			Phase Superconducting Oxide Ceramics
		<u> </u>	Having A Tc Above 85 Degrees
	X	X	Pulsed X-Ray Lithography
	X	X	High Power Klystron Amplifier
	X	X	Process for single crystal growth of high
		L	Tc superconductors
	X	X	Floating gate magnetic field sensor
	X	X	Erbium-doped fluorozirconate fiber laser
		L	pumped by a diode laser source
	X	X	Planar gallium arsenide NPNP microwave
			switch
1	Х	X	Resonantly pumped, erbium-doped, 2.8
			micron solid state laser with high slope
			efficiency
	X	- X	Room-temperature, flashpumped, 2.09
			micron solid state laser
	X	X	Buried heterostructure laser modulator
	Х	X	Logarithmic-Periodic microwave
			multiplexer
	<u> </u>	X	IFF authentication system
	X	X	Magnetic field sensor and device for
		1	determining the magnetrostriction of a
			material based on a tunneling tip detector
	V		and methods of using same
	X	<u> </u>	Dual active layer photoconductor
	X	X	Preparation of high-temperature
			superconducting coated wires by dipping
			and post annealing
	X	X	Method and apparatus for increasing a
			radar's range with improved scan-to-scan
	v		integration of Doppler filtered signals
	X	X	Tunable solid state laser with high
		l	wavelength selectivity over a preselected
	X		wavelength range
	X	X	Method of nanometer lithography

X	X	Cross entropy deconvolver circuit adaptable to changing convolution functions
X	X	Antiresonant nonlinear mirror for passive laser modelocking
X	X	Pulsed X-Ray lithography
X	X	Modulated high-power optical source
Х	X	Fiber optic photoluminescence sensor
Х	Х	Large-aperture sparse array detector system for multiple emitter location
Х	X	Method of making composite field- emitting arrays
Х	X	Field emitter array
Х	X	High data rate long pulse compression waveform communication system for M- ARY encoding voice messages for air traffic control systems
X	X	Frequency diversity sidelobe canceller
X	X	Method of pattern transfer in photolithography using laser induced metallization
X	X	Flame or plasma synthesis of diamond under turbulent and transition flow conditions
X	X	Method of controlling electron emission from field emitters and field emitter arrays
X	X	High resolution metal patterning of ultra- thin films on solid substrates
X		Extended length digital correlator threshold circuit
X		Dual waveband signal processing system
X		Coherent false target generator
X	1	Method of manufacturing a high resolution high-contract, multicolor flat
X		Diode pumped catheter with 2.8mm laser source at distal end
X		Variable phase sine wave generator for active phased arrays
X		Reglatable field emitter device and method of production thereof
Х		Contactless resistance measurement of semi-insulating semiconductors
Х		High temperature substrate mount for chemical vapor deposition
Х		Fiber optic electric field and voltage sensor based on electrostrictive effect
X		Fiber optic gyroscopes with depolarization light

			Readout and Correlation of Data on Optical Disks
	X		Method and Apparatus for Parallel
ED	X		Diode Pumped Tm:LiF4 Laser at 1.9 micron for Optimized CW Laser-Tissue
			Dielectric
	X	X	Metallized Tubule-Based Artificial
	X	x	Laser Beam Stop
	Х	X	High Resolution Patterning on Solid Substrates
			Layed Films Using a Single Substrate
		1	Switching of Ferroelectric Liquid Crystal
	X		A Device for Low Electric-Field Induced
	X		Flow Immunosensor
	X		Methods for Modification of Diamond Surfaces
			display device
			resolution, flat panel cathodoluminescent
	X		Method and apparatus for a high
	^		gate voltage swing (GVS-JFET)
	X		optical materials Junction field effect transistor with lateral
			indirect narrow-gap superlattice as the
	X		Optical switches and detectors utilizing
	X		Continuous time adaptive learning circuit
	Λ		optic gyroscope
	X	+	Electronic phase-tracking open-loop fiber
			evaluation of spatial characteristics of electronic imaging devices
	Х		An interferometric technique for
	X		Embedded fiber optic sensors
			forming such a device
	X		Semiconductor device and method of
			cascade fiber laser
	X	+	Rare earth ion doped continuous wave
	X		Fiber optic interferometer configuration with pump-induced phase carrier
			Voice communication processing system
			interferometric wavelength shift detection
	X		Fiber grating-based sensing system with
			lithography
			reduction in mask fabrication by e-beam
	X		Dielectric films for proximity effect
		1	fiber optic gyroscope
	X		lithography Method for excess noise substraction in
			effects in high resolution electron beam lithography
		l	feature size and reduction of proximity
	X		Dielectric films for reduction of minimum

 X	Improved Super Luminescent Light Source
 X	An Ultraviolet Faraday Rotator Glass
X	Method and Apparatus for a Sensitive Fiber Optic Planar Hydrophone
X	Method and Apparatus for a New Transduction Mechanism for Large Area Conformal Hydrophones
X	Method For the Control of Bragg Wavelength of Intra-Core Fiber Grating Elements Using Electro-Optical Modulation
X	Tm:YALO, 1.94 micron, Solid State Laser
X	New Design for Broadband, Low V-Pi Electrooptic Modulators
X	A Fiber Optic Network System With Low Crosstalk Using Code-Division Multiplexing
X	Suppression of Backscatter and Stray Reflection Induced Phase Noise in Michelson Interferometers
X	Method and Apparatus for Polarization- Maintaining Fiber Optical Amplification with Orthogonal Polarization Output
X	A Compact Dual-Strip Fiber Optic Magnetostrictive Design With Predictabe Reproducibility
X	Technique to Prepare High-Reflectance Optical Fiber Bragg Gratings With Single UV Exposure In-Line On Fiber Draw Tower
X	Rapidly Deployable ASW Arrays
X	Process to Fabricate Thick Coplanar Microwave Electrode Structures
X	Fiber Optic Continuous True Time-Delay Modulator
X	Tunable Ytterbium-Doped Solid State Laser
X	Fiber-Optic True Time-Delay Array Antenna Feed
X	Fiber Optic Flux Transformer
X	Fiber Ring Laser Configuration Based On An In-Line, Spectrally-Selective Fiber Fabry-Perot (SSFFP) Transmission Filter Using a Bragg Grating Element
X	Low-Frequency Electrostrictive Ceramic Plate Voltage Sensor
X	Real Suspended Particle Detector
X	Reflection Employing an Integrating Sphere and a Lens-Mirror Concentration
Х	Diamond Brazed to a Metal

•

.

X		Substrate Temperature Control Technique For CVD Reactors
Х		Apparatus and Method for Eliminating Polarization Sensitivity Transducers
Х		Nanochannel Glass Matrix Used in Making Semiconductor Devices
X		Nanochannel Filter
X	X	Fabrication and Phase Tuning of an Optical Waveguide Device
X	X	Resonantly Pumped, Erbium-Doped, GSGG, 2.8 micron, Solid State Laser With Energy Recycling and high Slope Efficiency
Х	X	Fiber Optic Gyroscope With Wide Dynamic Range Analog Phase Tracker
 X	X	Suppression of Relaxation Oscillations in Flashpumped, Two-Micron Tunable Solid State Lasers
X	X	Fiber Optic Michelson Sensor and Arrays With Passive Elimination of Palarization Fading and Source Feedback Isolation
X	X	Thermal Dilation Fiber Optical Flow Sensor
X	X	Plasma Chemical Vapor Deposition of Halide Glasses
X	X	System For Canceling Phase Noise in an Interferometric Fiber Optic Sensor Arrangement
X	X	Heterodyne Array for Measurement of Target Velocity
X	X	Nanochannel Filter
X	X	Three-Axis Fiber Optic Vector Magnetometer
X	X	Fabrication and Phase Tuning of an Optical Waveguide Device
X	X	Color Center Laser With Transwerse Auxiliary Illumination
X	X	System For End Pumping a Solid State Laser Using a Large Aperture Laser Diode Bar
X	X	Method and Apparatus for Imaging an Object In or Through a Scattering Medium by Using Multiple-Wave Mixing
X	X	Two-Micron Modelocked Laser System
Х	X	Nanochannel Glass Matrix Used In Making Mesoscopic Structures
X	X	Nonlinear Optical Composites of Metal Cluster Laden Polymers

.

- - - -

Π		T	Efficiency Improvement of Widehard
	X		Efficiency Improvement of Wideband Fiber OPtic Signal Process
	X	X	Self Initializing Circuit Link
	X	X	Imaging Radar Repeater
	Х		Discrete Vacuum Ultra Violet Reflective Interference Filter
	Х		Submicrosecond Synchronizable X-Ray Source
	X	X	Dual Cavity For A Dual Frequency Gyrotron
	X		Focused-Electron-Deflection Field Emission Array
	X		System for Conditioning An Electron Beam for Improved Free-Electron Laser Operation
	X	X	Method and apparatus for forming an agile plasma mirror effective as a microwave reflector
	X	X	Method for doping GaAs with high vapor pressure elements
	Х	X	Fabrication and phase tuning of an optical waveguide device
	X	Х	Method of manufacturing InP junction FETs and junction HEMTs using dual implantation and double nitride layers
	X	X	Method and apparatus for performing scanning tunneling optical absorption spectroscopy
	X	X	Resonantly pumped, erbium-doped, GSGG, 2.8 micron, solid state laser with energy recycling and high slope efficiency
	X	X	Metal-glass composite field-emitting arrays
	X	X	Fiber optic gyroscope with wide dynamic range analog phase tracker
	X	X	Optical switching devices
	X	X	Monocrystalline germanium film on sapphire
	X	X	Fiber optic Michelson sensor and arrays with passive elimination of polarization fading and source feedback isolation
	X	X	Resistive gate magnetic field sensor
	Х	X	All-weather precision landing system for aircraft in remote areas
	X	X	Thermal dilation fiber optical flow sensor
	X	X	Layered thin-edged field-emitter device
	X	Х	Calibration method and apparatus for collecting the output of an array of detector cells

 X	X	System for canceling phase noise in an
1		interferometric fiber optic sensor arrangement
 x	X	Field emitter array memory device
 X	X	Nanochannel filter
 X	X	Focal plane antenna array for millimeter
		waves
X	X	Method and apparatus for determining
	1	target elevation angle altitude and range
		and the like in a monopulse radar system
		with reduced multipath errors
X	X	Method and apparatus of generating sum
		or difference signals corresponding to an
	1	apparent beam in a monopulse radar system
X	X	Three-axis fiber optic vector
	<u>А</u>	magnetometer
X	X	System for producing synchronized signals
X	X	Method of forming nanometer-scale
-		trenches and holes
X	X	Layered parallel interface for an active
		antenna array
 X	X	Fabrication and phase tuning of an optical
		waveguide device
X	X	Method for making a symmetrical layered
		thin film edge field-emitter-array
X	X	System for end pumping a solid state laser
 		using a large aperture laser diode bar
X	X	Method of forming platinum and platinum
	1	silicide Schottky contacts of beta-silicon
 <u>x</u>	x	carbide
 	<u> </u>	Two-Micron modelocked laser system
X	_	Multiphase parallel radar mode processor
Х		Diode pumped Tm:LiF4 laser at 1.9 microns for optimized CW laser tissue
 X		Imaging radar repeater
$\frac{X}{X}$	<u> </u>	Decoy target return signal simulator
<u> </u>		
		Method and apparatus for parallel readout and correlation of data on optical disks
 	-	Perceptive radar emitter return signal
	1	simulator
 x		Method and apparatus for a sensitive fiber
	1	optic planar hydrophone
X		Thin film edge emiter device and method
		of manufacture thereof
X	1	Apparatus and method using low voltage
1	Į	scanning probe lithography
X	1	A method for coherent deception
1	I	countermeasures

	Х	Method of producing a silicon membrane using a silicon alloy etch stop layer
	Х	A new design and fabrication method for
1		III-V heterostructure field-effect transistors
	X	Advanced IFF systems
·····	X	Leading edge canceller frequency selective
		limiter
	X	Microwave filter containing nonreciprocal
1		signal branches with frequency-selective
		transfer characters
	X	Method for the control of BRAGG
		wavelength of intra-core fiber grating
		elements using electro-optical modulation
	Х	Tm:YALO, 1.94-micron, solid state laser
	X	New design for broadband, low V electro-
		optic modulators
	X	A fiber optic network system with low
	^	crosstalk using code-division multiplexing
	X	Microwave multiplexer multiplexing
		channels with varying fractional
		bandwidths
	X	Method and apparatus for polarization-
		maintaining fiber optical amplification
		with orthoganal polarization output
	Х	A compact dual-strip fiber optic
		magnetostrictive design with predictable
		reproducibility
	Х	Reduced-signal friend-identification
	Х	Technique to prepare high-reflectance
		optical fiber BRAGG grating with single
		UV exposure in-line on fiber draw tower
	X	Focused-electron-deflection field emission
		array
	X	Wireless shipboard data coupler
	X	Fiber optic continuous true time-delay modulator
	Х	Tunable ytterbium-doped solid state laser
	Х	Fiber-optic true time-delay array antenna
		feed
	Х	Fiber ring laser configuration based on in-
		line, spectrally-selective fiber Fabray-Perot
		(SSFFP) transmission filter using a
		BRAGG grating element
	X	Ultra high density, non-voltage
	4 .	ferromagnetic random access mamory
		element
	X	
	Λ	Substrate temperature control technique for CVD reactors
	X	Method of fabricating sub-0.4-0.9 micron
		trenches and holes

-

-

- -

- -

Х		Method for forming adherent SiO2 layer
		on diamond
X		Magneto-resistive linear displacement
Х		Nanochannel glass matrix used in making semiconductor devices
Х		Nanochannel filter
 X		Semiconductor device and method for such a device
 Х		Platinum and platinum silicide contacts on B-silicon carbide
Х		Microwave multiplexer with channels of varying fractional bandwidths
X		Efficiency improvement for wideband fiber-optic signal processing
X		In-line fiber etalon strain sensor
X		A lineraly polarized hybrid TE31 coupler for slotted waveguide
Х		The double cusp gyro-gun
x		Microwave detected photoresponse in a resonant superconducting structure - A spatially resolved optical probe of the superconducting microwave current density
 X		Coating wires and other objects with superconductors
X		Selective Metallization Process
Х	X	Method of Fabricating a Receptor-Based Sensor
Х	X	Fast Switching Ferroelectric Liquid Crystalline Polymers

Only Patent Awards and Disclosures relating to Electronic Devices. Disclosures = Case Number

Awarded = Patent Number

 Awarded = Fatent Function

 Patent Titles = Sample:

 Apparatus and Method for Minimizing Polarization-Induced Signal Fading in an

 Interferometric Fiber-Optic Sensor Using Input Polarization Control

 *Latest NRL input for Patent Awards and Disclosures List attached. Just Highlight those

 related to Electronic Devices and return list to 6800B along with this input - no need to type in.

TAB B

•

PAPERS PUBLISHED ELECTRONIC DEVICES

3.2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria I)

CSF	Number Published	Paper Titles (List)
ED		
FY-91	338	See Listing R - Revised
FY-92	359	
FY-93	335	R - Revised
Total	1,032	R - Revised

Electronic Devices Summary

CY91

-

CIPI		
CSF	Reference	Paper Titles (List)
1 ED	Optics Letters, Vol. 16, pp132-134 1991	Mode Evolution of Induced Second-Harmonic Light in Optical Fiber
2	Applied Optics, Vol. 30, 1944- 1957 1991	Correlation of Single Mode Fiber Radiation Response and Fabrication Parameters
3	Applied Optics, Vol. 30,(22),1-5 1991	An Interferometric Method for Concurrent Measurement of Thermo-Optic and Thermal Expansion Coefficient
4	IEEE Journal of Quantum Electronics, Vol. 27, No. 4, 1031- 1038 1991	Spectroscopy and Laser Operation of Nd:ZBAN Glass
5	Proc. IEEE, Vol. 79, No. 3 1991	Advanced Channelization Technology for RF, Microwave, and Millimeter Wave Applications
6	7 Applied Physics, Vol 73,No.2,925-928 1991	Optical and Electrical Characterization of Magnesium- Doped Bismuth-Substited Lutetium Iron Garnet Thin Films
7	J.Appl.Phys., Vol. 70, No. 9, p. 5144 1991	A Thin Film Schottky Diode Fabricated from Flame Grown Diamond
	Applied Optics, Vol. 31,No.1,120- 125 1991	Image Speckle Contrast Reduction Resulting from Integrative Synthetic Aperture Imaging
9	Optical Engineering, Vol. 31, NO. 11, 2355-2365 1991	Short Wavelength Imaging Laser Radar Using a Digicon Detector
10	Opt. Letters, Vol. 16, No. 10 1991	Photorefractive Two Beam Coupling with White Light

2 0 SEP 1994

11	Applied Optics, 30, 401-406	Laser Beam Propagation Under
	1991	Turbulent Conditions
12	JOSA B, Vol 8, 2, pg. 300 1991	Spectral and Temporal Characterization of
	1991	Spontaneous Raman Scattering
		in the Transient Reigime
13	Optics Communications, Vol. 86 1991	Second Stokes Generation in Deuterium
14	IEEE J. Quantum Elec., Vol. Q1 27, #4, 895-897	Tunable Laser Pumped 3 Micron Ho: YALO Laser
	1991	
15	Chemical Physics, Vol. 149,401-	Photochemical Bleaching of Absorbed Rhodamine 6G as a
	407 1991	Probe of Binding Geometries
	1991	on a Fused Silica Surface
16	Optics Communications, Vol.	Achromatic Multibeam
	80,p.317 1991	Coupling in KNB03:Rb
17	IEEE JQE, Vol. 27, No. 9 1991	Laser and Spectral Properties of Cr:Tm:Ho:YAG at 2.1 Microns
18	Theory, JOSA B, 1843 1991	Incoherent Multimode Raman Amplification Theory
19	Opt. Commun, 83, 103,	Correlation Effects in Pump
	1991	Depleted Broadband Stimulated Raman Amplification
20	Letters, Vol 67, No. 4, 437-440,	Cavity Quantum
	July 1991	Electrodynamic Enhancement of Stimulated Emission in
		Microdroplets
21	Optics Letters, Vol. 16, 1147	Supression of Photorefractive
	1991	Beam Fanning
22	Optics Leters, Vol. 16, 23, 1868	Time-gated Imaging Through
	1991	Scattering Media using
		Stimulated Raman Amplification
23	Optics Letters, Vol. 16, 1723,	Effects of Absorption on
	Nov. 1991	Microdroplet Resonant
		Emission Structure
24	IEEE JQE, QE-27, No. 4, 1129-	Short Pulse 2.1 Micron Laser
	1131, May 1001	Performance of
25	May 1991 Proc. IEEE, Vol. 79, No. 1,	Cr:Tm:Ho:YAG Infrared Focal Plane Array
25	Jan 1991	Technology
26	Physical Review B, Vol. 43,	Comment on "Temperature-
	14715	induced Intraband Transitions
	1991	in the n-type HgTe/CdTe Superlattices"
27	Jour. Vac. Sci. Tech., B9(3) 1813,	Superlattices" Shubnikov-de Oscillations and
21	May/June 1991	Quantum Hall Effect in
		Modulation-doped HgTe-CdTe
		Superlattices

. .

•

2

•

E 20	Lawe Mag Col Tech DO 1010	Theorem for Electron and Upla
28	Jour. Vac. Sci. Tech. B9, 1818 1991	Theory for Electron and Hole Transport in HgTe-CdTe Superlattices
29	Appl. Phys. Letts., 58, 2523 1991	Interface-Roughness Limited Mobility in HgTe-CdTe Superlattices
30	Jour. Appl. Phys., 69(8), 4178, Apr. 1991	Development of High Power CW KCL:Li(F2a) Color Center Laser
31	Phys. Rev. B., Vol. 44, 3455 1991	Magnetic Activation of Bipolar Plasmas in HgTe-CdTe Superlattices
32 .	Appl. Phys. Letts., 59 (7), p. 756, Aug.1991	Etalon Enhancement of Nonlinear Optical Response in BiSb
33	JOSA B, Vol. 8, No. 4, April 1991	Alexandrite Laser Excitation of a Tm:Ho:YAG Laser
34	Mat. Res. Soc. Proc. 206, 175 1991	Gold Cluster Laden Polydiacetylenes: Novel Materials for Nonlinear Optics
35	37 Appl. Phys., 70, 4317 1991	Effects of Energy Gap and Band Structure on Free Carrier Nonlinear Susceptibilities in Semiconductors
36	39 Appl. Phys. 69(3), p. 1648, Feb.1991	Intensity Dependent Upconversion Efficiencies of Er ions in Heavy-metal Fluoride Glass
37	Jour. Crystal Growth, 111, 693- 696 1991	Strong Nonlinear Optical Enhancement in MBE Grown BiSb
38	Phys. Rev. B, 44, 8376 1991	Electron Mobilities and Quantum Hall Effect in Modulation-doped HgTe-CdTe Superlattices
39	Opt. Lettsl, 16, 232 1991	Continuous Wave 1.5 Micron Thulium Cascade Laser
40	Solid State Comms., 80, 95 1991	In-band Nonlinear Optical Properties of PbSnSe
41	Electronics Letters March 1991	Polarization Insensitive Fiber Optic Michelson Interferometer
42	Electronics Letters March 1991	Demonstration of a Hybrid Time Wavelength Division Multilpexed Interferometric Fiber Sensor
43	IEEE Photonics Letts. June 1991	Phase Tuning by Laser Ablation of LiNbO3 Interometric Modulators to Optimum Linearity

-

-

- - -

•

2 0 SEP 1994

44	Electronics Letters	Experimental Investigation of	T
44	March 1991	Polarization Induced Fading in	
		Interferometric Fiber Sensor Array	
45	Optical Pulses	Response Of InP/GaInAsP/InP	
	Applied Physics Letters	Heterojunction Bipolar	
	July 1991	Transistors to 1530 & 620nm	
		Ultrafast Optical Pulses	
46	Electronics Letters May 1991	50 Watt Broad Area Semiconductor Amplifier	
47	Electronics Letters	Visibility Limits in a Fiber	
	August 1991	Optic Michelson Interferometer	
		with Birefringence	
		Compensation	l
48	Appl. Phys. Letts.	Low Frequency Magnetic Field	1
	July 1991	Mixing Near Period Doubling	ł
		Bifurcation of a Fiber Optic	
		Magnetometer	
49	IEEE Trans. on Magnetics, Vol.	Characteristics of a Parametric	
	27, #6,	Magnetostrictive Oscillator	
50	Nov 1991		
50	Optics Letters, Vol. 16, #18	A Fiber Optic DC & Low	
51	Sept. 1991 Electronics Letters	Frequency Electric Field Sensor A Technique for Measuring	
51	August 1991	Facet Reflectivity & Effective	
	August 1991	Index of a Laser Amplifier	
52	Opt. Ltrs, V. 16, p 1902,	57 Micron All Fiber Optic	
52	1991	Gyroscope w/Noise	
		Subtraction	
53	Optics Letters, Vol. 16, #24	Dispersion in Rare-earth Doped	
	Dec 1991	Fibers	
54	Journal of Lightwave Technology,	High Frequency Response of	
	Vol. 9, No. 9	Fiber Optic Planar Acoustic	
	Sept. 1991	Sensors	
55	61 Underrugter Acquistion	High Porformance Fiber Ontio	
55	61 Underwater Acoustics May 1991	High Performance Fiber Optic Hydrophone	
56	63 Underwater Acoustics,	Acoustic Noise Measurements	
	July 1991	Utilizing High Performance	
		Fiber Optic Hydrophones in the	
		Arctic	
57	Nuclear Instruments and Methods	Recent Advances in Free	R
	A, 304,526	Electron Laser Theory	
	1991		
58	Physical Review Letters, 66, 1446,	Quantum Extension of Child-	
	March 1991	Langmuir Law	
59	Applied Physics Letters, Volume 50, Page 2102	50-Nanometer Linewidth	
	Volume 59, Page 2192 67	Platinum Sidewall Lithography	
	1991	by Effusive-Source Metal Precursor Chemical Deposition	
1	1771	and Ion-Assisted Etching	
L		und ton-rissisied Danning	

R

60	Journal of Applied Physics, Volume70, Page 1793 (August 1991)	High Resolution Electron Beam Lithography with a Polydiacetylene Negative Resist at 50KV
61	Surface Science, Volume241, Page 357 (August 1991)	Infrared Refelection Absorption Spectroscopy Study of Chemisorption on the Ni(001)- c(2X2)Si Surface
62	Journal of Vacuum Science Technology, Volume 9, Page 1367 (March/April 1991)	Investigations of Undeveloped e-beam Resist with a Scanning Tunneling Microscope
63	Inorganic Chimica Acta, Volume 187, Page 207 (September 1991)	Primary and Secondary Neopentyl Arsines and Their Reactions with Trimethylgallium. Crystal and Molecular Structure of [Me2GaAs(CH2CMe3)2]2
64	Surface Science, Volume 249, Page 159 (1991)	Submonolayer Cluster Formation at the Ge/Al ₂ O ₃ (1102) Interface Revised-Deleted
65	IEEE Transactions on Magnets, Volume 27, No. 2, Page 1406 (March 1991)	Preparation of Thin Films of YlBa2Cu3O7-x by Magnetron Sputtering Techniques
66	IEEE Transactions on Magnets, Volume 27, No. 2, Page 884 (March 1991)	Particle-Induced Modification of Thin Film YBa2Cu3O7- ΔTransport Properties and Microwave Device Performance
67	IEEE Transactions on Magnets, Volume 27, No. 2, Page 1536 (March 1991)	Detection of Light Using High Temperature Superconducting Microstrip Lines
68	Journal Applied Physics, 70, (9), Page 4995 (November 1991)	Light Detection Using High-Tc Microstrip Transmission Lines as a Probe of Film Homogeneity
69	Physical Review B, Volume 44, No. 17, Page 9609 (November 1991)	Response of Granular Superconducting YBa2.1Cu3.407-x to Light
70	Thin Solid Films, 206, Pages 128 - 131 (1991)	YBa2Cu3O7- =∆Thin Films Deposited by an Ultrasonic Nebulization and Pyrolysis Method
71	IEEE Transactions on Magnets, Volume 27, No. 2, Page 2540 (March 1991)	Microwave Devices Using YBa2Cu3O7- Δ Films Made by Pulsed Laser Deposition
72	Supercond. Science Technology, 4, Pages 449 - 452 (1991)	High Temperature Superconductivity Space Experiment (HTSSE)

1.70	Applied Dhusias Lattans 50 (22)	Panatration Danth and
73	Applied Physics Letters, 59 (23),	Penetration Depth and Microwave Loss Measurements
	Page 3033 (December 1991)	with a YBa2Cu3O7-
	(December 1991)	Δ /LaAlO3/YBa2Cu3O7-
·		ΔTrilayer Transmission Line
74	IEEE Transactions on Magnetics,	High Temperature
	Volume 27, No. 2, Page 2533	Superconductivity Space
	(March 1991)	Experiment (HTSSE)
75	IEEE Transactions on Magnets,	Investigation of
	Volume 27, No. 2, Page 1332	ErBa2Cu3O7/Cu2O/Normal
	(March 1991)	Metal Tunnel Structures
76	Journal of Applied Physics, 70,	Beam Divergence from Sharp
•	(1), 4	Emitters in a General
	(1991)	Longitudinal Magnetic Field
77	IEEE Transactions on Microwave	Cold Tests of Quasi-Optical
	Theory and Techniques, 39, 1010	Gyrotron Resonators
	(1991)	- j
78	Physics of Fluids B, 3 (11), 3177	Depressed Collector
70	(1991)	Experiments on a Quasioptical
		Gyrotron
79	IEEE Journal of Quantum	Evolution of A Finite Pulse of
19	Electronics, 27, 2529	Radiation in a High-Power
	· · ·	Free- Electron Laser
	(1991)	
80	Journal of Applied Physics, 69 (9),	High-Voltage Millimeter-Wave
	6696	Gyro-Traveling-Wave
	(1991)	Amplifier
81	International Journal of Infrared	Ohmic Effects in Quasioptical
	and Millimeter Waves, 12, 9	Resonators
	(1991)	
82	Nuclear Instruments and Methods	Recent Advances in Free
	A, 304, 526	Electron Laser Theory
	(1991)	
83	IEEE Journal of Quantum	Simulation of Free-Electron
	Electronics, 27, 2693	Lasers in the Presence of
	(1991)	Correlated Magnetic Field
		Errors
84	Nuclear Instruments and Methods	Status report on the NIST-NRL
	A, 304, 208	Free Electron Laser
1	[(1991)	
85	(1991) IEEE Journal of Quantum	The Effects of Field Errors on
85	IEEE Journal of Quantum	The Effects of Field Errors on Low-Gain Free-Electron Lasers
85	IEEE Journal of Quantum Electronics, 27, 2682	The Effects of Field Errors on Low-Gain Free-Electron Lasers
	IEEE Journal of Quantum Electronics, 27, 2682 (1991)	Low-Gain Free-Electron Lasers
85	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods	Low-Gain Free-Electron Lasers Theoretical Analysis of
	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the
86	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497 (1991)	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator
	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497 (1991) Physics of Fluids B, 3 (3), 781	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator Theoretical Consequences of
86	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497 (1991)	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator Theoretical Consequences of Wiggler Field Error Reduction
86	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497 (1991) Physics of Fluids B, 3 (3), 781	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron
86 87	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497 (1991) Physics of Fluids B, 3 (3), 781 (1991)	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser Performance
86	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497 (1991) Physics of Fluids B, 3 (3), 781 (1991) Physical Review A, 43, 11, 6166	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser Performance Time-Dependent Multimode
86 87	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497 (1991) Physics of Fluids B, 3 (3), 781 (1991)	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser Performance Time-Dependent Multimode Simulation of Gyrotron
86 87	IEEE Journal of Quantum Electronics, 27, 2682 (1991) Nuclear Instruments and Methods A, 304, 497 (1991) Physics of Fluids B, 3 (3), 781 (1991) Physical Review A, 43, 11, 6166	Low-Gain Free-Electron Lasers Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser Performance Time-Dependent Multimode

. .

•

•

89	Optic Communications 86, 236 (1991)	Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing Data
90	IEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)	SEU Flight Data From the CRRES MEP
91	Chemical Physics Letters, 178, 69 101 1991	Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular Oscillators
92	IEEE Trans. Nucl. Sci., 38, 525- 530 1991	Radiation Survey of the LDEF Spacecraft
93	IEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545 1991	Comparison of Experimental Charge Collection Waveforms with Pisces Calculations
94	105 Appl. Phys. 70, 4995-4999 1991	Light Detection Using High-T, Microstrip Lines as a Probe of Film Homogeneity
95	IEEE Trans. on Magnetics, Vol 27,No. 2, p.2533 1991	High Temperature Superconductivity Space Experiment (HTSSE)
96	IEEE Trans. Nucl. Sci., NS-38, December 1991	Radiation Damage Assessment of Nb Tunnel Junction Devices
97	Nature 349, 678-680, 109 1991	Observation of Beryllium 7 on the Surface of the LDEF Spacecraft
98	Astronautical Sciences 74, 111 112 1991	Discovery of Be-7 Accretion in Low Earth Orbit
99	IEEE Trans. Nucl. Sci., NS- 38,Vol.6,1153-1158 1991	Space Radiation Effects in InP Solar Cells
100	IEEE Trans. Nuc. Sco., NS- 38,Vol. 6,1329-1335 1991	Ionizing Space Radiation Effects on Surface Acoustic Wave Resonators
101	IEEE Trans. Nuc. Sco.,NS- 38,Vol. 6,1398-1402, 116 1991	Radiation Characterization of the ADSP2100A Digital Signal Processor
102	IEEE Trans. Nuc. Sci., NS- 38,Vol. 6,1450-1456 1991	Proton and Heavy Ion Upsets in GaAs MESFET Devices
103 .	Journal of Applied Physics, 69, 1435 1991	Deep Level Transient Spectroscopy of Irradiated p- Type in InP Grown by MOCVD

.

104	IEEE Trans. Nucl. Sci. NS-38, Vol 6, 1540-1545, 120 1991	Comparison of Experimental Charge Collection Waveforms with PISCES Calculations
105	Journal of Applied Physics, 69,1119, 122 1991	Critical Current Enhancement in Proton-Irradiated T12CaBa2O8 Films
106	124 Applied Physics, 69,6488, 125 1991	IDLTS Study of Proton Irradiated PType InP
107	Journal of Applied Physics 69(9), May 1991	Deep Level Transient Spectroscopy Study of Proton Irradiated p-type InP
108	IEEE Transactions on Magnetics 27,2665-2668 1991	Superconducting Tunnel Junctions for use as Energy Resolving X-Ray Detectors
109	Appl. Phys. 69,4891-4893, 129 1991	Magnetically Modulated Microwave Absorption Measurement of the Penetration Depth in a Polycrystalline YBa ₂ Cu ₃ O _{7-x} Thin Film
110	Applied Physics Letters, 59(20), November 1991	Critical-Current Enhancement in Particle-irradiated Cuprate Superconductors
111	IEEE Transactions on Magnetics, 27,884 1991	Particle-Induced Modification of Thin Film YBaCu3O7-Xll
112	Applied Physics Letters, 58,1563, 133 1991	Proton Radiation Effects in Microwave Cavities and Ring Resonators Fabricated from YBa2Cu3O7-X
113	IEEE Trans. Nucl. Sci., NS- 38,Vol 6,1284-1288 1991	Radiation Effects in High Temperature Superconducting Films and Devices for the NRL High Temperature Superconductivity Space Experiment
114	IEEE Trans. on Magnetics, Vol. 27, No. 2 March 1991	Microwave Devices Using YBa ₂ Cu ₃ 07, Films Made by Pulsed Laser Deposition
115	IEEE Trans. Nucl. Sci. NS- 38,1370-1376 1991	Charge Collection in GaAs MESFETs and MODFETS
116	Appl. Phys. Lett. 58,1563-1565, 138 1991	Proton Radiation Effects in Microwave Cavities and Ring Resonators Fabricated from YBa ₂ Cu ₃ O _{7-∂}
117	140 Appl. Phys. 69,1119-1121, 1991	Critical Current Enhancement in Proton-Irradiated Tl ₂ CaBa ₂ Cu ₂ O ₈ Films

118	IEEE Trans. on Magnetics 27,1536-1539 1991	Detection of Light using H Temperature Superconduct Microstriplines
119	Superconductivity 4,57-60 1991	Proton-Induced Reduction R, Jc, and Tc in YBa,CU3 Thin Films
120	Superconductivity, 4,57 1991	Proton-Induced Reduction Rs, Jc and Tc in YBa2Cu3 Thin Films
121	Phys. Rev. Lett. 66,1785-1788, 145 1991	Observation of Ultrahigh Critical Current Densities in High-Tc Superconducting Bridge Constrictions
122	Solid State Communications 78,631-633 1991	Comparative Study of Microwave Surface Impeda of High Tc Superconductor Samples, Solid State Communications
123	IEEE Trans. on Magnetics 27, 884- 887 1991	Particle-Induced Modification of Thin Film YBa,CU307, Transport Properties and Microwave Device Perform
124	IEEE Trans. Nuc. Sci., NS-38, Vol. 6,1370-1376 1991	Charge Collection in GaAs MESFETs and MODFETS
125	IEEE Trans. Nucl. Sci. NS- 38,1284-1288 1991	Radiation Effects in High Temperature Superconducti Films and Devices for the N High Temperature Superconductivity Space Experiment
126	IEEE Trans.Nuc.Sci.,NS-38, Vol. 6,1457-1462 1991	Quantitative Comparison of single Event Upsets Induce Protons and Neutrons
127	Science and Technology of Thin Film Superconductors 2 Plenum Press, NY, NY Pages 67-74 152 1991	Thin Films of Y1Ba2Cu307 dPrepared by 3-Target Co- Sputtering
128	IEEE Volume 79(3) Pages 355 154 1991	Advanced Channelization Technology for RF, Microwave, and Millimeterwave Application
129	Proceedings of 2nd European Symposium on Reliability of Electron Devices Failure Physics and Analysis (ESREF 91) Pages 411-422 October 1991	GaAs MMIC Reliability Stu

•

•

•

Se 2 - 1

	Constitution Investor Develop	Effects of Mentree and Electron
130	Canadian Journal of Physics Volume 69 (3 & 4) Pages 324-328 157 1991	Effects of Neutron and Electron Irradiation on the Absorption Edge of GaAs
131	29th Annual Proceedings of Reliability Physics 1991 IEEE Cat. No. 91CH2974-4 Pages 200-205 April 1991	Reliability of InGaas HEMTs on GaAs Substrates
132	Proceedings of the 3rd Int'l. Symposium on Ultra Large scale Integration Science and Technology Electro Chemical Society Journal Volume 91-11 Pages 409-415 160 1991	Dielectric Breakdown Strength Analysis of SiO2 Using a Stepped-Field Method
133	Physics of Fluids B, Volume B3(1) Page 212 January 1991	Mode Selection by Priming in An Overmoded Electron Cyclotron Maser
134	Surface Science Volume 248 Pages 201-206 163 1991	Infrared Reflection Absorption Spectroscopy of Adsorbates on Semiconductors with Buried Metal Layers - O ₂ /GaAs
135	165 Vac. Sci. Technol A American Vacuum Society Volume 9 (6) Pages 3169-3172 November 1991	Growth of Ultrathin Ni Layers on Ni(100): Infrared Spectroscopy of Adsorbed Carbon Monoxide as a Structural Probe
136	Physical Review B American Institute of Physics Volume 44 (20) Pages 11 149 - 11 158 November 1991	Preparation and Characterization of Carbon- Terminated b-SiC(001) Surfaces
137	3rd International Conf. on InP and Related Materials Volume TuP.31 Pages 300-303 1991	Low-Frequency Gain Dispersion, Optical Response. and 1f Noise in Ion-Implanted InP JFETs
138	IEE Electronics Letters (IEE/London, UK) Volume 27 (21) Pages 1909-1910 October 1991	InAlAs/InGaAs/InP HEMTs with High Breakdown Voltages Using a Double-Recess Gate Process
139	Proceedings of NASECODE VII Pages 49-52 April 1991	Quantum Transport: Novel Approaches in the Formulation and Applications to Novel Semiconductor Devices

16 September 1994

٠

~

140	Proceedings of NASECODE VII Pages 1-2 April 1991	Intrinsic High-Frequency Oscillations and Equivalent Circuit Model in the Negative Differential Resistance Region of Resonant Tunneling Devices
141	Appl. Phys. Lett. Volume 59(2) Pages 192-195 July 1991	Monte Carlo Particle Simulation of Radiation-Induced Heating in GaAs Field-Effect Transistors
142	COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Volume 10 (4) Pages 509-524 1991	Quantrum Transport :Novel Approach in the Formulation and Applications to Quantum- Based Solid State Devices
143	COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Volume 10 (4) Pages 241-253 December 1991	Intrinsic High-Frequency Oscillations and Equivalent Circuit Model in the Negative Differential Resistance Region of Resonant Tunneling Devices
144	American Institute of Physics Physical Review Letters Volume 67 (10) Pages 1330-1333 September 1991	Light-Activated Telegraph Noise in A1GaAs Tunnel Barriers: Optical Probing of a Single Defect
145	Proceedings of 4th International Symposium on Silicon-On- Insulator Technology Devices The Electrochemical Society, Inc. Volume 90-6 Pages 278-287 176 1991	Heavy Metal Gettering in SIMOX Using Implanted Carbon
146	American Institute of Physics 178 Appl. Phys Volume 70 (9) Pages 4784-4789 November 1991	Evaluation of Pulsed Radiation Effects in Buried Oxides by Fast C-V Measurements
147	American Institute of Physics 180 Appl. Phys. Volume 70 (8) Pages 4584-4592 October 1991	Silicon-on-Insulator Device Islands Formed by Oxygen Implantation Through Patterned Masking Layers
148	Physical Review B Volume 43(15) Pages 12512 May 1991	Nuclear Magnetic Resonance Studies of Strain in Isolvalently Doped GaAs

16 September 1994

2

149	IEEE Transactions on Magnetics Volume 27(2)	Detection of Light Using High Temperature Supeconducting
	Page 1536 March 1991	Microstrip Lines
150	Journal of Applied Physics Volume 70 (9) Page 4995-4999 November 1991	Light Detection Using High T _c Microstrip Transmission Lines as'a Probe of Film Homogeneity
151	Physical Review B Volume 44 (17) Page 9609 November 1991	Response of Granular Superconducting Y- Ba2.1Cu3.407-x Films to Light
152	Journal of Crystal Growth Volume 109 Pages 314-317 186 1991	Preparation and Characterization of MgO Thin Films Deposited by Spray Pyrolysis of Mg(2,4- Pentanedionate)2
153	IEE Electronics Letters Volume 27 (24) Pages 2265-2267 November 1991	GaAs Vertical pin Diode Using MeV Implantation
154	American Institute of Physics Journal of Applied Physics Volume 70 (3) Pages 1793-1799 August 1991	High Resolution Electron Beam Lithography with a Polydiacetylene Negative Resist at 50 kV
155	American Institute of Physics Appl. Phys. Lett. Volume 59 (11) Pages 1338-1340 September 1991	Implantation Damage in GaAs- AlAs Superlattices of Different Layer Thickness
156	American Institute of Physics Appl. Phys. Lett. Volume 58 (22) Pages 2526-2528 June 1991	Sub-30 nm Lithography in a Negative Electron Beam Resist with a Vacuum Scanning Tunneling Microscope
157	192 Vac. Sci. Technol Volume B9(6) Pages 3024-3027 November 1991	Scanning Tunneling Microscope Lithography: A Solution to Electron Scattering
158	Applied Physics Letters Volume 58(8) Pages 825 - 827 February 1991	X-Ray Rocking Curve Measurement of Composition and Strain in Si-Ge Buffer Layers grown on Substrates
159	Journal of Applied Physics American Institute of Physics Volume 70, No. 3 Pages 1750 - 1757 August 1991	High-Energy Si Implantation into InP:Fe

.

•

|

160	Physical Review Letters Volume 67, No. 12 Page 1547 September 1991	Exciton, Phonons, and Interfaces in GaAs/A1As Quantum-Well Structures
161	IEEE Transactions on Microwave Theory and Techniques Volume 39 (8) Pages 1329-1337 August 1991	Characteristics of Microstrip Transmission Lines with High- Dielectric-Constant Substrates
162	IEEE Transactions on Electron Devices Volume 38(10) Pages 2229-2233 October 1991	Design Parameters of a High Effciency 1.7 GHz Gyropeniotron Amplifier
163	6th Conference on Semi-Insulating III-V Materials, Toronto, Canada Chapter 4 Pages 329-334 199 1991	Photoreflectance Surface Characterization of InP:Fe Substrates
164	Appl. Phys. Lett. Volume 58(24) Pages 2824 June 1991	Photoreflectance of Semi- Insulating InP: Resistivity Effects on Exciton Phase
165	Appl. Phys. Lett. Volume 58 (17) Pages 1905-1907 April 1991	High Mobility InSb Grown by Organometallic Vapor Phase Epitaxy
166	Physical Review B Volume 43 (14) Pages 14 540 - 14556 June 1991	Optically-Detected Magnetic Resonance of Group-IV and Group-VI Impurities in AlAs and Al _x Ga _{1-x} As with $.x \ge$ 0.35
167	Semicond. Sci Technology Volume 6 B97-B100 204 1991	Studies of Donor States in Si- Doped A11Ga1-x As Using Optically Detected Magnetic Resonance with Uniaxial Stress
168	Materials Science Forum Volumes 83-87 Pages 775-786 206 1991	Optically-Detected Magnetic Resonance of Donor States in $Al_xGa_{1-x}As$ (x ≥ 0.35) Doped with Group-IV and Group-VI Impurities
169	208 Vac. Sci. Technology. Volume B9 (2) Page 1403 March 1991	Raman Scattering Study of Dry Etching of GaAs: A Comparison of Chemically Assisted Ion Beam Etching and Reactive Ion Etching

16 September 1994

170	Superlattices and Microstructures, Academic Press, London, UK Volume 10 Pages 77-82 210 1991	Electroreflectance Studies of Asymmetrically Couple Quantum Wells
171	Mat. Res. Soc. Symp. Proc. Volume 204 Pages 369-374 212 1991	Chemically Assisted Ion Beam Etching of SiGe
	214 Vac. Sci. Technol Volume B9(2) Pages 3546 November 1991	Optical Studies of Dry Etched GaAs
173	Appl. Phys. Lett. Volume <u>58</u> (17) Pages 1899-1901 April 1991	Selective Removal of a Si _{0.7} Ge _{0.3} Layer from Si(100)
174	217 Appl. Phys. Volume 69 (8) Pages 4216 April 1991	The Nucleation and Growth of Germanium on (1102) Sapphire Deposited by Molecular-Beam Epitaxy
175	Materials Research Society Spring 1991 Volume 220 Pages 291-295 219 1991	Fabrication of Bond and Etch Back Silicon on Insulator Using SiGe-MBE and Selective Etching Techniques
176	Journal of Crystal Growth Volume 109 Pages 228-233 221 1991	Growth of (100) GaAs by Vertical Zone Melting
177	IEEE Transaction on Electron Devices Volume 38(3) Page 463 April 1991	Optimization of SIMOX for VLSI by Electrical Characterization
178	IEEE Transactions on Nuclear Science Volume 38 (6) Page 1560 December 1991	A Comparison of Methods for Simulating Low Dose-Rate Gamma Ray Testing of MOS Devices
179	Physical Review Letters Volume 66(8) Page 1078 February 1991	Numerical Simulation of Intrinsic Bistability and High- Frequency Current Oscillations in Resonant Tunneling Structures,

- -

_

- -----

.

R

180	IEDM Pages 771 774	The Numerical Simulation of Particle Trajectories in Quantum
	Pages 771-774 December 1991	Transport and the Effects of
		Scattering and Self-Consistency on the Performance of Quantum
		Well Devices
181	Proceedings of IEEE Volume 79(5)	Thin Film Deposition and Microelectronic and
	Pages 677-700	Optoelectronic Device
	May 1991	Fabrication and
		Characterization in Monocrystalline Alpha and Beta
		Silicon Carbide
182	Electronic Letters Volume 27(12)	High Temperature Operation of a-Silicon Carbide Buried-Gate
	Pages 1038-1040	Junction Field Effect
	June 1991	Transistors
183	Journal of Electronic Materials Volume 20(1)	Electron Paramagnetic Resonance and Optically-
	Page 49	Detected Magnetic Resonance
	229 1991	of Donors in $Al_XGa_{1-X}As$
184	Materials Research Society	Characterization of Si1-xGex/Si
	Symposium Proceedings	Heterostructures Using
	Volume 220 Page 271	Optically-Detected Magnetic Resonance
	231	
105	1991 Semicond. Sci. Technol.	Magnetic Resonance of Sn-
185	Volume 6	doped $Al_xGa_{1-x}As$ Detected on
	Pages B101-B104	Photoluminescence
	233 1991	
186	Applied Physics Letters	Photoluminescence and
	Volume 58 (5) Page 502	Magnetic Resonance Studies of Er^{3+} in MeV Ion Implanted
	February 1991	GaAs
187	236 International Electron Devices	Interaction Efficiency of an
	Meeting Pages 589-591	Emission Gated TWT
	December 1991	
188	Journal of Electromagnetic Waves	Hybrid-Mode Fields in
	and Applications VSP	Isotropic and Anisotropic Planar Microstrip Structures
	Volume 5(6)	
	Pages 577-606	
	June 1991	

.

,

۰.

.

ector-
1
ge j
g
Dose
es
ation of
ation of ess
-
ect
on on
ng
-0
hy
,, ,
eloped
anning
anning
5
itaxial
y Ion

٠

16 September 1994

•

ŧ

		Deep Dete Deeperdent Electrical
197	Nuclear Instruments and Methods in Physics Research Elsevier Science Publishers B. V. (North-Holland) Volume B59/60 Pages 978-980 252 1991	Dose-Rate Dependent Electrical Activation of Silicon and Sulphur Implanted into GaAs
198	Journal of Applied Physics Volume 69 (9) Page 6731 May 1991	Comment on: "The Effect of Charge State on the Local Vibrational Mode Absorption of the Carbon Acceptor in Semi- Insulating GaAs"
199 -	Journal of Electronic Materials The Metallurgical Society Volume 20(8) Pages 627-633 May 1991	Post-Irradiation Formation of Si-SiO ₂ Interface States in a Hydrogen Atmosphere at Room Temperature
200	Applied Physics Letters American Institute of Physics Volume 59(23) Pages 3012-3014 December 1991	Model for Si-Si02 Interface State Formation During Irradiation and During Post- Irradiation Exposure to Hydrogen Environment
201	Journal of the Electrochemical Society Volume 138 (6) Page 1770 June 1991	Measurement of the Thickness and Optical Properties of Thermal Oxides of Si Using Spectroscopic Ellipsometry and Stylus Profilometry.
202	IEEE Transactions on Nuclear Science Volume 38 (6) Page 1101 December 1991	Si-SiO ₂ Interface State Generation During X-Ray Irradiation and During Post- Irradiation Exposure to a Hydrogen Ambient
203	IEEE Transactions on Electron Devices Volume 38(3) Page 661-665 March 1991	Field Emission Triodes
204	IEEE Transactions on Microwave Theory and Techniques IEEE Microwave and Guided Wave Letters Volume 1(8) Pages 195-197 August 1991	Monolithic Circuit for Reflection Coefficient Measurement
205	Macromolecules Volume 24 Page 61-67 261 1991	Antiplasticization Effects on a Secondary Relaxation in Plasticized Glassy Polycarbonates

. -

16 September 1994

ŧ

206	Theory of Relaxation in Glass-	Couplings Between the
200	Forming Liquids Journal of Chemical Physics American Institute of Physics	Cooperatively Rearranging Regions of the Adam-Gibbs
	Volume 94(4) Page 3018-3029 February 1991	
207	Macromolecules American Chemical Society Pages 1221-1224 264 1991	Correlation of Polymer Segmental Chain Dynamics with Temperature-Dependent Time-Scale Shifts
208	Physical Review B Volume 43 (10) Pages 7481-7486 April 1991	Uncommon Nuclear-Spin Relaxation in Fluorozirconate Glasses at Low Temperatures
209	Macromolecules Volume 24 Pages 1561-1566 267 1991	Correspondence Between the Coupling Model Predictions and Computer Simulations: Diffusion of a Probe Polymer in a Matrix Having Different Degrees of Polymerization
210	Journal of Polymer Science B: Polymer Physics Volume 29 Pages 867-876 269 1991	Coupling Scheme Applied to Solvent Relaxation Modified by Dissolved Plymer Molecules
211	Journal of Non-Crystalline Solids Volumes 131-133 Pages 233-237 271 1991	Toward a Theory of Relaxation in Correlated Systems: Diffusion in the Phase Space of a Chaotic Hamiltonian
212	Journal of Non-Crystalline Solids Volume 131-133 Pages 80-83 273 1991	Temperature Dependence of the Stretched Exponent in Structural Relaxation of Fragile Glass-Forming Molecular Liquids
213	Journal of Non-Crystalline Solids Volumes 131-133 Pages 1001-1010 275 1991	Nuclear Spin Relaxation and Atomic Motion in Inorganic Glasses
214	Journal of Non-Crystalline Solids Volumes 131-133 Pages 544-550 277 1991	Evidence of Modification of Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions
215	Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 279 1991	From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer

16 September 1994

•

.

2 0 SEP 1994

	Delenstion in Complex Contemp	The Symmetric and Fully
216	Relaxation in Complex Systems	Distributed Solution to a
	and Related Topics	Generalized Dining
	Edited by I. A. Campbell and C.	Philosophers Problem: An
	Giovannella	Analogue of the Coupling
	Pages 309-316	Theory of Relaxations in
	281	Complex Correlated Systems
	1991	
217	Materials Science Forum	Study of Dynamic Properties of
	Volumes 67 and 68	Fluoride Glasses by Nuclear
	Pages 607-612	Magnetic Resonance
	283	
	1991	Test of Europeted Correlation of
218	Macromolecules	Test of Expected Correlation of
-	American Chemical Society	Polymer Segmental Chain
	Volume 24(17)	Dynamics with Temperature-
~	Pages 4865 - 4867	Dependent Time-Scale Shifts in
	August 1991	Concentrated Solutions
219	Journal of Chemical Physics	Solvent Rotational Mobility in
	American Institute of Physics	Polystyrene/Aroclor and
	Volume 95(4)	Polybutadiene/Aroclor
	Pages 2980-2987	Solutions.II A Photon
	August 1991	Correlation Spectroscopic
		Study
220	Journal of Non-Crystalline Solids	Mixed Alkali Effects in Ionic
	Elsevier Science Publishers B. V.	Conductors: A New Model and
	(North-Holland)	Computer Simulations
	Volumes 131-133	
	Pages 1109-1112	
	287	
	1991	
221	Journal of Polymer Science: Part B	Some Connections Between
	Volume 29	Viscoelastic Properties of PVC
	Pages 1493-1501	and Plasticized PVC and
	289	Molecular Kinetics
	1991	
222	NATO ASI Series	The Coupling Scheme for
	Series B: Physics	Relaxation in Complex
	Volume 258	Correlated Systems Large Scale
	Pages 453-469	Molecular Systems
	291	
	1991	
223	Journal of Physics A: Math. Gen.	Diffusion with a Memory: A
	Volume 24	Model for Mixed Alkali Effect
ł	Pages L881 - L886	in Vitreous Ionic Conductors
1	293	
	1991	
224 .	Superconductor Science and	High Temperature
	Technology	Superconductivity Space
	IOP Publishing	Experiment
	Volume 4	
	Pages 449-452	
	295	
	1991	
l	1///	

.

16 September 1994

2 0 SEP 1**994**

225	297 Appl. Phys.American Institute	In 0.53 GaO.47As Metal-
225	of Physics	Semiconductor-Metal
1		Photodetector Using Light-Ion
	Volume 70(7)	
	October 1991	Bombarded p-Type Material
226	Appl. Phys. Lett.	Epitaxial Growth of b-SiC on
	Volume 58(13)	Silicon-on-Sapphire Substrates
	Pages 1419-1421	by Chemical Vapor Deposition
	April 1991	
227	Review of Scientific Instruments	Passive Microelectrode Arrays
	American Physical Society	for Recording of Neural
	Volume 62 (9)	Signals: A Simplified
	Page 2276-2280	Fabrication Process
	September 1991	
228 ·	Applied Physics Letters	Penetration Depth and
	Volume 59(23)	Microwave Loss Measuerments
	Pages 3033-3035	with a YBa2Cu307-
	December 1991	d/LaALO3/YBa2CU307-d
		Trilayer Transmission Line
229	IEEE Trans. on Magnetics	Ultra-Compact Microwave
	Volume 27(2)	Filters Using Kinetic
	Pages 2696-2699	Inductance Microstrip
	March 1991	
230	Materials Letters	Etching Studies of Stress-
	Volume 10(9,10)	Induced Surface Plygonization
	Pages 400-403	in Si GaAs Wafers
	February 1991	
231	Mat. Res. Soc. Symp. Proc.	Initial Formation of SiGe/Si
	Volume 202	Epitaxial Structures and Oxides
	Pages 639-644	Produced by Wet Oxidation of
	304	Amorphous Si _x Ge _{1-x} Layers
	1991	
232	Journal of Electronic Materials	The Study of Relaxation in
232	Volume 20(5)	Asymmetrically Strained Si1-
		xGex/Si Superlattices
	Pages 389-394	XUEX/SI Superlatuces
	306	
222	1991 Motoriala Passarah Society Symp	The Effects of Strass on
233	Materials Research Society Symp.	The Effects of Stress on
	Proceedings	Interdiffusion in Si_xGe_{1-x}/Si
	Volume 226	Superlattices
	Pages 129-139	
	308	
	1991	
234	Superlattices and Microstructures	Optical and Structural Studies
	Volume 10 (1)	of Si1-xGex/Si Strained Layer
	Pg 113-118	Superlattices
	310	~
	1991	
235	Applied Physics Letters	Kinetics of Silicide Formation
	Volume 59(4)	in Chromium-Amorphous
	Pages 449-451	Silicon Multilayered Films.
	July 1991	
F	j July 1771	

D-B-20R

•

.

16 September 1994

•

•

ł

126	Studies of High Temperature	Response Function
236	Studies of High Temperature	Characteristics of Pairing
	Superconductors Volume 6	Correlations in the New High
	Page 269-295	Tc Superconductors
	313	Te Superconductors
	1991	
237	Physical Review	Dynamic Linear Response
231	Volume 43(4)	Dynamic Emcar Response
	Page 2059-2061	
	February 1991	
238	Physica C	Generalized Pairing Theory of
230	Volume 174	Superconductivity in Layered
	Pages 161-179	Crystals
-	316	
	1991	
239	Physica C	Superconductivity in Layered
	Volume 176	Materials. Pairing theory for
	Pages 457-476	Projectively Translation
	318	Invariant States
	1991	
240	Journal of Non-Crystalline Solids	Theoretical Aspects of
	Volume 131-133	Coupling Model Schemes of
	Pages 282-288	Slow Relaxation in Complex
	320	Correlated Systems
	1991	
241	Physical Review B	Linearized Gap Equation for a
	Volume 44(6)	Superconductor in a Strong
	Pages 2807-2810	Magnetic Field
<u> </u>	August 1991	
242	Solid State Communications	Quantum Translation Invariance
	Volume 77(7)	and the Superconducting
	Pages 525-528 323	Transition in Layered Bulk Materials
	1991	Watchats
243	Physical Review B	Quantumj-State Representations
2 7J	Volume 44(18)	in Strong Quantizing Magnetic
	Pages 10 280	Field: Pairing Theory of
	325	Superconductivity
	1991	· · ·
244	Physical Review B	High-T _c Superconductivity of
	Volume 44(18)	YBa2Cu3O7/PrBa2Cu3O7
	Pages 10 210	Superlattices: An Interlayer-
	327	Coupling Model
	1991	
245	IEEE Transactions on Microwave	Optoelectronic Approach to On-
	Theory and Techniques	Chip Device and Circuit
	Volume 39(7)	Characterization at Microwave
	Pages 1179-1193	and Millimeter-Wave
	July 1991	Frequencies
246	Physical Review B	Phonon-Mediated Indirect
	Volume 43(14)	Interactions Between Adatoms

.

۰.

.

16 September 1994

		Convolution Internal
247	Journal of Non-Crystalline Solids Volumes 131-133 Pages 667-670 1991	Convolution Integral Formulation of Dispersive Diffusion Transport: Numerical Solutions for the Coupling Model Waiting Time Distribution
248	Journal of Non-Crystalline Solids Volumes 131-133 Pages 870-876 1991	Localized Segmental Motion and Brillouin Scattering in a Polymer Liquid
	333 Non-Crystalline Solids, North Holland Volume 131-133 Pages 442-450 May 1991	Volume-Dependent Rate Processes Predicted by the Coupling Model
250	Journal of Applied Physics American Insitute of Physics Volume 70 (12) Pages7434-7442 December 1991	Formation of Interface Traps in MOS Devices During Isochronal Annealing After Irradiation at 78 K.
251	IEEE Transactions on Nuclear Science Volume 38 (6) Pages 1130-1139 December 1991	Effects of Switched Gate Bias on Radiation-Induced Interface Trap Formation
252	App. Phys. Lett Volume 58(16) Page 1795 April 1991	Enhanced Photoemission from a Bi-Metallic LaB6/Au Photocathode
253	Applied Physics Letters 338 Page 1317 September 1991	In-Situ Determination of Flux Nonuniformities During Molecular Beam Epitaxial Growth
254	Physical Review B Volume 44(11) Pages 5815-5826 September 1991	Surface Geometry of BaO on W(100): A Surface-Extended X-Ray-Absorption Fine- Structure Study
255	Mat. Res. Soc. Symp. Proc. Volume 216 Page 239 341 1991	OMVPE Growth of Eiptaxial InSB Thin Films Using a Novel Group V Source Compound
	Applied Physics Letters Volume 58 (12) Pages 1311-1313 March 1991	Low-Temperature Organometallic Vapor Phase Epitaxy of InSb Using the Novel Sb Precursor Triisopropylantimony
257	Journal of Non-Crystalline Solids Volumes 131-133 Pages 1011-1017 344 1991	Nature of the Linear Frequency Dependent AC Conductivity in Glassy Ionic Conductors

- ----

.

16 September 1994 2 0 SEP 1994.

•

 \sim

ŧ

258	Science and Technology of Thin-	Photoresistive Response of
230	Film Superconductors 2 Pages 449-458 346 1991	Superconducting Thin Films
259	New Diamond Science and Technology MRS Int. Conf. Proc. Page 723 348 1991	Micro-Photoluminescences Studies of Diamond Films
	The Electrochemical Society Proceedings Volume 91-13 Pages 207-218 May 1991	Enhancement of 2-Dimensional Electron Gas Mobility for Inverted Modulation-Doped Field-Effect Transistor Structures, and the Application of Low Temperature Buffers on the Inverted Structures
261	IEEE Transactions on Electron Devices Volume 38(6) Pages 1262-1270 June 1991	Electron Transport in Rectifying Semiconductor Alloy Ramp Heterostructures
262	Microwave and Optical Technology Letters Volume 4(3) Pages 91-97 February 1991	A Microwave Equivalent Circuit Model for Semiconductor Alloy Ramp
263	353 Appl. Phys. Volume 69(8) Pages 4228-4233 April 1991	Be, S, Si, and Ne Ion Implantation in InSb Grown on GaAs
264	Nuclear Instruments and Methods in Physics Research Elsevier Science Publishers B.V. (North-Holland) Volume B59/60 Pages 592-599 355 1991	MeV Ion Implantation in GaAs Technology
265	Physical Review B Volume 43(3) Page 2458 January 1991	Gallium Interstitials in GaAs/AlAs Superlattices
266	358 Appl. Phys. Volume 68(10) Pages 5109-5114 November 1991	Line Tension of Extended Double Kinks in Thin Films
267	Microwave Journal Volume 34(9) Pages 85-91 September 1991	The High Temperature Superconductivity Space Experiment

.....

ł

268	IEEE Trans. on Nuclear Science	SIMOX with Epitaxial Silicon:
208	Volume 38 (6)	Point Defects and Positive
Í	Pages 1253-1258	Charge
	December 1991	Defect Contern Formed During
269	Proceedings Mat. Res. Society. 362 199	Defect Centers Formed During Wet Oxidation of Si-GE/Si
	363	Heterostructures
	1991	
270	Science 252:551-554	Deep UV Photochemistry of
	1991	Chemisorbed Monolayers:
		Fabrication and Applications of Patterned Co-Planar Molecular
		Assemblies
271	Biosensors & Bioelectronics,	Modilation of a Gated Ion
	6:425-430	Channel Admittance in Lipid
070	1991	Bilayer
272	Solid State Technology, 34(10):77- 82	New Surface Imaging Techniques for Sub-0.5
	1991	Micrometer Optical Lithography
273	Liquid Crystals, 10(4):585	Fast Switching Ferroelectric
	1991	Side-Chain Liquid-Crystalline
	Journal of Vacuum Science and	Polymer and Copolymer Deep Ultraviolet Patterning of
274	Technology B, 9(6):3447-3450	Monolayer Films for High
	1991	Resolution Lithography
275	370 of Microencapsulation	Controlled Release From
	8(3):301-306	Cylindrical Microstructures
	1991	A toulling of Deiles for
276	Review of Scientific Instruments, 62(12):3082-3088	Autonulling a.c. Bridge for Accurate Measurement of Small
	1991	Impedance Variations Using
		MOS Components
277	Journal of Applied Physics,	Artificial Dielectric Properties
	70:4679-4686	of Microscopic Metallized
278	1991 IEEE Transactions on Plasma	Filaments in Composites Measurements of Vacuum Field
2,0	Science, 19:749-756	Emission From Bio/Molecular
	1991	and Semiconductor-Metal
		Eutectic Composite
279	Journal of Applied Physics,	Microstructures The Process-Cpontrolled
219	70(10):5882-5884	Magnetic Properties in
	1991	Nanostructured Co/Ag
		Composite Films
280	Macromolecules, 24:6539-6541	Monolayers and Langmuir-
	1991	Blodgett Films of a Ferroelectric Side Chain
		Polymer and its Constituent
	1	Mesogen
281	Journal of Applied Physics,	Magnetic Properties of
	70(10):6404-6406	Permalloy-Coated Tubules
	1991	

-

2

1

.

.

282	Proceedings Superconducting X- Ray Tunnel Junction Detectors World Scientific Press Singapore 378 379	Fabrication, Measurement, and Modeling of Epitaxial Niobium Tunnel Junction X-Ray Detectors,	R
283	Proceedings EDA Space Environmental Analysis Workshop EIʉC Publications ESA WPP-23 Paper 5(19) 381 Noordwijik, The Netherlands June 1991	Discovery of Be-7 Accretion in the LDEF Spacecraft	R
284	Proceedings First DLEF Post Retrieval Symposium June 1991	Gamma Radiation Surveyof the LDEF Spacecraft	R
285	OSA Proceedings on Picosecond Electronics and Optoelectronics Volume 9 384	Picosecond Radiation-Induced Curent Trtansients in Digital GaAs MESFETS	R
286	Proceedings of Space Photovoltaic R&T, NASA Conf Pub 3121 May 1991	Temperature Coefficients and Radiation Induced DLTS Spectra of MOCVR Gronw n + p InP Solar Cells	R
287	Proceedings of 26th Intersociety Energy Conversion Engineering Conference August 1991	Radiation Hard, High Efficiency InP Solar Cell and Panel Development	R
288	IEEE Photovoltaic Spec. Conf October 1991	Proton and Electron Irradiation of MOCVD InP Solar Cells: Experimental Results and Radiation Modelling	R
289	EEE Photovoltaic Spec. Conf October 1991	The Effect of Dopant Density on the Radiation Resistance of MOCVD InP Solar Cells	R
290	Journal of Applied Physics Volume 69 Pages 1435 390	Deep Level Transient Spectroscopy of Irradiated p- Type in InP Grown by MOCVD	R
291	Conf. Record of 1990 IEEE Nuclear Science Symposium 48 Pages 486 392	Radiation Survey of the LDEF Spacecraft	R
292	Proceedings of Workshop on Ionizing Radiation Environment Models and Methods Pages 405-418 394	Radiation Surey of the LDEF Spacecraft	R
293	Internal NRL Report September 1991	Heavy Ion Latchup Measurements on Motorola TSP56001	R

ł

294	Defense Nuclear Agency JOWOG Mtg. Stanford Research Institute	Ionizing Radiation Effects on SAW Resonators	R
	397		
295	SDIO/IS&T Brief November 1991	Investigation of Be-7 Activities in Low Earth Orbit	R
296	Internal NRL Report June 1991	Total Dose Measurements on the ADSP2100	R
297	Mat. RTes. Soc. Symp Proc Volume 202 Pages 283 401	Vapor Deposited Thin Films and Their Densification During Ion Beam Assisted Deposition	R
298	Proc. of Single Event Upset Symposium 403 404	Charge Colledction Measurements with Fast Time Resolution	R
299	Journal of Applied Phyusics Volume 70 Pages 1075 July 1991	Ont the Comparison Between Josephson-Junction Array Variations	R
300	Physical Review A Volume 44 Pages 10 November 1991	Role of the Implosion Kinetivc Energy in Determining the Kilovolt X-Ray Emission from Aluminum Wire Array Impolsion	R
301	Physics of Fluids B Page 3 January 1991	Leakage Currents Outside an Imploding Z Pinch	R
302	Journal of Applied Physics Volume 70 Pages 1957 August 1991	Achievable Pump Power and Gain in the AlXI-MglX Photoresonant X-Ray Laser	R
303	Physics D Volume 52 Pages 489 410 1991	The Autonomous Chaotic Relaxation Oscillator: An Electrical Analogue to the Dripping Faucet	R
304	Physics of Fluids B Volume 3 Pages 1521 July 1991	A Solvable Self-Similar Model of the Sausage Instability in a Resistive Z Pinch	R
305	Journal of Applied Physics Volume 70 Page 4 July 1991	BEam Divergence from Sharp Emitters in a General Lonitufdinal Magnetic Field	R
306	Physicsl Review A Volume 44 Pages 3900 September 1991	Beam Trapping in a Modified Betraton Accelerator	Ŕ

16 September 1994

.

•

•

307	IEEE Transactions on Microwave	Cold Tests of uasi-Optical	R
	Theory and Techniques Volume 39	Gyrotron Resonators	
	pages 1010		
	415		
	. 1991		
308	Physical Review Letters	Comment on Nondiffracting	R
	Volume 66	Beams	
	Pages 837		
	February 1991		
309	Physics of Fluids B	Compact, High-Current	R
	Volume 3	Accelerators and Their	
	Pages 2396	Prospective Applications	
<u></u>	August 1991	Criticana of New differenting	Ι.
310	Comments on Plasma Physics and	Critique of Nondiffracting Beams	R
	Copntrollee Fusion Volume 14	Deams	
	Pages 297		
	419		ľ
	1991		
311	Physics of Fluids B	Deflection of Electron Beams	R
~ * *	Volume 3	by Ground Planes	
	Pages 3177		l
	November 1991		
312	Physics of Fluids B	Depressed Collector	R
	Volume 3]	Experiments on a Quasioptical	l
	Pages 3171	Gyrotron	
	November 1991		
212	Jornal of Optical Society of	Diffraction Effefcts in Directed	R
313	America A	Radiation Beams	
	Voluem 8]	Radiation Deams	H
	Pages 705		ľ
	4231991		
314	Journal of Applied Physics	Diffusion of Magnetic Fields in	R
	Volume 69(4)	a Toroidal Conducting Shell of	
	Pages 1813	Circular Cross Section	l
	February 1991		
315	Physical REview Letters	Electron-Hose Instability in the	R
	Volume 67	Ion-Focused Regime	
	Pages 991		ľ
	August 1991		_
316	Applied Physics Letters	Elimination of Laser Prepulse	R
	Volume 58(4)	by Relativistic Guiding in a Plasma	
	Pages 346	riasma	
217	January 1991	Evolutiom of a Finite Pulse of	R
317	IEEE Journal of Quantum Electronics	Radiation in a High-Power	ĸ
	Volume 27	Free-Eloectron Laser	
	Pages 2529		
	December 1991		
			1

•

.

16 September 1994

318	Physical Reiew A	Experimental, Theoretical, and	R
510	Voluem 44	Numerical Investigation of the	
	Pages 5194	Homogenization of Density	
	October 1991	Nonuniformities in the Periodic	
		Transport of a Space-Charge	
		Dominated Beam	
319	Physical Review A	Frequency Up-Shifting of	R
	Volume 44	Laser Pulses by Copropagating	
	Pages 3908	Ionization Fronts	
	September 1991		_
320	Journal of Applied Physics	High-Voltage Millimeter-ae	R
	Volume 69(9)	Gyro-Travelling-Wave	
•	Pages 6696	Amplifier	ł
	May 1991		
321	Physics of Fluids B	Kinetic Stabilization of	R
	Voluem 3(4)	Interchange Modes in an	
	Pages 1015	Axisymmetric Mirror by Large	
	April 1991	Orbit Radius Thermal Ions	
322	Particle Accelerators	Octupole Correction of	R
	Volume 36	Geometric Aberrations for	
	Pages 141	High-Current Heavy-Ion	
	433	Beams Ohmic Effects in Quasioptical	R
323	International Journal of Infrared	Resonators	L L
	and Millimeter Waves	Resolutions	
	Volume 12		
	Page 9 435		
324	Review of Scientific Instruments	Output Switch for a Megavolt	R
524	Volume 62	Electron Beam Generator	
	Pages 1514	Electron Bound Condition	
	June 1991		
325	Journal of Vacuum Science	Patterning Tungsten Films with	R
520	Technology B	an Electron Beam Lithography	
	Volume 9(6)	System at 50 keV for X-Ray	
	Pages 3292	Mask Applications	
	Nov/Dec 1991		
326	Particle Accelerators	Reduction of Beam Breakup	R
	Volume 35	Growth by Cavity Cross-	
	Pages 193	Couplings in Recirculating	
	439	Accelerators	
327	IEEE Journal of Quantum	Simulation of Free-Electron	R
	Electornics	Lasers in the Presence of	
	Volume 27	Correlated Magnetic Field	
	Pages 2693	Errors	
· · · · · · · · · · · · · · · · · · ·	December 1991		1
328 .	Physics of Fluids B	Stability Regimes in a Helical	R
	Volume 3	Quadrupole Focusing	
	Pages 204	Accelerator - Theory and	
	January 1991	Simulation	

.

.

16 September 1994 1994 2 0 SEP

•

ţ

.

>

329	Nuclear Instruments and Methods A	Status Report on the NIST- NRL Free Electron Laser	R
	Volume 304 Pages 208 443		
330	Physical Review Letters Volume 67 Pages 2021 October 1991	Stimulated Backscattered Harmonic Generation from Intense Laser Interaftions with Beams and Plasmas	R
331	Journal of Applied Physics Volume 69(10) Pages 6836 May 1991	Studies of Synchrotron Radiation Emission from the Modified Betraton Accelerator	R
332	IEEE Journal of Quantum Electronics Volume 27 Pages 2682 December 1991	The Effects of Field Errors on Low-Gain Free-Electron Lasers	R
333	Nuclear Instruments and Methods A Volume 304 Pages 497 448	Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL Oscillator	R
334	Physics of Fluids B Volume 3 Pages 781 March 1991	Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser Performance	R
335	Physics of Fluids B Volume 3 Pages 2696 September 1991	Theory of Electron-Beam Tracing in Reduced-Density Channels	R
336	Physics of Fluids B Volume 3 Pages 1587 July 1991	Tehory of Wake-Field Effects of a Relativistic Electron Beam Propagating in a Plasma	R
337	Physical Review A Volume 43 Pages 1587 July 1991	Time-Dependent Multimode Simulation of Gyrotron Oscillators	R
338	Physical Review A Volume 44 Pages 6854 November 1991	Vlasov Simulations of Very- Large-Amplitude-Wave Generation in the Plasma Wake-Field Accelerator	R

ł

•

CSF	Reference	Paper Titles
		(List)
1 ED	J. Lightwave Tech., Vol. 10, #2, Feb.1992	Photorefractive Effects in Proton Exchanged LiTa03 Optical Waveguides
2	Appl Phys. Letts., Vol. 60, #11, March 1992	Periodic Filaments in Reflective Broad Area Semiconductor Optical Amplifier
3	IEEE Photonics Letters, Vol. 4, #5 May 1992	Demonstration of Low Frequency Noise Reduction for Fiber Sensors Powered by Diode-pumped Nd:YAG Lasers
4	Applied Optics Oct. 1992	80 Femtosecond Pulses From an All Fiber Source
5	Appl. Phys. Ltrs., Vol. 60, #9, March 1992	Blue Light Generation by Frequency Doubling of AlGaAs Broad Area Amplifier Emission
6	Photonics Letters, Vol. 4, #4 April 1992	An Optical Injected Synchronous Oscillator
7	Optics Letts., Vol. 17, #5 March 1992	A Fiber Optic AC Electric Field Sensor Based on the Electrostrictive Effect
8	Vol. 28, #3, p. 271 Jan. 1992	Remote Fiber Optic AC Magnetometer
9	Technology, Vol. 10, #7, 992-999, July 1992	Fiber Optic Gyroscopes with Depolarized Light
10	Electronics Letters, Vol. 28, p. 236 Jan. 1992	High Resolution Fiber Grating Based Strain Sensor with Interferometric Wavelength Shift Detection
11	Electronics Letters, Vol. 28, #4, Feb. 1992	Low Crosstalk Code Division Multiplexed Interferometric Array
12	IEE Proc. Jour., Vol. 139, #4, p. 288 Aug. 1992	Optical Microwave Techniques & Applications
13	Electronics Letters, Vol. 28, #2, Jan. 1992	Electrical Loss Mechanisms in Traveling Wave LiNb03 Optical Modulators
14	Photonics Tech. Letts., Vol. 4, p. 500 1992	Optical Polarization Division Multiplexing at 4Gb/s
15	App. Opt., Vol 31(16) Pages 2964 June 1992	Fiber Optic Two Beam Interferometric Fringe Amplitude Recovery Using Frequency Control
16	Elec. Ltrs., Vol 28(21) Oct 92	2.0W CW Diffraction Limited Tapered Amplifier w/Diode Injection

į

 \geq

.

•

17	Elec. Ltrs. Vol 28(20)] P. 1930-1931 Sept 92	Low Frequency Electrostrictive Ceramic Plate Voltage Sensor
18	Optical Materials, Vol. 1, p. 235, No. 4 (1992)	Growth, Processing, and Properties of CVD Grown Diamond
19	Optics Letters, Vol. 17, No. 8, April 1992	F-aggregate Color Centers In Sodium Doped KI
20	Optics Letters, Vol. 17, 833-835, 1992	Fiber Bragg Reflectors Prepared by a Single Excimer Pulse
21	Appl. Phys. Letts., Vol. 61, 429- 431 May 1992	Electron Beam Modification of Schottky Diode Characterisitics of Diamond
22	IEEE J. Quantum Electronics Volume 28(4) P. 1031-1038 1992	Diode Pumped Amplifier/Laser Using Leaky-Wave Fiber Coupling: An Evaluation
23	Applied Optics, Vol. 31, #1, 120- 125 Jan. 1992	Image Speckle Contrast Reduction Resulting from Integrative Synthetic Aperture Imaging
24	JOSA B, Vol. 9, 11, p. 2107 (1992)	Low-light Level Quantum Noise Reduction in a Stimulated Raman Amplifier
25	Rev. Sci. Instr., Vol. 63, 1838- 1839 (1992)	A Simple Technique to Prevent Misfire Arcing in Discharge Pumped Excimer Laser
26	Opt. Lett. Vol. 17, No. 11, p. 833, 1992	Ar2 Excimer Emission From a Pulsed Discharge Excited Supersonic Gas Jet
27	JOSA B, Vol. 17, No. 11, p. 833, (1992	Threshold Reduction for Stimulated Brillouin Scattering Using a Multipass Herriott Cell
28	Applied Optics, Vol. 31, 600-602, (1992)	SBS Phase Conjugation of an Amplified Hydrogen Fluoride Laser Beam
29	Optics Comm., Vol. 93, 156-162, (1992)	Passive Stabilization of Photorefractive Two-beam Coupling with Laser Diodes Using Achromatic Grating Techniques
30	Optics Communications, Vol. 93, 609-618 (1992)	Comparison Between Photorefractive Beam Fanning Using Monochromatic and Achromatic Two-wave Mixing in SBN
31	Phys. Rev. Ltrs., Vol. 69, 2503- 2506 (1992)	Optical Vortex Solitons Observed in Kerr Nonlinear Media

- --

-1

32	Optics Letters, Vol. 17, 828-830,	CW Stimulated Raman
	(1992)	Scattering in Microdroplets
33	JOSA B, Vol. 9, 43-50 (1992)	Spectral Properties of Lasing Microdroplets
34	Applied Optics, Vol. 31, 1982- 1991 (1992)	Cavity Mode Identification of Fluorescence and Lasing in Microdroplets
35	Modern Physics B Letters B, Vol. 6, 447-457 (1992)	Cavity Quantum Electrodynamic Enhancement of Spontaneous and Stimulated Emission in Microdroplets
36	Optics Letters, Vol. 17, 970-972, (1992)	Microdroplet Resonant Emission Structure
37	Phys. Rev. A, Vol. 45, 6756-6760 (1992)	Cavity-mode Spontaneous Emission Rates in Liquid Microdroplets
38	Optics Letters, Vol. 17, 493-495 (1992)	Dark Soliton Prototype Devices: Analysis Using Direct Scattering Theory
39	Science, Vol. 258, 783-785, (1992)	Nanochannel Array Glass
40	Appl. Phys. Letts., Vol. 61, 3151- 3153 (1992)	Nonlinear Optical Properties of Quantum Confined GaAs Nanocrystals in Vycor Glass
41	Phyiscs, Vol. 1, No. 3, 493-531, (1992)	Large Weakly Saturating Third order Nonlinear Susceptbilities in Semi-metals and Narrow-gap Semiconductors
42	Tech. B, Vol.10, No. 4, 1582, (1992)	Magnetic Generation of Electrons and Holes in Semimetallic HgTe-CdTe Superlattices
43	Jour. Vac. Sci. Technol. B, Vol. 10, 885 (1992)	Nonlinear Optical Properties of InSbAs-Based Alloys and Superlattices
44	Jour. Vac. Sci. Tech. B, Vol. 10, No. 2, p. 905 1992	Quantum Hall Effect in HgTe- CdTe Superlattices with Strong Three Dimensional Dispersion
45	our. Quantum. Elec., Vol. 18, No. 4, p. 1041 April 1992	Direct Upper Sate Resonant Pumping of the 2.8 Micron Er:YLF Laser
46	Phys. Rev. B, Vol. 45, p. 1295, 1992	Free Carrier Transport in Superlattices - Smooth Transition Between Quasi-2D and Uniform 3D Limits
47	Jour. Phys. Chem., Vol. 96, 5847, 1992	Third Order Optical Nonlinearities of Bis- Phthalocyanines
48	Appl. Phys. Letts., Vol. 60, 2202, (1992)	Setback Modulation Doping of HgTe-CdTe Multiple Quantum Wells

.

49	Phys. Rev. Lett., 68, 2705 (1992)	Comment on Large Infrared Nonlinear Optical Response of C60
50	Optics Letts., Vol. 17, No. 10, p. 731 May 1992	Continuous Wave Modelocked 2 Micron Laser
51	Phys. Rev. B, Vol. 46, No. 7, p. 46 Aug. 1992	Electron and Hole In-plane Mobilities in HgTe-CdTe Superlattices
52	Chem. Phys. Letts., 188, p. 492, (1992)	Off-resonant Nonlinear Optical Response of C60 Studied by Degenerate Four-wave Mixing
53	Appl. Phys. Letts., Vol. 61, 1814, (1992)	HgTe-CdTe Superlattices for IR Detection Revisited
54	Elec. Letts., Vol. 28, No. 13, p. 1258 June 1992	Even Length Median Filters in Optimal Signal Processing
55	Optics Letts., Vol. 17, No. 11, pg. 816 June 1992	Efficent Resonantly Pumped 2.8 Micron Er:GSGG Laser
56	Optics Letts., Vol. 17, No. 10, P. 736 May 1992	Intercavity Pumped 2.09 Micron Ho:YAG Laser
57	J. Appl. Phys., Vol. 71, 3394 (1992)	Auger Recombination in HgCdTe Quantum Wires and Quantum Boxes
58	J. Vac. Sci. Tech. B, 10, 1638, (1992)	Quantum Hall Effect and Setback Modulation Doping in HgTe-CdTe Heterostructures
59	Int'l Jour. of Nonlinear Optical Physics, Vol. 1, No. 4, 699-726, (1992)	Third Order Nonlinear Optical Properties of Metallo- Phtalocyanines
60	lec. Letts., Vol. 28, #8 April 1992	Observation of Photodetector Nonlinearities
61	lec. Letts., Vol. 28, No. 6 March 1992	Reflectrometric Two-mode Elliptical-core Fiber Strain Sensor
62	Elec. Letts. Sept. 1992	Low Frequency Electric Field Detection with an Electrostrictive Ceramic Plate
63	Appl. Phys. Ltrs. Vol. 61 1992	Large Signal Switching Characteristics of a Psuedomorphic AlGaAs/InGaAs Modfet on a Picosecond Time Scale
64	Appl. Phys. Ltrs., Vol. 61, #6, p. 633, Aug. 1992	21 Watt Broad Area Near- diffraction Limited Semiconductor Amplifier
65	Appl. Phys. Ltrs., Vol. 61, #4, p. 384 July 1992	Lateral Temperature Profiling in Broad Area Diode Lasers and Amplifiers using a Photoluminescence Microprobe

•

16 September 1994 0 0 SEP 1994

R

ł

66	J. of Lightwave Tech., Vol. 10, Oct. 1992	Performance and Modeling of Proton-exchanged LiTa03 Branching Modulator
67	Appl. Phys. Ltrs., Vol. 61, p. 1760 1992	35 Ghz Metal-semiconductor- metal Photodetectors on Crystalline Silicon
68	IEEE J. Quan. Elec., Vol. 28, Oct. 1992	Optoelectronic Transient Characterization of Ultrafast Devices
69	Elec. Letts., Vol. 28, #9, 826-827, Apr. 1992	40 Ghz Low V Pi Ti:LiNb03 Intensity Modulators
70	Elec. Ltrs., Vol. 28, #12, p. 1082, June 1992	3.3 W CW Diffraction Limited Broad Area Semiconductor Amplifier
71	EEE Photonics Tech. Ltrs. Aug. 1992	Shaping the Digital Switch
72	Elec. Ltrs., Vol. 28, #13, p. 1215, June 1992	Dual Wavelength Fiber Interferometer w/Wavelength Selection via Fiber Bragg Grating Element
73	Elec. Ltrs., Vol. 28, #12, p. 1126, June 1992	Single Polarization Fiber Amplifiers
74	IEEE Phot. Tech. Ltrs. Vol. 4 Oct. 1992	Use of a Doubly Polarized Laser for Remote Powering of an Integrated Optical Modulator
75	J. Statistical Physics, Vol. 70, #1 pp. 413-421 Jan. 1992	Observation of Stochastic Resonance Near a Subcritical Bifurcation
76	IEEE Phot. Tech. Ltrs., Vol. 4,(10) pp. 1183-1185 October 1992	Fiber Optic Bragg Grating Differential Temperature Sensor
77	Elec. Ltrs., Vol. 28, #20, p. 1894, Sept. 1992	High Repetition Rate Figure Eight Laser w/Extracavity Feedback
78	Elec. Ltrs., Vol. 28, #19 Sept. 1992	Elimination of Coherent Rayleigh Backscatter Induced Noise in Fiber Micherson Interferometer
79	Journal of Vacuum Science Technology, Volume B10, Page 2251 (September/October 1992)	20 nm Linewidth Platinum Pattern Fabrication Using Conformal Effusive-Source Molecular Precursor Deposition and Sidewall Lithography
80	Thin Solid Films, Volume 210/211, Page 359 (1992)	Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films
81	Applied Physics Letters, Volume 61, Page 3151 (December 1992)	Nonlinear Optical Properties of Quantum-Confined GaAs Nanocrystals in Vycor Glass

16 September 1994 0 0 SEP 1994

•

82	Thin Solid Films, Volume 209, Page 9 (March 1992)	Sodium Fluoride Thin Films by Chemical Vapor Deposition	
83	Chemical Materials, Volume 4, Page 833 (July/August 1992)	Synthesis, Characterization, and Chemical Vapor Deposition Properties of Primary and Secondary Neopentylstibine. New Antimony Precursors for MOCVD	
	Organometallics, Volume 11, Page 2163 (1992)	Synthesis and Characterization of Neopentyl-and {(Trimethylsilyl)- methyl}antimony Compounds. Molecular Structures of (Me3CCH2)3Sb, (Me3CCH2)3SbI2, (Me3SiCH2)3Sb, and (Me3SiCH2)3SbI2	
		Deleted	R
85	Applied Phys. 71, 796 1992	Spatially Dependent Effective Mass Optical Properties in Finite Parabolic Quantum Wells.	
86	Phys. Rev. A45(3),1569-1574, 1992	Observation of Density- Enhanced Dielectronic Satellite Spectra Produced During Subpicosecond Laser-Matter Interactions.	
87	Nuc. Instr. and Methods A322, 40- 42 1992	Risetimes in Cerussite Scintillator.	
88	Rev. Sci. Instrum. 63(5), 2958- 2966 1992	The Improvement of Phase Modulated Spectroscopic Ellipsometry.	
89	Rev. Sci. Instrum. 63(10),5052, 1992	Quantitative X-ray Emission from a DPF Device.	
90	Rapid Communications Phy. Rev. B46,12068 1992	Nonlinear Molecular Dynamics and Monte Carlo Algorithms, Rapid Communications.	
91	IEEE Trans.Nuc.Sci., NS- 39,1665-1670 December 1992	Laser Confirmation of SEU Experiments in GaAs MESFET Combinational Logic.	
92	Journal of Appl. Phys. 71,4201- 4207 May 1992	Effect of Carrier Concentration on the Properties of Irradiation- induced Defects in P-type Indium Phosphide Grown by Metalorganic Chemical Vapor Deposition.	

-

-

16 September 1994 2 0 SEP 1994

102	Dhun Day D45 3595	Magnetic-field Dependence of
93	Phys.Rev. B45, 2585 February 1992	Critical Currents in Proton- irradiated YBa ₂ Cu ₃ O ₇₋₈ films:
		Conventional Behavior of the
<u></u>		Pinning Force Density.
94	IEEE Trans. Nuc. Sci. December 1992	Radiation Effects in GayIn ₁₋ vAs Devices.
95	IEEE Trans. Nuc. Sci. NS-39, 1846-1850, December 1992	CRRES Dosimetry Results and Comparisons Using the Space Radiation Dosimeter and P- channel MOS Dosimeters.
96	IEEE Trans. Nuc. Sci. NS- 39,1836-1839 December 1992	Comparison of SEU Rate Prediction Techniques.
97	IEEE Trans. Nuc. Sci, NS-39, 1828-1835 December 1992	Single Event Upset Rates in Space.
98	IEEE Trans. Nuc. Sci. NS-39, 1730-1738 December 1992	Investigation of the Oxygen Vacancy A-center Defect Complex Profile in Neutron Irradiated High Resistivity Silicon Junction Particle Detectors.
99	Phys. Rev. B46,1134 July 1992	Atomic Disorder and the Transition Temperature of Cuprate Superconductors.
100	IEEE Nuc. Trans. Sci. NS- 39,1600 December 1992	The Relationship of Proton and Heavy Ion Upset Thresholds.
101	IEEE Trans. Nuc. Sci, NS-39, 1613-1621 December 1992	Applicability of LET to Single Events in Microelectronic Structures.
102	IEEE Trans. Nucl. Sci. NS-39, 1657 1992	Picosecond Charge-Collection Dynamics in GaAs MESFETs.
103	IEEE Trans. Nuc. Sci. 38, 1359, 1992	Radiation Damage Assessment of Nb Tunnel Junction Devices.
104	Nuclear Instruments and Methods in Physics Research A322,40-42, 1992	Nuclear Spectroscopy Using Risetimes in Cerussite Scintillators.
105	IEEE Trans. Nuc. Sci. 39, 1865, December 1992	Order-of-magnitude Method for Estimating the Fluence that Optimizes the Critical Current in Survivability of High-T _c Microwave Devices in Space Environments.
106	Solid State Communications, 83, 277-230 1992	Thermal Annealing of Cu- ions inIrradiated NaCl:Cu Near 415K.
107	Nucl. Instr. and Methods, B67,384 1992	Transient Charge Collection from Ion Tracks in Semiconductors.

,

.

16 September 1994

•

.

ŧ

108	Radiation Research 132,282, December 1992	A Spatially Restricted Linear Energy Transfer Equation.
109	IEEE Trans. Nuc. Sci., NS- 39,1982-1989 December 1992	Space Radiation Effects on Optoelectronic Materials and Components for a 1300 nm Fiber Optic Data Bus.,
110	IEEE Trans. Nuc. Sci., NS- 39,1630-1635 December 1992	Spatial and Temporal Dependence SEU in a 64K SRAM.
111	Nuclear Instruments and Methods in Physics Research, B67,384-389 April 1992	Transient Charge Collection From Ion Tracks in Semiconductors.
112	Phys. Rev. B45,9266 1992	Photoemission Study of Hydrogen Adsorption on Vanadium Dioxide Near the Semiconductor-Metal Phase Transition.
113	Phys. Rev. B45,2585 1992	Magnetic Field Dependence of Critical Currents in Proton Irradiated YBa ₂ Cu ₃ O _{7-∂} Films: Conventional Behavior of the Pinning-Force Density.
114	IEEE Trans. Micro. 40 January 1992	Experimental Wide-Stopband Filters Utilizing Asymmetric Ferrite Junctions.
115	IEEE Trans. Micro. Theory & Techn., 40,1168-1673 August 1992	Microwave Characteristics of High Tc Superconducting Coplanar Waveguide Resonator.
116	Integrated Ferroelectrics 1,223- 237, 1992	Filament-Assisted Pulsed Laser Deposition of Epitaxial PbZr _x Ti _{1-x} O ₃ Films: Morphological and Electrical Characterization.
117	Surf. & Coat. Technol. 51,290- 298, 1992	Pulsed Laser Deposition of Electronic Ceramics.
118	Phys. Rev. B45,3048-3053 1992	Quantum Nucleation and Thermal Activation of Vortex Rings in High Tc Superconductors.
119	Matls. Res. Soc. Bull. XVII,37-43 February 1992	Pulsed Laser Deposition of High T _c Superconducting Thin Films for Electronic Device Applications.
120	Appl. Phys. Lett. 60, 1193-1195, 1992	Anion-Assisted Pulsed Laser Deposition of Lead Zirconate Titanate Films.
121	J. Rad. Effects REs. and Eng. 1992	Photocurrent Generation in Specially Treated Sapphire.

ł

100	IEEE Transactions on Plasma	Analysis of the Deflection
122		System for a Magnetic-Field-
	Science, 20, 232	Immersed Magnicon Amplifier
100	(1992)	
123	International Journal of Electronics,	A Phase-Plate Mode
	72, 1119	Transducer for TE _{1n} Gyrotron
	(1992)	Modes
124	Applied Physics Letters, 60, 1556	Demonstration of Vacuum Field
	(1992)	Emission from a Self-
		Assembling Biomolecular
		Microstructure Composite
125	IEEE Transactions on Electron	Design of an electron Gun for a
	Devices, 39, 1763	280 GHz Inducted-Resonance-
· ·	(1992)	Electron-Cyclotron (IREC)
		Maser Experiment
126	Nuclear Instruments and Methods	Effect of Energy Spread and
R	A, 318, 560	Gyromotion on Efficiency of a
	1992	Smith-Purcell FEL
127	Materials Science and Engineering	Fabrication of Biologically
	A, 158, 1	Based Microstructure
	(1992)	Composites for Vacuum Field
		Emission
128	Nuclear Instruments and Methods	Field-Emission Arrays - A
	A, 318, 353	Potentially Bright Source
	(1992)	
129	Nuclear Instruments and Methods	Harmonic Generation in Laser-
1	A, 318, 533	Pumped FELs and Stimulated
1	(1992)	Backscattering from Plasmas
130	Physical Review A, 45, 2179	Maximum Microwave
	(1992)	Conversion Efficiency From a
		Modulated Intense Relativistic
		Electron Beam
131	International Journal of Electronics,	Multimode Simulation of High
	72, 779	Frequency Gyrotrons
	(1992)	A
132	Physical Review A, 45, 8846	Nonlinear Analysis of a Grating
	(1992)	Free-Electron Laser
133	International Journal of Electronics,	Observation of Harmonic
	72, 1003	Gyro-Backward-Wave
	(1992)	Oscillation in a 100 GHz
	·····	CARM Oscillator Experiment
134	IEEE Transactions on	Simulation Studies of a
	Electromagnetic Compatibility, 34,	Klystronlike Amplifier
		Operating in the 10-100 GW
	(1992)	Regime
135	Nuclear Instruments and Methods	3D Simulation of High Gain
1.55	A, 318, 675	FELs in an Optical Klystron
	(1992)	Configuration
136	International Journal of Electronics,	Tilted Resonator Experiments
150	72,807	on a Quasioptical Gyrotron
1		on a Quasiopucai Oylouon
	(1992)	

- - - - - -

2 0 SEP 1994

.

,

137	IEEE Transactions on Plasma Sciences, 20, 288 (1992)	X-Band Dielectric Cerenkov Maser Amplifier Experiment
138	International Journal of Electronics, 72, 1165 (1992)	On the Possibility of High Power Gyrotrons for Super Range Resolution Radar and Atmospheric Sensing
139	International Journal of Infrared and Millimeter Waves, 13, 1449 (1992)	Application of Gyrotrons to High Power Millimeter Wave Doppler Radars
	Physical Review B Volume 46 (8) Pages 4874-4883 August 1992	Density-Gradient Analysis of Field Emission from Metals
141	Quality and Reliability Engineering International Volume 8 Pages 295-300 1992	GaAs MMIC Reliability Studies
142	Conference Proceedings 3rd European Sympsoium on Reliability of Elecrton Devices, Failure Physics and Analysis (ESREF '92) Pages 167-170 1992	Failure Mechanisms in Life Tested HEMTs
143	Reliability of Gallium Arsenide MMICs Chapter 12 Pages 435-452 1992	MIMIC Radiation Effects
144	J. Vac. Sci. Technol. Volume B 10(6) Pages. 3196-3199 November/December 1992	Fabrication of Parallel Quasi- One-Dimensional Wires Using a Novel Conformable X-Ray Mask Technology
145	J. Vac. Sci. Technol. A Volume 10 (1) Pages 152-157 January/February 1992	Infrared Optical Properties of Dielectric/Metal Layer Structures of Relevance to Reflection Absorption Spectroscopy
146	Physical Review B Volume 45 (16) Pages 9266-9271 April 1992	Photoemission Study of Hydrogen Adsorption on Vanadium Dioxide near the Semiconductor-Metal Phase Transition
147	J. Appl. Phys. Volume 71 (11) Pages 5450-5459 June 1992	Study of the Initial Formation of Silicon Carbide by Reaction of Tetraethyl Silane with Silicon

2 0 SEP 1994

1

149		
148	Surface Science	Study of the Initial Adsorption
	Volume 276	of Nitrogen on SiC(100)-(2 X
	Pages 59-68	1)
	June 1992	
149	J. Va. Sc. Technol. A.	Study of Fluorine (XeF2)
	Volume 10 (6)	Adsorption and of
	Pages 3478-3485	Oxygen/Fluorine Co-adsorption
	November 1992	on Silicon Using Infrared
		Reflection Absorption
		Spectroscopy
150	Electronics Letters	Observation of DC and
	Volume 28 (3)	Microwave Negative
	Page 268	Differential Resistance in
-	January 1992	InAIAs/InGaAs/InP HEMTs
151	InP and Related Materials	
		Temperature Dependence of
	Conference Bases 226 220	Low Frequency Gain
	Pages 226-229	Dispersion in Ion-Implanted
150	1992	INP JFETs
152	Surface Science 267	Intersubband Transitions in
	Page 120-123	Piezoelectric Superlattices
	1992	
153	Physical Review B	Effects of Nonparabolicity on
1	Vol. 45	Collective Intersubband
	No.19	Excitations
1	Page 11399 - 11402	
	May 1992	
154	Superlattices and Microstructures	Collective Intersubband
	Volume 12 (2)	Excitations in a Magnetic Field
	Pages 251	
	1992	
155	Surfaces and Microstructures	Real-Space Tight-Binding and
	Volume 11 (1)	Discrete Phase-Space Many-
	Pages 103-111	Body Quantum Transport in
	1992	Granular Nanoelectronics
156		
156	IEEE Electron Device Letters	Hot-Electron-Induced
	Volume 13 (12)	Degradation of Front and Back
	Pages 603-605	Channels in Partially and Fully
1.55	December 1992	Depleted SIMOX MOSFET's
157	Journal of Electronic Materials	Numerical Analysis of Silibon-
	Volume 21 (7)	on-Insulator Short Channel
	Pages 683-687	Effects in a Radiation
	February 1992	Environment
158	IEEE Electron Devices Society &	Reliability Study of a GaAs
	IEEE Reliability Society	MMIC Amplifier
	Proc. 1992 Inter'l Reliability	
	Physics Symposium	1
	Pages 327-331	
	1992	

2 0 SEP 1994

ŧ

159	Physical Review B The American Physical Society Volume 46 (3) Page 1377 July 1992	31P.Electron-Nuclear Double Resonance of the P In Antisite in InP:Zn Detected via Luminescence
160	J. Appl. Phys. Volume 71 (4) Pages 1878-1884 February 1992	Photoresponse of Shallow Step, Weak-Link Bridges Using Inverted Cylindrical Magnetron-Sputtered Y ₁ Ba ₂ Cu ₃ O _{7-x} Thin Films
. 161	Appl. Phys. Lett. Volume 60 (3) Pages 389-391 January 1992	Y ₁ Ba ₂ Cu ₃ O _{7-x} and LaA10 ₃ Composite Thin Films by Off- Axis Magnetron Sputtering
162	App. Phys. Lett Volume <u>61</u> (9) Pages 1125-1127 August 1992	Role of Hydrogen in the Growth of Y ₁ Ba ₂ Cu ₃ O ₇ on MgO Substrates by Off-Axis Magnetron Sputtering
163	Superconducting Devices and Their Applications Springer Proceedings in Physics Volume 64 Page 180 1992	Light Detection Using High -T _c Microstrip Lines
164	Appl. Phys. Lett Volume 60 (23) Page 2926 June 1992	Metalorganic Chemical Vapor Deposition of Low Microwave Surface Resistance YBa ₂ Cu ₃ O ₇ on (100) LaAlO ₃ and (100) SrTiO ₃
165	IEEE Electron Device Letters Volume 13(9) Pages 473-475 September 1992	DC Characteristics of High Breakdown Voltage p-i-n Diodes Made by 20-MeV Si Implantation in InP:Fe
166	Journal of Electronic Materials Volume 21 (9) Pages 923-928 September 1992	Co, Fe, and Ti Implants in InGaAs and Co Implants in InP at 200°C
167	Surface Science 263 Page 471-474 1992	Exchange and Correlation in Quasi-Two-Dimensional Plasmas in Quantum Well Structures
168	Physical Review Letters Volume 68 (12) Page 1884 March 1992	Exchange and Correlation in the Nonhomogeneous Electron Gas in Semiconductor Heterojunctions
169	Semiconductor Interfaces and Microstructures Chapter 6 Page 149 1992	Photoluninescence Studies of Interface Roughness in GaAs/A1As Quantum Well Structures

170	Dhusion of Eluide D. Diserro	Absolute Instabilities in
170	Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992	Gyropeneotron Amplifiers
171	Materials Science Forum Vol. 83-87 Page 775-786 1992	Optically Detected Magnetic Resonance of Donor States in $Al_xGa_{1-x}As$ (x ≥ 0.35) Doped with Group-IV and Group-VI Impurities
	Materials Science Forum Volume 83-87 Pages 793-798 1992	Magnetic Resonance of X-Point Shallow Donors in A1Sb:Te Bulk Crystals and A1Sb MBE Layers
173	Materials Research Society Symposium Proceedings Volume 236 Pages 217-222 1992	Tge Effects of P ₂ S ₅ Surface Passivation on Dry Etched GaAs
174	Semiconductor Wafer Bonding Volume 92-7 Pages 174-179 1992	Silicon On Insulator Fabrication from Wafer Bonding and Selective Etching Techniques using a Silicon-Germanium Alloy Etch Stop
175	American Vacuum Society/ J. Vac. Scl. Technol. B Volume 10(2) Pages 924-926 April/May 1992	Near Band-Edge Photoluminescence from Si ₁₋ _x Ge _x /Si Superlattices Grown by Molecular Beam Epitaxy
176	J. Electrochem. Soc. Volume 139 (10) Pages 2943-2947 October 1992	Selective Removal of Si _{1-x} Ge _x from (100) Si Using HNO3 AND HF
177	Appl. Phys. Lett. Volume 61 (18) Pages 2217-2219 November 1992	Ge Profile from the Growth of SiGe Buried Layers by Molecular Beam Epitaxy
178	Physical Review B Volume 46 (15) Page 9538 October 1992	Resonant Tunneling in Coupled Quantum Dots
179	Mat. Res. Soc. Symp. Proceedings Volume 262 Pages 289-294 1992	EL2 Related Anomalous Splitting in the Photoreflectance Response of Semi-Insulating GaAs
180	Appl. Phys. Lett Volume 61 (13) Page 159 September 1992	Anomalous Splitting in the Photoreflectance Response of Semi-Insulating GaAs and Correlation with EL2

101	L A L Dhue L att	Post-Growth Annealing of Low
181	Appl. Phys. Lett.	Temperature-Grown Sb-Doped
	Volume 61 (1)	
	Pages 76-78	Si Molecular Beam Epitaxial
	July 1992	Films
182	Physical Review A	Self-Consistent Analysis of
	Volume 45 (10)	Wiggler Field Errors in Free-
	Pages 7488-7491	Electron Lasers
	May 1992	
183	IEEE Transactions on Nuclear	Dose Rate Independent Total
	Science	Dose Failure in 54F10 Bipolar
	Volume 39 (6)	Logic Circuits
	Pages 1899-1902	
	December 1992	
184	J. Vac Sci. Technol. B	Modification of the
104	Volume 10 (2)	Microroughness of Molecular-
·	Pages 800-802	Beam Epitaxially Grown
	March/April 1992	GaAs/AlAs Interfaces Through
		Changes in the Growth
· · · · · · · · · · · · · · · · · · ·		Temperature
185	Materials Science and Engineering	a -SiC Buried-Gate Junction
	B11	Field Effect Transistors
	Pages 121-124	1
	1992	
186	Materials Science Forum	Spectroscopic Investigation of
	Vol. 83-87	the Er Site in GaAs:Er
	Page 665-670	
	1992	
187	Materials Science Forum	Photoluminescence Excitation
107	Vol. 83-87	Spectroscopy of Cubic SiC
	Page 1195-1201	Grown by Chemical Vapor
	1992	Deposition on Si Substrates
188	Materials Science and Engineering	Optical Studies of Donors and
100	B11	Acceptors in Cubic SiC
		Acceptors in Cubic SiC
	Page 21-25	
100	1992	Crowth and Characterization
189	Mat. Res. Soc. Symp. Proc.	Growth and Characterization of
	Vol. 240	Ternary and Quaternary
	Page 117-122	Compounds of Iny(Al _x Ga ₁ -
	1992	$x)_{1-y}$ As on (100) InP
190	J. Applied Physics	Site Transfer of Si in GaAs
	Volume 72 (7)	after Heavy Ion MeV
	Page 2692	Implantation and Annealing
	October 192	· · · · · · · · · · · · · · · · · · ·
191	Physical Review B	Interface Phonons of Quantum
1/1	Vol. 45 (16)	Wires
	Pages 9091 - 9102	
•	April 1992	
102		Optical Absorption Due to
192	Superlattices and Microstructures	Optical Absorption Due to Interface Phonons and Interface
	Volume 12 (4)	I Interface Phonons and Interface
	Page 553 1992	Plasmons of Quantum Dots

193	IFEF Transactions on Di	
195	IEEE Transactions on Plasma	Self-Consistent Field Theory of
	Science	a Helix Traveling Wave Tube
1	Volume 20 (5)	Amplifier
	Pages 543-553	
101	October 1992	
194	Electronics Letters	InAlAs/InGaAs Heterojunction
	Volume 28 (15)	Bipolar Transistors with an
	Pages 1388-1390	Al/As Etch-Stop Layer
	July 1992	
195	J. Vac. Sci. Technol.	Characterization of the
	Volume A 10 (4)	Electrical Bias Induced Strain
	Pages 1012-1019	Variation in MOSFETs Using
	July/August 1992	X-Ray Double Crystal
		Topography
196	J. Vac. Sci. Technol.	Non-Destructive Evaluation of
	Volume A 10 (4)	Silicon-on-Insulator Substrates
	Pages 1006-1011	Using X-Ray Double Crystal
	July/August 1992	Topography
197	J. Vac. Sci. Technol.	Proximity Effect Reduction in
	Volume B 10 (6)	X-Ray Mack Making Haing
	Pages 3062-3066	X-Ray Mask Making Using
	November/December 1992	Thin Silicon Dioxide Layers
198	J. Appl. Phys.	Electron Transli
	Volume 72 (11)	Electron Tunneling
1	Page 5333	Spectroscopy and Defects in
	December 1992	GaAs/A1GaAs/GaAs
199	R&D Magazine	Heterostructures
1,7,7		Nanofabrication: How Small
	Page 123	Can Devices Get?
200	February 1992	
200	Ultramicroscopy	High Resolution Lithography
	Volume 42 (44)	with a Vacuum STM
	Pages 1309-1316	
201	1992	
201	J. Mater. Res.	Silicon Cross Doping and its
	Volume 7 (8)	Effect on the Si or Be
	Pages 2186-2193	Implantation Doping of Gallium
	1992	Arsenide Grown on (100)
		Silicon by Metalorganic
200		Chemical Vapor Deposition,
202	J. Mater. Res.	Observations on the Electrical
	Volume 7 (9)	Characterization of the
	Pages 2465-2477	Heteroiepitaxially Grown Cubic
	September 1992	SiC
203	Surface Science 263	Properties of 2D Electrons and
	Pages 595-599	Associated Bound Donors in
	1992	Delta-Doped InSb
204	Physical Review B	EL2-Copper Interaction in
	The American Physical Society	Heat-Treated GaAs
	Volume 46	incal-fileateu GaAs
	Pages7229	
	September 1992	
	50pminut 1772	

ł

205	Springer Proceedings in Physics Amorphous and Crystalline Silicon Carbide III Volume 56 Page 155 1992	Transport Measurements and Shallow Donors in Cubic SiC
206	The Physics of Non-Crystalline Solids The Society of Glass Technology Pages 309-314 1992	Fundamental Issues Confronting Models of Non- Linear Structural Relaxation
207	The Physics of Non-Crystalline Solids The Society of Glass Technology Pages 342-346 1992	Correlation of the Stretch Exponent with the Decoupling Index in Ionic Glasses from the Coupling Model
208	Macromolecules Volume 25 Pages 2184-2191 1992	Generalized Fokker-Planck Approach to the Coupling Model and Comparison with Computer Simulations
209	The Physics of Non-Crystalline Solids Pages 178-182 1992	Nuclear Spin Relaxation in Fluorozirconate Glass
210	Macromolecules Volume 25 (15) Pages 3906-3909 1992	Trends in the Temperature Dependency of Segmental Relaxation in TMPC/PS Blends
211	Physics and Chemistry of Glasses Volume 33 (4) Pages 1-7 August 1992	The Nature of the Linear Frequency Dependent Alternating Current Conductivity Interpolating Between Conductivity Relaxation and Vibrational Responses in Alkali Oxide Glasses
212	NATO ASI Series: Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution SH Chen et al (Eds) Kluwer Academic Publishers Volume 369 Pages 221-228 1992	Interpretation of Dynamical Properties of Polymeric Cluster Solutions
213	Solid State Ionics Volumes 53-56 Pages 936-946 1992	Comparisons Between the Coupling Model Predictions, Monte Carlo Simulations and Some Recent Experimental Data of Conductivity Relaxations in Glassy Ionics

· • • • • • • • •

		Viscoelastic Properties of
214	Macromolecules Volume 25 (19) Pages 4921-4924 1992	Amorphous Polymers. 1. Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion
215	Macromolecues Volume 25 (19) Pages 4915-4919 1992	An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol)
216	Physical Review B Volume 46, No. 13 Pages 8126-8131 October 1992	Anomalous Reduction of Solvent Friction in Chlorinated Biphenyl Solutions of 1, 2 - Polybutadiene
217	Macromolecules Volume 25 (24) Pages 6727-6729 1992	Interpretation of Anomalous Momentum Transfer Dependence of Local Chain Motion of Polymers Observed by Quasielastic Incoherent Neutron Scattering Experiments
218	Physica A Volume 191 Pages 523-531 1992	Fractal Phase Space Transport Dynamics and Relaxations in Complex Correlated Systems
219	Journal de Physique IV Colloquie C2, Suppl. au Journal de Physique III Volume 2 Pages C2-61-C2-73 1992	Structural Relaxation and Conductivity Relaxation in Glassy Ionics
220	Journal de Physique IV Colloquie C2, Suppple au Journal de Physique III Volume 2 Pages C2-159-C2-163 October 1992	Nuclear Magnetic Resonance and Ionic Motion in Fluorozirconate Glasses
221	Surfaces & Applications of Superconducting Quantum Interference World Scientific Volume 5 Pages 275-342 1992	Space Applications of Superconductivity
. 222	FED Journal Volume 3 (2) Pages 12-21 1992	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
223	Cryogenics Volume 32 (12) Pages 1169-1170 1992	A Conference Report: Second Symposium on High Temperature Superconductors in High Frequency Fields

ţ

224	Inst. Phys. Conf.	Defects in Vertical Zone Melt
224	Ser. No 120	(VZM) GaAs
	Chapter 2 Pages 61 66	
	Pages 61-66	
	1992	Evaluation of Local Vibrational
225	J. Appl. Phys.	
	Volume 72 (6)	Mode Absorption CAused by
	Page 2505	Carbon in GaAs
	September 1992	
226	Applied Physics Letters, American	Determination of Band Gap and
1	Institute of Physics	Effective Masses in InAs/Ga1-
	Volume 61 (2)	xInxSb Superlattices
-	Pages 207-209	
8	July 1992	
227	J. Electrochemical Society	High Selectivity Patterned
	Volume 139 (9)	Substrate Epitaxy of In _x Ga ₁ .
1	Page L84	$_{x}$ As/GaAs(0£ x£ 1) by
	September 1992	Conventional LPOMVPE
228	J. Appl. Phys	High Temperature
1	Volume 72 (10)	Characteristics of Amorphous
8	Pages 4954 - 4957	TiSWix Nonalloyed Ohmic
	November 1992	Contacts to GaAs
229	Journal of Electrochemical Society	Reduction of DX Centers in
	Volume 139 (4)	Superlattice Alloy-Like Material
8	Pages 1219-1222	High Electron Mobility
	April 1992	Transistors
230	6th International SAMPE Electronic	High Performance InGaAs On
230	Conference	Silicon MSM Photodetectors
	Volume 6	Grown By MBE
	Pages 816-822 1992	
- 221		The Neur's Dole in Veguum
231	Microwave Journal	The Navy's Role in Vacuum Tube Electronics. Part 1: The
8	Volume 35 (3)	
	Pages 82-90	Tri-Service Program
	March 1992	Chamical Vapor Deposition of
232	Materials Science and Engineering	Chemical Vapor Deposition of
	B11	b -SiC on Silicon-on-Sapphire
	Pages 125-129	and Silicon-on-Insulator
	1992	Substrates
233	J. Vac. Sci. Technol.	Comparative Mobility
	Volume B (10)	Degradation in Modulation-
	Pages. 2890-2892	Doped GaAs Devices After E-
	November/December 1992	Beam and X-Ray Lithography
234	J. Vac. Sci. Technol.	Conductance Quantization in a
	Volume B 10 (6)	GaAs Electron Waveguide
	Pages. 2966-2969	Device Fabricated by X-Ray
	November/December 1992	Lithography
235	Sytnthetic Microstructures in	Advance Materials Processes
	Biological Research	for Bio-Probes
	Pages. 3-16	
	November 1992	
8	110VCIIIUCI 1992	

- - - -

- -

236	Appl. Phys. Lett.	Stress and Its Effect on the
230	Volume 60 (9)	Interdiffusion in Si _{1-x} Ge _x /Si
	Page 1087	Superlattices
	March 1992	Superlatuces
237	Mat. Res. Soc. Symp Proc.	An Alternate Mechanism for
231	Volume 256	Porous Si Photoluminescence:
	Pages 107-110	Recombination in SiH _x
	1992	Complexes
238	Proceedings of 6th International	Stresses and Allloy Mixing in
230	SAMPE Electronics Conference	Si _{1-x} Ge _x /Si Superlattices
	Pages 823-834	
]	1992	
239	Physica C	Pairing in Layered
	Volumes 185-189	Superconductors in the
	Pages 1543-1544	Presence of a Magnetic Field
	1992	-
240	Pramana - J. Physics	Bivariate Averaging Functions,
	Volume 38 (3)	Translation and Scale
	Pages 233-247	Autocorrelations, Fourier and
	March 1992	Mellin Transforms, the Wiener-
		Khinchine Theorem and Their
<u></u>		Inter-Relationships
241	Physical Review B	Solutions of the Microscopic
	Volume 46 (2)	Gorkov Equations for a
	July 1992	Superconductor in a Strong
		Quantizing Magnetic Field
242	Pramana - J. Phys (Printed in	Magnetic Field Dependence of
	India)	Tc and Temperature
	Volume 39 (6)	Dependence of Hc2 in Layered
	Pages 615-631 1992	Superconductors with Open Normal State Fermi Surface
243	Modern Physics Letters A	Uncertainty Principle,
243	Volume 7 (40)	Squeezing, and Quantum
	Pages 3759-3764	Groups
	1992	Croubo
244	IEEE MTT-S Intern. Microwave	A Heterodyne Receiver for 40-
	Symposium	GHz-Modulated 1.3-µm
	Pages 1413-1416	Optical Signals Using a Multi-
	1992	Tasked InP-Based HEMT
245	Physical Review B	Infrared Absorption Due to
	Volume 46 (3)	Electron-Lattice-Vibration
	Page 1620	Scattering in A1As/GaAs
	July 1992	Quantum Wells
246	Superlattices and Microstructures	Phonon Assisted Cyclotron
	Volume 12 (3)	Resonance in Quantum Wells
	Page 331	
	1992	
247	Applied Physics Letters	Evaluation of the 3-Level
	Volume 60 (18)	Charge Pumping Technique for

.

i

248	Journal of Electronic Materials Volume 91 (7) Pages 775-780 1992	Effects of Hydrogen Annealing on MOS Oxides
249	Solid-State Electronics Volume 35 (6) Pages 843-854 1992	Theory and Measurement of Quantization Effects on Si-SiO ₂ Interface Trap Modelling
250	Appl. Phys. Lett . Volume 61 (25) Pages 3014-3016) December 1992	Time-Dependence of the Interface Trap Build-Up Deuterium-Annealed Oxides after Irradiation
251	IEEE Transactions on Nuclear Science Volume 39 (6) Pages 2220-2229 December 1992	The Time-Dependence of Post- Irradiation Interface Trap Build-up in Deuterium- Annealed Oxides
252	App. Phys. Lett. Volume 61 (19) Page 2338 November 1992	Large Temperature Changes Induced by MBE Growth on Radiatively Heated Substrates
253	Surface and Interface Analysis Volume 18 Pages 514-524 1992	Performance of MgO/Au Cermet Films as Secondary Electron Emission Cold Cathodes
254	Applied Surface Science Volume 59] Pages 227-237 1992	Analysis of Oxygen Binding- Energy Variations for BaO on W
255	Superlattices and Microstructures Vol. 11 (3) Pages 293-296 1992	Light-Activated Resistance Switching in GaAs/AlGaAs Naturally-Occuring Nanostructures
256	IEEE Trans. of Nuclear Science Volume 39 (6) Pages 2086-2097 December 1992	Electron and Hole Trapping in Irradiated SIMOX, ZMR and BESOI Buried Oxides
257	Journal of Non-Crystalline Solids Volume 140 Pages 166-171 1992	Raman Scattering Studies of Microcrystalline Inclusions in Fluoride Glasses and Fibers
258	Physical Review B. Volume 46 (13) Page 8472 October 1992	Far-Infrared Photoresponse of Granular YBa _{2.1} Cu 3.407-x
259	J. Vac. Sci. Technol B Volume 10 (3) Pages 1074-1077 May 1992	Electrical Characterization of Low Temperature GaAs Layers, and Observation of the Extremely Large Carrier Concentrations in Undoped Material

16 September 1994 2 0 SEP 1994.

. . . .

ł

>

260	IEEE Transactions on Electron	High-Frequency Simulation of
200	Devices	Semiconductor Alloy Ramp
	Volume 39 (5)	Heterostructures
	Pages 1063-1069	
	May 1992	
261	Microwave and Optical Technology	Modulated-Impurity-
201	Letters	Concentration Transferred-
	Volume 5 (8)	Electron Devices Exhibiting
	Pages 354-359	Large Harmonic Frequency
	July 1992	Content
262	Microwave and Optical Technology	Alloy Ramp Heterostructure
	Letters	Diodes for Microwave Mixer
	. Volume 5 (9)	Applications
	Pages 417-420	••
	August 1992	
263	Applied Physics Letters	Distribution of Ge in O ⁺
	Volume 61 (26)	Implanted Silicon
	Pages 3142-3144	
	December 1992	
264	Eleventh Annual MBE Workshop,	RHEED Study of Sb
	September 16-18, 1991, Austin,	Incorporation During MBE
	TX	Growth of GaSb and AlSb
	J. Vac. Sci. & Technol B	
	Volume 10(2)	
	Pages 895-897	
	March/April 1992	
265	Applied Physics Letters	Accurate Determination of
	Volume 61 (5)	Effective Quantum Well
	Pages 583-585	Thickness: Infrared Absorption
	August 1992	by Transverse-Optical Phonons
266	Applied Physics Letters	Observation of Negative
	Volume 60 (17)	Persistent Photoconductivity in
	Pages 2113-2115	an n-channel GaAs/Al _x Ga _{1-x} As
	April 1992	Single Heterojunction
267	Journal of Electrochemical Society,	Deep Ultraviolet Lithography of
	139(6):1677-1680	Monolayer Films With
	1992	Selective Electroless
		Metallization
268	Thin Solid Films, 210/211:359-363	Deep UV Photochemistry and
	1992	Patterning of Self-Assembled
	· · · ·	Monolayer Films
269	Biosensors and Bioelectronics,	Voltage Modulation of a Gated
	7:11-20	Ion Channel Admittance in
	1992	Platinum-Supported Lipid
	· · ·	Bilayers
270	Applied Physics Letters, 60:1556	Demonstration of Vacuum Field
	1992	Emission from a Self-
		Assembling Biomolecular
		Microstructure Composite
271	Thin Solid Films, 210/211:114-117	The Behavior of Ferroelectric
	1992	Liquid Crystalline Compounds
		at the Air/Water Interface

 \geq

272	Materials Research Society Symposium Proceedings, 260:381	Fabrication of Hollow High Aspect Ratio Metal	
273	1992 Materials Research Society Symposium Proceedings, 260:659- 664 1992	Microstructure Arrays Patterned Electroless Metallization of Ligand- Modified Surfaces	
274	Materials Research Society Symposium Proceedings, 260:905- 910 1992	Selective Metallization of CVD Diamond Films	
275	Materials Science & Engineering, A158:1-6 1992	Fabrication of Biologically Based Microstructure Composites for Vacuum Field Emission	
276	Conf on Lasers and Electrooptics Pager CPD 28, P. 60] May 1992	A Single Polarization Doped Fiber Amplifier	
277	Cnoference Record of 1992 IEEE Nuclear Science Symposium October 1992	Neutron Signatures	R
278	Proceedings IV International Workshop on Low Temp Detectors Editions Frontieres Pages 6772 1992	A Few Comments about Reproducibility of Superconducting Grain Detectors	R
279	Phys. Rev Volume A45(3) Pages 1569-1574 1992	Observation of Density - Enhanced Dielectronic Satelite Spectra Produced During Subpicosecond Laser-Matter Interactions	R
280	International Quantum Elect. Copnf (IEEQ) Proceedings 1992	Selective Excitation and Enhanced Population Transfer in Na Vapor by Adiabatic Passage Using Broadband Frequency Modulated Picosecond Laser Pulses	R
281	Rev. Sci. Instrum. Volume 63(10) Pages 5052 1992	Quantitative X-Ray Emission from a DPF Device	R
282	Fourth International Conference on InP and Related Materials April 1992	Irradiation of Monolithic InP/G _{0.47} In _{0.53} as Tandem Solar Cells	R
283	Proceedings of 12th Space Photovoltaic Research and Technology Conference October 1992	Radiation Effects in Ga _{0.47} In _{0.53} as Solar Cells	R

ł

- - --- - - - - - -

284	Conf. Proceedings of Workshop	The High Temperature Super-	R
	on Cryogenic Microwave/Millimeter Wave	Conductivity Space Experiments (HTSSE)	
	Devices, IEEEMTT-S Intern. Microwave		
	Symp June 92	•	
285	IEEE Trans, Nuc. Sci. Volume NS-39 Pages 1657-1664 December 1992	Picosecond Charge-Collection Dynamics in GaAs MESFEEs	R
286	Proceedings of 12th Space Photovoltaic Research and Technology Conference October 1992	A Detailed Study of the Photo- Injection Annealing of InP Solar Cells	R
287	DoD Fiber Optoc 92 Conference March 1992	Space Radiation Effects on Opto-Electronic Components for a Fiber Optic Data Bus	R
288	Symposium Proceedings 9 NATA SHAPE Tech. Centre Volume 1 Session III.1 30 Pages April 1992	Superconductivity - A New Technology for Future Space Systems	R
289	Phys. Rev. B. 1992	Photoelectron Spectroscopy of the Laser-Excited X Surface State on GaAs (110) Using Synchrotron RAdiation	R
290	App. Phys. Lett Volume 60 Pages 1193-1195 1992	Anion-Assisted Pulsed Laser Depositon of Lead Zirconate Titanate Films	R
291	Journal of Geophysical Research Volume 97 Pages 6493 May 1992	Effects of Plasma Turbulence on Electron Collection by a High-Voltage Spherical Probe in a Magnetized Plasma	R
292	Journal of Gepphysiccal Research Volume 97 Pages 12045 August 1992	Diodelike Response of High- Latitude Plasma in Magnetosphere Ionosphere Coupling in the Presence of Field Aligned Currents	R
293	Physical Review A Volume 46 Pages 7439 Deccember 1992	Tracking Unstable Orbits in an Experiment	R
294	Physical Review Letters Volume 69 Pages 3169 November 1992	Tracking Unstable Steady States: Extending the Stability Regime of a Multimode Laser System	R

.

. . . -

295	International Journal of	Predicting Attrtacting Out-of-	R
	Biifurcation and Chaos	Phase States in Coupled	
	Volume 1	Josephson Junctions	
	pages 177		1
0.07	1992		
296	Physical Review A	Tracking Unstable Orbits in an	R
	Volume 46	Experiment	
	Pages 7439		
0.07	December 1992		
297	Physical Review Letters	Interhyperhedral Diffusion in	R
	Volume 68	Josephson-Juncion Arrays	
	Pages 2265		
298	April 1992		1_
270	Journal of Mathematical Biology	Small Amplitude, Long Perod	R
	Volume 30 Pagas 472	Outbreaks in Seasonally Driven	
	Pages 473 1992	Epidemics	
299		Demonstration (D. 1.1.	_
277	Physical Review Letters Volume 68	Demonstration of Population	R
		Inversion by Resonance	
	Pages 796 February 1992	Photopumping in a Neon Gas	
	Teoridary 1992	Cell Irradiated by a Sodium Z Pinch	
300	Journal of Applied Physics		┨
500	Volume 71	Design Considerations for Z- Pinch Driven Photoresonance	R
	Pages 4671		l
	May 1992	X-Ray Lasing in Neonlike Krypton	
301	Applied Optics	Improving Plasma Uniformity	R
	Volume 31	in Z-Pinch-Driven Neonlike	[~]
	Pages 4940	Krypton X-Ray Lasers	
	August 1992	Rippion X-Ray Lasers	
302	Physics of Fluids B	Electorn-Ion Hybrid	R
	Volume 4	Instabiliteis Driven by Velocity	Г
	Pages 1708	Shear in a Magnetized Plasma	1
	July 1992	chou in a magnetized i fasilia	
303	Physics of Fluids B	Electorn-Ion Hybrid Instability	R
	Volume 4	in Laser-Produced Plasma	
	Pages 2448	Expansions Across Magnetic	
	August 1992	Fields	
304	Journal of Geophysical Research	Electrostatic Turbelance in the	R
	Volume 97	Earth's Central Plasma Sheet	—
	Pages 1533	Produced by Multiple-Ring Ion	
	February 1992	Distributions	
305	Journal of Geophysical Research	High-Latitude F Region	R
	Volume 97	Ionospheric Interchange odes in	
	Pages 8559	the Presence of Powerful Radio	
	June 1992	Waves	
306	Physical Review Letters	Ion Acceleration and Coherent	R
	Volume 69	Structures Generated by Lower	
	Pages 3503	Hybrid Shear-Driven	
	December 1992	Instabitilities	

•

16 September 1994

307	Journal of Spacecraft and Rockets Volume 29 Pages 607	LASSII Pulsed Plasma Probe on CRRES	R
308	August 1992 Journal of Spacecraft and Rockets Volume 29 Pages 564 July-August 1992	Overview of the LASSII Experiment on the Combined Release and Radiation Effects Satellite	R
309	Journal of Geophysical Research Volume 97 Pages 11 January 1992	Preliminary Study of the CRRES Magnetospheric Barium Releases	R
310 .	Physics of Fluids B Volume 4 Pages 2249 July 1992	Probing the Magnetosphere Using Chemical Releases from the Combined Release and Radiation Effects Satellite	R
311	Geophysical Research Letters Volume 19 Pages 1085 June 1992	Skidding of the CRESS G-9 Barium Release	R
312	Journal of Geophysical Research Volume 97 Pages 43 January 1992	Theory of Small-Scale Density and Electric Field Fluctuations in the Nightside Venus Ionosphere	R
313	Particle Accelerators Volume 37 Page 155 1992	Achromatism in Final Fosucing Systems for High-Current Heavy-Ion Beams	R
314	IEEE Transactions on Plasma Sciences Volume 20 Pages 232 June 1992	Analysis of the Deflection System for a Magnetic-Field- Immersed Magnicon Amplifier	R
315	International Journal of Electronics Volume 72 Pages 1119 1992	A Phase-Plate Mode Transducer for TE _{in} Gyrotron Modes	R
316	Journal of Geophysical Research Volume 97 Pages 6479 May 1992	Chaotic Scattering of Pitch Angles in the Current Sheet of the Magnetotail	R
317	Physics of Fluids B Volume 4 Pages 4153 December 1992	Conditioning Electron Beam in the Ion-Focused REgine	R
318	Journal of Defense Research Volume 21 Pages 591 1992	CPB Fire Control for Fleet Defense	R

- -----

•

16 September 1994

•

2 0 SEP 1994

4

210	A mulied Discoins Latter	Demonstration of Vacuum Field	D
319	Applied Physics Letters		
	Volume 60	Emission from a Self-	1
	Pages 1556	Assembling Biomolecular	
	March 1992	Microstructure Composite	
320	IEEE Transactions on Electron	Design of an Electron Gun for a	R
	Devices	280-GHz Induced-Resonance-	
	.Volume 39	Electron-Cyclotron (IREC)	
	Pages 1763	Maser Experiment	
	1992	-	
321	Particle Accelerators	Dissipative Beam Trapping in a	R
521	Volume 39	Modified Betatron with Strong	
	Pages 15	Focusing	
· ·	1992		
322	Nuclear Instrument and Methods A	Effect of Energy Spread and	R
544	Volume 318	Byromotion on Efficiency of a	
		Smith-Purcell FEL	
	Pages 560 1992		
202		Electron Trapping and	R
323	Physics of Fluids B	Acceleration in a Modified	
	Volume 4		
	Pages 3771	Elongateed Betatron	
	November 1992		-
324	Materials Science and Engineering	Fabrication of Biologically	R
	Α	Based Microstructure	
	Volume 158	Composites for Vacuum Field	
	page 1	Emission	
	1992		
325	The Astrophysical Journal	Fast Plasmoid Formation in	R
	Volume 393	Double Arcades	
	Pages 800		
	July 1992		
326	Nuclear Instruments and Methods	Field-Emission Arrays - A	R
520	A	Potentially Bright Source	
	Volume 318		
	Pages 35		
	1992		
327	Physical Review A	Flute Instability of an Ion-	R
541	Volume 46	Focused Slab Electron Beam in	
		a Broad Plasma	
	Pages 6684	a Divau Fiasilia	
	November 1992	Conception of Stimulated	
328	Physical Review A	Generation of Stimulated	R
	Volume 45	Backscattered Harmonic	
	Pages 5872	Radiation from Intense-Laser	
	April 1992	Interactions with Beams and	l
		Plasmas	
	•		
329	Nuclear Instrumenta and Methods	Harmonic Generation in Laser-	R
	Α	Pumped FELs and Stimulated	1
	Volume 318	Backscattering from Plasmas	
	Pages 533		ł
	1992		
Q		II	u i

, |

*****----

330	Journal of Defense Research Volume 21	High Current WIPS Propagation	R
	Pages 369 1992	Topagadon	
331	Physics of Fluids B Volume 4 Pages 2241 July 1992	Interaction of Ultrahigh Laser Fields with Beams and Plasmas	R
332	Journal of Defense Reseaarch Volume 21 Pages 279 1992	Introduction to the Propagaton of Intense Electron Beams	R
333	Journal of Defense Reseaarch Volume 21 Pages 279 1992	Lead Pulse Stability Issues	R
334	Physical Review A Volume 45 Pages 2179 February 1992	Maximum Microwave Conversion Efficiency from a Modulated Intense Relativistic Electron Beam	R
335	Journal of Applied Physics Volume 72 Pages 3874 November 1992	Model of Cavity Coupling for Beam Breakup Control	R
336	Particle Accelerators Volume 37-38 Pages 97 1992	Modeling the Longitudinal Wall Impedance Instability in Heavy Ion Beams Using an R-Z PIC Code	R
337	Journal of Defene Research Volume 21 Pages 557 1992	Modified Elongated Betatron Accelerator	R
338	International AJournal of Electronics Volume 72 Pages 779 1992	Multimode Simulation of High Frequency Gyrotrons	R
339	Physical Review A Volume 45 Pages 8846 June 1992	Nonlinear Analysis of a Grating Free-Electron Laser	R
340	Journal of Geophysical Research Volume 97 Pages 15011 October 1992	Nonlinear Dynamics of Charged Particles in the Magnetotail	R
341	Physical Review A Volume 46 Pages 6750 November 1992	Numerical Simulation of the Electromagnetic Instability of an Intense Beam in a Quadrupole Focusing System	R

- ---- ----

342	International Journal of Electronics Volume 72	Observation of Harmonic Gyro-Backward-Wave	R
1	Pages 1033	Oscillation in a 100 HGz	
343	1992 Geophysical Research Letters	CARM Oscillator Experiment On Chaotic Conductivity in the	R
343	Volume 19	Magnetotail	
	Pages 1231	•	
	June 1992		_
344	Physical Review Letters	Propagation and Guiding of Intense Laser Pulses in Plasmas	R
	Volume 69 Pages 2200	Intense Laser Fuises in Flasmas	
	October 1992		
345	IEEE Transactions on	Simulation Studies of	R
	Electromagnetic Compability	Klystronlike Amplifier	
	Volume 34	Operating in the 10-100 GW	
	Pages 222 August 1992	Regime	
346	Particle Accelerators	Target Chamber Propagation of	R
- • •	Volume 37-38	Heavy Ion Beams in the	
	Pages 161	Pressure Regime Above 10 ^j	
	1992	Топ	
347	Journal of Defense Research	The Fast Modified Betatron	R
	Volume 21	Accelerator	
	Pages 541 1992		
348	Journal of Defense Research	The MAGHIC Mode	R
	Volume 21		
	Pages 455		
349	1992 Physical Review A	Theory of Electromagnetic	R
549	Volume 45	Instability of an Intense Beam	
	Pages 7492	in a Quadrupole Focusing	
	May 1992	System	
350	Particle Accelerators	3D Particle Simulation of	R
	Volume 37-38	Beams Using the WARP	
	Pages 131 1992	Codes: Transport Around Bends	
351	Physics of Fluids B	Three-Dimensional Particle	R
	Volume 4	Simulation of Heavy-Ion	
	Pages 2203	Fusion Beams	
	July 1992		-
352	Nuclear Instruments and Methods	3D Simulation of High Gain	R
	A Volume 3128	FELs in an Optical Klystron Configuration	
	Pages 675	Comiguiation	
	1992	1	
353	Particle Accelerators	3D Simulations of Axially	R
	Volunme 37	Confined Heavy Ion Beams in	
	Pages 141	Round and Square Pipers	
	1992		

D-B-57R

16 September 1994

>

354	International Journal of Electronics Volume 72 Pages 807 1992	Tilted Resonator Experiments on a Quasioptical Gyrotron	R
355	Journal of Defense Research Volume 21 Pages 399 1992	Tracing and Stability in WIPS Channels: Tehoretical Analysis	R
356	Journal of Applied Physics Volume 72 Pages 5032 1992	Tunable, Short Pulse Hard X- Rays from a Compact Laser Synchrotron Source	R
357	IEEE Transactions on Plasma Sciences\Volume 20 pages 288 June 1992	X-Band Dielectric Cerenkov Maser Amplifier Experiment	R
358	International Journal of Electronics Volume 72 Pages 1165 1992	On the Possibility of High Power Gryotrons for Super Range Resolution Radar and Atmospheric Sensing	R
359	International Journal of Infrared and Millimeter Waves Volume 13 Pages 1449 1992	Application of Gyrotrons to High Power Millimeter Wave Doppler Radars	R

2 0 SEP 1994

CY93 Defense Titles		
CSF	Reference	Paper Titles (List)
1 ED .	Phys. Review Ltrs., Vol. 70, #1, Jan. 1993	Observation of Stochastic Resonance in a Tristable System
2	Optics Ltrs. Vol. 18 p. 72 1993	Fiber Optic Bragg Grating Strain Sensor w/Drift Compensated High Resolution Interferometric Wavelength Detection
3	Appl. Phys. Ltrs., Vol. 62(3) pp 255-257 Jan. 1993	Integration of Low Temperature GaAs on Si Substrates
4	Phot. Tech. Ltrs., Vol. 5(8) pp. 922-925 Aug. 1993	Interferometric Measurements of Lateral Phase Profile & Thermal Lensing in Broad Area Diode Amplifiers
5	Appl. Phys. Ltrs, Vol 62 pp. 544-546 February 1993	11.6W Peak Power Diffraction Limited Diode to Diode Amplfier
6	Optics Ltrs., Vol 18(5) pp. 388-390 March 93	Effects of Parasitic Fabry-Perot Cavities in Fiber Optic Dispersion
7	Optics Ltrs, Vol 18(9) pp. 750-752 May 93	Reflective Fiber Ring Resonator w/Polarization Independent Operation
8	J. Underwater Accoustics Vol 43(2) Page 569 April 93	Fiber Optic Heading Sensor for the All-Optical Towed Array
9	App. Phys. Ltrs. Vol 62(23) Page 2911-2913 June 93	Role of Dispersion in Limiting Pulse Width in Fiber Lasers
10	J. Underwater Acoustics Vol 43(2) Page 417-435 April 93	Measurement of Inpit Polarization Induced Phase Noise in the AOTA
11	J. Underwater Acoustics Vol 43(2) Page 597 April 1993	Interferometric Fiber optic Acoustic Sensing
12	J. Underwater Acoustics Vol 43(2) P. 517-537 April 1993	All Optical Towed Array Sea Test Results
13	J. Underwater Acoustics Vol 43(2) P. 517-537 April 1993	Testing of a Planar Fiber Optic Hydrophone on KAMLOOPS

CY93

- ----

- - - - -

.

•;

 \geq

114	J. Underwater Acoustics	Arctic Test of a High
14	Vol 43(2)	Performance Fiber Optic
	P. 387-404	Hydrophone Array
		Hydrophone Array
	April 1993	At Car Maine Darformance of
15	J. Underwater Acoustics	At-Sea Noise Performance of
	Vol 43(2)_	Small Diameter and Extended
	P. 353-367	Fiber Optic Hydrophones for
	April 1993	Towed Arrays
16	J. Underwater Acoustics	Development of Fiber Optic
	Vol 43(2)	Hydrophones for High
	P. 405-415	Pressure Applications
	April 1993	
-	-	
17	Elec. Ltrs.,	4.5W CW Near Diffraction
	Vol 29(2)	Limited Tapered Stripe
	pp. 219-220	Semiconductor Optical
	Jan 1993	Amplifier
18	Elect. Ltrs.	Intracavity Dispersion
	Vol 29(4)	Measurement in a Mode-locked
	Feb 93	Fiber Laser
19	J. Quan. Elec.	High Power Near Diffraction
17	Vol 29(6)	Limited Large Area Travelling
1	pp. 2208-2042	Wave Semiconductor Amplifier
	June 93	wave benneonauctor ramphier
20	App. Phys. Ltrs	Filament Formation in a
20	Vol 62,(19)	Tapered GaAlAs Tapered
	pp. 2304-2306	Amplifier
	May 93	Ampimici
01		An Efficient 1.46 Micron
21	Quantum Elec. Ltrs.	Thulium Laser via a Cascade
	Vol 29(2) P. 103-106	Process
		Process
	February 93	New Yorking
22	Opt. Matl's. Vol 2	Nonresonant Optical
	P. 33	Nonlinearities of Quantum
	1993	Confined Nanocrystals of CuBr
		in Glass
23	Opt. Ltrs.	Optical Vortex Solitons and the
	Vol 18,(8)	Stability of Dark Soliton Stripes
	pp. 586	
	April 1993	
24	Applied Spectroscopy Reviews	The Nuclear Quadrupole
	Vol 28	Interaction in High Temperature
ł	pp 123-164	Superconductors
	1993	
25	Semiconductor Sci & Tech	Magneto-Optic and Magneto-
	Vol 8 (S112)	Transport Study of
	1993	InAS/GaInSb Superlattices
26	Semiconductor Sci. & Tech.	Novel Magneto-Transport and
	Vol. 8., S48	Magneto-Optical Transport in
	1993	Semimetallic HgTe-CdTe
		Superlattices
u	<u> </u>	Juponation

- - ----- ----- -----

.

-

 \geq

27		
	Semiconductor Sci. & Tec	ch. Sh/Gash Mali
	1 401. 0, 511/	
	1993	I IVI IVIEIIII Annhoationa
28		I monou Narrow Rand Gas
20	Jour. Crystal Growth	Ivialena
	Vol 127 - 777	Molecular Beam Epitaxial
	Vol. 127, p. 777 1993	Growth of Sh/G- Cl Da in
29		Growth of Sb/GaSb Multilay Structures
	Appl. Phys. Ltrs.,	
	Vol. 62(19)	Nanometer Fabrication in
1	pp. 2362 -2364	I IgCale by Flectron Custo
	May 1993	I ANOULALLE MICTOMOND DI
30	Photonics S-	Reactive Ion Etching
	Photonics Spectra Jour. p. 93	Fullerance and Di
		Fullerenes and Photonics
31	1993	· · · · · · · · · · · · · · · · · · ·
	Appl. Phys. Lettl,	
	Vol. 63,(11)	Broadband Thermal Optical
	pp 1483-1485	Limiter
	September 1993	
32	Opt O	
	Opt. Comms.,	Optical Liniti
	Vol. 103	Optical Limiting in
	pp. 405-409	Semiconductor Nanocrustale in
33	1993	Glass
55	JOSA B,	
	Vol. 10	High Precision Identification of
		Morphology Deventification of
	pp. 1955-1968	Morphology Dependent
34	1993	Resonances in Optical
	J. Appl. Phys.,	Flocesses in Microdroplate
	Vol. 74, 5280-5281	Micropatterned Diamond
E	(1993)	Substrates
5	Physica B	
	Vol. 191, 171	Natrow Gan Hatta and
	(1002)	Narrow-Gap HgTe-CdTe Superlattices
6	(1993)	Superlatuces
	J. Vac. Sci. Tech., A <u>11</u> ,	
	100-101	Preparation of Sb/GaSb [111]-
	(1993)	
		Structures Using Molecular Beam Enited
		Beam Epitaxy and Molecular
	Jour El	Beam Epitaxy and Migration Enhanced Epitaxy
	Jour. Elec. Mat'ls.,	
	VOI. 22, 1055	Nanometer Scale Fabrication in
	(1993)	
		Methane/Hydrogen Flootney
	Semiconduct. O. L.	Microwave Plasmas
	Semiconductor Sci. & Tech.,	Methods for N
		Methods for Magneto-
	(1993)	11 ansport Characterization
	Appl. Phys. Lett., Vol. 63(8)	LA DELECTOR Materiala
	pp 1098-1100	SD/GaSb Heterostructures and
	August 1993	Multilayers
	Louis A	
	Jour. Appl. Phys.	
	Vol. 74, 6676	Anisotropic Screening and
	(1993)	101112Ed Implifity Scottoning in a
		Semiconductor Superlattices
		and Multiple Quantum Wells

- ----

ŧ

41	Jour. Appl. Phys.,	Normal Incidence
	Vol. 74, 2810	Electroabsorption in
	(1993)	GaAlSb/AlSb L-Valley
		Quantum Wells for 3-5 Micron
10		Optical Modulation
42	J. Vac. Sci. Technol., A11	ECR-RIE of Fine Features in
	1763	HgCdTe Using CH4/H2
	(1993)	Plasmas
43	Int'l. Jour. Nonlinear Opt. Phys.,	Type II Superlattices and
	Vol. 2, 415	Variable Overlap Superlattices
1	(1993)	as Nonlinear Optical Materials
		for the Far Infrared
44 .	Phys. Rev. B,	Shubnikov-de Haas
	Vol. 48, 1959	Oscillations and Quantum Well
	(1993)	Features in InAs/GaInSb
1		Superlattices
45	Phys. Rev. B,	Semimetal-to-Semiconductor
	Vol. 48, 11431	Transitions in Bismuth Thin
	(1993)	Films
46	Optics Ltrs.,	Excited State Absorption
R	Vol. 18, No. 19, 1603-1605	Enhanced Thermal Optical
	October 1993	Limiting with C60
47	Appl. Phys. Ltrs.,	An Optical Limiter Using
	Vol 63(14), 1880-1882	PbPc(CP)4
	(1993)	
48	Phys. Rev. B,	Magneto Optical Determination
1	Vol. 48, No. 13, 11439	of T-point Energy Gap in
	(1993)	Bismuth
49	Phys. Rev. B,	Nonlinear Optical Properties of
	Vol. 48, No. 13, 9447	the Fullerenes C60 and C70 at
	(1993)	1.064 Microns
50	Optics Ltrs.,	Strain Sensitive Elastic
8	Vo. 18, (13)	Scattering from Cylinders
	pp 1104-1106	
51	July 1993	
51	Int'l J. NL Opt. Phys.,	Characterization of a Low F-
	Vol. 2, 577-611	Number Thermal Broadband
52	(1993)	Limiter
52	Appl. Phys. Ltrs.	Interface Roughness Scattering
	Vol. 63, 2210 -2212	in Semiconducting and
	October 1993	Semimetallic InAs/GaInSb
52	OVOID O L'UNITED	Superlattices
53	CVGIP: Graphical Models and	Theory and Design of Local
	Image Processing, Vol. 55, No. 6,	Interpolators
1	464-481 November 1002	
54	November 1993	
54	App. Phys. Ltrs	Photo\induced Current transient
	Vol 63(6)	Spectroscopy of Boron dloped
	pp 767-769	Diamond
	August 1993	

ŧ

2

55	JOSA A,	Effects of Non-Redundancy on
55	567-572 (1993)	
	507-572 (1995)	a Synthetic Aperture Imaging System
56	Applied Optics	
50	Applied Optics, September 1993	Compensation of Spacer Thickness Variations in the
	September 1995	
57	Optics Ltrs.,	Holographic Fabry-Perot Filter
57	Vol. 18, p. 1591-1593	Resolution Limits for Imaging Through Turbid Media with
	October 1993	Diffuse Light
58	Opt. Ltrs.,	
50	Vol. 18, 1724 -1726	High Average Power Operation of a Q-Switched Diode Pumped
	October (1993)	Ho:Tm:Laser
59	· Optics Ltrs	Imaging Through a Strong
57	Vol 18	Scattering Medium with
	P. 2132-2134	Nonlinear Optical Field Cross-
	1993	Correlation Techniques
60	App. Phys. Ltrs.	High Power Continuous Wave
00	Volume 63(17)	Blue Ligh Generation in
	P. 2327-2329	KNbO3
	Oct. 93	KINDOJ
61	IEEE Phot. Ltrs.	5.25 CW Near Diffraction
	Volume 5(10)	Limited Tapered Stripe
	P. 118001182,	Semiconductor Optical
	Oct. 93	Amplifier
62	Elect. Ltrs.	Fiber Optic Magnetometer
	kVol 29(11)	System for Undersea
	P. 1032, May 1993	Application
63	Elec. Ltrs.	Fiber Bragg Grating Based Er-
	Volume 29(10)	Fiber Laser STrain Sensor
	P. 964-965	System
	May 1993	
64	Iotucs Ktrs,	Multiplexed Fiber Bragg
	/vikyne 18(16)	Grating Strain Sensor System
	P. 1370-1372	with a Fiber Fabry-Perot
	Aug 93	Wavelenths Filter
65	IEEE Photonics Tech. Ltrs.	High Resolution Fiber Optic
	Volume 5(8),	Low Frequency Voltage Sensor
	952-953	Based on the Electrostrictive
	Aug 93	Effect
66	Appl. Phys. Ltrs., Vol. 63, #14,	Ultrafast Photodetection with
	pp 1921-1923	an AlInAs/GaInAs
	Oct. 1993	Heterojunction Bipolar
		Transistor
67	IEEE Photonics Ltrs., Vol. 5, #8.	High Power Ring Laser using a
	p.919	Broad Area GaAlAs Amplifier
	Aug. 1993	·
68	IEEE Trans. on Microwave Theory	Microwave Optical Mixing in
	& Tech., Vol. 41	LiNb03 Modulators
	Dec. 1993	
69	Opt. Ltrs., Vol. 18, #18	Fiber Optic Current Sensor
	Sept. 1993	using Orthoconjugate Loop
		Mirror

.

ł

70	Ltrs., Vol 5, #11, p. 1347 Nov. 1993	Fiber Optic Prism True Time Delay Antenna Feed
71	Optics Ltrs., Vol. 18, #22, p. 1931 Nov. 1993	Difference Frequency Mixing in AgGaS2 by using High Power GaAlAS Tapered Semiconductor Diodes
72	Applied Physics Letters, Volume 63, Page 159 (July 1993)	Conformal Chemical Beam Deposition of the Thin Metal Film for Fabricating High Density Trench Capacitor Cells
73	Journal Vacuum Science Technology, Volume A 11, Page 1733 (July/August 1993)	First-Principles Electronic Properties of Model Silicon- Based Quantum Wires
74	Diamond and Related Materials, Volume 2, Page 1078 (1993)	Aerosol Doping of Flame Grown Diamond Films
75	Applied Physical Letters, Volume 63, Page 3324 (December 1993)	Organometallic Chemical Vapor Deposition and Characterization of Indium Phosphide Nanocrystals in Vycor Porous Glass
76	Organometallic Chemicals, Volume 449, Page 119 (May 1993)	Primary and Secondary Trimethylsilylmethylstibines. Synthesis, Characterization and Chemical Vapor Deposition Properties
77	Journal Applied Physics, 74 (11), Pages 6780 - 6787 (December 1993)	Morphology and Transport of YBa2Cu3O7-x Sputtered in Argon, Oxygen, and Hydrogen: Dependence on Deposition Temperature
78	Physica C 209, Pages 263 - 268 (1993)	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
79	FED Journal, Volume 3, Supplement 1, Pages 35 - 43 (1993)	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
	IEEE Transactions on Applied Superconductivity, Volume 3, No. 1, Page 2885 (March 1993)	The High Temperature Superconductivity Space Experiments HTSSE I - Components and HTSSE II - Subsystems and Advanced Devices
81	J. Appl. Phys. 74(1),53 1993	VUV Spectroscopy Study of Excimer Laser-Generated Plasmas.

D-B-64R

.

16 September 1994

82	IEEE Trans. on Magnetics, 29/6,3252-3454 1993	Magnetically Tunable Bar Pass Filter Utilizing Coplan Slotline Junction.
83	Nuclear Instruments and Methods in Physics Research B79,832-834, 1993	Cryogenic Radiation Detector
84	J. Appl. Phys. 73(12), 8134, 1993	K-Shell X-Ray Yield Scali for Aluminum X-pin Plasmas.
85	J. Vac. Sci. & Techn., A11,1763- 1767 1993	Electron Cyclotron Reactive I Etching of Fine Features $Hg_xCd_{1-x}Te$ using CH_4/H Plasmas.
86	Appl. Phys. Letters, 62,2362-2364 1993	ECR-RIE of Submicr Features in Mercury Cadmin Telluride Using CH ₄ /F Plasmas.
87	Solid State Communications, 88,671-675 1993	Observation of Giant Flu Flow in Superconducti Yba ₂ Cu ₃ O ₇ Films.
88	J. Electronic Materials, 22,1055- 1060 1993	Nanometer Fabrication Mercury Cadmium Telluride Electron Cyclotron Resonan Microwave Plasma Reacti Ion Etching.
89	Diamond and Related Materials 3,105-111 1993	Comparison of Co/H ₂ a CH ₄ +O ₂ /H ₂ Plasmas f Diamond Thin Film Depositi by ECR-PACVD
90	IEEE Trans. Nuc. Sci., NS-40, 1725 1993	A Practical System Hardne Assurance Program.
91	IEEE Transactions on Nuc. Sci. NS-40,1300 1993	Low Temperature Prote Irradiation of GaAs MESFET
92	IEEE Transactions on Nuc. Sci. NS-40, 1888 1993	Geometrical Factors in See Ra Calculations, 1993.
93	IEEE Transactions on Nuc. Sci. NS-40, 1660 1993	Heavy Ion and Proton Analys of a GaAs C-HIGFET SRAM
94	IEEE Transactions on Nuc. Sci. NS-40, 1628 1993	Displacement Damage Effect in Mixed Particle Environme for Shielded Spacecraft CCDs
95	IEEE Transactions on Nuc. Sci. NS-40, 1926 1993	Numerical Simulation of Hea Ion Charge Generation a Collection Dynamics.
96	IEEE NS-40, 1918 1993	Practical Approach Determine Charge Collection Multi-Junction Structures D to Ion Shunt Effects.

•

16 September 1994

.

.*

 $\tilde{\mathbf{D}}$

97	IEEE Trans. Nuc. Sci., NS-	One Hundred Percent Abrupt
	40,1709 1993	Failure Between Two Radiation Levels in Step-Stress Testing of Electronic Parts
98	Journal of Applied Physics, 73(11), 7244, Results from the CRRES MEP Experiment, RADECS Conference Proceedings, September 1993	Radiation-Induced Reverse Dark Currents in In _{0.53} Ga _{0.47} As Photodiodes.
99	Nuclear Instruments and Methods in Physics Research, A366, 176- 178 1993	Scintillation Decays in a Trans- stilbene Crystal.
100	IEEE Transactions on Nuc. Sci. NS-40,1638 1993	SEDS MIL-STD-1773 Fiber Optic Data Bus: Proton Irradiation Test Results and Spaceflight SEU Data.
101	IEEE Transaction on Nuc. Sci. 1993	SEU Rate Prediction and Measurement of GaAs SRAMs Onboard the CRRES Satellite.
102	IEEE Transactions on Nuc. Sci. NS-40,1867 1993	Single Event Induced Charge Transport Modeling of GaAs MESFETs.
103	IEEE Transactions on Nuc. Sci., NS-40,1858 1993	Single Event Dynamics of High-Performance HBTs and GaAs MESFETS.
104	IEEE Transactions on Nuc. Sci. NS-40, 1812 1993	The Shape of Heavy Ion Upset Cross Section Curves.
105	IEEE Transactions on Nuc. Sci. NS-40,1372 1993	Damage Correlations in Semiconductors Exposed to Gamma, Electron and Proton Radiations.
106	Journal of Applied Physics, 74,3, 1993	Time Dependence of Radiation Induced Generation Currents in InGaAs Photodiodes.
107	IEEE Transactions on Plasma Science, 21, 4, 383 (1993)	Study of Gain in C-Band Deflection Cavities for a Frequency-Doubling Magnicon Amplifier
108	Physics of Fluids B, 5, 2682 (1993)	New Results and Applications for the Quasioptical Gyrotron
109	Physics of Fluids B, 5, 3045 (1993)	Nonlinear Analysis of a Magnicon Output Cavity
. 110	International Journal of Infrared and Millimeter Waves, 14, 335 (1993)	RF Converter Simulation - Impositioin of the Radiation Condition
111	Applied Physics Letters, 62, 2772 (1993)	External Modulation of Intense Relativistic Electron Beams with Spatial and Velocity Inhomogeneities

-

 \geq

ł

.

16 September 1994 2 0 SEP 1994

•

.

112	Nuclear Instruments and Methods	Electron Beam Quality
	A, 331, 6 (1993)	Limitations and Beam Conditioning in Free Electron Lasers
113	Physical Review Letters, 70, 19 (1993)	Methods for Conditioning Electron Beams in Free-electron Lasers
114	International Journal of Infrared Millimeter Waves, 14, 335 (1993)	RF Converter Simulation- imposition of the Radiation Condition
- 115	IEEE Trans. of Applied Superconductivity Volume 3 Pages 1616-1619 March 1993	Properties of Multilayer Films of Y1Ba2Cu3O7-x/LaAlO3
116	IEEE Transactions on Electron Devices Volume 40(7) Pages 1211-1214 July 1993	Impact Ionization and Light Emission in High-Power Pseudomorphic AlGaAs/InGaAS HEMT's
117	Quality and Reliability Engineering International Volume 9 Pages 367-370 1993	Failure Mechanisms in Life- Tested HEMTs
118	Materials Science and Engineering B20 Pages 26-28 1993	Theoretical and Experimental Study of Failure Mechanisms in r.f. Reliability Life Tested High Electron Mobility Transistors
119	International Journal of Electronics Volume 75(4) Pages 641-645 1993	New Tunnelling Transistor for Current Switching Logic
120	Proceedings 2nd ESA Electronic Components Conference Pages 285-288 1993	GaAs Device Heavy Ion Radiation Effects
121	IEEE Transactions on Nuclear Science Volume 40(6) Pages 1735 - 1739 December 1993	Temperature Dependent GaAs MMIC Radiation Effects
122	Quality and Reliability Engineering International Volume 9 Pages 367-370 1993	Failure Mechanisms in Life Tested HEMTs
123	IEEE Trans on Nuclear Science Volume 40(6) Pages 1735-1739 December 1993	Temperature Dependent GaAs MMIC Radiation Effects

i

124		
124	Physics of Fluids B	A Theory of Cavity Excitation
	Volume 5 (4)	by Modulated Electron Beam in
	Pages 1349-1357	Connection with Application to
	April 1993	a Klystron Amplifier
125	Particle Accelerators	Realization of Improved
	Volume 43 (102)	Efficiency in a Gyroklystron
	Pages 93-105	Amplifier
	1993	F =
126	Appl. Phys. Lett	Control of Interface
	Volume 63(7)	Stoichiometry in InAs/GaSb
	Page 949	Superlattices Grown by
	August 1993	Molecular Boom Enitory
127	Physical Review B	Molecular Beam Epitaxy
· ·	Volume 48(4)	Growth of Thin Ni Films on
	Pages 2436-2444	GaN(0001)-(1 X 1)
1		
128	July 1993	
120	Applied Physics Letters	Infrared Spectroscopic Study of
1	Volume 62(25)	the Chemisorption of CF3
1	Pages 3297-3299	Species on Silicon
100	June 1993	
129	Diamond and Related Materials	Diamond Metal-
	Journal	Semiconductior-Metal
	Volume 2	Ultraviolet Photodetectors
	Pages 1020-1023	
	1993	
130	Microwave and Optical Technology	Circuit Model of Low-
	Letters	Frequency Transconductance
	Volume 6(1)	and Output Resistance
	Pages 81-83	Dispersion in Ion Implanted
	January 1993	Dispersion in Ion-Implanted InP JFETs
131	Fifth International Conference on	
	Indium Phosphide and Related	Sinusoidal and Transient
	Materials	Response of Traps in Double-
	TuC3	Recessed InAlAs/InGaAs/InP
		HEMT's
	Pages 251-254	
132	1993 Eißt Lauren 10	
1.74	Fifth International Conference on	Fe and Ti Compensation
	Indium Phosphide and Related	Implants in n- and p-
	Materials	In0.52Al0.48As and p-I nP
	TuP4	-
	Pages 341-344	
144	1993	
133	Solid-State Electronics	Low-Frequency Gain
	Volume 36 (10)	Dispersion in Ion-Implanted
	Pages 1445-1453	InP JFETs
	1993	
.134	Electronics Letters	Impact Ionisation in High-
	Volume 29(21)	Output Conductor on Design
	Pages 1888-1890	Output-Conductance Region of
	October 1993	0.5 mm AlSb/InAs HEMTs

16 September 1994

ł

135	Physical Review B Volume 47(15) Page 9981 April 1993	Collective Intersubband Spin- and Charge-Density Excitations in Tilted Magnetic Fields
136	21st International Conference on The Physics of Semiconductors Volume 2 Pages 721-724 1993	Effects of Nonparabolicity on Collective Intersubband Spin- and Charge Density Excitations
137	Physics Reports Volume 234(2&3) Pages 73-174 November 1993	Mesoscopic Physics and Nanoelectronics: Nanoscience and Nanotechnology
138	Physical Review B Volume 48(23) Pages 17217-17232 November 1993	High-Frequency Behavior of Quantum-Based Devices: Equivalent-Circuit, Nonperturbative Response, and Phase-Space Analyses
139	IEEE Electron Device Letters Volume 14(9) Pages 435-437 September 1993	Successive Charging/Discharging of Gate Oxides in SOI MOSFET's by Sequential Hot-Electon Stressing of Front/Back Channel
140	Journal of Applied Physics Volume 74(9) Pages 5901-5903 November 1993	The Nature of Donor Conduction in n-GaN
141	Applied Physics Letters Volume 63(22) Pages 3049-3051 November 1993	Atomic Structure of Ge-related Point Defects in Ge- incorporated Oxide Films
142	Physical Review B Volume 48(24) Page 17878 December 1993	Electron-Spin-Resonance Studies of Donors in Wurtzite GaN
143	IEEE Trans. on Appl. Superconductivity Volume 3(1) Pages 2808-2811 March 1993	Microwave Losses in Kinetic- Inductance Devices Fabricated From NbCN/MgO/NbCN Trilayers
144	Appl. Phys. Lett. Volume 62(15) Pages 1845-1847 April 1993	Microwave Measurement of the Dielectric Constant of Sr0.5Ba0.5TiO3 Ferroelectric Thin Films
145	IEEE Trans. on Appl. Superconductivity Volume 3(1) Pages 8-16 March 1993	Superconducting Kinetic- Inductance Microwave Filters

-

16 September 1994

K

ı

	Deres die es Ath Deres son	L Failure Analysis of MMC
146	Proceedings 4th European Symposium on Reliability of Electron Devices Failure Physics and Analysis Pages 453-458 1993	Failure Analysis of MMIC Power Amplifiers Optically Detected Magnetic
147	Physical Review B Volume 48(19) Page 14 157 November 1993	Resonance in Zinc-Doped Indium Phosphide Under Uniaxial Stress
148	Journal of Applied Physics Volume 74(11) Pages 6780-6787 December 1993	Morphology and Transport of YBa2Cu3O7-x Sputtered in Argon, Oxygen, and Hydrogen: Dependence on Deposition Temperature
149	IEEE Trans. Applied Superconductivity Volume 3(1) Pages 1520-1523 March 1993	The Effects of Added Gases in the Sputter Deposition of Y1Ba2Cu3O7 Thin Films
150	J. of Electronic Materials Volume 22(5) Pages 559-566 May 1993	MeV Energy Sulfur Implantation in GaAs and InP
151	Optical Engineering Volume 32(10) Pages 2452-2458 October 1993	Thin Silicon Nitride Films to Increase Resolution in E-beam Lithography
152	Materials Research Society Symposium Proceedings Volume 306 Pages 3-18 1993	Materials Issues In X-Ray Lithography
153	Journal of Vacuum Science Technology B Volume 11(6) Pages 2733-2740 November/December 1993	Reduction and Elimination of Proximity Effects
154	Diamond and Related Materials Volume 2 Pages 1078-1082 1993	Aerosol Doping of Flame Grown Diamond Films
155	Proceedings of the Third International Symposium on Diamond Materials Volume 193(17) Pages 808-814 1993	Luminescence Studies of Flame Grown Boron Doped Diamond Films
156	J. Appl. Phys. Volume 73(3) Pages 1154-1160 February 1993	X-Ray Double-Crystal Analysis of Misorientation and Strain in GaAs/Si and Related Heterostructures

•

16 September 1994

•

>

1.57	Physical Review B	High-Resolution X-ray
157	Volume 48(12)	Analysis of Strain in Low-
	Pages 8911-8917	Temperature GaAs
	September 1993	Temperature Car as
160	21st International Conference on	Exchange Interactions in
158		Intersubband Transitions in
	the Physics of Semiconductors	Semiconductor
	Volume 2	
	Pages 788-791	Heterostructures
	1993	Laterfe es Deughnesse in
159	Proceedings 21st International	Interface Roughness in
	Conference on The Physics of	GaAs/AlAs Quantum Well Structures
	Semiconductors	Structures
•	Volume 2	
	Pages 1120-1123	•
	1993	
160	Physical Review Letters	Nonlinear Theory of
	Volume 70(3)	Gyroharmonic Radiation from
	Pages 291-294	Spatiotemporally Modulated
	January 1993	Electron Beams
161	Physics of Fluids B	Linear Analysis of Backward
	Volume 5(5)	Wave Oscillations in
	Pages 1639-1646	Azimuthally Varying Tansverse
	May 1993	Electric (TE) Modes
162	Journal of Electronic Materials	Characterization of Crystalline
	Volume 22(120)	Low Temperature GaAs Layers
	Pages 1391-1393	Annealed from an Amorphous
	1993	Phase
163	Physical Review B	Photoluminescence and
	Volume 47(3)	Optically Detected Magnetic
	Page 1305	Resonance of Si/Si1-xGex
	January 1993	Strained-Layer Superlattices
		Grown by Molecular-Beam
		Epitaxy
164	Appl. Phys. Lett.	Observation of Optically
	Volume 63(19)	Detected Magnetic Resonance
	Page 2673	in GaN Films
	November 1993	
165	J. Vac. Sci. Technol B	Concentration Dependence of
	Volume 11(4)	Ge Segregation during the
	Pages 1392-1395	Growth of a SiGe Buried Layer
	July/August 1993	
166	J. Vac. Sci. Techno. B	Ge Segregation During the
	Volume 11(3)	Growth of a SiGe Buried Layer
	Pages 1120-1123	by Molecular Beam Epitaxy
	May/June 1993	
167	Physical Review B	Electronic Structure of c(2X2)
	Volume 47(16)	Ba Adsorbed on W(001)
	Page 10748	
	April 1993	

•

2 0 SEP 1994

21

.

.

,

1/0	Dharies Deview D	L D'un Deinsieles Calculations of
168	Physical Review B	First-Principles Calculations of
	Volume 47(8)	Spin-Orbit Splittings in Solids
	Page 4238	using Nonlocal Separable
1/0	February 1993	Pseudopotentials
169	J. Vac. Sci. Technol. B.	Effect of Interfacial Bond Type
	Volume 11(4)	on the Electronic and Structural
	Page 1693	Properties of GaSb/InAs
	July/August 1993	Superlattices
170	Proceedings of the SOTAPOCS	Characterization of Bulk Semi-
	XVIII Conference by the Electro	Insulating GaAs Grown by a
	Chemical Society	Vertical Molten Zone MethodSb
	Volume 93-27	Surface Segregation and
	Page 263	Doping in Si(100) Grown at
-	1993	Reduced Temperature by
1		Molecular Beam Epitaxy
171	Appl. Phys. Lett	Sb Surface Segregation During
	Volume 63(10)	Heavy Doping of Si(100)
	Pages 1381-1383	Grown at Low Temperature by
	September 1993	Molecular Beam Epitaxy
172	J. Vac. Sci. Techno. B	Sb Surface Segregation During
	Volume 11(3)	Heavy Doping of Si(100)
	Pages 1115-1119	Grown at Low Temperature by
	May/June 1993	Molecular Beam Epitaxy
173	Appl. Phys. Lett.	Field Emission from an
175	Volume 63(5)	Elliptical Boss: Exact Versus
	Pages 702-704	Approximate Treatments
	August 1993	Approximate meatments
174	Journal of Vacuum Science	Numerical Smulation of Field
1/4	Technology B	Emission from Silicon
	Volume 11(2)	Emission nom Smeon
	Pages 371-378	
	March/April 1993	
175		Deresition and Surface
115	Journal of Applied Physics	Deposition and Surface
	Volume 73(6) Pages 3108 3110	Characterization of High
	Pages 3108-3110	Quality Single Crystal GaN
176	March 1993	Layers
170	Journal of Applied Physics	Influence of Buffer Layers in
	Volume 73(9)	the Deposition of High Quality
	Pages 4700-4702	Single Crystal GaN Over
192	May 1993	Sapphire Substrates
177	Superlattices & Microstructures	Radiative Recombination of
	Volume 13(2)	Free Excitons in GaAs
	Pages 271-273	Quantum Wells
	1993	
178	Springer Series in Chemical	Radiative Recombination of
	Physics	Free Excitons in GaAs
	Volume 55	Quantum Wells
	Pages 472-474	-
	1993	

16 September 1994

ŧ

179	J. Vac. Sci.Technol. B.	Comparison of Optical
	Volume 11(3)	Pyrometry and Infrared
	Pages 1003-1006	Transmission Measurements on
	May/June 1993	Indium-Free Mounted
		Substrates During Molecular-
180	Journal de Physique IV	Beam Epitaxial Lifetime of Excitons in GaAs
100	Volume 3	Quantum Wells
	Pages 19-25	Quantum Weins
	October 1993	
181	J. Vac. Sci. Technol. B	Optically Detected Magnetic
	Volume 11(3)	Resonance of Sharp
	Page 1154	Luminescence from Si/Si1-
100	May/June 1993	xGex Superlattices
182	Electronics Letters Volume 29(19)	Observation of New Vibronic
	Page 1727	Luminescence Band in Semiconducting Diamond
	September 1993	Semiconducting Diamond
183	IEE Proceedings-H	Waveguiding Structures
	Volume 140(3)	Employing the Solid-State
	Pages 147-164	Magnetoplasma Effect for
	1993	Microwave and Milimetre-
		Wave Propagation
184	1993 IEEE AP-S International	Auxiliary Vector Function
	Symposium Digest	Method for Vector Variational
	Volume 1	Approach for The Solution of
	Pages 412-415 1993	Complex Anisotropic Media
	1995	Using Finite Element Numerical Method
185	1993 IEEE AP-S International	Finite Element Method for
105	Symposium Digest	Nonhermitian Bianisotropic
	Volume 1	Media
	Pages 424-427	
	1993	
186	1993 IEEE AP-S International	Fundamental Properties of
	Symposium Digest	Chiral Type Media
	Volume 1 Pages 189-192	
	1993	
187	IEEE Proceedings-H	Nonreciprocal Electromagnetic
	Volume 140(3)	Properties of Composite Chiral-
	Pages 242-248	Ferrite Media
	1993	· · · · · · · · · · · · · · · · · · ·
188	1993 SBMO International	Properties of Composite Chiral
	Microwave Conference/Brazil	- Ferrite Media
	Proceedings	
	Volume 1	
	Pages 577-586 1993	
	1993	

- - -

- --

. . .

_

189		
105	1993 SBMO International	Weighted Residual Finite
	Microwave Conference/Brazil	Element Method for General
	Proceedings	Nonhermitian Anisotropic
	Volume 1	Media
	Pages 597-602	
100	1993	
190	Journal of Applied Physics	Submillimeter Wave Low
	Volume $74(4)$	Temperature Admittance of N-
	Pages 2633-2637	GaAs and N-InP Diode
	August 1993	Structures
191	IEEE Transactions on Electron	Compressing Photodetectors
	Devices	for Long Optical Pulses Using
	. Volume 40(10)	a Lateral Blooming Drain
	Pages 1740-1744	Structure
	October 1993	
192	J. of Electronic Materials	Diode Structures from
	Volume 22(12)	Amorphous Low-Temperature
1	Pages 1437-1440	GaAs
	1993	Gans
193	IEEE SOI Conference Proceedings	Electron Trapping in Simox
	Pages 70-71	with Supplemental Implant
	10/05-07/93	with Supplemental Implant
	1993	
194	Superlattices and Microstructures	Theory of Floor
	Volume 13(1)	Theory of Electromagnetic
	Page 93	Wave Propagation in
	1993	Superlattices with Optically
195		Anisotropic Layers
175	Physical Review B Volume 48(8)	Subband Structures of Strained
	$\frac{1}{2}$	A1Sb/InAs/A1Sb Quantum
	Page 5338	Wells
196	August 1993	
190	The Physics of Semiconductors	Quasi-Two Dimensional
	World Scientific Co.	Electrons in AlSb/InAs
	Page 745	Quantum Wells
197	1993	
191	J. Appl. Phys.	Observation of Ion-
	Volume 74(5)	Implantation-Damage-Created
	Pages 3091-3098	n-Type Conductivity in InP
	September 1993	after High-Temperature
100		Annealing
198	J. Appl. Phys.	Identification and Activation
	Volume 74(3)	Energies of Shallow Donors in
	Page 1805	Cubic SiC
100	August 1993	
199	Physical Review B	Nitrogen Donor Excitation
	Volume 48(16)	Spectra in 3C-SiC)
•	Page 12289	
	October 1993	
200	Physical Review B	Hydrogen Permeability in
	Volume 47(7)	Thermally Grown Eilmand
	Pages 4115-4118	Thermally Grown Films of SiO2 on Silicon Substrates
	February 1993	SIG2 on Silicon Substrates
	1 10010m y 1995	

16 September 1994

•

 \sum

201	Physical Review B Volume 48(24)	Evidence of Long-Range Density Gradient in SiO2 Films on Si from H2-Permeability
	Pages 17-972-17-985 Decmber 1993	Measurements
202	IEEE Transactions on Microwave Theory and Techniques Volume 41(6/7) Pages 1081-1086 June/July 1993	Losses in Y-Junction Stripline and Microstrip Ferrite Circulators
- 203	Microwave and Optical Technology Letters Volume 6(13) Pages 725-728 October 1993	Measurement of the Current- Density Distribution in High- Temperature Superconducting Microstrip by Means of Kinetic-Inductance Photoresponse
204	Proceedings of the Sixth European Conference - Academy of Mining and Metallurgy Materials Science Forum Volume 119-121 1993	Applications of the Coupling Model to Some Problems in Mechanical Spectroscopy of Metals
205	Macromolecules Volume 26(5) Pages 1065-1071 1993	Viscoelastic Properties of Amorphous Polymers. 2. Anomalous Temperature Dependence of the Steady-State Recoverable Compliance in Low Molecular Weight Polymers
206	Physical Review B Volume 47(9) Pages 5041-5046 March 1993	Extended Kronmuller Model for Cooperative Relaxations in Metallic Glasses
207	Journal of Non-Crystalline Solid Volume 155 Pages 189-193 1993	Single Particle Jumps and Correlated Ionic Motions in Glass-Ceramics
208	J. Chem. Phys. Volume 98 (9) Pages 7588-7592 May 1993	Comparisons Between Coupling Model and Molecular Dynamics Simulation for Local Chain Motions in Bulk Amorphous Polymers
209	J. Chem. Phys. Volume 98(8) Pages 6488-6491 April 1993	Breakdown of the Rouse Model for Polymers Near the Glass Transition Temperature
210	J. Chem. Phys. Volume 98(8) Pages 6424-6430 April 1993	Difference Between Nuclear Spin Relaxation and Ionic Conductivity Relaxation in Superionic Glasses

16 September 1994

211	Macromolecules Volume 26(11) Pages 2688-2690 May 1993	Intermolecular Cooperativity and the Temperature Dependence of Segmental Relaxation in Semicrystalline Polymers
212	Solid State Ionics Volume 61 Pages 345-353 1993	Comparisons Between 23 Na and 27 Al Nuclear Spin Relaxations and Electrical Conductivity Relaxation in Na b -Alumina
213	Proceedings of X11 International Conference on Defects in Insulating Materials 08/16-22/92 Volume 1 Pages 53-68 1993	Modelling Ionic Transport from the Structure of Silicate Glasses
214	Progress in Colloid & Polymer Science Volume 91 Pages 72-74 1993	Dynamic Lights Scattering Study of a 1,4-Isoprene-b- Styrene Copolymer
215	Progress in Colloid & Poymer cience Volume 91 Pages 135-137 1993	Solvent Reorientation Dynamics in Aroclor/Polymer Solutions
216	Journal of Molecular Liquids Volume 56 Pages 199-214 1993	Cooperative Dynamics in Relaxation: A Coupling Model Perspective
217	J. Chem. Phys. Volume 99(5) Pages 4201-4209 September 1993	Nonexponential Relaxtions in Strong and Fragile Glass Formers
218	Journal of Non-Crystalline Solids Volume 162 Pages 268-274 1993	Absence of Difference Between 11B Nuclear Spin Relaxation and Li Ion Conductivity Relaxation in (LiCl)0.6- (Li2O)0.7-B2O3)1.0 Superionic Glasses
219	Physical Review B Volume 48(18) Pages 13 481-13 485 November 1993	Analysis of NMR and Conductivity-Relaxation Measurements in Glassy Li2S- SiS2 Fast-Ion Conductors
220	Macromolecules Volume 26 (25) Pages 6824-6830 December 1993	Chemical Structure and Intermolecular Cooperativity: Dielectric Relaxation Results

-

16 September 1994

ŧ.

221	Physica C Volume 209 Pages 263-268 May 1993	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
222	Journal of Crystal Growth Volume 128 Pages 483-487 1993	Sequential Etching of GaAs
223	Semiconductor Science and Technology Volume 8 Pages S112-S116 1993	Magneto-Optic and Magnetotransport Study of InAs/Ga1-xInxSb Superlattices
224	Physical Review B Volume 48(15) Pages 439-442 October 1993	Magnet-Optical Determination of T-Point Energy Gap in Bismuth
225	Electronics Letters Volume 29(1) Pages 18 and 19 January 1993	Reactive Ion Etching of b-SiC in CC12F2/O2
226	Journal of Electronic Materials Volume 22(2) Pages 201-206 January 1993	Lattice Mismatched InGaAs on Silicon Photodetectors Grown by Molecular Beam Epitaxy
227	Applied Physics Letters Volume 62(5) Pages 533-534 February 1993	Proximity Effect Reduction Using Thin Insulating Layers
228	Proceedings of the IEEE Volume 81(9) Pages 1249-1274 September 1993	X-Ray Lithography- An Overview
229	Analytical Chemistry Pages 311R-333R June 1993	Surface Characterization
230	Journal of Vacuum Science Technology B Volume 11(6) Pages 2597-2602 1993	Determination of Acid Diffusion Rate in a Chemically Amplified Resist With Scanning Tunneling Microscope Lithography
231	IEEE Trans. on Appl. Superconductivity Volume 3 (1) Pages 1438-1441 March 1993	YBa2Cu3O7- 8/LaAlO3/YBa2Cu3O7-8 Trilayers Transmission Lines for Measuring the Superconducting Penetration Depth

- - ----

•

-

•

.

232	IEEE Trans. on Appl.	A Novel Microstrip-Compatible
	Superconductivity	Technique for Depositing
	Volume 3(1) Pages 1711-1714	YBa2Cu3O7-8 on Both Surfaces of a Substrate
	March 1993	Surfaces of a Substrate
233	Physical Review B	Structure of Intralayer and
	Volume 47(5)	Interlayer Pairing Interactions,
· · ·	Pages 2780-2795	the Anisotropy of Order
l	February 1993	Parameters, and the Transition
		Temperature in Layered
224		Superconductors
234 .	Physical Review A	Coordinate and Momentum
	Volume 47(5) Part A	Representations of the q- Deformed Oscillator and Their
	Pages R3465-R3467	Interpretation
235	May 1993 Frontiers in Solid State Sciences	Superconductivity in High
255	Volume 1	Magnetic Fields from a
	Pages 193-209	Microscopic Theory
	1993	wheroscopic Theory
236	Phonons in Semiconductor	Phonon Assisted Optical
	Nanostructures	Properties of Semiconductor
	(NATO/ASI Series)	Nanostructures
	J. P. Leburton et al. (eds)	
	Pages 353-361	
	1993	
237	Physical Review B	Plasmons Localized at Point
	Volume 48(4)	Charges in Semiconductor
	Page 2223	Quantum Wells
238	July 1993 Physical Review B	Surface Modes of the Clean
250	Volume 48(8)	Reconstructed W(100) Surface
	Page 5679	Reconstructed W(100) Surface
	August 1993	
239	Physical Review B	Electron-Phonon Scattering
	Volume 48(8)	Rates in Quantum Wires
	Page 5700	-
	August 1993	
240	Physical Review B	Coupling of Electrons to
	Volume 48(16)	Interface Phonons in
	Page 12338 October 1993	Semiconductor Quantum Wells
241	Physical Review B	Effects of Boundary Conditions
	Volume 48(24)	on Confined Optical Phonons in
•	Page 18 037	Semiconductor Nanostructures
	December 1993	
242	Physical Review E	Interaction of a Relaxing
	Volume 48(1)	System with a Dynamical
	Pages R17-R20	Environment
5	July 1993	

-

-

.

•

243	Macromolecules 1992 Pages 83-95 1993	The Coupling Model for Cooperative Relaxations and Its Applications
244	Physical Review B Volume 47(14) Pages 8843-8850 April 1993	Vortex-Lattice Solutions of the Microscopic Gorkov Equations for a Type II Superconductor in a Strong Quantizing Magnetic Field
245	Journal of Physics and Chemical Solids Volume 54(10) Pages 1281-1282 1993	Manifestations of the Landau Quantization in Type II Superconductors in High Magnetic Fields
246	J. Appl. Phys. Volume 74(5) Pages 3303-3306 September 1993	Comparison of Interface Trap Densities Measured by the Jenq and Charge Pumping Techniques
247	IEEE Transactions on Nuclear Science Volume 40(6) Pages 1341-1349 December 1993	Effects of Post-Stress Hydrogen Annealing on MOS Oxides after ⁶⁰ Co Irradiation or Fowler-Nordheim Injection
248	Applied Physics Letters Volume 63(19) Pages 2652-2654 November 1993	Random Telegraphic Noise in Double-Barrier Systems
249	J. Vac. Sci. Technol. B Volume 11(3) Page 994 May/June 1993	Variations in Substrate Temperature Induced by Molecular-Beam Epitaxial Growth on Radiatively Heated Substrates
250	Physical Review B Volume 48(23) Page17 172 December 1993	Planar Vibrational Modes in Superlattices
251	Proceedings of the 4th International Superconductive Electronics Conference, ISEC93 Pages 256-257 1993	Devices with YBCO/Insulator Composite Barriers
252	IEEE Trans. Applied Superconductivity Volume 3(1) Pages 1612-1615 1993	Electron Transport and Magnetic Penetration Depth in Niobium-Silicon Multilayers
253	IEEE Transactions on Electron Devices Volume 40(4) Pages 824-829 April 1993	Secondary Emission Properties as a Function of the Electron Incidence Angle

- -----

-

 \geq

254	J. Appl. Phys.	Lattice Position of Si in GaAs
	Volume 73(12)	Determined by X-Ray Standing
	Pages 8161-8168	Wave Measurements
	June 1993	
255	Physical Review B	Optical Absorption
	Volume 47(23)	Spectroscopy of Single Defects
	Page 16032	in GaAs/Al _x Ga _{1-x} As Tunnel
	June 1993	Structures
256	Appl. Phys. Lett.	Fabrication of Silicon
	Volume 63(6)	Nanostructures with a Scanning
	Page 749	Tunneling Microscope
	August 1993	
257	Appl. Phys. Lett.	Fabrication of GaAs
	Volume 63(25)	Nanostructures with a Scanning
	Page 3488	Tunneling Microscope
	December 1993	
258	IEEE Transactions on Nuclear	Reduction of Charge Trapping
	Science	and Electron Tunneling in
	Volume 40(6)	SIMOX by Supplemental
	Pages 1740-1747	Implantation of Oxygen
	December 1993	miplantation of Oxygen
259	Journal of Applied Physics	Post-Irradiation Cracking of H2
	Volume 73(2)	and Formation of Interface
	Pages 658-667	States in Irradiated Metal-
	January 1993	Oxide-Semiconductor Field-
		Effect Transistorss
260	Physical Review B	Low-Frequency Excitations in
	Volume 47(2)	Sodium b-Alumina: An NMR
	Page 681	Study
	January 1993	olday
261	Diamond and Related Materials	Photoluminescence and
201	Volume 2	Cathodoluminescence Studies of
	Page 87-91	Semiconducting Diamond
	1993	
262	Electronics Letters	Application of Micro-Airbridge
	Volume 29(1)	Isolation in High Speed HBT
	Pages 26-27	Fabrication
8	January 1993	
263	1993 International Semiconductor	DC and Large-Signal AC
	Devices Research Symposium	Electron Transport Properties
1	Proceedings	of GaAs/InGaAs/AlGaAs
	Volume 1	Heterostructure Barrier
	Pages 389-392	Varactors
	1993	
264	1993 International Semiconductor	Efficient Computer Aided
	Devices Research Symposium	Design of GaÅs and InP
	Proceedings	Second Harmonic Millimeter
	Volume 1	Wave TEDs
N		
	Pages 775-778	

•

.

.

0/7		Characterization of Molecular
265	Solid State Electronics	
	Volume 36(3)	Beam Epitaxially Grown InSb
	Pages 387-389	Layers and Diode Structures
	1993	
266	IEEE Transactions on Nuclear	Bonded Wafer Substrates for
	Science	Integrated Detector Arrays
	Volume 40(5)	•
	Pages 1342-1346	
	October 1993	
267	J. Appl. Phys.	Controlled p- and n-Type
	Volume 74(11)	Doping of Homo- and
	Pages 6686-6690	Heteroepitaxially Grown InSb
	December 1993	
268	SSDM 93	Parametric Investigation of Si ₁ -
	Japan Society of Applied Physics	xGex/Si Multiple Quantum
	Pages 234-236	Well Growth
	August/September 1993	
269	J. Vac. Sci. and Techno. B	Low Temperature Cleaning
	Volume 11(3)	Processes for Si Molecular
	Pages 1077-1082	Beam Epitaxy
	May/June 1993	
270	Physical Review B	Optically Detected Magnetic
	Volume 48(23)	Resonance of Shallow Donors
	Page 17 031	in GaAs
	December 1993	
271	Appl. Phys. Lett	Solid-Phase Regrowth of
	Volume 63(3)	Amorphous GaAs Grown by
	Pages 320-321	Low-Temperature Molecular-
	July 1993	Beam Epitaxy
272	IEEE Transactions on Plasma	Field Theory of a Traveling
	Science	Wave Tube Amplifier with a
	Volume 21(6)	Tape Helix
	Pages 654-668	
	December 1993	
273	Semiconductor Science and	The Effect of Interface Bond
	Technology	Type on the Structural and
	Volume 8	Optical Properties of
	Pages S106-S111	GaSb/InAs Superlattices
	1993	
274	1993 IEEE MTT-S International	Status of Ferrite Technology in
	Microwave Symposium Digest	the United States
	Volume 1	1
	Pages 203-206	
	1993	
275	Physical Review B	Enhancement of Cyclotron
	Volume 47(3)	Mass in Semiconductor
• .	Pages 1691-1694	Quantum Wells
	January 1993	
276	Applied Physics Letters	Dependence of InAs Phonon
	Volume 63(25)	Energy on Misfit-Induced
	Pages 3434-3436	Strain
	December 1993	
L		

16 September 1994

 \subset

277	Physical Review B	Spin-Resolved Cyclotron
	Volume 47(11)	Resonance in InAs Quantum
	Pages 6807-6810	Wells: A Study of the Energy
	March 1993	Dependent g-Factor
278	IEEE Transactions on Electron	Simulation of Field Emission
	Devices	Microtriodes
	Volume 40(5)	
	Pages 1009-1016	
	May 1993	
279	Chemistry of Materials, 5:148-150	Photopatterning and Selective
	1993	Electroless Metallization of
		Surface-Attached Ligands
- 2 80 ·	Thin Solid Films, 224:242-247	Palladium Ion Assisted
	1993	Formation and Metallization of
		Lipid Tubules
281	Liquid Crystals, 13(1):163-170	Scanning Tunneling
	1993	Microscopic Study of the
		Interfacial Order in a
		Ferroelectric Liquid Crystal
282	SPIE, 1924:30-41	Soft X-ray (14nm) Lithography
	1993	with Ultrathin Imaging Layers
		and Selective Electroless
		Metallization
283	ACS Symposium Series on	Top Surface Imaging Using
	Polymers for Microelectronics,	Selective Electroless
	537:210	Metallization of Patterned
	1993	Monolayer Films
284	Optical Engineering, 32(10):30	Projection X-ray Lithography
	1993	with Ultrathin Imaging Layers
		and Selective Electroless
		Metallization
285	Science, 262:1669-1676	Lipid Tubules: A Paradigm for
	1993	Molecularly Engineering
0.0.(Structures
286	Japanese Journal of Applied	Patterning of Self-Assembled
	Physics, 32(1:12B):5829-5839 1993	Films Using Lithographic
207		Exposure Tools
287	Applied Physics Letters,	Ferroelectricity in a Langmuir-
	63(9):1285-1287	Blodgett Multilayer Film of a
	1993	Liquid Crystalline Side-Chain
200	James La G. Vannan Trackanska D	Polymer
288	Journal of Vacuum Technology B,	Lithographic Patterning of Self-
	11(6):2155	Assembled Monolayer Films
	1993	
289	Analytical Chemistry	Continuous Flow
	1993	Immunosensor for Detection of
		Explosives
290	Journal of Vacuum Science and	Lithographic Patterning of Self-
	Technology B, 11(6):2155-2163	Assembled Films
	1993	

•

ż

.

.

291	NRL Review Page 154 May 1993	Risk Assessment and Directed Energy Weapons	R
292	Conference Record of 1993 IEEE Nuclear Science Symposium 1993	Laboratory Testing of a Volume Imaging Germanium Compton Camera	R
293	Conference Record of 1993 IEEE Nuclear Science Symposium 1993	Multiparameter Data Acquisition System for Germanium Compton Telescope	R
294	Proceedings of 3rd International Symposium of Diamond Materials Electrochemical Society Pages 498-504 1993	Diamond Deposition from ECR-Generated Plasmas	R
295	SPIE Conference on Photonics for Space Environments April 1993	Candidate NRL Space Experiments for the Microelectroncis and Photonics Test Bed (MPTB)	R
296	Proceedings of 23rd IEEE Photovoltaic Specialist Conference may 1993	One MeV Electorn Irradiation of Monolithic, Two-Terminal inP/InGaAs Tandem Solar Cells	R
297	Proceedings of SPIE Critical Review of Optical Science and Technology September 1993	A Review of Space Radiation Effects for Fiber Optic Data Links	R
298	Journal of Applied Physics Volume 73(1) Pages 60 January 1993	Optimizing the Radiation Resistance of InP Solar Cells: Effect of Dopant Density and Cell Thickness	R
299	1993 SPIE Proceedings Volume 1953 Pages 104-115 1993	Physical Interactions Between Charged Particles and Optoeledtronic Devices and Effects on Fiber Based Data Links	R
300	1993 SPIE April 1993	Microelectronics and Photonics Test Bed (MPTB)	R
301	Proceedings of IEEE 5th International Conference on InP and Related Materials April 1993	* 10 - Effects of Base Dopant Level and Thickness on the Radiation Response of Ga _{0.47} In _{0.53} as Solar Cells	R
302	IEEE NSRC Workshop Proceedings July 1993	Radiation Hardness Assurance Characterization Testing of InGaAsP Fiber Optic Transmitter and Receiver Modules	R

- ---- -

12 0 SEP 1994

303	1993 SPIE Proceedings Volume 1953 Pages 27-36 1993	Photon Irradiation SEU Test Results for the SEDS MIL- STD-1773 Fiber Optic Datbus: Integrated Optoelectronics	R
304	Geophysical Research Letters Volume 20 Pages 975 May 1993	Plasma Dynamics Driven by Finite-Width Current Filaments and KV Potential Drops in Ionosphere-Magnetosphere Coupling	R
305	International Journal of Bifurcation and Chaos Volume 3 Pages 3773 1993	Refurring Anti-Phase Signals in Coupled Nonlinear Oscillators: Chaotic or Random Time Seriew?	R
306	Physical Review E Volume 48 Pages 718 August 1993	Stochastic Tracking in Nonlinear Dynamical Systems	R
307	Physics of Fluds B Volume 5 Pages 1391 October 1993	Sub-Alfvenic Plasma Expansion	R
308	Journal of Applied Physics] Volume 74 Pages 5432 November 1993	X-Ray Damage Testing to Optical Components Using a Laser-Plasma Source	R
309	IEEE Transactions on Plasma Science Volume 21 Pages 383 August 1993	Study of Gain in B-Band Deflection Cavities for a Frequency-Doubling Magnicon Amplifier	R
310	Physics of Fluds B Volume 5 Pages 2682 July 1993	New Results and Applications for the Quasioptical Gyrotron	R
311	Physics of Fluds B Volume 5 Pages 3045 August 1993	Nonlinear Analysis of a Magnicon Output Cavity	R
312	Physics of Fluds B Volume 5 Pages 2905 August 1993	Viscoresistive Stabilization of the Z Pinch	R
313	Physical Review E Volume 47 Pages 2798 April 1993	Escape Time of Heliumlike Alpha-Resonance-Line Photons Emitted from Optically Thick Plasmas	R

- -----

|

.

-

- - - - - - - -

314	Journal of Applied Physics Volume 74 Pages 4303 October 1993	Modeling the Coaxial Double Z-Pinch for the Al DXI-Mg IX Laser at 228	R
315	Proceedings of the 9th International Conference on High Power Particle Beams 1 Page 167 1993	Radiative Z-Pinch Coupling to an Inductive Generator	R
316	Proceedings of SPIE Volume1872 Pages 2 1993	High Power Relativistic Klystron Amplifier Research at the Naval Research Laboratory	R
317	Proceedings of SPIE Volume 1872 Pages 96 1993	The Two-Beam Simulation- Imposition of the Radiation Condition	R
318	International Journal of Infrared and Millimeter Waes Volume 14 Pages 335 1993	RF Convertor Simulation - Imposition of the Radiation Condition	R
319	Applied Physics Letters Volume 62 Pages 2772 May 1993	External Modulation of Intense Relativistic Electron Beams with Spatial and Velocity Inhomogeneities	R
320	11th International Conference on Laser Interaction and Related Plasma Phenomenba 1993	The Nike KRF Laser Program	R
321	Proceeding of 9th IEEE Pulsed Power Conference 1993	The Nike 60 cm Electron Beam-Pumped KrF Amplifier	R
322	Proceedings of the 9th IEEE Pulsed Power Conference 1993	ZFX - A 330 kj, 1 MV Pulsed Power Driver Using a Parallel Plate Water Capacitor	R
323	Proceedings of SPIE Volume 1870 Pages 163 1993	Effects of Random Phase Distortion and Nonlinear Optical Processes on Laser Beam Uniformity with Induced Spatial Incoherence (ISI)	R
324	Physical Review Letters Volume 70 Pages 2573 April 1993	Current Neutralizaiton of Intense MeV Proton Beams Transported in Low-Pressure Gas	R
325	Journal of Applied Phyusics Volume 73 Pages 4181 May 1993	Simulation of Electron Beam Transport in Low-Pressure Gas Conditioning Cells	R

326	Il Nuova Cimento Volume 106A Pages 1705 1993	Physics of Gas Breakdown for Ion Beam Transport in Gas	R
327	Nuclear Instruments and Methods A Volume 331 Pages 6 1993	Electron BEam Qualtiy Limitations and Beam Conditioning in Free Electron Lasers	R
	Nuclear Instruments and Methods A Volume 331 Pages 545 1993	Laser Synchrotron Radiation as a Compact Source of Tunable Short Pulse Hard X-Rays	R
329	IEEE Trans. Plasma Sci Volume 21 Pages 95 February 1993	Nonlinear Analysis of Relativistic Harmonic Generation by Intense Lasers in Plasmons	R
330	Physical Review Letters Volume 70 Pages 2896 May 1993	Methods for Conditioning Electron Beams in Free- Electron Lasers	R
331	Physics Review E Volume 48 Pages 3003 1993	Nonlinear Thomson Scattering of Intense Laser Pulses from beams and Plasmas	R
332	Nuclear Instruments and Methods A Volume 331 Pages 371 1993	Thomson Backscattered X- Rays from an Intense Laser Beam	R
333	Physics of Fluids B Volume 5 Pages 2690 July 1993	Optically Guided Laser Wake- Field Acceleration	R
334	International Journal of Infraree Millimeter Waves Volume 14 pages 335 1993	RF Convertor Simulation- Imposition of the Radiation Condition	R
335	IEEE Transactions on Particle Accelerators Pages 1623 1993	Fundamental and Harmonics of Thomson Backscattered X- Rays from an Intense Laser Beam	R

16 September 1994

Pages D-B-IR-this D-B-77 dated 165EP94 Replaced in their entirety by Pages D-B-IR-this D-B-86R dated 205EP94

3.2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria I)

Electronic Devices Summary

CSF	Number Published	Paper Titles (List)
ED		
FY-91	282	See Listing R - Revised
FY-92	277	
FY-93	292	R - Revised
Total	861	R - Revised

CY91

CSF	Reference	Paper Titles
0.51		(List)
ED	Optics Letters, Vol. 16, pp132-134	Mode Evolution of Induced
I —		Second-Harmonic Light in Optical
		Fiber
	Applied Optics, Vol. 30, 1944-	Correlation of Single Mode Fiber
	1957	Radiation Response and
		Fabrication Parameters
	Applied Optics, Vol. 30,(22),1-5	An Interferometric Method for
		Concurrent Measurement of
		Thermo-Optic and Thermal
	IEEE Journal of Owener	Expansion Coefficient
	IEEE Journal of Quantum Electronics, Vol. 27, No. 4, 1031-	Spectroscopy and Laser Operation of Nd:ZBAN Glass
	1038	of Nu:ZDAN Glass
	Proc. IEEE, Vol. 79, No. 3	Advanced Channelization
		Technology for RF, Microwave,
		and Millimeter Wave Applications
	7 Applied Physics, Vol	Optical and Electrical
	73,No.2,925-928	Characterization of Magnesium-
		Doped Bismuth-Substited Lutetium
	J.Appl.Phys., Vol. 70, No. 9, p.	Iron Garnet Thin Films
	5144	A Thin Film Schottky Diode Fabricated from Flame Grown
	5144	Diamond
	Applied Optics, Vol. 31, No.1, 120-	Image Speckle Contrast Reduction
	125	Resulting from Integrative
		Synthetic Aperture Imaging
	Optical Engineering, Vol. 31, NO.	Short Wavelength Imaging Laser
	11, 2355-2365	Radar Using a Digicon Detector
	Opt. Letters, Vol. 16, No. 10	Photorefractive Two Beam
·		Coupling with White Light
	Applied Optics, 30, 401-406	Laser Beam Propagation Under
1		Turbulent Conditions

	JOSA B, Vol 8, 2, pg. 300	Spectral and Temporal
	JOSA B, VOI 8, 2, pg. 500	
		Characterization of Spontaneous
		Raman Scattering in the Transient
		Reigime
	Optics Communications, Vol. 86	Second Stokes Generation in
		Deuterium
	IEEE J. Quantum Elec., Vol. Q1	Tunable Laser Pumped 3 Micron
	27, #4, 895-897	Ho:YALO Laser
	Chemical Physics, Vol. 149,401-	Photochemical Bleaching of
	407	Absorbed Rhodamine 6G as a
		Probe of Binding Geometries on a
		Fused Silica Surface
	Optics Communications, Vol.	Achromatic Multibeam Coupling in
	80,p.317	KNB03:Rb
	IEEE JQE, Vol. 27, No. 9	Laser and Spectral Properties of
J		Cr:Tm:Ho:YAG at 2.1 Microns
	Theory, JOSA B, 1843	Incoherent Multimode Raman
		Amplification Theory
	Opt. Commun, 83, 103,	Correlation Effects in Pump
		Depleted Broadband Stimulated
l		Raman Amplification
	Letters, Vol 67, No. 4, 437-440,	Cavity Quantum Electrodynamic
	July \	Enhancement of Stimulated
		Emission in Microdroplets
	Optics Letters, Vol. 16, 1147	Supression of Photorefractive
		Beam Fanning
	Optics Leters, Vol. 16, 23, 1868	
	Optics Leters, Vol. 10, 23, 1808	Time-gated Imaging Through
		Scattering Media using Stimulated
		Raman Amplification
	Optics Letters, Vol. 16, 1723,	Effects of Absorption on
	Nov. 15	Microdroplet Resonant Emission
		Structure
	IEEE JQE, QE-27, No. 4, 1129-	Short Pulse 2.1 Micron Laser
	1131, May	Performance of Cr:Tm:Ho:YAG
ll	Proc. IEEE, Vol. 79, No. 1, Van	
	FIGE. IEEE, VOI. /9, NO. 1, Van	Infrared Focal Plane Array
l		Technology
	Physical Review B, Vol. 43,	Comment on "Temperature-induced
H	14715	Intraband Transitions in the n-type
		HgTe/CdTe Superlattices"
	Jour. Vac. Sci. Tech., B9(3) 1813,	Shubnikov-de Oscillations and
	May/June	Quantum Hall Effect in
	y/	Modulation-doped HgTe-CdTe
		Modulation-doped HgTe-CdTe Superlattices
	Jour. Vac. Sci. Tech. B9, 1818	Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole
		Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole Transport in HgTe-CdTe
•		Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole
·	Jour. Vac. Sci. Tech. B9, 1818	Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole Transport in HgTe-CdTe Superlattices
		Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole Transport in HgTe-CdTe Superlattices Interface-Roughness Limited
	Jour. Vac. Sci. Tech. B9, 1818	Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole Transport in HgTe-CdTe Superlattices Interface-Roughness Limited Mobility in HgTe-CdTe
	Jour. Vac. Sci. Tech. B9, 1818 Appl. Phys. Letts., 58, 2523	Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole Transport in HgTe-CdTe Superlattices Interface-Roughness Limited Mobility in HgTe-CdTe Superlattices
	Jour. Vac. Sci. Tech. B9, 1818 Appl. Phys. Letts., 58, 2523 Jour. Appl. Phys., 69(8), 4178,	Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole Transport in HgTe-CdTe Superlattices Interface-Roughness Limited Mobility in HgTe-CdTe Superlattices Development of High Power
	Jour. Vac. Sci. Tech. B9, 1818 Appl. Phys. Letts., 58, 2523	Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole Transport in HgTe-CdTe Superlattices Interface-Roughness Limited Mobility in HgTe-CdTe Superlattices Development of High Power CW KCL:Li(R2a) Color Center
	Jour. Vac. Sci. Tech. B9, 1818 Appl. Phys. Letts., 58, 2523 Jour. Appl. Phys., 69(8), 4178,	Modulation-doped HgTe-CdTe Superlattices Theory for Electron and Hole Transport in HgTe-CdTe Superlattices Interface-Roughness Limited Mobility in HgTe-CdTe Superlattices Development of High Power

im 275

17 6 SEP 1994

.

 \backslash

2

Phys. Rev. B., Vol. 44, 3455	Magnetic Activation of Bipolar Plasmas in HgTe-CdTe Superlattices
Appl. Phys. Letts., 59 (7), p. 756, Aug.	Etalon Enhancement of Nonlinear Optical Response in BiSb
JOSA B, Vol. 8, No. 4, April	Alexandrite Laser Excitation of a Tm:Ho:YAG Laser
Mat. Res. Soc. Proc. 206, 175	Gold Cluster Laden Polydiacetylenes: Novel Materials for Nonlinear Optics
37 Appl. Phys., 70, 4317	Effects of Energy Gap and Band Structure on Free Carrier Nonlinear Susceptibilities in Semiconductors
39 Appl. Phys. 69(3), p. 1648, Feb.	Intensity Dependent Upconversion Efficiencies of Er ions in Heavy- metal Fluoride Glass
Jour. Crystal Growth, 111, 693- 696	Strong Nonlinear Optical Enhancement in MBE Grown BiSt
Phys. Rev. B, 44, 8376	Electron Mobilities and Quantum Hall Effect in Modulation-doped HgTe-CdTe Superlattices
Opt. Dettsl, 16, 232	Continuous Wave 1.5 Micron Thulium Cascade Laser
Solid State Comms., 80, 95	In-band Nonlinear Optical Properties of PbSnSe
Electronics Detters, March	Polarization Insensitive Fiber Optic Michelson Interferometer
Electronics Letters, March	Demonstration of a Hybrid Time Wavelength Division Multilpexed Interferometric Fiber Sensor
IEEE Photonics Letts., June	Phase Tuning by Laser Ablation of LiNbO3 Interometric Modulators to Optimum Linearity
Electronics Letters, March	Experimental Investigation of Polarization Induced Fading in Interferometric Fiber Sensor Array
Optical Pulses Applied Physics Letters, July	Response Of InP/GaInAsP/InP Heterojunction Bipolar Transistors to 1530 & 620nm Ultrafast Optical Pulses
Electronics Letters, May	50 Watt Broad Area Semiconducto Amplifier
Electronics Letters, August	Wisibility Limits in a Fiber Optic Michelson Interferometer with Birefringence Compensation
Appl. Phys. Letts., July	Low Frequency Magnetic Field Mixing Near Period Doubling Bifurcation of a Fiber Optic Magnetometer
IEEE Trans. on Magnetics, Vol. 27, #6, Nov	Characteristics of a Parametric Magnetostrictive Oscillator

ويرد المسلم

.

ŧ:

.

2

	Optics Letters, Vol. 16, #18, Sept.	A Fiber Optic DC & Low Frequency Electric Field Sensor
	Electronics Letters, August	A Technique for Measuring Facet
\mathbf{X}	Electronics Letters, August	
\mathbf{X}		Reflectivity & Effective Index of a
<u>_</u>	$O \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1000$	Laser Amplifier
	Opt. Ltrs, V. 16, p 1902,	57 Micron All Fiber Optic
		Gyroscope w/Noise Subtraction
	Optics Letters, Vol. 16, #24, Dec	Dispersion in Rare-earth Doped Fibers
	Journal of Lightwave Technology,	High Frequency Response of Fibe
	Vol. 9, No. 9, Sept. 1991	Optic Planar Acoustic Sensors
	61 Underwater Acoustics, May	High Performance Fiber Optic
	1991	Hydrophone
X	63 Underwater Acoustics, July	Acoustic Noise Measurements
\mathbf{X}	1991	Utilizing High Performance Fiber
		Optic Hydrophones in the Arctic
	Nuclear Instruments and Methods	R - Revised - NEW
	A 304,526, 1991	Recent Advances in Free Electron
		Laser Theory
	Physical Review Letters, 66, 1446,	Quantum Extension of Child-
	March 1991	Langmuir Law
	Applied Rhysics Letters,	50-Nanometer Linewidth Platinum
	Volume 59, Page 2192	Sidewall Lithography by Effusive-
	65	Source Metal Precursor Chemical
	\backslash	Deposition and Ion-Assisted
	<u> </u>	Etching
	Journal of Applied Physics,	High Resolution Electron Beam
	Volume70, Page 1793	Lithography with a Polydiacetylene
	(August 1991)	Negative Resist at 50KV
	Surface Science,	Infrared Refelection Absorption
	Volume241, Page 357	
		Spectroscopy Study of
	(August 1991)	Chemisorption on the Ni(001)-
		c(2X2)Si Surface
	Journal of Vacuum Science	Investigations of Undeveloped e-
	Technology, Volume 9, Page 1367	beam Resist with a Scanning
	(March/April 1991)	Tunneling Microscope
	Inorgania Chimica Acta Malura	Demonstrand Secondary News
	Inorganic Chimica Acta, Volume	Primary and Secondary Neopentyl
	187, Page 207 (September 1991)	Arsines and Their Reactions with
		Trimethylgallium. Crystal and
		Molecular Structure of
		[Ma2GaAs(CH2CMe3)2]2
	Surface Science, Volume 249,	Submonolayer Cluster Formation a
	Page 159 (1991)	the GeAl2O3 (1102) Interface
		Revised-Deleted
	IEEE Transactions on Manual	Droportion of This Films of
	IEEE Transactions on Magnets,	Preparation of Thin Films of
	Volume 27, No. 2, Page 1406	YlBa2Cu3O7-x by Magnetron
	(March 1991)	Sputtering Techniques
		\backslash
		`
,		\mathbf{X}
•	DR-4-R	N

فرج المعقد

·	
IEEE Transactions on Magnets, Volume 27, No. 2, Page 884 (March 1991)	Particle-Induced Modification of Thin Film YBa2Cu3O7-ΔTransport Properties and Microwave Device Performance
IEEE Transactions on Magnets, Volume 27, No. 2, Page 1536 (March 1991)	Detection of Light Using High Temperature Superconducting Microstrip Lines
Journal Applied Physics, 70, (9), Page 4995 (November 1991)	Light Detection Using High-Tc Microstrip Transmission Lines as a Probe of Film Homogeneity
Physical Review B, Volume 44, No. 17, Page 9609 (November 1991)	Response of Granular Superconducting YBa2.1Cu3.407- x to Light
Thin Solid Films, 206, Pages 128 - 131 (1991)	YBa2Cu3O7- = Δ Thin Films Deposited by an Ultrasonic Nebulization and Pyrolysis Method
 YEEE Transactions on Magnets, Volume 27, No. 2, Page 2540 (March 1991)	Microwave Devices Using YBa2Cu3O7-ΔFilms Made by Pulsed Laser Deposition
Supercond. Science Technology, 4, Pages 449 - 452 (1991)	High Temperature Superconductivity Space Experiment (HTSSE)
Applied Physics Letters, 59 (23), Page 3033 (December 1991)	Penetration Depth and Microwave Loss Measurements with a YBa2Cu3O7- Δ/LaAlO3/YBa2Cu3O7-ΔTrilayer Transmission Line
 IEEE Transactions on Magnets, Volume 27, No. 2, Page 2533 (March 1991)	High Temperature Superconductivity Space Experiment (HTSSE)
 IEEE Transactions on Magnets, Volume 27, No. 2, Page 1332 (March 1991)	Investigation of ErBa2Cu3O7/Cu2O/Normal Metal Tunnel Structures
Journal of Applied Physics, 70, (1), 4 (1991)	Beam Divergence from Sharp Emitters in a General Longitudinal Magnetic Field
IEEE Transactions on Microwave Theory and Techniques, 39, 1010 (1991)	Cold Tests of Quasi-Optical Gyrotron Resonators
Physics of Fluids B, 3 (11), 3177 (1991)	Depressed Collector Experiments on a Quasioptical Gyrotron
IEEE Journal of Quantum Electronics, 27, 2529 (1991)	Evolution of A Finite Pulse of Radiation in a High-Power Free- Electron Laser
Journal of Applied Physics, 69 (9), 6696 (1991)	High-Voltage Millimeter-Wave Gyro-Traveling-Wave Amplifier
International Journal of Infrared and Millimeter Waves, 12, 9 (1991)	Ohmic Effects in Quasioptical Resonators
Nuclear Instruments and Methods A, 304, 526 (1991)	Recent Advances in Free Electron Laser Theory

° "

.

D.B .5. R

K

Π	IEEE Journal of Quantum	Simulation of Free-Electron Lasers
	Electronics, 27, 2693 (1991)	in the Presence of Correlated
1k		Magnetic Field Errors
×	Nuclear Instruments and Methods	Status report on the NIST-NRL
	A, 304, 208 (1991)	Free Electron Laser
	IEEE Journal of Quantum	The Effects of Field Errors on
	Electronics, 27, 2682 (1991	Low-Gain Free-Electron Lasers
	Nuclear Instruments and Methods	Theoretical Analysis of Radiation
	A, 304, 497 (1991)	Pulses in the NIST/NRL FEL
		Oscillator
	Physics of Fluids B, 3 (3), 781	Theoretical Consequences of
	(1991)	Wiggler Field Error Reduction
		Techniques on Free-Electron Laser
·		Performance
	Physical Review A, 43, 11, 6166	Time-Dependent Multimode
	(1,991)	Simulation of Gyrotron Oscillators
	Optic Communications 86, 236	Separation of Nuclear and
1	(199)	Electronic Contributions to
		Femtosecond Four-wave Mixing
J		Data
	IEEE Transactions of Nuclear	SEU Flight Data From the CRRES
	Science, NS 38, Volume 6, Pages	MEP
<u></u>	1647 - 1654 (1991) Chemical Physics Letters, 178, 69	Dephasing and Relaxation in
	Chemical Physics Letters, 178, 09	Coherently-excited Ensembles of
		Intermolecular Oscillators
	IEEE Trans. Nucl. Sol., 38, 525-	Radiation Survey of the LDEF
	530	Spacecraft
	IEEE Trans. Nuc. Sci., NS-38,	Comparison of Experimenta
	Vol. 6, 1540-1545	Charge Collection Waveforms with
8		Pisces Calculations
	102 Appl. Phys. 70, 4995-4999	Light Detection Using High-T
		Microstrip Lines as a Probe of Film
	\\	Homogeneity
	IEEE Trans. on Magnetics, Vol	High Temperatur
	27,No. 2, p.2533	Superconductivity Spac
l		Experiment (HTSSE)
1	IEEE Trans. Nucl. Sci., NS-38	Radiation Damage Assessment o
	240 / 70 / 20	Nb Tunnel Junction Devices
	Nature 349, 678-680	Observation of Beryllium 7 on th
		Surface of the LDEF Spacecraft
	Advances in the Astronautical	Discovery of Be-7 Accretion i
l	Sciences 74, 575-583	Low Earth Orbit
1	IEEE Trans. Nucl. Sci., NS-	Space Radiation Effects in In. Solar Cells
l	38,Vol.6,1153-1158	
8	IEEE Trans. Nuc. Sco., NS-	Ionizing Space Radiation Effects o Surface Acoustic Wave Resonators
	38, Vol. 6, 1329-1335	Radiation Characterization of th
ł	IEEE Trans. Nuc. Sco.,NS- 38,Vol. 6,1398-1402	ADSP2100A Digital Signa
M.	50, ¥01. 0,1570-1402	Processor
	IEEE Trans. Nuc. Sci., NS-	Proton and Heavy Ion Upsets i
	38, Vol. 6,1450-1456	GaAs MESFET Devices
L	50, 101. 0,1450-1450	TOURS MESTER DEVICES

 $^{>}$

د,

٩.

Journal of Applied Physics, 69, 1435	Deep Level Transient Spectroscopy of Irradiated p-Type in InP Grown by MOCVD
IEEE Trans. Nucl. Sci. NS- 38,1540-1545	Comparison of Experimental Charge Collection Waveforms with PISCES Calculations
Journal of Applied Physics, 69,1119	Critical Current Enhancement in Proton-Irradiated T12CaBa2O8 Films
115 Applied Physics, 69,6488	IDLTS Study of Proton Irradiated PType InP
Journal of Applied Physics 69(9)	Deep Level Transient Spectroscopy Study of Proton Irradiated p-type InP
IEEE Transactions on Magnetics 27,2665-2668	Superconducting Tunnel Junctions for use as Energy Resolving X-Ray Detectors
1 N Appl. Phys. 69,4891-4893	Magnetically Modulated Microwave Absorption Measurement of the Penetration Depth in a Polycrystalline YBa ₂ Cu ₃ O _{7-x} Thin Film
Applied Physics Letters, 59(20)	Critical-Current Enhancement in Particle-irradiated Cuprate Superconductors
IEEE Transactions on Magnetics, 27,884	Particle-Induced Modification of Thin Film YBaCu307-Xll
Applied Physics Letters, 58,1563	Proton Radiation Effects in Microwave Cavities and Ring Resonators Fabricated from YBa2Cu3O7-X
IEEE Trans. Nucl. Sci., NS- 38,Vol 6,1284-1288	Radiation Effects in High Temperature Superconducting Films and Devices for the NRL High Temperature Superconductivity Space Experiment
IEEE Trans. on Magnetics, Vol. 27, No. 2	Microwave Devices Using XBa2Cu307, Films Made by Pulsed Laser Deposition
IEEE Trans. Nucl. Sci. NS- 38,1370-1376	Charge Collection in GaAs MESPETs and MODFETS
Appl. Phys. Lett. 58,1563-1565	Proton Radiation Effects in Microwave Cavities and Ring Resonators Fabricated from YBa ₂ Cu ₃ O7 ₂
128 Appl. Phys. 69,1119-1121	Critical Current Enhancement in Proton-Irradiated Tl ₂ CaBa ₂ Cu ₂ O ₈ Films

R

π		IEEE Trans. on Magnetics	Detection of Light using High
V	,	27,1536-1539	Temperature Superconducting Microstriplines
		131 of Superconductivity 4,57-60	Proton-Induced Reduction of R, Jc, and Tc in YBa,CU307-∂ Thin
			Films
		133 Superconductivity, 4,57	Proton-Induced Reduction of Rs, Jc and Tc in YBa2Cu3O7 Thin Films
		Phys. Rev. Lett. 66,1785-1788	Observation of Ultrahigh Critical Current Densities in High-Tc Superconducting Bridge Constrictions
		Solid State Communications 78,631-633	Comparative Study of Microwave Surface Impedance of High Tc Superconductor Samples, Solid State Communications
		IEEE Trans. on Magnetics 27, 884- 887	Thin Film YBa,CU307
		138 IEEE Trans. Nuc. Sci., NS- 38, Vol. 6, 370-1376	Charge Collection in GaAs MESFETs and MODFETS
		IEEE Trans. Nucl. Sci. NS- 38,1284-1288	Radiation Effects in High Temperature Superconducting Films and Devices for the NRL
			High Temperature Superconductivity Space Experiment
		IEEE Trans.Nuc.Sci.,NS-38, Vol. 6,1457-1462	Quantitative Comparison of single Event Upsets Induced by Protons and Neutrons
		Science and Technology of Thin Film Superconductors 2 Plenum Press, NY, NY Pages 67-74 142	Thin Films of Y1Ba2Cu307- dPrepared by 3-Target Co- Sputtering
		IEEE Volume 79(3) Pages 355 144	Advanced Channelization Technology for RF, Microwave, and Millimeterwave Applications
		Proceedings of 2nd European Symposium on Reliability of Electron Devices Failure Physics and Analysis (ESREF 91) Pages 411-422	GaAs MMIC Reliability Studies
		October 1991 Canadian Journal of Physics Volume 69 (3 & 4) Pages 324-328 147	Effects of Neutron and Electron Irradiation on the Absorption Edge of GaAs

P.B.8.R

	29th Annual Proceedings of Reliability Physics 1991 IEEE Cat. No. 91CH2974-4 Pages 200-205 April 1991	Reliability of InGaas HEMTs on GaAs Substrates
	Proceedings of the 3rd Int'l. Symposium on Ultra Large scale Integration Science and Technology Electro Chemical Society Journal Volume 91-11 Pages 409-415 150	Dielectric Breakdown Strength Analysis of SiO2 Using a Stepped- Field Method
·	Physics of Fluids B, Volume B3(1) Page 212 January 1991	Mode Selection by Priming in An Overmoded Electron Cyclotron Maser
	Surface Science Volume 248 Pages 201-206 153	Infrared Reflection Absorption Spectroscopy of Adsorbates on Semiconductors with Buried Metal Layers - O ₂ /GaAs
	155 Vac. Sci. Technol A American Vacuum Society Volume 9 (6) Pages 3169-3172 November 1991	Growth of Ultrathin Ni Layers on Ni(100): Infrared Spectroscopy of Adsorbed Carbon Monoxide as a Structural Probe
	Physical Review B American Institute of Physics Volume 44 (20) Pages 11 149 - 11 158 November 1991	Preparation and Characterization of Carbon-Terminated b-SiC(001) Surfaces
	3rd International Conf. on InR and Related Materials Volume TuP.31 Pages 300-303	Low-Frequency Gain Dispersion, Optical Response. and 1f Noise in Ion-Implanted InP JFETs
	IEE Electronics Letters (IEE/London, UK) Volume 27 (21) Pages 1909-1910 October 1991	InAlAs/InGaAs/InP HEMTs with High Breakdown Voltages Using a Double-Recess Gate Process
	Proceedings of NASECODE VII Pages 49-52 April 1991	Quantum Transport: Novel Approaches in the Formulation and Applications to Novel Semiconductor Devices
	Proceedings of NASECODE VII Pages 1-2 April 1991	Intrinsic High-Frequency Oscillations and Equivalent Circuit Model in the Negative Differential Resistance Region of Resonant Tunneling Devices
	Appl. Phys. Lett. Volume 59(2) Pages 192-195 July 1991	Monte Carlo Particle Simulation of Radiation-Induced Heating in GaA Field-Effect Transistors

j

D.B .9.R

•

 \sim

COMPEL - The International	
Journal for Computation and Mathematics in Electrical and	
	Solid State Devices
Electronic Engineering	Sond State Devices
Volume 10 (4)	
Pages 509-524	
COMPEL - The International	
Journal for Computation and	Oscillations and Equivalent Circuit
Mathematics in Electrical and	
Electronic Engineering	Resistance Region of Resonant
Volume 10 (4)	Tunneling Devices
Pages 241-253	-
December 1991	
American Institute of Physic	s Light-Activated Telegraph Noise in
Physical Review Letters	AlGaAs Tunnel Barriers: Optical
Volume 67 (10)	Probing of a Single Defect
Pages 1330-1333	
September 1991	
Proceedings of 4th Internation	onal Heavy Metal Gettering in SIMOX
Symposium on Silicon-On-	Using Implanted Carbon
Insulator Vechnology Device	
The Electrochemical Society	
Volume 90-6	, IIIC.
Pages 278-28	
166	Evolution of Duland Dediction
American Institute of Physic	s Evaluation of Pulsed Radiation
168 Appl. Phys	Effects in Buried Oxides by Fast C-
Volume 70 (9)	V Measurements
Pages 4784-4789	
November 1991	
American Institute of Physic	
170 Appl. Phys.	Formed by Oxygen Implantation
Volume 70 (8)	Through Patterned Masking Layers
Pages 4584-4592	\mathbf{X}
October 1991	
Physical Review B	Nuclear Magnetic Resonance
Volume 43(15)	V Studies of Strain in Isolvalently
Pages 12512	Doped GaAs -
May 1991	$ \rangle^{-}$
IEEE Transactions on Magne	etics Detection of Light Using High
Volume 27(2)	Temperature Supeconducting
Page 1536	Microstrip Lines
March 1991	
Journal of Applied Physics	Light Detection Using High T _c
Volume 70 (9)	Microstrip Transmission Lines as a
Page 4995	Probe of Film Homogeneity
November 1991	rioue of rimit follogeneity
	Perponse of Gradular
Physical Review B	Response of Granular
	Superconducting Y
Volume 44 (17)	$D_{00} = C_{00} = C_{00} = T_{00}$
Page 9609 November 1991	Ba2.1Cu3.407-x Filtos to Light

• •

.

-

R

,

$\overline{\mathbf{N}}$	Journal of Crystal Growth Volume 109 Pages 314-317	Preparation and Characterization of MgO Thin Films Deposited by Spray Pyrolysis of Mg(2,4-
	176	Pentanedionate)2
	IEE Electronics Letters Volume 27 (24) Pages 2265-2267 November 1991	GaAs Vertical pin Diode Using MeV Implantation
	American Institute of Physics Journal of Applied Physics Volume 70 (3) Pages 1793-1799 August 1991	High Resolution Electron Beam Lithography with a Polydiacetylene Negative Resist at 50 kV
	American Institute of Physics Appl. Phys. Lett. Volume 59 (11) Pages 1338-1340 September 1991	Implantation Damage in GaAs- A1As Superlattices of Different Layer Thickness
	American Institute of Physics Appl. Phys. Lett. Volume 58 (22) Pages 2526-2528 June 1991	Sub-30 nm Lithography in a Negative Electron Beam Resist with a Vacuum Scanning Tunneling Microscope
	182 Vac. Sci. Technol Volume B9(6) Pages 3024-3027 November 1991	Scanning Tunneling Microscope Lithography: A Solution to Electron Scattering
	Applied Physics Letters Volume 58(8) Pages 825 - 827 February 1991	X-Ray Rocking Curve Measurement of Composition and Strain in Si-Ge Buffer Layers grown on Substrates
	Journal of Applied Physics American Institute of Physics Volume 70, No. 3	High-Energy Si Implantation into InP:Fe
	Pages 1750 - 1757 August 1991	
	Physical Review Letters Volume 67, No. 12 Page 1547 September 1991	Exciton, Phonons, and Interfaces in OAAs/A1As Quantum-Well Structures
	IEEE Transactions on Microwave Theory and Techniques Volume 39 (8) Pages 1329-1337 August 1991	Characteristics of Microstrip Transmission Lines with High- Dielectric-Constant Substrates
	IEEE Transactions on Electron Devices Volume 38(10) Pages 2229-2233 October 1991	Design Parameters of a High Effciency 1.7 GHz Gyropeniotron Amplifier

•

P-B .11.R

•

R

6th Conference on Semi-Insulating III-V Materials, Toronto, Canada Chapter 4	Photoreflectance Surface Characterization of InP:Fe Substrates
Pages 329-334 189 Appl. Phys. Lett.	Photoreflectance of Semi-Insulating
Volume 58(24) Pages 2824 June 1991	InP: Resistivity Effects on Exciton Phase
Appl. Phys. Lett. Volume 58 (17) Pages 1905-1907 April 1991	High Mobility InSb Grown by Organometallic Vapor Phase Epitaxy
Physical Review B Volume 43 (14) Pages 14 540 - 14556 June 1991	Optically-Detected Magnetic Resonance of Group-IV and Group-VI Impurities in AlAs and $Al_XGa_{1-x}As$ with $.x \ge 0.35$
Semicond. Sci Technology Volume 6 B9XB100 194	Studies of Donor States in Si- Doped A11Ga1-x As Using Optically Detected Magnetic Resonance with Uniaxial Stress
Materials Science Forum Volumes 83-87 Pages 775-786 196	Optically-Detected Magnetic Resonance of Donor States in $Al_xGa_{1-x}As \ (x \ge 0.35)$ Doped with Group-IV and Group-VI Impurities
198 Vac. Sci. Technology. Volume B9 (2) Page 1403 March 1991	Raman Scattering Study of Dry Etching of GaAs: A Comparison of Chemically Assisted Ion Beam Etching and Reactive Ion Etching
Superlattices and Microstructures, Academic Press, London, UK Volume 10 Pages 77-82 200	Electroreflectance Studies of Asymmetrically Couple Quantum Wells
Mat. Res. Soc. Symp. Proc. Volume 204 Pages 369-374 202	Chemically Assisted Ion Beam Etching of SiGe
204 Vac. Sci. Technol Volume B9(2) Pages 3546 November 1991	Optical Studies of Dry Etched GaAs
Appl. Phys. Lett. Volume <u>58</u> (17) .Pages 1899-1901 April 1991	Selective Removal of a Si0.7Ge0.3 Layer from Si(100)
207 Appl. Phys. Volume 69 (8) Pages 4216 April 1991	The Nucleation and Growth of Germanium on (1102) Sapphire Deposited by Molecular-Beam Epitaxy

.

D-B-12-R

R

Materials Research Society Spring 1991 Volume 220 Pages 291-295 209	Fabrication of Bond and Etch Back Silicon on Insulator Using SiGe- MBE and Selective Etching Techniques
Journal of Crystal Growth Volume 109 Pages 228-233 211	Growth of (100) GaAs by Vertical Zone Melting
IEEE Transaction on Electron Devices Volume 38(3) Page 463 April 1991	Optimization of SIMOX for VLSI by Electrical Characterization
IEEE Transactions on Nuclear Science Volume 38 (6) Page 1560 December 1991	A Comparison of Methods for Simulating Low Dose-Rate Gamma Ray Testing of MOS Devices
Physical Review Letters Volume 66(8) Page 1078 February 1991	Numerical Simulation of Intrinsic Bistability and High-Frequency Current Oscillations in Resonant Tunneling Structures,
IEDM Pages 771-774 December 1991	The Numerical Simulation of Particle Trajectories in Quantum Transport and the Effects of Scattering and Self-Consistency on the Performance of Quantum Well Devices
Proceedings of IEEE Volume 79(5) Pages 677-700 May 1991	Thin Film Deposition and Microelectronic and Optoelectronic Device Fabrication and Characterization in Monocrystalline Alpha and Beta Silicon Carbide
Electronic Letters Volume 27(12) Pages 1038-1040 June 1991	High Temperature Operation of a- Silicon Carbide Buried-Gate Junction Field Effect Transistors
Journal of Electronic Materials Volume 20(1) Page 49 219	Election Paramagnetic Resonance and Optically-Detected Magnetic Resonance of Donors in Al _x Ga _{1-x} As
Materials Research Society Symposium Proceedings Volume 220 Page 271 221	Characterization of Si _{1-x} Ge _x /Si Heterostructures Using Optically- Detected Magnetic Resonance
Semicond. Sci. Technol. Volume 6 Pages B101-B104 223	Magnetic Resonance of Sn-doped Al _x Ga _{1-x} As Detected on Photoluminescence

D-B -13-12

 $\left|\right|$

	Applied Physics Letters	Photoluminescence and Magnetic
	Volume 58 (5) Page 502 February 1991	Resonance Studies of Er ³⁺ in MeV Ion Implanted GaAs
	226 International Electron Devices Meeting Pages 589-591 December 1991	Interaction Efficiency of an Emission Gated TWT
	Journal of Electromagnetic Waves and Applications VSP Volume 5(6) Pages 577-606 June 1991	Hybrid-Mode Fields in Isotropic and Anisotropic Planar Microstrip Structures
	2nd Workshop on Neural Networks: Academic/Industrial/NASA/Defens	Programmable Analog Vector- Matrix Multiplier Using Capacitive Weight Storage
	SPIE Volume 1515 Page 795 February 1991	
	Journal of Radiation Effects R&D Volume 10 (1) Page 45 December 1991	Response of SOS Starting Materials to High Total Dose Irradiation
	Materials Research Society Symposium Proceedings Volume 220 Page 589 231	Electronic Structures for (Si)m(GaP)n Superlattices
	International Conference on Metallurgical Coatings and Thin Films (ICMCTF91) Thin Solid Films Volume 206 Pages 18-26 233	Double Crystal X-Ray Topography Characterization of an Electrical Induced Stress Variation in Metal- Oxide-Semiconductor Field Effect Transistors
	International Conference on Metallurgical Coatings & Thin Films (ICMCTF91) Thin Solid Films Volume 206 Page 27-33 235	Characterization of Silicon on Insulator Substrates Using Reflection Mode Double Crystal X Ray Topography
•	237 Va. Sci. Technology. Volume B9(2) Pages 1367 March 1991	Investigations of Undeveloped E- Beam Resist with a Scanning Tunneling Microscope
	Proceedings of the IEEE Volume 79(8) Pages 1149 August 1991	Nanostructure Patterning

咳

t

D-B-14-R

 \geq

Nuclear Instruments and Methods in Physics Research Elsevier Science Publishers B.V. (North-Holland) Volume B59/60 Pages 1103-1105 240	Type Conversion of Expitaxial GaAs Layers After Heavy Ion MeV Implantation and Annealing
Nuclear Instruments and Methods in Physics Research Elsevier Science Publishers B. V. (North-Holland) Volume B59/60 Pages 978-980 242	Dose-Rate Dependent Electrical Activation of Silicon and Sulphur Implanted into GaAs
Journal of Applied Physics Volume 69 (9) Rage 6731 May 1991	Comment on: "The Effect of Charge State on the Local Vibrational Mode Absorption of the Carbon Acceptor in Semi- Insulating GaAs"
Journal of Electronic Materials The Metallurgical Society Volume 20(8) Pages 627-633 May 1991	Post-Irradiation Formation of Si- SiO ₂ Interface States in a Hydrogen Atmosphere at Room Temperature
Applied Physics Letters American Institute of Physics Volume 59(23) Pages 3012-3014 December 1991	Model for Si-Si02 Interface State Formation During Irradiation and During Post-Irradiation Exposure to Hydrogen Environment
Journal of the Electrochemical Society Volume 138 (6) Page 1770 June 1991	Measurement of the Thickness and Optical Properties of Thermal Oxides of Si Using Spectroscopic Ellipsometry and Stylus Profilometry.
IEEE Transactions on Nuclear Science Volume 38 (6) Page 1101 December 1991 IEEE Transactions on Electron	Si-SiO ₂ Interface State Generation During X-Ray Irradiation and During Post-Irradiation Exposure to a Hydrogen Ambient Field Emission Triodes
 Devices Volume 38(3) Page 661-665 March 1991 IEEE Transactions on Microwave	Monolithic Circuit for Reflection
Theory and Techniques IEEE Microwave and Guided Wave Letters Volume 1(8) Pages 195-197	Coefficient Measurement
August 1991	

٩

ŧ

- ----

 \mathbb{R}

D.B. 15-R

.

Π		
	Macromolecules Volume 24 Page 61-67 251	Antiplasticization Effects on a Secondary Relaxation in Plasticized Glassy Polycarbonates
	Theory of Relaxation in Glass- Forming Liquids Journal of Chemical Physics American Institute of Physics Volume 94(4) Page 3018-3029 February 1991	Couplings Between the Cooperatively Rearranging Regions of the Adam-Gibbs
	Macromolecules American Chemical Society Pages 1221-1224 254	Correlation of Polymer Segmental Chain Dynamics with Temperature- Dependent Time-Scale Shifts
	Physical Review B Volume 43 (10) Pages 7481-7486 April 1991	Uncommon Nuclear-Spin Relaxation in Fluorozirconate Glasses at Low Temperatures
	Macromolecules Volume 24 Pages 1561-1566 257	Correspondence Between the Coupling Model Predictions and Computer Simulations: Diffusion of a Probe Polymer in a Matrix Having Different Degrees of Polymerization
-	Journal of Polymer Science B: Polymer Physics Volume 29 Pages 867-876 259	Coupling Scheme Applied to Solvent Relaxation Modified by Dissolved Plymer Molecules
	Journal of Non-Crystalline Solids Volumes 131-133 Pages 233-237 261	Toward a Theory of Relaxation in Correlated Systems: Diffusion in the Phase Space of a Chaotic Hamiltonian
	Journal of Non-Crystalline Solids Volume 131-133 Pages 80-83 263	Temperature Dependence of the Stretched Exponent in Structural Relaxation of Fragile Glass Forming Molecular Liquids
	Journal of Non-Crystalline Solids Volumes 131-133 Pages 1001-1010 265	Nuclear Spin Relaxation and Atomic Motion in Inorganic Glasses
	Journal of Non-Crystalline Solids Volumes 131-133 Pages 544-550 267	Evidence of Modification of Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions
	Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 269	From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Balk Polymer

ł

•

ł

D-B-16-R

. •

.

 \mathbb{N}

.

	Relaxation in Complex Systems	The Symmetric and Fully
	and Related Topics	Distributed Solution to a
	Edited by I. A. Campbell and C.	Generalized Dining Philosophers
1k I	Giovannella	Problem: An Analogue of the
	Pages 309-316	Coupling Theory of Relaxations in
	271	Complex Correlated Systems
	Materials Science Forum	Study of Dynamic Properties of
	Volumes 67 and 68	Fluoride Glasses by Nuclear
	Pages 607-612	Magnetic Resonance
	273	
	Macromolecules	Test of Expected Correlation of
	American Chemical Society	Polymer Segmental Chain
	Volume 24(17)	Dynamics with Temperature-
\`.	Pages 4865 - 4867	Dependent Time-Scale Shifts in
	August 1991	Concentrated Solutions
	Journal of Chemical Physics	Solvent Rotational Mobility in
	American Institute of Physics	Polystyrene/Aroclor and
	Volume 95(4)	Polybutadiene/Aroclor Solutions.II
	Pages 2980-2987	A Photon Correlation
	August 1991	Spectroscopic Study
	Journal of Non-Crystalline Solids	Mixed Alkali Effects in Ionic
	Elsevier Science Publishers B. V.	Conductors: A New Model and
	(North Holland)	Computer Simulations
	Volumes 131-133	Computer Simulations
	Pages 1109-1112	
	277	
	Journal of Polymer Science: Part B	Some Connections Between
	Volume 29	Viscoelastic Properties of PVC and
	Pages 1493-1501	Plasticized PVC and Molecular
	279	Kinetics
	NATO ASI Series	The Coupling Scheme for
	Series B: Physics	Relaxation in Complex Correlated
	Volume 258	Systems Large Scale Molecular
		Systems
	Pages 453-469	Systems
	281	Diffusion with a Mamonu A
	Journal of Physics A: Math. Gen	Diffusion with a Memory: A
	Volume 24	Model for Mixed Alkali Effect in
	Pages L881 - L886	Vitreous Ionic Conductors
	283	
	Superconductor Science and	High Temperature
	Technology	Superconductivity Space
	IOP Publishing	Experiment
	Volume 4	
H	Pages 449-452	
		$[\cdot] = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$
	285	
	287 Appl. Phys.American Institute	In 0.53 GaO.47As Metal-
N .	of Physics	Semiconductor Metal Photodetector
		Using Light-Ion Rombarded p-
	Volume 70(7)	
	October 1991	Type Material
	October 1991	Type Material
	October 1991 Appl. Phys. Lett.	Type Material Epitaxial Growth of &-SiC on
	October 1991 Appl. Phys. Lett. Volume 58(13)	Type Material Epitaxial Growth of b-SiC on Silicon-on-Sapphire Substrates by
	October 1991 Appl. Phys. Lett.	Type Material Epitaxial Growth of &-SiC on

.

R

P-B.17.2

	Review of Scientific Instruments	Passive Microelectrode Arrays for
k	American Physical Society	Recording of Neural Signals: A
	Volume 62 (9)	Simplified Fabrication Process
	Page 2276-2280	
	September 1991	
├ ────────────────────────────────────	Applied Physics Letters	Penetration Depth and Microwave
	Volume 59(23)	Loss Measuerments with a
	Pages 3033-3035	YBa2Cu307-
	December 1991	d/LaALO3/YBa2CU307-d Trilayer
		Transmission Line
	IEEE Trans. on Magnetics	Ultra-Compact Microwave Filters
	Volume 27(2)	Using Kinetic Inductance
	Pages 2696-2699	Microstrip
	March 1991	, meresurp
		Faction Condition of Common Induced
	Materials Letters	Etching Studies of Stress-Induced
	Volume 10(9,10)	Surface Plygonization in Si GaAs
1	Pages 400-403	Wafers
	February 1991	
	Mat. Res. Soc. Symp. Proc.	Initial Formation of SiGe/Si
1	Volume 202	Epitaxial Structures and Oxides
1	Pages 639-644	Produced by Wet Oxidation of
1		
	294	Amorphous Si _x Ge _{1-x} Layers
	Journal of Electronic Materials	The Study of Relaxation in
	Volume $20(5)$	Asymmetrically Strained Sil-
	Pages 389-394	xGex/Si Superlattices
	296	
	Materials Research Society Symp.	The Effects of Stress on
	Proceedings	Interdiffusion in Si_XGe_{1-x}/Si
	Volume 226	
1		Superlattices
11		
	Pages 129-139	
	298	
	298 Superlattices and Microstructures	Optical and Structural Studies of
	298	
	298 Superlattices and Microstructures	Optical and Structural Studies of Si1-xGex/Si Strained Layer Superlattices
	298 Superlattices and Microstructures Volume 10 (1)	Si1-xGex/Si Strained Layer
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300	Sil-xGex/Si Strained Layer Superlattices
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters	Si1-xGex/Si Strained Layer Superlattices Kinatics of Silicide Formation in
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4)	Sil-xGex/Si Strained Layer Superlattices Kinatics of Silicide Formation in Chronaium-Amorphous Silicon
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451	Sil-xGex/Si Strained Layer Superlattices Kinatics of Silicide Formation in
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronaium-Amorphous Silicon Multilayered Films.
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronaium-Amorphous Silicon Multilayered Films. Response Function Characteristics
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronaium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronaium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronaium-Amorphous Silicon Multilayered Films. Response Function Characteristics
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronaium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New High Tc Superconductors
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303 Physical Review	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronaium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303 Physical Review Volume 43(4)	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New High Tc Superconductors
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303 Physical Review Volume 43(4) Page 2059-2061	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New High Tc Superconductors
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303 Physical Review Volume 43(4)	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New High Tc Superconductors
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303 Physical Review Volume 43(4) Page 2059-2061 February 1991	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New High Tc Superconductors Dynamic Linear Response
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303 Physical Review Volume 43(4) Page 2059-2061 February 1991 Physica C	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New High Tc Superconductors Dynamic Linear Response Generalized Pairing Theory of
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303 Physical Review Volume 43(4) Page 2059-2061 February 1991 Physica C Volume 174	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New High Tc Superconductors Dynamic Linear Response Generalized Pairing Theory of Superconductivity in Layered
	298 Superlattices and Microstructures Volume 10 (1) Pg 113-118 300 Applied Physics Letters Volume 59(4) Pages 449-451 July 1991 Studies of High Temperature Superconductors Volume 6 Page 269-295 303 Physical Review Volume 43(4) Page 2059-2061 February 1991 Physica C	Sil-xGex/Si Strained Layer Superlattices Kinetics of Silicide Formation in Chronium-Amorphous Silicon Multilayered Films. Response Function Characteristics of Pairing Correlations in the New High Tc Superconductors Dynamic Linear Response Generalized Pairing Theory of

R

P.B. 18-R

Π	Dhusing C	Cuparaanduativity in Layarad
	Physica C	Superconductivity in Layered
N	Volume 176	Materials. Pairing theory for
	Pages 457-476	Projectively Translation Invariant
	308	States
	Journal of Non-Crystalline Solids	Theoretical Aspects of Coupling
	Volume 131-133	Model Schemes of Slow Relaxation
	Pages 282-288	in Complex Correlated Systems
	310	
\\	Physical Review B	Linearized Gap Equation for a
	Volume 44(6)	Superconductor in a Strong
	Pages 2807-2810	Magnetic Field
	August 1991	Widghelle I leid
<u>├</u>		Quantum Translation Invariance
	Solid State Communications	
	Volume 77(7)	and the Superconducting Transition
	Pages 525-528	in Layered Bulk Materials
	313	
	Physical Review B	Quantumj-State Representations in
	Volume 44(18)	Strong Quantizing Magnetic Field:
	Pages 10 280	Pairing Theory of
	315	Superconductivity
	Physical Review B	High-T _c Superconductivity of
	Volume 44(18)	YBa2Cu3O7/PrBa2Cu3O7
	Pages 10 210	Superlattices: An Interlayer-
	317	
		Coupling Model
	IEEE Transactions on Microwave	Optoelectronic Approach to On-
	Theory and Techniques	Chip Device and Circuit
	Volume 39(7)	Characterization at Microwave and
	Pages 1179-1193	Millimeter-Wave Frequencies
	July 1991	
	Physical Review B	Phonon-Mediated Indirect
	Volume $43(14)$	Interactions Between Adatoms on
	Page 12045	Surfaces: O Adatoms on Si(100)
	Journal of Non-Crystalline Solids	Convolution Integral Formulation
	Volumes 131-133	of Dispersive Diffusion Transport:
	Pages 667-670	Numerical Solutions for the
		Coupling Model Waiting Time
		Distribution
	Journal of Non-Crystalline Solids	Localized Segmental Motion and
	Volumes 131-133	Brillouin Scattering in a Polymer
	Pages 870-876	Liquid
	323 Non-Crystalline Solids, North	Volume-Dependent Rate Processes
	Holland	Predicted by the Coupling Model
	Volume 131-133	
	Pages 442-450	
	May 1991	
-	Journal of Applied Physics	Formation of Interface Traps in
	American Insitute of Physics	MOS Devices During Isochronal
	Volume 70 (12)	Annealing After Irradiation at 78
	Pages7434-7442	K. 5
	December 1991	
1		

D-B - 19-R

ŀ

R

IEEE Transactions on Nuclear Science Volume 38 (6) Pages 1130-1139 December 1991	Effects of Switched Gate Bias on Radiation-Induced Interface Trap Formation
App. Phys. Lett Volume 58(16) Page 1795 April 1991	Enhanced Photoemission from a Bi-Metallic LaB6/Au Photocathode
Applied Physics Letters 328 Page 1317 September 1991	In-Situ Determination of Flux Nonuniformities During Molecular Beam Epitaxial Growth
Physical Review B Volume 44(11) Pages 5815-5826 September 1991	Surface Geometry of BaO on W(100): A Surface-Extended X- Ray-Absorption Fine-Structure Study
Mat. Res. Soc. Symp. Proc. Volume 216 Page 239 331	OMVPE Growth of Eiptaxial InSB Thin Films Using a Novel Group V Source Compound
Applied Physics Letters Volume 58 (12) Pages 1311-1313 March 1991	Low-Temperature Organometallic Vapor Phase Epitaxy of InSb Using the Novel Sb Precursor Triisopropylantimony
Journal of Non Crystalline Solids Volumes 131-133 Pages 1011-1017 334	Nature of the Linear Frequency Dependent AC Conductivity in Glassy Ionic Conductors
Science and Technology of Thin- Film Superconductors 2 Pages 449-458 336	Photoresistive Response of Superconducting Thin Films
New Diamond Science and Technology MRS Int. Conf. Proc. Page 723 338	Micro-Photoluminescences Studies of Diamond Films
The Electrochemical Society Proceedings Volume 91-13 Pages 207-218 May 1991	Enhancement of 2-Dimensional Electron Gas Mobility for Inverted Modulation-Doped Field-Effect Transistor Structures, and the Application of Low Temperature Buffers on the Inverted Structures
 IEEE Transactions on Electron Devices Volume 38(6) Pages 1262-1270 June 1991	Electron Transport in Rectifying Semiconductor Alloy Ramp Heterostructures

.....

.....

 \leq

- - - -

P-B-20-R

ł

	Microwave and Optical Technology Letters Volume 4(3) Pages 91-97 February 1991	A Microwave Equivalent Circuit Model for Semiconductor Alloy Ramp
	343 Appl. Phys. Volume 69(8) Pages 4228-4233 April 1991	Be _n S, Si, and Ne Ion Implantation in InSb Grown on GaAs
	Nuclear Instruments and Methods in Physics Research Elsevier Science Publishers B.V. (North-Holland) Volume B59/60 Pages 592-599 345	MeV Ion Implantation in GaAs Technology
	Physical Review B Volume 43(3) Page 2458 January 1991	Gallium Interstitials in GaAs/AlAs Superlattices
	348 Appl Phys. Volume 68(\0) Pages 5109-5\14 November 199\	Line Tension of Extended Double Kinks in Thin Films
	Microwave Journal Volume 34(9) Pages 85-91 September 1991	The High Temperature Superconductivity Space Experiment
	IEEE Trans. on Nuclear Science Volume 38 (6) Pages 1253-1258 December 1991	SIMOX with Epitaxial Silicon: Point Defects and Positive Charge
	Proceedings Mat. Res. Society. 352 199 353	Defect Centers Formed During Wet Oxidation of Si-GE/Si Heterostructures
	Science 252:551-554	Deep UV Photochemistry of Chemisorbed Monolayers: Fabrication and Applications of Patterned Co-Planar Molecular Assemblies
	Biosensors & Bioelectronics, 6:425-430 Solid State Technology, 34(10):77-	Modilation of a Gated Ion Channel Admittance in Lipid Bilayer New Surface Imaging Techniques
	82	for Sub-0.5 Micrometer Optical Lithography
-	Liquid Crystals, 10(4):585	Fast Switching Forroelectric Side- Chain Liquid-Crystalline Polymer and Copolymer
	Journal of Vacuum Science and Technology B, 9(6):3447-3450	Deep Ultraviolet Patterning of Monolayer Films for High Resolution Lithography

P-B-21-R

ŧ

360 of Microencapsulation 8(3):301-306 Review of Scientific Instruments,	Controlled Release From Cylindrical Microstructures Autonulling a.c. Bridge for
62(12):3082-3088	Accurate Measurement of Small Impedance Variations Using MOS Components
Journal of Applied Physics, 70:4679-4686	Artificial Dielectric Properties of Microscopic Metallized Filaments in Composites
IEEE Transactions on Plasma Science, 19:749-756	Measurements of Vacuum Field Emission From Bio/Molecular and Semiconductor-Metal Eutectic Composite Microstructures
Journal of Applied Physics, 70(10):5882-5884	The Process-Cpontrolled Magnetic Properties in Nanostructured Co/Ag Composite Films
Macromolecules, 24:6539-6541	Monolayers and Langmuir-Blodgett Films of a Ferroelectric Side Chain Polymer and its Constituent Mesogen
Journal of Applied Physics, 70(10):6404-6406	Magnetic Properties of Permalloy- Coated Tubules

D-B 22 R

.

•

÷

R

•

	<u> </u>	
CSF	Reference	Paper Titles (List)
ED	J. Lightwave Tech., Vol. 10, #2, Feb.	Photorefractive Effects in Proton Exchanged LiTa03 Optical Waveguides
	Appl Phys. Letts., Vol. 60, #11, March 1992	Periodic Filaments in Reflective Broad Area Semiconductor Optical Amplifier
	IEEE Photonics Letters, Vol. 4, #5, May 1992	Demonstration of Low Frequency Noise Reduction for Fiber Sensors Powered by Diode-pumped Nd:YAG Lasers
	Applied Optics, Oct. 1992	80 Femtosecond Pulses From an All Fiber Source
	Appl. Phys. Ltrs., Vol. 60, #9, March 1992	Blue Light Generation by Frequency Doubling of AlGaAs Broad Area Amplifier Emission
	Photonics Letters, Vol. 4, #4, April 1992	An Optical Injected Synchronous Oscillator
	Optics Letts., Vol. 17, #5, March 1992	A Fiber Optic AC Electric Field Sensor Based on the Electrostrictive Effect
	Vol. 28, #3, p. 271, Jan. 1992	Remote Fiber Optic AC Magnetometer
	Technology, Vol. 10, #7, 992-999, July 1992	Fiber Optic Gyroscopes with Depolarized Light
	Electronics Letters, Vol. 28, p. 236, Jan. 1992	High Resolution Fiber Grating Based Strain Sensor with Interferometric Wavelength Shift Detection
	Electronics Letters, Vol. 28, #4. Feb. 1992	Low Crosstalk Code Division Multiplexed Interferometric Array
	IEE Proc. Jour., Vol. 139, #4, p. 288, Aug. 1992	Optical Microwave Techniques & Applications
	Electronics Letters, Vol. 28, #2, Jan. 1992	Electrical Loss Mechanisms in Traveling Wave LiNb03 Optical Modulators
	Photonics Tech. Letts., Vol. 4, p. 500, 1992	Optical Polarization Division Multiplexing at 4Gb/s
	App. Opt., Vol 31(16) Pages 2964 June 1992	Fiber Optic Two Beam Interferometric Fringe Amplitude Recovery Using Frequency Contr
	Elec. Ltrs., Vol 28(21) Oct 92	2.0W CW Diffraction Limited Tapered Amplifier w/Diode Injection
	Elec. Ltrs. Vol 28(20)] P. 1930-1931 Sept 92	Low Frequency Electrostrictive Ceramic Plate Voltage Sensor

CY92

D.B.23.R

n	Ontigal Materials	Growth Processing and
•	Optical Materials, Vol. 1, p. 235, No. 4 (1992)	Growth, Processing, and Properties of CVD Grown Diamond
	Optics Letters, Vol. 17, No. 8, April 1992	F-aggregate Color Centers In Sodium Doped KI
	Optics Letters, Vol. 17, 833-835, 1992	Fiber Bragg Reflectors Prepared by a Single Excimer Pulse
	Appl. Phys. Letts., Vol. 61, 429- 431, May 1992	Electron Beam Modification of Schottky Diode Characterisitics of Diamond
	IEEE J. Quantum Electronics Volume 28(4) P. 1031-1038	Diode Pumped Amplifier/Laser Using Leaky-Wave Fiber Coupling: An Evaluation
	Applied Optics, Vol. 31, #1, 120- 125, Jan. 1992	Image Speckle Contrast Reduction Resulting from Integrative Synthetic Aperture Imaging
	NOSA B, Vol. 9, 11, p. 2107 (1992)	Low-light Level Quantum Noise Reduction in a Stimulated Raman Amplifier
	Rev. Sci. Instr., Vol. 63, 1838- 1839 (1992)	A Simple Technique to Prevent Misfire Arcing in Discharge Pumped Excimer Laser
	Opt. Lett. Vol. 17, No. 11, p. 833, 1992	Ar2 Excimer Emission From a Pulsed Discharge Excited Supersonic Gas Jet
	JOSA B, Vol. 17, No. 11, p. 833, (1992	Threshold Reduction for Stimulated Brillouin Scattering Using a Multipass Herriott Cell
	Applied Optics, Vol. 31, 600-602, (1992)	SBS Phase Conjugation of an Amplified Hydrogen Fluoride Laser Beam
	Optics Comm., Vol. 93, 150, 162, (1992)	Passive Stabilization of Photorefractive Two-beam Coupling with Laser Diodes Using Achromatic Grating Techniques
	Optics Communications, Vol. 93, 609-618 (1992)	Comparison Between Photorefractive Beam Fanning Using Monochromatic and Achromatic Two-wave Mixing in SBN
	Phys. Rev. Ltrs., Vol. 69, 2503- 2506 (1992)	Optical Vortex Solitons Observed in Kerr Nonlinear Media
	Optics Letters, Vol. 17, 828-830, (1992)	CW Stimulated Raman Scattering in Microdroplets
	JOSA B, Vol. 9, 43-50, (1992)	Spectral Properties of Lasing Microdroplets
	Applied Optics, Vol. 31, 1982- 1991, (1992)	Cavity Mode Identification of Fluorescence and Lasing in Microdroplets

•

A.

i.

D.B.24.R

|<

•

· · · · · · · · · · · · · · · · · · ·		
	Modern Physics B Letters B, Vol. 6, 447-457, (1992)	Cavity Quantum Electrodynamic Enhancement of Spontaneous and Stimulated Emission in Microdroplets
	Optics Letters, Vol. 17, 970-972, (1992)	Microdroplet Resonant Emission Structure
	Phys. Rev. A, Vol. 45, 6756- 6760, (1992)	Cavity-mode Spontaneous Emission Rates in Liquid Microdroplets
	Optics Letters, Vol. 17, 493-495 (1992)	Dark Soliton Prototype Devices: Analysis Using Direct Scattering Theory
	Science, Vol. 258, 783-785, (1992)	Nanochannel Array Glass
	Appl. Phys. Letts., Vol. 61, 3151- 3153, (1992)	Nonlinear Optical Properties of Quantum Confined GaAs Nanocrystals in Vycor Glass
	Physics, Vol. 1, No. 3, 493-531, (1992)	Large Weakly Saturating Third order Nonlinear Susceptbilities in Semi-metals and Narrow-gap Semiconductors
	Tech. B, Vol.10, No. 4, 1582, (1992)	Magnetic Generation of Electrons and Holes in Semimetallic HgTe- CdTe Superlattices
	Jour. Vac. Sci. Technol. B, Vol. 10, 885, (1992)	Nonlinear Optical Properties of InSbAs-Based Alloys and Superlattices
	Jour. Vac. Sci. Tech. B, Vol. 10, No. 2, p. 905, 1992	Quantum Hall Effect in HgTe-CdTe Superlattices with Strong Three Dimensional Dispersion
	our. Quantum. Elec., Vol. 18, No. 4, p. 1041, April 1992	Direct Upper Sate Resonant Pumping of the 2.8 Micron Er:YLF Laser
	Phys. Rev. B, Vol. 45, p. 1295, 1992	Free Carrier Transport in Superlattices - Smooth Transition Between Quasi-2D and Uniform 3D Limits
	Jour. Phys. Chem., Vol. 96, 5847, 1992	Nhird Order Optical Nonlinearities of Bis-Phthalocyanines
	Appl. Phys. Letts., Vol. 60, 2202, (1992)	Setback Modulation Doping of HgTe CdTe Multiple Quantum Wells
	Phys. Rev. Lett., 68, 2705 (1992)	Comment on Large Infrared Nonlinear Optical Response of C60
	Optics Letts., Vol. 17, No. 10, p. 731, May 1992	Continuous Wave Modelocked 2 Micron Laser
	Phys. Rev. B, Vol. 46, No. 7, p. 46 , Aug. 1992	Electron and Hole In-plane Mobilities in HgTe-CdTe Superlattices
	Chem. Phys. Letts., 188, p. 492, (1992)	Off-resonant Nonlinear Optical Response of C60 Studied by Degenerate Four-wave Mixing

.

P-B-25-R

	Appl. Phys. Letts., Vol. 61, 1814, (1992)	HgTe-CdTe Superlattices for IR Detection Revisited
	Elec. Letts., Vol. 28, No. 13, p. 1258, June 1992	Even Length Median Filters in Optimal Signal Processing
	Optics Letts., Vol. 17, No. 11, pg. 816, June 1992	Efficent Resonantly Pumped 2.8 Micron Er:GSGG Laser
	Optics Letts., Vol. 17, No. 10, P. 736, May 1992	Intercavity Pumped 2.09 Micron Ho: YAG Laser
	J. Appl. Phys., Vol. 71, 3394 (1992)	Auger Recombination in HgCdTe Quantum Wires and Quantum Boxes
	J. Vac. Sci. Tech. B, 10, 1638, (1992)	Quantum Hall Effect and Setback Modulation Doping in HgTe-CdTe Heterostructures
	Int'l Jour. of Nonlinear Optical Physics, Vol. 1, No. 4, 699-726, (1992)	Third Order Nonlinear Optical Properties of Metallo- Phtalocyanines
	Nec. Letts., Vol. 28, #8, April 1992	Observation of Photodetector Nonlinearities
	lec. Letts., Vol. 28, No. 6, March 1992	Reflectrometric Two-mode Elliptical-core Fiber Strain Sensor
	Elec. Letts., Sept. 1992	Low Frequency Electric Field Detection with an Electrostrictive Ceramic Plate
	Appl. Phys. Lycs., Vol. 61, 1992	Large Signal Switching Characteristics of a Psuedomorphic AlGaAs/InGaAs Modfet on a Picosecond Time Scale
	Appl. Phys. Ltrs., Vol. 61, #6, p. 633, Aug. 1992	21 Watt Broad Area Near- diffraction Limited Semiconductor Amplifier
	Appl. Phys. Ltrs., Vol. 61, #4, p. 384, July 1992	Lateral Temperature Profiling in Broad Area Diode Lasers and Amplifiers using a Photoluminescence Microprobe
	J. of Lightwave Tech., Vol. 10, Oct. 1992	Performance and Modeling of Proton-exchanged LiTa03 Branching Modulator
	Appl. Phys. Ltrs., Vol. 61, p. 1760, 1992	35 GNz Metal-semiconductor-meta Photodatectors on Crystalline Silicon
	IEEE J. Quan. Elec., Vol. 28, Oct. 1992	Optoelectronic Transient Characterization of Ultrafast Devices
• .	Elec. Letts., Vol. 28, #9, 826-827, Apr. 1992	40 Ghz Low V Pi Ti:LiNb03 Intensity Modulators
	Elec. Ltrs., Vol. 28, #12, p. 1082, June 1992	3.3 W CW Diffraction Limited Broad Area Semiconductor Amplifier
	EEE Photonics Tech. Ltrs., Aug. 1992	Shaping the Digital Switch

٠

ţ

D-B-26-P

1

Elec. Ltrs., Vol. 28, #13, p. 1215, June 1992	Dual Wavelength Fiber Interferometer w/Wavelength Selection via Fiber Bragg Grating Element
Elec. Ltrs., Vol. 28, #12, p. 1126, June 1992	Single Polarization Fiber Amplifiers
IEEE Phot. Tech. Ltrs. Vol. 4 Oct. 1992	Use of a Doubly Polarized Laser for Remote Powering of an Integrated Optical Modulator
J. Statistical Physics, Vol. 70, #1 pp. 413-421 Jan. 1993	Observation of Stochastic Resonance Near a Subcritical Bifurcation
IEEE Phot. Tech. Ltrs., Vol. 4,(10) pp. 1183-1185 October 1992	Fiber Optic Bragg Grating Differential Temperature Sensor
Elec. Ltrs., Vol. 28, #20, p. 1894, Sept. 1992	High Repetition Rate Figure Eight Laser w/Extracavity Feedback
Éxec. Ltrs., Vol. 28, #19, Sept. 1992	Elimination of Coherent Rayleigh Backscatter Induced Noise in Fiber Micherson Interferometer
Journal of Vacuum Science Technology, Volume B10, Page 2251 (September/October 1992)	20 nm Linewidth Platinum Pattern Fabrication Using Conformal Effusive-Source Molecular Precursor Deposition and Sidewall Lithography
Thin Solid Films, Volume 210/211, Page 359 (1992)	Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films
Applied Physics Letters, Volume 61, Page 3151 (December 1992)	Nonlinear Optical Properties of Quantum-Confined GaAs Nanocrystals in Vycor Glass
Thin Solid Films, Volume 209, Page 9 (March 1992)	Sodium Fluoride Thin Films by Chemical Vapor Deposition
Chemical Materials, Volume 4, Page 833 (July/August 1992)	Synthesis, Characterization, and Chemical Vapor Deposition Properties of Primary and Secondary Neopentylstibine. New Antimony Precursors for MOCVD
Organometallics, Volume 11, Page 2163 (1992)	Synthesis and Characterization of Neopentyl-and {(Trimethylsilyl)- methyl}antimony Compounds. Molecular Structures of (Me3CCH2)3Sb, (Me3CCH2)3Sb12, (Me3SiCH2)3Sb, and (Me3SiCH2)3Sb12
Phys. Rev. A	X-Ray Spectral Emission from Sodium Wire Implosions on Saturn.

D-B-27-R

ţ

•

5		Applied Phys. 71, 796	Spatially Dependent Effective Mass
``\			Optical Properties in Finite
N		DI D 445(2) 15(0 1574	Parabolic Quantum Wells.
	Ν	Phys. Rev. A45(3),1569-1574	Observation of Density-Enhanced Dielectronic Satellite Spectra
			Produced During Subpicosecond
			Laser-Matter Interactions.
		Nuc. Instr. and Methods A322, 40-	Nuclear Spectroscopy Using
		42	Risetimes in Cerussite Scintillator.
		Rev. Sci. Instrum. 63(5), 2958-	The Improvement of Phase
		2966	Modulated Spectroscopic Ellipsometry.
	<u>_</u>	Rev. Sci. Instrum. 63(10),5052	Quantitative X-ray Emission from a
	\backslash		DPF Device.
		Rapid Communications Phy. Rev.	Nonlinear Molecular Dynamics and
		B46,12068	Monte Carlo Algorithms, Rapid Communications.
	· · · · · · · · · · · · · · · · · · ·	INEE Trans.Nuc.Sci., NS-	Laser Confirmation of SEU
		39,1665-1670	Experiments in GaAs MESFET
			Combinational Logic.
		Journal of Appl. Phys. 71,4201-	Effect of Carrier Concentration on
		4207	the Properties of Irradiation-
			induced Defects in P-type Indium Phosphide Grown by Metalorganic
			Chemical Vapor Deposition.
		Phys.Rev. B45, \$585	Magnetic-field Dependence of
			Critical Currents in Proton-
			irradiated YBa ₂ Cu ₃ O ₇₋₈ films:
			Conventional Behavior of the
		IEEE Trans. Nuc. Sci.	Pinning Force Density.
		IEEE ITalis. Nuc. Sci.	Radiation Effects in GayIn _{1-y} As Devices.
		IEEE Trans. Nuc. Sci. NS-39,	CRRES Dosimetry Results and
		1846-1850	Comparisons Using the Space
			Radiation Dosimeter and P-channel
			MOS Dosimeters.
		IEEE Trans. Nuc. Sci. NS- 39,1836-1839	Comparison of SEU Rate Prediction Techniques.
		IEEE Trans. Nuc. Sci, NS-39,	Single Event Upset Rates in Space.
		1828-1835	γ · ·
!		IEEE Trans. Nuc. Sci. NS-39,	Investigation of the Oxygen
		1730-1738	Vacancy A-center Defect Complex
			Profile in Neutron Irradiated High Resistivity Silicon Junction Particle
			Detectors.
		Phys. Rev. B46,1134	Atomic Disorder and the Transition
			Temperature of Cuprate
			Superconductors.
		IEEE Nuc. Trans. Sci. NS- 39,1600	The Relationship of Proton and Heavy Ion Upset Thresholds.
			Theavy for opset findsholds.
			\backslash
			\mathbf{N}
		D.B.28-R	-
			1 6 SEP 1994
-			

· •

4

ł.

K

	IEEE Trans. Nuc. Sci, NS-39,	Applicability of LET to Single
	1613-1621	Events in Microelectronic
		Structures.
	IEEE Trans. Nucl. Sci. NS-39,	Picosecond Charge-Collection
	1657	Dynamics in GaAs MESFETs.
	IEEE Trans. Nuc. Sci. 38, 1359	Radiation Damage Assessment of
		Nb Tunnel Junction Devices.
<u> </u>	Nuclear Instruments and Methods	Nuclear Speetroscopy Using
	in Physics Research A322,40-42	Risetimes in Cerussite Scintillators.
· · · · · · · · · · · · · · · · · · ·	IEEE Trans. Nuc. Sci. 39, 1865	Order-of-magnitude Method for
	TEEE Trails. Nuc. Sci. 59, 1005	
		Estimating the Fluence that
		Optimizes the Critical Current ir
		Survivability of High-T _c
		Microwave Devices in Space
		Environments.
	Solid State Communications, 83,	Thermal Annealing of Cu- ions ir
	277-230	-Irradiated NaCl:Ču Near 415K.
	Nucl. Instr. and Methods, B67,384	
· ·		Ion Tracks in Semiconductors.
	Radiation Research 132,282	A Spatially Restricted Linear Energy Transfer Equation.
	IEEE Trans. Nuc. Sci., NS-	Space Radiation Effects or
	39,1982-1989	Optoelectronic Materials and
	39,1902-303	
		Components for a 1300 nm Fiber
		Optic Data Bus.,
	IEEE Trans. Nac. Sci., NS-	Spatial and Temporal Dependence
	39,1630-1635	SEU in a 64K SRAM.
	Nuclear Instruments and Methods	Transient Charge Collection From
	in Physics Research, R 67,384-389	Ion Tracks in Semiconductors.
	Phys. Rev. B45,9266	Photoemission Study of Hydroger
		Adsorption on Vanadium Dioxide
		Near the Semiconductor-Meta
		Phase Transition.
	Phys. Rev. B45,2585	Magnetic Field Dependence of
	1 Hys. Rev. D 45,2565	Critical Currents in Protor
		Irradiated YBa ₂ Cu ₃ O _{7-∂} Films
		Conventional Behavior of the
		Pinning-Force Density.
	IEEE Trans. Micro. 40	Experimental Wide-Stopbanc
		Filters Utilizing Asymmetric Ferrite
		Junctions.
l	IEEE Trans. Micro. Theory &	Microwave Characteristics of High
	Techn., 40,1168-1673	Tc Superconducting Coplanat
	100ml, +0,1100-1075	Waveguide Resonator.
ll	Integrated Ferroelectrics 1,223-237	Filament-Assisted Pulsed Lase
	megrateu renoelectrics 1,223-237	
• .		Deposition of Epitaxial PbZr _x Ti ₁ .
		_x O ₃ Films: Morphological and
		Electrical Characterization.
	Surf. & Coat. Technol. 51,290-	Pulsed Laser Deposition of
	= = = = = = = = = = = = = = = = = = =	
	298	Electronic Ceramics.

P-B -29-R

	Phys. Rev. B45,3048-3053	Quantum Nucleation and Thormal
	Phys. Rev. B43 ,3048-3033	Quantum Nucleation and Thermal Activation of Vortex Rings in High
1.		Tc Superconductors.
I \	Matls. Res. Soc. Bull. XVII,37-43	Pulsed Laser Deposition of High
		T_c Superconducting Thin Films for
		Electronic Device Applications.
	Appl. Phys. Lett. 60, 1193-1195	Anion-Assisted Pulsed Laser
	11ppn: 1 mys. Dett. 00, 1175 1175	Deposition of Lead Zirconate
		Titanate Films.
<u></u>	J. Rad. Effects REs. and Eng.	Photocurrent Generation in
		Specially Treated Sapphire.
	IEEE Transactions on Plasma	Analysis of the Deflection System
· \	Science, 20, 232 (1992)	for a Magnetic-Field-Immersed
		Magnicon Amplifier
	International Journal of Electronics,	A Phase-Plate Mode Transducer for
	72, 1119 (1992)	TE _{1n} Gyrotron Modes
	Applied Physics Letters, 60, 1556	Demonstration of Vacuum Field
	(1992)	Emission from a Self-Assembling
		Biomolecular Microstructure
		Composite
	IEEE Transactions on Electron	Design of an electron Gun for a
	Devices, 39, 1763 (1992)	280 GHz Inducted-Resonance-
		Electron-Cyclotron (IREC) Maser
	Nuclear Instrum Pite and Mathada	Experiment
	Nuclear Instruments and Methods	Effect of Energy Spread and
	A, 318, 560 (1992)	Gyromotion on Efficiency of a Smith-Purcell FEL
	Materials Science and Engineering	Fabrication of Biologically Based
	A, 158, 1 (1992)	Microstructure Composites for
		Vacuum Field Emission
	Nuclear Instruments and Methods	Field-Emission Arrays - A
	A, 318, 353 (1992)	Potentially Bright Source
	Nuclear Instruments and Methods	Harmonic Generation in Laser-
	A, 318, 533 (1992)	Pumped FELs and Stimulated
		Backscattering from Plasmas
	Physical Review A, 45, 2179	Maximum Microwave Conversion
	(1992)	Efficiency From a Modulated
		Intense Relativistic Electron Beam
	International Journal of Electronics,	Multimode Simulation of High
	72, 779 (1992)	Frequency Gyrotrons
	Physical Review A, 45, 8846 (1992)	Nonlinear Analysis of a Grating
	International Journal of Electronics,	Free-Electron Laser Observation of Harmonic Gyro-
1	72, 1003 (1992)	Backward-Wave Oscillation in a
1)	12, 1000 (1772)	100 GHz CARM Oscillator
		Experiment
	IEEE Transactions on	Simulation Studies of a
	Electromagnetic Compatibility, 34,	Klystronlike Amplifier Operating in
	222 (1992)	the 10-100 GW Regime
	Nuclear Instruments and Methods	3D Simulation of High Gain FELs
	A, 318, 675 (1992)	in an Optical Klystron
	,,,,,,,,,,	Configuration
<u>لا ــــــــــــــــــــــــــــــــــــ</u>		

- -----

R

D-B-30.R

•

•

	International Journal of Electronics, 72,807 (1992)	Tilted Resonator Experiments on a Quasioptical Gyrotron
1	IEEE Transactions on Plasma Sciences, 20, 288 (1992)	X-Band Dielectric Cerenkov Maser Amplifier Experiment
	International Journal of Electronics, 72, 1165 (1992)	On the Possibility of High Power Gyrotrons for Super Range Resolution Radar and Atmospheric Sensing
	International Journal of Infrared and Millimeter Waves, 13, 1449 (1992)	Application of Gyrotrons to High Power Millimeter Wave Doppler Radars
·	Physical Review B Volume 46 (8) Pages 4874-4883 August 1992	Density-Gradient Analysis of Field Emission from Metals
	Quality and Reliability Engineering International Volume 8 Pages 295-300 1991	GaAs MMIC Reliability Studies
	Conference Proceedings 3rd European Sympsoium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF '92) Pages 167-170 1991	Failure Mechanisms in Life Tested HEMTs
	Reliability of Gallium Arsenide MMICs Chapter 12 Pages 435-452 1991	MIMIC Radiation Effects
	J. Vac. Sci. Technol. Volume B 10(6) Pages. 3196-3199 November/December 1992	Fabrication of Parallel Quasi-One- Dimensional Wires Using a Novel Conformable X-Ray Mask Technology
	J. Vac. Sci. Technol. A Volume 10 (1) Pages 152-157 January/February 1992	Infrared Optical Properties of Dielectric/Metal Layer Structures of Relevance to Reflection Absorption Spectroscopy
	Physical Review B Volume 45 (16) Pages 9266-9271 April 1992	Photoemission Study of Hydrogen Adsorption on Vanadium Dioxide near the Semiconductor-Metal Phase Transition
	J. Appl. Phys. Volume 71 (11) Pages 5450-5459 June 1992	Study of the Initial Formation of Silicon Carbide by Reaction of Tetraethyl Silane with Silicon
	Surface Science Volume 276 Pages 59-68 June 1992	Study of the Initial Adsorption of Nitrogen on SiC(100) (2 X 1)

P.B.31-R

,

•

J. Va. Sc. Technol. A. Volume 10 (6) Pages 3478-3485 November 1992	Study of Fluorine (XeF2) Adsorption and of Oxygen/Fluorine Co-adsorption on Silicon Using Infrared Reflection Absorption
Electronics Letters Volume 28 (3) Page 268	Spectroscopy Observation of DC and Microwave Negative Differential Resistance in InAIAs/InGaAs/InP HEMTs
January 1992 InP and Related Materials Conference Pages 226-229	Temperature Dependence of Low Frequency Gain Dispersion in Ion- Implanted INP JFETs
Surface Science 267 Page 120-123 1992	Intersubband Transitions in Piezoelectric Superlattices
Physical Review B Vol. 45 No.19 Page 11399 - 11402 May 1992	Effects of Nonparabolicity on Collective Intersubband Excitations
Superlattices and Microstructures Volume 12 (2) Pages 251 1992	Collective Intersubband Excitations in a Magnetic Field
Superlattices and Microstructures Volume 11 (1) Pages 103-111 1992	Real-Space Tight-Binding and Discrete Phase-Space Many-Body Quantum Transport in Granular Nanoelectronics
IEEE Electron Device Letters Volume 13 (12) Pages 603-605 December 1992	Hot-Electron-Induced Degradation of Front and Back Channels in Partially and Fully Depleted SIMOX MOSFET's
Journal of Electronic Materials Volume 21 (7) Pages 683-687 February 1992	Numerical Analysis of Silibon-on- Insulator Short Channel Effects in a Radiation Environment
IEEE Electron Devices Society & IEEE Reliability Society Proc. 1992 Inter'l Reliability Physics Symposium Pages 327-331 1992	Reliability Study of a GaAs MMIC Amplifier
Physical Review B The American Physical Society Volume 46 (3) Page 1377 July 1992	³¹ P.Electron-Nuclear Double Resonance of the P In Antisite in InP:Zn Detected via Luminescence
J. Appl. Phys. Volume 71 (4) Pages 1878-1884 February 1992	Photoresponse of Shallow Step, Weak-Link Bridges Using Inverted Cylindrical Magnetron Sputtered Y ₁ Ba ₂ Cu ₃ 0 _{7-x} Thin Films

- -

R

D-B-32-R

- 7			
		Appl. Phys. Lett.	$Y_1Ba_2Cu_3O_{7-x}$ and $LaA10_3$
		Volume 60 (3)	Composite Thin Films by Off-Axis
X		Pages 389-391	Magnetron Sputtering
	Ν	January 1992	88
ł	· \	App. Phys. Lett	Role of Hydrogen in the Growth of
ł			
		Volume <u>61</u> (9)	Y ₁ Ba ₂ Cu ₃ O ₇ on MgO Substrates
		Pages 1125-1127	by Off-Axis Magnetron Sputtering
ł		August 1992	
1		Superconducting Devices and Their	Light Detection Using High -T _c
		Applications	Microstrip Lines
1			Wherosurp Ellies
		Springer Proceedings in Physics	
	λ.	Volume 64	
		Page 180	
		1992	
-		Appl. Phys. Lett	Metalorganic Chemical Vapor
		Volume 60 (23)	Deposition of Low Microwave
		Page 2926	Surface Resistance YBa ₂ Cu ₃ O ₇ on
	<u> </u>	June 1992	(100) LaAlO ₃ and (100) SrTiO ₃
		NEEE Electron Device Letters	DC Characteristics of High
H		Volume 13(9)	Breakdown Voltage p-i-n Diodes
ļ		Pages 473-475	Made by 20-MeV Si Implantation
		September 1992	in InP:Fe
ļ			
		Journal of Electronic Materials	Co, Fe, and Ti Implants in InGaAs
1		Volume 21 (9)	and Co Implants in InP at 200°C
		Pages 92 3 ,928	-
		September 1992	
∦		Surface Science 263	Exchange and Correlation in Quasi-
		Page 471-474	Two-Dimensional Plasmas in
		1992	Quantum Well Structures
1		Physical Review Letters	Exchange and Correlation in the
ļ		Volume 68 (12)	Nonhomogeneous Electron Gas in
		Page 1884	
			Semiconductor Heterojunctions
ļ	· · · · · · · · · · · · · · · · · · ·	March 1992	
		Semiconductor Interfaces and	Photoluninescence Studies of
		Microstructures	Interface Roughness in GaAs/A1As
I		Chapter 6	Quantum Well Structures
		Page 149	
			h i i i i i i i i i i i i i i i i i i i
		1992	
		1992 Physics of Fluids B: Plasma	Absolute Instabilities in
	,	1992 Physics of Fluids B: Plasma Physics	Absolute Instabilities in Gyropeneotron Amplifiers
		1992 Physics of Fluids B: Plasma	
	. <u></u>	1992 Physics of Fluids B: Plasma Physics Volume 4 (11)	
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805	
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992	Gyropeneotron Amplifiers
	,,, _,	1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992 Materials Science Forum	Gyropeneotron Amplifiers Optically Detected Magnetic
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992 Materials Science Forum Vol. 83-87	Gyropeneotron Amplifiers Optically Detected Magnetic Resonance of Donor States in
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992 Materials Science Forum	Gyropeneotron Amplifiers Optically Detected Magnetic Resonance of Donor States in
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992 Materials Science Forum Vol. 83-87	Gyropeneotron Amplifiers Optically Detected Magnetic Resonance of Donor States in $Al_xGa_{1-x}Ax$ (x ≥ 0.35) Doped with
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992 Materials Science Forum Vol. 83-87 Page 775-786 1992	Gyropeneotron Amplifiers Optically Detected Magnetic Resonance of Donor States in $Al_XGa_{1-X}A_X$ (x ≥ 0.35) Doped with Group-IV and Group-VI Impurities
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992 Materials Science Forum Vol. 83-87 Page 775-786 1992 Materials Science Forum	Gyropeneotron Amplifiers Optically Detected Magnetic Resonance of Donor States in Al _x Ga _{1-x} As (x≥0.35) Doped with Group-IV and Group-VI Impurities Magnetic Resonance of X-Point
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992 Materials Science Forum Vol. 83-87 Page 775-786 1992 Materials Science Forum Volume 83-87	Gyropeneotron Amplifiers Optically Detected Magnetic Resonance of Donor States in Al _x Ga _{1-x} A _x (x≥0.35) Doped with Group-IV and Group-VI Impurities Magnetic Resonance of X-Point Shallow Donors in A1Sb:Te Bulk
		1992 Physics of Fluids B: Plasma Physics Volume 4 (11) Pages 3800-3805 November 1992 Materials Science Forum Vol. 83-87 Page 775-786 1992 Materials Science Forum	Gyropeneotron Amplifiers Optically Detected Magnetic Resonance of Donor States in Al _x Ga _{1-x} As (x≥0.35) Doped with Group-IV and Group-VI Impurities Magnetic Resonance of X-Point

r. +

į.

D-B-33-R

 \mathbf{i}

•

Materials Research Society Symposium Proceedings Volume 236 Pages 217-222 1992	Tge Effects of P ₂ S ₅ Surface Passivation on Dry Etched GaAs
Semiconductor Wafer Bonding Volume 92-7 Pages 174-179 1992	Silicon On Insulator Fabrication from Wafer Bonding and Selective Etching Techniques using a Silicon-Germanium Alloy Etch Stop
American Vacuum Society/ J. Vac. Scl. Technol. B Volume 10(2) Pages 924-926 April/May 1992	Near Band-Edge Photoluminescence from Si ₁₋ _x Ge _x /Si Superlattices Grown by Molecular Beam Epitaxy
J. Electrochem. Soc. Volume 139 (10) Pages 2943-2947 October 1992	Selective Removal of Si _{1-x} Ge _x from (100) Si Using HNO3 AND HF
 Appl. Phys. Lett. Volume 61 (18) Pages 2217-2219 November 1992	Ge Profile from the Growth of SiGe Buried Layers by Molecular Beam Epitaxy
Physical Review B Volume 46 (15) Page 9538 October 1992	Resonant Tunneling in Coupled Quantum Dots
Mat. Res. Soc. Symp. Proceedings Volume 262 Pages 289-294 1992	EL2 Related Anomalous Splitting in the Photoreflectance Response of Semi-Insulating GaAs
Appl. Phys. Lett Volume 61 (13) Page 159 September 1992	Anomalous Splitting in the Photoreflectance Response of Semi-Insulating GaAs and Correlation with EL2
Appl. Phys. Lett. Volume 61 (1) Pages 76-78 July 1992	Post-Growth Annealing of Low Temperature-Grown Sb-Doped Si Molecular Beam Epitaxial Films
Physical Review A Volume 45 (10) Pages 7488-7491 May 1992	Self-Consistent Analysis of Wiggler Field Errors in Free- Electron Lasers
IEEE Transactions on Nuclear Science Volume 39 (6) Pages 1899-1902 December 1992	Dose Rate Independent Total Dose Failure in 54F10 Bipolar Logic Circuits

•

	L Vee Col Tracks 1 D	Madification of th
	J. Vac Sci. Technol. B Volume 10 (2) Pages 800-802 March/April 1992	Modification of the Microroughness of Molecular- Beam Epitaxially Grown GaAs/AlAs Interfaces Through Changes in the Growth Temperature
	Materials Science and Engineering B11 Pages 121-124 1992	a -SiC Buried-Gate Junction Field Effect Transistors
	Materials Science Forum Vol. 83-87 Page 665-670 1992	Spectroscopic Investigation of the Er Site in GaAs:Er
	Materials Science Forum Vol. 83-87 Page 1195-1201 1992 Materials Science and Engineering	Photoluminescence Excitation Spectroscopy of Cubic SiC Grown by Chemical Vapor Deposition on Si Substrates Optical Studies of Donors and
	B11 Page 21-25 1992	Acceptors in Cubic SiC
	Mat. Res. Soc Symp. Proc. Vol. 240 Page 117-122 1992	Growth and Characterization of Ternary and Quaternary Compounds of Iny(Al _x Ga _{1-x}) ₁₋ yAs on (100) InP
	J. Applied Physics Volume 72 (7) Page 2692 October 192	Site Transfer of Si in GaAs after Heavy Ion MeV Implantation and Annealing
	Physical Review B Vol. 45 (16) Pages 9091 - 9102 April 1992	Interface Phonons of Quantum Wires
	Superlattices and Microstructures Volume 12 (4) Page 553 1992	Optical Absorption Due to Interface Phonons and Interface Plasmons of Quantum Dots
	IEEE Transactions on Plasma Science Volume 20 (5) Pages 543-553 October 1992	Self-Consistent Field Theory of a Helix Traveling Wave Tube Amplifier
• .	Electronics Letters Volume 28 (15) Pages 1388-1390 July 1992	InAlAs/InGaAs Heterojunction Bipolar Transistors with an Al/As Etch-Stop Layer
	J. Vac. Sci. Technol. Volume A 10 (4) Pages 1012-1019 July/August 1992	Characterization of the Electrical Bias Induced Strain Variation in MOSFETs Using X-Ray Double Crystal Topography

D-B-35-12

	J. Vac. Sci. Technol.	Non-Destructive Evaluation of
	Volume A 10 (4)	Silicon-on-Insulator Substrates
	Pages 1006-1011	Using X-Ray Double Crystal
$1 \rightarrow \lambda_{1}$	July/August 1992	Topography
	J. Vac. Sci. Technol.	Proximity Effect Reduction in X-
	Volume B 10 (6)	Ray Mask Making Using Thin
	Pages 3062-3066	Silicon Dioxide Layers
	November/December 1992	Sincon Dioxide Layers
	· · · · · · · · · · · · · · · · · · ·	
	J. Appl. Phys.	Electron Tunneling Spectroscopy
	Volume 72 (11)	and Defects in
	Page 5333	GaAs/A1GaAs/GaAs
	December 1992	Heterostructures
	R&D Magazine	Nanofabrication: How Small Can
	Page 123	Devices Get?
	February 1992	
	Ultramicroscopy	High Resolution Lithography with
	Volume 42 (44)	a Vacuum STM
	Pages 1309-1316	
	1992	
∦·	J. Mater. Res.	Silicon Cross Doping and its Effect
	Volume 7 (8)	on the Si or Be Implantation
	Pages 2186-2193	Doping of Gallium Arsenide
	1992	Grown on (100) Silicon by
		Metalorganic Chemical Vapor
	<u>\</u>	Deposition,
	J. Mater. Res.	Observations on the Electrical
	Volume 7 (9)	Characterization of the
* de la companya de l	Pages 2465-2477	Heteroiepitaxially Grown Cubic
	September 1992	SiC
	Surface Science 263	Properties of 2D Electrons and
	Pages 595-599	Associated Bound Donors in Delta-
	1992	Doped InSb
	Physical Review B	EL2-Copper Interaction in Heat-
	The American Physical Society	Treated GaAs
H	Volume 46	
	Pages7229	
	September 1992	
		Fronchout Monources and
	Springer Proceedings in Physics	Transport Measurements and
	Amorphous and Crystalline Silicon	Shallow Donors in Cubic SiC
	Carbide III	
	Volume 56	
1	Page 155	
	1992	
	The Physics of Non-Crystalline	Fundamental Issues Confronting
1	Solids	Models of Non-Linear Structural
	The Society of Glass Technology	Relaxation
	Pages 309-314	
	1992	
μ		

.

•

 \geq

D.B .36-R

.

	The Physics of Non-Crystalline	Correlation of the Stretch Exponent
	Solids	with the Decoupling Index in Ionic
	The Society of Glass Technology	Glasses from the Coupling Model
	Pages 342-346	
	1992	
<u> </u>	Macromolecules	Generalized Fokker-Planck
	Volume 25	Approach to the Coupling Model
	Pages 2184-2191	and Comparison with Computer
	1992	Simulations
	The Physics of Non-Crystalline	Nuclear Spin Relaxation in
	Solids	Fluorozirconate Glass
	Pages 178-182	
	1992	
<u> </u>	Macromolecules	Trends in the Temperature
	9	Dependency of Segmental
	Volume 25 (15)	
	Pages 3906-3909	Relaxation in TMPC/PS Blends
``````````````````````````````````````	1992	
	Physics and Chemistry of Glasses	The Nature of the Linear Frequency
	Volume 33 (4)	Dependent Alternating Current
	Pages 1-7	Conductivity Interpolating Between
	August 1992	Conductivity Relaxation and
	August 1992	Vibrational Responses in Alkali
		Oxide Glasses
	NATO AGO I O	
	NATO AS Series: Structure and	Interpretation of Dynamical
	Dynamics of Strongly Interacting	Properties of Polymeric Cluster
	Colloids and Supramolecular	Solutions
	Aggregates in Solution	
	SH Chen et al (Eds)	
	Kluwer Academic Publishers	
	Volume 369	
	Pages 221-228	
	1992	
	Solid State Ionics	Comparisons Between the
	Volumes 53-56	Coupling Model Predictions,
	Pages 936-946	Monte Carlo Simulations and Some
	1992	Recent Experimental Data of
		Conductivity Relaxations in Glassy
		Vonics
	Macromolecules	Viscoelastic Properties of
	Volume 25 (19)	Amorphous Polymers. 1.
	Pages 4921-4924	Different Temperature Dependences
	1992	of Segmental Relaxation and
		TerminaNDispersion
	Macromolecues	An Explanation of Anomalous
	Volume 25 (19)	Dielectric Relaxation Properties of
	Pages 4915-4919	Poly(propylene glycol)
	1992	r ory (propyrenic grycor)
		Annual and Data Street Col
	Physical Review B	Anomalous Reduction of Solvent
	Volume 46, No. 13	Friction in Chlorinated Biphenyl
	Pages 8126-8131	Solutions of 1, 2 - Polybutadiene
	October 1992	$\sim$

D.B.37.R

 $\sum$ 

π	·	
•	Macromolecules Volume 25 (24) Pages 6727-6729 1992	Interpretation of Anomalous Momentum Transfer Dependence of Local Chain Motion of Polymers Observed by Quasielastic Incoherent Neutron Scattering Experiments
	Physica A Volume 191 Pages 523-531 1992	Fractal Phase Space Transport Dynamics and Relaxations in Complex Correlated Systems
	Journal de Physique IV Colloquie C2, Suppl. au Journal de Physique III Volume 2 Pages C2-61-C2-73 1992	Structural Relaxation and Conductivity Relaxation in Glassy Ionics
	Journal de Physique IV Colloquie C2, Suppple au Journal de Physique III Volume 2 Pages C2-159-C2-163 October 1992	Nuclear Magnetic Resonance and Ionic Motion in Fluorozirconate Glasses
	Principles & Applications of Superconducting Quantum Interference World Scientific Volume 5 Pages 275-342 1992	Space Applications of Superconductivity
	FED Journal Volume 3 (2) Pages 12-21 1992	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
	Cryogenics Volume 32 (12) Pages 1169-1170 1992	A Conference Report: Second Symposium on High Temperature Superconductors in High Frequency Fields
	Inst. Phys. Conf. Ser. No 120 Chapter 2 Pages 61-66 1992	Defects in Vertical Zone Melt (VXM) GaAs
· .	J. Appl. Phys. Volume 72 (6) Page 2505 September 1992	Evaluation of Local Vibrational Mode Absorption CAused by Carbon in Galls
	Applied Physics Letters, American Institute of Physics Volume 61 (2) Pages 207-209 July 1992	Determination of Band Gap and Effective Masses in InAs/Ga ₁ - _x In _x Sb Superlattices

D.B. - 38 - R

1

	J. Electrochemical Society	High Selectivity Patterned
	Volume 139 (9)	Substrate Epitaxy of $In_xGa_1$ .
	Page L84	$_x$ As/GaAs( $\hat{0}$ £ x£ 1) by
	September 1992	Conventional LPOMVPE
	J. Appl. Phys	High Temperature Characteristics
	Volume 72 (10)	of Amorphous TiSWix Nonalloyed
	Pages 4954 -4957	Ohmic Contacts to GaAs
	November 1992	
	Journal of Electrochemical Society	Reduction of DX Centers in
	Volume 139 (4)	Superlattice Alloy-Like Material
	Pages 1219-1222	High Electron Mobility Transistors
	April 1992	
	6th International SAMPE Electronic	
	Conference	Silicon MSM Photodetectors
	Volume 6	Grown By MBE
Ì	Pages 816-822	
	N992 Microwave Journal	The Neurice Deleter Version The
		The Navy's Role in Vacuum Tube
	Volume 35 (3)	Electronics. Part 1: The Tri-
	Pages 82-90 March 1992	Service Program
	Materials Science and Engineering	Chemical Vapor Deposition of b
l	B11	-SiC on Silicon-on-Sapphire and
	Pages 125-129	Silicon-on-Insulator Substrates
	1992	Sincon-on-insulator Substrates
	J. Vac. Sci. Technol.	Comparative Mobility Degradation
	Volume B (10)	in Modulation-Doped GaAs
	Pages. 2890-2892	Devices After E-Beam and X-Ray
	November/December 1992	Lithography
	J. Vac. Sci. Technol.	Conductance Quantization in a
	Volume B 10 (6)	GaAs Electron Waveguide Device
	Pages. 2966-2969	Fabricated by X-Ray Lithography
	November/December 1992	
	Sytnthetic Microstructures in	Advance Materials Processes for
	Biological Research	Bio-Probes
	Pages. 3-16	
	November 1992	
	Appl. Phys. Lett.	Stress and Its Effect on the
	Volume 60 (9)	Interdiffusion in $Si_{1-x}Ge_{x/}Si$
	Page 1087 March 1992	Superlattices
	March 1992 Mat. Res. Soc. Symp Proc.	An Alternate Machanian for
	Volume 256	An Alternate Mechanism for Porous Si Photoluminescence:
	Pages 107-110	Recombination in SiH, Complexes
	1992	Accomonianon in Siri _x Complexes
}	Proceedings of 6th International	Stresses and Alloy Mixing in Si1-
	SAMPE Electronics Conference	xGe _x /Si Superlatices
	Pages 823-834	A Gez/Gi Superiances
	1992	$\sim$
1		

- - -

 $\mathbb{R}$ 

D-B.39-R

n		
h∖	Physica C Volumes 185-189 Pages 1543-1544 1992	Pairing in Layered Superconductors in the Presence of a Magnetic Field
	Pramana - J. Physics Volume 38 (3) Pages 233-247 March 1992	Bivariate Averaging Functions, Translation and Scale Autocorrelations, Fourier and Mellin Transforms, the Wiener- Khinchine Theorem and Their Inter-Relationships
	Physical Review B Volume 46 (2) July 1992	Solutions of the Microscopic Gorkov Equations for a Superconductor in a Strong Quantizing Magnetic Field
	Pramana - J. Phys (Printed in India) Volume 39 (6) Pages 615-631 1992	Magnetic Field Dependence of Tc and Temperature Dependence of Hc2 in Layered Superconductors with Open Normal State Fermi Surface
	Modern Physics Letters A Volume 7(40) Pages 3759 3764 1992	Uncertainty Principle, Squeezing, and Quantum Groups
	IEEE MTT-S Intern. Microwave Symposium Pages 1413-1416 1992	A Heterodyne Receiver for 40- GHz-Modulated 1.3-µm Optical Signals Using a Multi-Tasked InP- Based HEMT
	Physical Review B Volume 46 (3) Page 1620 July 1992	Infrared Absorption Due to Electron-Lattice-Vibration Scattering in A1As/GaAs Quantum Wells
	Superlattices and Microstructures Volume 12 (3) Page 331 1992	Phonon Assisted Cyclotron Resonance in Quantum Wells
	Applied Physics Letters Volume 60 (18) Pages 2261-2263 May 1992	Evaluation of the 3-Level Charge Pumping Technique for Characterizing Interface Traps
	Journal of Electronic Materials Volume 91 (7) Pages 775-780 1992	Effects of Hydrogen Annealing on MOS Oxides
	Solid-State Electronics Volume 35 (6) Pages 843-854 1992	Theory and Measurement of Quantization Effects on Si-SiO ₂ Interface Trap Modelling
	Appl. Phys. Lett . Volume 61 (25) Pages 3014-3016) December 1992	Time-Dependence of the Interface Trap Build-Up Deuterium- Annealed Oxides after Irradiation

D-B-40-R

	IEEE Transactions on Nuclear Science Volume 39 (6) Pages 2220-2229 December 1992 App. Phys. Lett. Volume 61 (19) Page 2338 November 1992	The Time-Dependence of Post- Irradiation Interface Trap Build-up in Deuterium-Annealed Oxides Large Temperature Changes Induced by MBE Growth on Radiatively Heated Substrates
	Surface and Interface Analysis Volume 18 Pages 514-524 1992	Performance of MgO/Au Cermet Films as Secondary Electron Emission Cold Cathodes
	Applied Surface Science Volume 59] Pages 227-237 1992	Analysis of Oxygen Binding- Energy Variations for BaO on W
	Superlattices and Microstructures Vol. 11 (3) Pages 293-296	Light-Activated Resistance Switching in GaAs/AlGaAs Naturally-Occuring Nanostructures
	IERE Trans. of Nuclear Science Volume 39 (6) Pages 2086-2097 December 1992	Electron and Hole Trapping in Irradiated SIMOX, ZMR and BESOI Buried Oxides
	Journal of Non-Crystalline Solids Volume 140 Pages 166-171 1992	Raman Scattering Studies of Microcrystalline Inclusions in Fluoride Glasses and Fibers
	Physical Review B. Volume 46 (13) Page 8472 October 1992	Far-Infrared Photoresponse of Granular YBa _{2.1} Cu _{3.4} O _{7-x}
	J. Vac. Sci. Technol B Volume 10 (3) Pages 1074-1077 May 1992	Electrical Characterization of Low Temperature GaAs Layers, and Observation of the Extremely Large Carrier Concentrations in Undoped Material
	IEEE Transactions on Electron Devices Volume 39 (5) Pages 1063-1069 May 1992	High-Frequency Simulation of Semiconductor Alloy Ramp Neterostructures
<b>.</b> .	Microwave and Optical Technology Letters Volume 5 (8) Pages 354-359 July 1992	Modulated-Impurity-Concentration Transferred-Electron Devices Exhibiting Large Harmonic Frequency Content
	Microwave and Optical Technology Letters Volume 5 (9) Pages 417-420 August 1992	Alloy Ramp Heterostructure Diodes for Microwave Mixer Applications

- - -

- -- --

- - -

- -

- - -

R

P-B-41-R

i.

π	A multiple di Disconte a l'anteres	
	Applied Physics Letters Volume 61 (26) Pages 3142-3144 December 1992	Distribution of Ge in O ⁺ Implanted SIlicon
	Eleventh Annual MBE Workshop, September 16-18, 1991, Austin, TX J. Vac. Sci. & Technol B Volume 10(2) Pages 895-897 March/April 1992	RHEED Study of Sb Incorporation During MBE Growth of GaSb and AlSb
	Applied Physics Letters Volume 61 (5) Pages 583-585 August 1992	Accurate Determination of Effective Quantum Well Thickness: Infrared Absorption by Transverse-Optical Phonons
	Applied Physics Letters Volume 60 (17) Pages 2113-2115 April 1992	Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction
	Journal of Electrochemical Society, 139(6): 1677-1680	Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization
	Thin Solid Films, 210/211:359-363	Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films
	Biosensors and Biselectronics, 7:11-20	Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers
	Applied Physics Letters, 60:1556	Demonstration of Vacuum Field Emission from a Self-Assembling Biomolecular Microstructure Composite
	Thin Solid Films, 210/211:114-117	The Behavior of Ferroelectric Liquid Crystalline Compounds at the Air/Water Interface
	Materials Research Society Symposium Proceedings, 260:381	Fabrication of Hollow High Aspect Ratio Metal Microstructure Arrays
	Materials Research Society Symposium Proceedings, 260:659- 664	Patierned Electroless Metallization of Ligand-Modified Surfaces
	Materials Research Society Symposium Proceedings, 260:905- 910	Selective Metallization of CVD Diamond Rilms
	Materials Science & Engineering, A158:1-6	Fabrication of Biologically Based Microstructure Composites for Vacuum Field Emission
	Conf on Lasers and Electrooptics Pager CPD 28, P. 60] May 1992	A Single Polarization Doped Fiber Amplifier

D.B-42-R

1

_ · · · · _ · · · · · · · · · ·

CY93		
CSF N	Reference	Paper Titles (List)
ED	Phys. Review Ltrs., Vol. 70, #1, Jan. 1993	Observation of Stochastic Resonance in a Tristable System
	- Optics Ltrs. Vol. 18 p. 72 1993	Fiber Optic Bragg Grating Strain Sensor w/Drift Compensated High Resolution Interferometric Wavelength Detection
	Appl. Phys. Ltrs., Vol. 62(3) pp 255-257 Jan. 1993	Integration of Low Temperature GaAs on Si Substrates
	Phot. Tech. Ltrs., Vol. 5(8) pp. 922-925 Aug. 1993	Interferometric Measurements of Lateral Phase Profile & Thermal Lensing in Broad Area Diode Amplifiers
·····	Appl. Phys. Ltrs, Vol 62 pp. 544-546 February 1993	11.6W Peak Power Diffraction Limited Diode to Diode Amplfier
	Optics Lhs., Vol 18(5) pp. 388-390 March 93	Effects of Parasitic Fabry-Perot Cavities in Fiber Optic Dispersion
	Optics Ltrs, Vol 18(9) pp. 750-752 May 93	Reflective Fiber Ring Resonator w/Polarization Independent Operation
	J. Underwater Accoustics Vol 43(2) Page 569 April 93	Fiber Optic Heading Sensor for the All-Optical Towed Array
	App. Phys. Ltrs. Vol 62(23) Page 2911-2913 June 93	Role of Dispersion in Limiting Pulse Width in Fiber Lasers
	J. Underwater Acoustics Vol 43(2) Page 417-435 April 93	Measurement of Inpit Polarization Induced Phase Noise in the AOTA
	J. Underwater Acoustics Vol 43(2) Page 597, April 1993	Interferometric Fiber optic Acousti Sensing
	J. Underwater Acoustics Vol 43(2) P. 517-537 April 1993	All Optical Towed Array Sea Test Results
	J. Underwater Acoustics Vol 43(2) P. 517-537 April 1993	Testing of a Planal Fiber Optic Hydrophone on KAMLOOPS

P-B-43-P

CY93

د ،

.

•

.

12

J. Underwater Acoustics Vol 43(2) P. 387-404 April 1993 J. Underwater Acoustics Vol 43(2)_ P. 353-367 April 1993 J. Underwater Acoustics Vol 43(2) P. 405-415 April 1993	Arctic Test of a High Performance Fiber Optic Hydrophone Array At-Sea Noise Performance of Small Diameter and Extended Fiber Optic Hydrophones for Towed Arrays Development of Fiber Optic Hydrophones for High Pressure Applications
Elec. Ltrs., Vol 29(2) pp. 219-220 Jan 1993	4.5W CW Near Diffraction Limited Tapered Stripe Semiconductor Optical Amplifier
Elect Ltrs. Vol 29(4), Feb 93	Intracavity Dispersion Measurement in a Mode-locked Fiber Laser
J. Quan. Elec. Vol 29(6) pp. 2208-2042 June 93	High Power Near Diffraction Limited Large Area Travelling Wave Semiconductor Amplifier
App. Phys. Ltrs Vol 62,(19) pp. 2304-2306 May 93	Filament Formation in a Tapered GaAlAs Tapered Amplifier
Quantum Elec. Ltrs. Vol 29(2) P. 103-106 February 93	An Efficient 1.46 Micron Thulium Laser via a Cascade Process
 Opt. Matl's. Vol 2 P. 33, 1993	Nonresonant Optical Nonlinearities of Quantum Confined Nanocrystals of CuBr in Glass
Opt. Ltrs. Vol 18,(8) pp. 586 April 1993	Optical Vortex Solitons and the Stability of Dark Soliton Stripes
Applied Spectroscopy Reviews Vol 28 pp 123-164 1993	The Nuclear Quadrupole Interaction in High Temperature Superconductors
Semiconductor Sci & Tech Vol 8 (S112) 1993	Magneto-Optic and Magneto- Transport Study of InAS/GaInSb Superlattices
Semiconductor Sci. & Tech. Vol. 8., S48 1993	Novel Magneto-Transport and Magneto-Optical Transport in Semimetallic HgTe-CdTe Superlattices

- ---- -----

D-B-44-R

Π	Semiconductor Sci. & Tech.	Sb/GaSb Multilayer Structures for
k	Vol. 8, S117	Potential Applications as an Indirect
	1993	Narrow Band-Gap Material
<u>↓</u>		
	Jour. Crystal Growth	Molecular Beam Epitaxial Growth
	Vol. 127, p. 777	of Sb/GaSb Multilayer Structures
	1993	•
	Appl. Phys. Ltrs.,	Nanometer Fabrication in HgCdTe
	Vol. 62(19)	by Electron Cyclotron Resonance
	pp. 2362 -2364	Microwave Plasma Reactive Ion
	May 1993	Etching
· · · · · · · · · · · · · · · · · · ·		
	Photonics Spectra Jour.	Fullerenes and Photonics
	p. 93 1993	
	Appl. Phys. Lettl,	Broadband Thermal Optical Limiter
	Vol. 63,(11)	
	Npp 1483-1485	
	September 1993	
	Op. Comms.,	Optical Limiting in Semiconductor
	Vol. 103	Nanocrystals in Glass
	nn 40 <b>5</b> 400	Tranoci ystais in Olass
	pp. 405-409	
	1993	
	JOSA B,	High Precision Identification of
	Vol. 10	Morphology Dependent
	pp. 1955-1968	Resonances in Optical Processes in
	1993	Microdroplets
	J. Appl. Phys.,	Micropatterned Diamond Substrates
	Vol. 74, 5280-5281 (N993)	Microputernet Diamone Substates
	Physica B	Narrow-Gap HgTe-CdTe
	Vol. 191, 171 (1993)	Superlattices
	J. Vac. Sci. Tech., A11,	Preparation of Sb/GaSb [111]-
	100-101 (1993)	Oriented Multilayered Structures
1		Using Molecular Beam Epitaxy and
8		
		Migration Enhanced Epitaxy
	Jour. Elec. Mat'ls.,	Nanometer Scale Fabrication in
	Vol. 22, 1055 (1993)	NgCdTe using Methane/Hydrogen
H.		Electron Cycotron Resonance
		Microwave Plasmas
	Semiconductor Sci. & Tech.,	Methods for Magneto-Transport
H	Vol. 8, 805 (1993)	Characterization of IR Detector
		Materials
	Appl Phys Lett Vol 63(8)	Sb/GaSb Heterostructures and
	Appl. Phys. Lett., Vol. 63(8) pp 1098-1100	
ll l		Multlayers
	August 1993	
	Jour. Appl. Phys.	Anisotropic Screening and Ionized
1	Vol. 74, 6676 (1993)	Impurity Scattering in
1		Semiconductor Superlattices and
		Multiple Quantum Wells
	Jour. Appl. Phys.,	Normal Incidence
	Vol. 74, 2810 (1993)	Electroabsorption in GaAlSb/AlSb
1		L-Valley Quantum Wells for 3-5
	1	
11		
	I Van Sai Tanhard All	Micron Optical Modulation
	J. Vac. Sci. Technol., A11 1763 (1993)	ECR-RIE of Fine Features in HgCdTe Using CH4/H2 Plasmas

- ---

.

. . . . . . . . . .

---

P.B. 45-R

II	Int'l Jour Nonlineer Ont Phys	Type II Superlattices and Variable
	Int'l. Jour. Nonlinear Opt. Phys.,	Overlap Superlattices as Nonlinear
	Vol. 2, 415 (1993)	Optical Materials for the Far
		Infrared
	Phys. Rev. B,	Shubnikov-de Haas Oscillations
	Vol. 48, 1959 (1993)	and Quantum Well Features in
		InAs/GaInSb Superlattices
	Phys. Rev. B,	Semimetal-to-Semiconductor
	Vol. 48, 11431 (1993)	Transitions in Bismuth Thin Films
	Optics Ltrs.,	Excited State Absorption Enhanced
	Vol. 18, No. 19, 1603-1605	Thermal Optical Limiting with C60
	October 1993	
	Appl. Phys. Ltrs.,	An Optical Limiter Using
	Vol 63(14), 1880-1882 (1993)	PbPc(CP)4
·····	Phys. Rev. B,	Magneto Optical Determination of
	Vol. 48, No. 13, 11439 (1993)	T-point Energy Gap in Bismuth
L	Phys. Rev. B,	Nonlinear Optical Properties of the
		Fullerenes C60 and C70 at 1.064
	Vol. 48, No. 13, 9447 (1993)	Microns
	Optics Ltrs.,	Strain Sensitive Elastic Scattering
	Vo. 18, (13)	from Cylinders
	pp 1104 1106	
	July 1993	
	Int'l J. NL Opt. Phys.,	Characterization of a Low F-
	Vol. 2, 577-ð (1 (1993)	Number Thermal Broadband
		Limiter
	Appl. Phys. Ltrs.	Interface Roughness Scattering in
	Vol. 63, 2210 -22 X	Semiconducting and Semimetallic
	October 1993	InAs/GaInSb Superlattices
	CVGIP: Graphical Models and	Theory and Design of Local
	Image Processing, Vol. \$5, No. 6,	Interpolators
	464-481	•
	November 1993	
·	App. Phys. Ltrs	Photo\induced Current transient
	Vol 63(6)	Spectroscopy of Boron dloped
	pp 767-769	Diamond
	August 1993	
	JOSA A,	Effects of Non-Redundancy on a
	567-572 (1993)	Synthetic Aperture Imaging System
	Applied Optics,	Compensation of Spacer Thickness
	September 1993	Variations in the Holographic
	September 1775	Fabry-Perot Filter
	Ontion I tra	
	Optics Ltrs.,	Resolution Limits for Imaging
	Vol. 18, p. 1591-1593	Through Turbid Media with
	October 1993	Diffuse Light
	Opt. Ltrs.,	High Average Power Operation of
	Vol. 18, 1724 -1726	a Q-Switched Diode Pumped
	October (1993)	Ho:Tm:Laser
	Optics Ltrs	Imaging Through a Strong
	Vol 18	Scattering Medium with Nonlinear
	P. 2132-2134, 1993	Optical Field Cross-Correlation
		Techniques
	1	

•

D-B-46-R

π	Ann Dhug Lang	High Douver Continuous Wave
	App. Phys. Ltrs.	High Power Continuous Wave
	Volume 63(17)	Blue Ligh Generation in KNbO3
l a	P. 2327-2329, Oct. 93	
	IEEE Phot. Ltrs.	5.25 CW Near Diffraction Limited
• \	Volume 5(10)	Tapered Stripe Semiconductor
	P. 118001182, Oct. 93	Optical Amplifier
	Elect. Ltrs.	Fiber Optic Magnetometer System
	kVol 29(11)	for Undersea Application
	P. 1032, May 1993	
	Elec. Ltrs.	Fiber Bragg Grating Based Er-
	Volume 29(10)	Fiber Laser STrain Sensor System
	P. 964-965 May 1993	
· · · ·	Iotucs Ktrs,	Multiplexed Fiber Bragg Grating
	/vikyne 18(16)	Strain Sensor System with a Fiber
		Fabry-Perot Wavelenths Filter
	P. 1370-1372, Aug 93	
	NEEE Photonics Tech. Ltrs.	High Resolution Fiber Optic Low
1	Volume 5(8),	Frequency Voltage Sensor Based
	952-253,Aug 93	on the Electrostrictive Effect
	Appl. Rhys. Ltrs., Vol. 63, #14,	Ultrafast Photodetection with an
	pp 1921-1923 Oct. 1993	AllnAs/GalnAs Heterojunction
		Bipolar Transistor
	IEEE Photonics Ltrs., Vol. 5, #8.	High Power Ring Laser using a
	p.919, Aug. 1993	Broad Area GaAlAs Amplifier
	IEEE Trans. on Microwave Theory	Microwave Optical Mixing in
	& Tech., Vol. 41, Dec. 1993	LiNb03 Modulators
	Opt. Ltrs., Vol. 18, #18, Sept.	Fiber Optic Current Sensor using
	1993	Orthoconjugate Loop Mirror
	Ltrs., Vol 5, #11, p. 1347, Nov.	Fiber Optic Prism True Time Delay
	1002	Antenna Feed
	1993	
	Optics Ltrs., Vol. 18, #22, p.	Difference Frequency Mixing in
	1931, Nov. 1993	AgGaS2 by using High Power
		GaAlAS Tapered Semiconductor
		Diodes
	Applied Physics Letters, Volume	Conformal Chemical Beam
	63, Page 159 (July 1993)	Deposition of the Thin Metal Film
	(5, 1 ugo 15) (5 ury 1775)	
		for Fabricating High Density
		Trench Capacitor Cells
	Journal Vacuum Science	First-Rrinciples Electronic
	Technology, Volume A 11, Page	Properties of Model Silicon-Based
	1733 (July/August 1993)	QuantumWires
	Diamond and Related Materials,	Aerosol Doping of Flame Grown
	Volume 2, Page 1078 (1993)	Diamond Films
	Applied Physical Letters, Volume	Organometallic Chemical Vapor
	63, Page 3324 (December 1993)	Deposition and Characterization of
	(05, rage 5524 (Decenticer 1995)	Indium Dhoanhigh Magaaratala
		Indium Phosphice Nanocrystals in
• .		Vycor Porous Glass
	Organometallic Chemicals, Volume	Primary and Secondary
	449, Page 119 (May 1993)	Trimethylsilylmethylsibines.
	· · · · · · · · · · · · · · · · · · ·	Synthesis, Characterization and
		Chemical Vapor Deposition
		Properties

-

P.B. 47.R

.

---

•	Journal Applied Physics, 74 (11), Pages 6780 - 6787 (December 1993)	Morphology and Transport of YBa2Cu3O7-x Sputtered in Argon, Oxygen, and Hydrogen: Dependence on Deposition Temperature
	Physica C 209, Pages 263 - 268 (1993)	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
	FED Journal, Volume 3, Supplement 1, Pages 35 - 43 (1993)	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
	IEEE Transactions on Applied Superconductivity, Volume 3, No. 1, Rage 2885 (March 1993)	The High Temperature Superconductivity Space Experiments HTSSE I - Components and HTSSE II - Subsystems and Advanced Devices
	J. Appl. Rhys. 74(1),53 IEEE Trans. on Magnetics,	VUV Spectroscopy Study of Excimer Laser-Generated Plasmas.
	29/6,3252-3454	Magnetically Tunable Band-Pass Filter Utilizing Coplanar-Slotline Junction.
	Nuclear Instruments and Methods in Physics Reseearch 879,832-834	Cryogenic Radiation Detectors.
	J. Appl. Phys. 73(12), 8134	K-Shell X-Ray Yield Scaling for Aluminum X-pinch Plasmas.
	J. Vac. Sci. & Techn., A1 1,1763- 1767	Electron Cyclotron Reactive Ion Etching of Fine Features of $Hg_{x}Cd_{1-x}Te$ using $CH_{4}/H_{2}$ Plasmas.
	Appl. Phys. Letters, 62,2362-2364	Mercury Cadmium Telluride Using OH4/H2 Plasmas.
	Solid State Communications, 88,671-675	Observation of Giant Flux-Flow in Superconducting Yba ₂ Cu ₃ O ₇ Films.
	J. Electronic Materials, 22,1055- 1060	Nanometer Fabrication in Mercury Cadmium Telluride by Electron Cyclotron Resonance Microwave Plasma Reactive Ion Etching.
	Diamond and Related Materials 3,105-111	Comparison of Co/H ₂ and CH ₄ +O ₂ /H ₂ Plasmas for Diamond Thin Film Deposition by ECR- PACVD
	IEEE Trans. Nuc. Sci., NS-40, 1725	A Practical System Hardness Assurance Program.
	IEEE Transactions on Nuc. Sci. NS-40,1300	Low Temperature Proton Irradiation of GaAs MESFETS.

_

D.B.48-12

İ

1

|<

	IEEE Transactions on Nuc. Sci. NS-40, 1888	Geometrical Factors in See Rate Calculations, 1993.
	IEEE Transactions on Nuc. Sci. NS-40, 1660	Heavy Ion and Proton Analysis of a GaAs C-HIGFET SRAM.
	IEEE Transactions on Nuc. Sci. NS-40, 1628	Displacement Damage Effects in Mixed Particle Environment for Shielded Spacecraft CCDs.
	IEEE Transactions on Nuc. Sci. NS-40, 1926	Numerical Simulation of Heavy Ion Charge Generation and Collection Dynamics.
	IEEE NS-40, 1918	Practical Approach to Determing Charge Collection in Multi-Junction Structures Due to Ion Shunt Effects.
	NEEE Trans. Nuc. Sci., NS- 40 1709	One Hundred Percent Abrupt Failure Between Two Radiation Levels in Step-Stress Testing of Electronic Parts
	Journal of Applied Physics, 73(11)	Radiation-Induced Reverse Dark Currents in In _{0.53} Ga _{0.47} As Photodiodes.
	Nuclear Instruments and Methods in Physics Research	Scintillation Decays in a Trans- stilbene Crystal.
	IEEE Transactions on Nuc. Sci. NS-40,1638	SEDS MIL-STD-1773 Fiber Optic Data Bus: Proton Irradiation Test Results and Spaceflight SEU Data.
	IEEE Transaction on Nec. Sci.	SEU Rate Prediction and Measurement of GaAs SRAMs Onboard the CRRES Satellite.
	IEEE Transactions on Nuc. Sci. NS-40,1867	Single Event Induced Charge Transport Modeling of GaAs MESFETs.
	IEEE Transactions on Nuc. Sci., NS-40,1858	Single Event Dynamics of High- Performance HBTs and GaAs MESFETS.
	IEEE Transactions on Nuc. Sci. NS-40, 1812	The Shape of Heavy Ion Upset Cross Section Curves.
	IEEE Transactions on Nuc. Sci. NS-40,1372	Damage Correlations in Semiconductors Exposed to Gamma, Electron and Proton Radiations
	Journal of Applied Physics, 74,3	Time Dependence of Radiation Induced Generation Currents in InGaAs Photodiades.
	IEEE Transactions on Plasma Science, 21, 4, 383 (1993)	Study of Gain in C Band Deflection Cavities for a Frequency-Doubling Magnicon Amplifier
	Physics of Fluids B, 5, 2682 (1993)	New Results and Applications for the Quasioptical Gyrotron
<u>-</u>	Physics of Fluids B, 5, 3045 (1993)	Nonlinear Analysis of a Magnicon Output Cavity

----

. . . . .

---

R

D-B.49.R

÷.

International Journal of Infrared and Millimeter Waves, 14, 335	RF Converter Simulation - Impositioin of the Radiation
(1993) Applied Physics Letters, 62, 2772 (1993)	Condition External Modulation of Intense Relativistic Electron Beams with Spatial and Velocity Inhomogeneities
Nuclear Instruments and Methods A, 331, 6 (1993)	Electron Beam Quality Limitations and Beam Conditioning in Free Electron Lasers
Physical Review Letters, 70, 19 (1993)	Methods for Conditioning Electron Beams in Free-electron Lasers
International Journal of Infrared Millimeter Waves, 14, 335 (1993)	RF Converter Simulation- imposition of the Radiation Condition
IEEE Trans. of Applied Superconductivity Volume 3 Pages 1616-1619 March 1993	Properties of Multilayer Films of Y1Ba2Cu3O7-x/LaAlO3
IEEE Transactions on Electron Devices Volume 40(7) Pages 12N-1214 July 1993	Impact Ionization and Light Emission in High-Power Pseudomorphic AlGaAs/InGaAS HEMT's
Quality and Reliability Engineering International Volume 9 Pages 367-370 1993	Failure Mechanisms in Life-Tested HEMTs
Materials Science and Engineering B20 Pages 26-28 1993	Theoretical and Experimental Study of Failure Mechanisms in r.f. Reliability Life Tested High Electron Mobility Transistors
International Journal of Electronics Volume 75(4) Pages 641-645 1993	New Tunnelling Transistor for Current Switching Logic
Proceedings 2nd ESA Electronic Components Conference Pages 285-288 1993	GaAs Device Heavy Ion Radiation Effects
IEEE Transactions on Nuclear Science Volume 40(6) Pages 1735 - 1739 December 1993	Temperature Dependent GaAs MMIC Radiation Effects
Quality and Reliability Engineering International Volume 9 Pages 367-370 1993	Failure Mechanisms in Life Tested HEMTs

R

D.B.50.2

IEEE Trans on Nuclear Science Volume 40(6) Pages 1735-1739 December 1993 Physics of Fluids B Volume 5 (4) Pages 1349-1357 April 1993 Particle Accelerators Volume 43 (102)	Temperature Dependent GaAs MMIC Radiation Effects A Theory of Cavity Excitation by Modulated Electron Beam in Connection with Application to a Klystron Amplifier Realization of Improved Efficiency in a Gyroklystron Amplifier
Pages 93-105 1993 Appl. Phys. Lett Volume 63(7) Page 949 August 1993	Control of Interface Stoichiometry in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy Growth of Thin Ni Films on
 Physical Review B Volume 48(4) Pages 2436-2444 July 1993 Applied Physics Letters Volume 62(25)	Growth of Thin M Flins on GaN(0001)-(1 X 1) Infrared Spectroscopic Study of the Chemisorption of CF3 Species on Silicon
Pages 3297-8299 June 1993 Diamond and Related Materials Journal Volume 2 Pages 1020-1023 1993	Diamond Metal-Semiconductior- Metal Ultraviolet Photodetectors
Microwave and Optical Technology Letters Volume 6(1) Pages 81-83 January 1993 Fifth International Conference on	Circuit Model of Low-Frequency Transconductance and Output Resistance Dispersion in Ion- Implanted InP JFETs Sinusoidal and Transient Response
Indium Phosphide and Related Materials TuC3 Pages 251-254 1993	of Traps in Double-Recessed InAIAs/InGaAs/InP HEMT's
Fifth International Conference on Indium Phosphide and Related Materials TuP4 Pages 341-344 1993	Fe and Ti Compensation Implants in n- and p-Vn0.52Al0.48As and p- I nP
Solid-State Electronics Volume 36 (10) Pages 1445-1453 1993	Low-Frequency Gain Dispersion in Ion-Implanted InP JFETs

- --- ---

_ __ .

. . . . . . .

n		
	Electronics Letters	Impact Ionisation in High-Output-
	Volume 29(21)	Conductance Region of 0.5 mm
	Pages 1888-1890	AlSb/InAs HEMTs
	October 1993	
l	Physical Review B	Collective Intersubband Spin- and
	Volume 47(15)	Charge-Density Excitations in
	Page 9981	Tilted Magnetic Fields
	April 1993	
	21st International Conference on	Effects of Nonparabolicity on
	The Physics of Semiconductors	Collective Intersubband Spin- and
	Volume 2	Charge Density Excitations
	Pages 721-724	, i i i i i i i i i i i i i i i i i i i
	1993	
·	Physics Reports	Mesoscopic Physics and
	Volume 234(2&3)	Nanoelectronics: Nanoscience and
		Nanotechnology
	Pages 73-174	Tranotechnology
	November 1993	
	Physical Review B	High-Frequency Behavior of
	Volume 48(23)	Quantum-Based Devices:
	Pages 17217-17232	Equivalent-Circuit,
	November 1993	Nonperturbative Response, and
		Phase-Space Analyses
	IEEE Electron Device Letters	Successive Charging/Discharging
	Volume 14(9)	of Gate Oxides in SOI MOSFET's
	Pages 435-43	by Sequential Hot-Electon
	September 1993	Stressing of Front/Back Channel
	Journal of Applied Physics	The Nature of Donor Conduction in
	Volume 74(9)	n-GaN
	Pages 5901-5903	
	November 1993	
	Applied Physics Letters	Atomic Structure of Ge-related
	Volume 63(22)	Point Defects in Ge-incorporated
	Pages 3049-3051	Oxide Films
	November 1993	Flootron Spin Bossener Studies
	Physical Review B	Electron-Spin-Resonance Studies
	Volume 48(24)	of Donors in Wurtzite GaN
	Page 17878	
	December 1993	
	IEEE Trans. on Appl.	Microwave Losses in Kinetic-
	Superconductivity	Inductance Devices Fabricated
	Volume 3(1)	From NbCN/MgO/NbCN Trilayers
	Pages 2808-2811	
	March 1993	
	Appl. Phys. Lett.	Microwave Measurement of the
	Volume 62(15)	Dielectric Constant of
		Sr0.5Ba0.5TiO3 Forroelectric Thin
	Pages 1845-1847	
	April 1993	Films
	IEEE Trans. on Appl.	Superconducting Kinetic-
	Superconductivity	Inductance Microwave Filters
	Volume 3(1)	
	Pages 8-16	
	March 1993	
1		Y Y

D.B.52.R

Π	Proceedings 4th European	Failure Analysis of MMIC Power
	Symposium on Reliability of Electron Devices Failure Physics and Analysis Pages 453-458 1993	Amplifiers
	Physical Review B Volume 48(19) Page 14 157 November 1993	Optically Detected Magnetic Resonance in Zinc-Doped Indium Phosphide Under Uniaxial Stress
	Journal of Applied Physics Volume 74(11) Pages 6780-6787 December 1993	Morphology and Transport of YBa2Cu3O7-x Sputtered in Argon, Oxygen, and Hydrogen: Dependence on Deposition Temperature
	IEEE Trans. Applied Superconductivity Volume 3(1) Pages 1520-1523 March 1993	The Effects of Added Gases in the Sputter Deposition of Y ₁ Ba ₂ Cu ₃ O ₇ Thin Films
	J. of Electronic Materials Volume 22(5) Pages 559-566 May 1993	MeV Energy Sulfur Implantation in GaAs and InP
	Optical Engineering Volume 32(10) Pages 2452-2458 October 1993	Thin Silicon Nitride Films to Increase Resolution in E-beam Lithography
	Materials Research Society Symposium Proceedings Volume 306 Pages 3-18 1993	Materials Issues In X-Ray Lithography
	Journal of Vacuum Science Technology B Volume 11(6) Pages 2733-2740 November/December 1993	Reduction and Elimination of Proximity Effects
	Diamond and Related Materials Volume 2 Pages 1078-1082 1993	Aerosol Doping of Flame Grown Diamond Films
	Proceedings of the Third International Symposium on Diamond Materials Volume 193(17) Pages 808-814 1993	Luminescence Studies of Flame Grown Boron Doped Diamond Films
	J. Appl. Phys. Volume 73(3) Pages 1154-1160 February 1993	X-Ray Double-Crystal Analysis of Misorientation and Strain in GaAs/Si and Related Heterostructures

. . . . . . . .

R

P.B. 53.R

	Physical Review B	High-Resolution X-ray Analysis of
	Volume 48(12) Pages 8911-8917	Strain in Low-Temperature GaAs
	September 1993	
	21st International Conference on	Exchange Interactions in
	the Physics of Semiconductors Volume 2	Intersubband Transitions in Semiconductor Heterostructures
	Pages 788-791	Semiconductor meterosit detutes
	1993	
	Proceedings 21st International	Interface Roughness in GaAs/AlAs
	Conference on The Physics of Semiconductors	Quantum Well Structures
	Volume 2	
	Pages 1120-1123	· · · ·
	1993	
· · ·	Physical Review Letters Volume 70(3)	Nonlinear Theory of Gyroharmonic Radiation from Spatiotemporally
	Pages 291-294	Modulated Electron Beams
	January 1993	l
	Physics of Fluids B	Linear Analysis of Backward Wave
	Volume \$(5) Pages 1639-1646	Oscillations in Azimuthally Varying Tansverse Electric (TE) Modes
	May 1993	
	Journal of Electronic Materials	Characterization of Crystalline Low
	Volume 22(120) Pages 1391-1393	Temperature GaAs Layers Annealed from an Amorphous
	1993	Phase
	Physical Review B	Photoluminescence and Optically
	Volume 47(3)	Detected Magnetic Resonance of
	Page 1305	Si/Si1-xGex Strained-Layer
	January 1993	Superlattices Grown by Molecular- Beam Epitaxy
·····	Appl. Phys. Lett.	Observation of Optically Detected
	Volume 63(19)	Magnetic Resonance in GaN Films
	Page 2673 November 1993	
	J. Vac. Sci. Technol B	Concentration Dependence of Ge
	Volume 11(4)	Segregation during the Growth of a
	Pages 1392-1395	SiGe Buried Layer
	July/August 1993 J. Vac. Sci. Techno. B	Ge Segregation During the Growth
	Volume 11(3)	of a SiGe Buried Layer by
	Pages 1120-1123	Molecular Beam Epitaxy
	May/June 1993	Flooting Courses
	Physical Review B Volume 47(16)	Electronic Structure of c(2X2) Ba Adsorbed on W(001)
	Page 10748	
	April 1993	<u> </u>
	Physical Review B	First-Principles Calculations of
	Volume 47(8) Page 4238	Spin-Orbit Splittings in Solids using Nonlocal Separable
	February 1993	Pseudopotentials
	$D \cdot B \cdot 54 \cdot R$	(1 :6 SEP 1994 .

-

ï

ŧ.

 $\mathbb{R}$ 

π		
	J. Vac. Sci. Technol. B.	Effect of Interfacial Bond Type on
	Volume 11(4)	the Electronic and Structural
	Page 1693	Properties of GaSb/InAs
	July/August 1993	Superlattices
	Proceedings of the SOTAPOCS	Characterization of Bulk Semi-
	XVIII Conference by the Electro	Insulating GaAs Grown by a
	Chemical Society	Vertical Molten Zone MethodSb
	Volume 93-27	Surface Segregation and Doping in
	Page 263	Si(100) Grown at Reduced
	1993	Temperature by Molecular Beam
		Epitaxy
	Appl. Phys. Lett	Sb Surface Segregation During
	Volume 63(10)	Heavy Doping of Si(100) Grown at
X X	Pages 1381-1383	Low Temperature by Molecular
	September 1993	Beam Epitaxy
┣━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━	J. Vac. Sci. Techno. B	Sb Surface Segregation During
	Volume 11(3)	Heavy Doping of Si(100) Grown at
	Pages 1115-1119	
		Low Temperature by Molecular
	May/June 1993	Beam Epitaxy
	Appl. Phys. Lett.	Field Emission from an Elliptical
	Volume 63(5)	Boss: Exact Versus Approximate
	Pages 202-704	Treatments
	August N93	
	Journal of Vacuum Science	Numerical Smulation of Field
	Technology B	Emission from Silicon
	Volume 11(2)	
	Pages 371-378	
	March/April 1993	Descrition and C. Gara
	Journal of Applied Physics	Deposition and Surface
	Volume 73(6)	Characterization of High Quality
	Pages 3108-3110	Single Crystal GaN Layers
	March 1993	
	Journal of Applied Physics	Influence of Buffer Layers in the
	Volume 73(9)	Deposition of High Quality Single
	Pages 4700-4702	Crystal GaN Over Sapphire
	May 1993	Substrates
	Superlattices & Microstructures	
		Radiative Recombination of Free
	Volume 13(2)	Excitons in GaAs Quantum Wells
	Pages 271-273	
	1993	
	Springer Series in Chemical	Radiative Recombination of Free
	Physics	Excitons in GaAs Quantum Wells
	Volume 55	
	Pages 472-474	
	1993	
	J. Vac. Sci.Technol. B.	Comparison of Optical Pyrometry
	Volume 11(3)	and Infrared Transmission
	Pages 1003-1006	Measurements on Indium-Free
	May/June 1993	Mounted Substrates During
		Molecular-Beam Epitaxia
		Molecular-Beam Epitaxia

- - -

~

- -

.

|

P.B. 55.R

R

--

	Journal de Physique IV	Lifetime of Excitons in GaAs
	Volume 3	Quantum Wells
	Pages 19-25	
	October 1993	
<u></u>	J. Vac. Sci. Technol. B	Optically Detected Magnetic
	Volume 11(3)	Resonance of Sharp Luminescence
	Page 1154	from Si/Si1-xGex Superlattices
	May/June 1993	
	Electronics Letters	Observation of New Vibronic
	Volume 29(19)	Luminescence Band in
	Page 1727	Semiconducting Diamond
	September 1993	
		Wayaguiding Structures Employing
	IEE Proceedings-H	Waveguiding Structures Employing
	Volume 140(3)	the Solid-State Magnetoplasma
	Pages 147-164	Effect for Microwave and
	1993	Milimetre-Wave Propagation
	N93 IEEE AP-S International	Auxiliary Vector Function Method
	Symposium Digest	for Vector Variational Approach for
	Volume 1	The Solution of Complex
	Pages 412-415	Anisotropic Media Using Finite
		Element Numerical Method
	1993	
	1993 IEEE AP-S International	Finite Element Method for
	Symposium Digest	Nonhermitian Bianisotropic Media
	Volume 1	
	Pages 424-427	
	1993	
	1993 IEEE AP-S International	Fundamental Properties of Chiral
		Type Media
	Symposium Digest	Type Media
	Volume 1	
	Pages 189-192	
	1993	
	IEEE Proceedings-H	Nonreciprocal Electromagnetic
	Volume 140(3)	Properties of Composite Chiral-
	Pages 242-248	Ferrite Media
	1993	
	1993 SBMO International	Properties of Composite Chirol
		Properties of Composite Chiral -
	Microwave Conference/Brazil	Ferrite Media
	Proceedings	
	Volume 1	
	Pages 577-586	
	1993	
	1993 SBMO International	Weighted Residual Finite Element
1	Microwave Conference/Brazil	Method for General Nonhermitian
	Proceedings	Anisotropic Media
	Volume 1	
	Pages 597-602	
	1993	
	Journal of Applied Physics	Submillimeter Wave Low
	Volume 74(4)	Temperature Admittance of N-
	Pages 2633-2637	GaAs and N-InP Diode Structures
		Cars and with Diode Subcidies
	August 1993	l

-

D.B.56.2

}~~

LEEE Transportions on Electron	Commencing Dhote data store for
IEEE Transactions on Electron	Compressing Photodetectors for
Devices	Long Optical Pulses Using a
Volume 40(10)	Lateral Blooming Drain Structure
Pages 1740-1744	
October 1993	
J. of Electronic Materials	Diode Structures from Amorphous
Volume 22(12)	Low-Temperature GaAs
Pages 1437-1440	-
1993	
IEEE SOI Conference Proceedings	Electron Trapping in Simox with
Pages 70-71	Supplemental Implant
10/05-07/93	
1993	
 Superlattices and Microstructures	Theory of Electromagnetic Wave
Volume 13(1)	Propagation in Superlattices with
Page 93	Optically Anisotropic Layers
1993	
 Physical Review B	Subband Structures of Strained
Volume 48(8)	A1Sb/InAs/A1Sb Quantum Wells
Page \$338	
August 1993	
 The Physics of Semiconductors	Quasi-Two Dimensional Electrons
World Scientific Co.	in AlSb/InAs Quantum Wells
Page 745 1993	
	Observation of lon Implantation
J. Appl. Phys.	Observation of Ion-Implantation-
Volume 74(5)	Damage-Created n-Type
Pages 3091-3098	Conductivity in InP after High-
September 1993	Temperature Annealing
J. Appl. Phys.	Identification and Activation
Volume 74(3)	Energies of Shallow Donors in
Page 1805	Cubic SiC
August 1993	
Physical Review B	Nitrogen Donor Excitation Spectra
Volume 48(16)	in 3C-SiC)
Page 12289	
October 1993	
Physical Review B	Hydrogen Permeability in
Volume 47(7)	Thermally Grown Films of SiO2
Pages 4115-4118	on Silicon Substrates
February 1993	
Physical Review B	Evidence of Long-Range Density
Volume 48(24)	Gradient in SiO2 Films on Si from
Pages 17-972-17-985	H2-Permeability Measurements
Decmber 1993	
 IEEE Transactions on Microwave	Losses in Y-Junction Stripline and
Theory and Techniques	Microstrip Ferrite Circulators
	where surp i ennie Cheuraiors
Volume 41(6/7)	
Pages 1081-1086	
June/July 1993	

n	Microwave and Optical Technology	Measurement of the Current-
		Density Distribution in High-
	Letters	
	Volume 6(13)	Temperature Superconducting
/ \	Pages 725-728	Microstrip by Means of Kinetic-
	October 1993	Inductance Photoresponse
	Proceedings of the Sixth European	Applications of the Coupling Model
	Conference - Academy of Mining	to Some Problems in Mechanical
		Spectroscopy of Metals
	and Metallurgy	Specifoscopy of Interars
	Materials Science Forum	
	Volume 119-121	
	1993	
	Macromolecules	Viscoelastic Properties of
	Volume 26(5)	Amorphous Polymers. 2.
- \	Pages 1065-1071	Anomalous Temperature
,	N1993	Dependence of the Steady-State
		Recoverable Compliance in Low
		Molecular Weight Polymers
	DL Val Davis D	
	Physical Review B	Extended Kronmuller Model for
	Volume 47(9)	Cooperative Relaxations in Metallic
	Pages 5041-5046	Glasses
	March 1993	
	Journal of Non-Crystalline Solid	Single Particle Jumps and
	Volume 155	Correlated Ionic Motions in Glass-
1	Pages 189-193	Ceramics
	1993	Corunnos
· · · · · · · · · · · · · · · · · · ·		Comparisons Patwaan Counting
	J. Chem. Phys.	Comparisons Between Coupling
	Volume 98 (9)	Model and Molecular Dynamics
	Pages 7588-7592	Simulation for Local Chain
	May 1993	Motions in Bulk Amorphous
		Polymers
	J. Chem. Phys.	Breakdown of the Rouse Model for
	Volume 98(8)	Polymers Near the Glass Transition
		Temperature
	Pages 6488-6491	N
	April 1993	Difference Detroite Number Out
	J. Chem. Phys.	Difference Between Nuclear Spin
	Volume 98(8)	Relaxation and Ionic Conductivity
	Pages 6424-6430	Relaxation in Superionic Glasses
	April 1993	
	Macromolecules	Intermolecular Cooperativity and
	Volume 26(11)	the Temperature Dependence of
	Pages 2688-2690	Segmental Relaxation in
	May 1993	Semicrystalline Polymers
	Solid State Ionics	Comparisons Between 23 Na and
		Comparisons Delween 25 INa and
	Volume 61	27 Al Nuclear Spin Relaxations and
	Pages 345-353	Electrical Conductivity Relaxation
	1993	in Na b -Alumina
• ·	Proceedings of X11 International	Modelling Ionic Transport from the
	Conference on Defects in Insulating	Structure of Silicate Glasses
	Materials	
	08/16-22/92	
	Volume 1	$\backslash$
	Pages 53-68	
	1993	

я

•

D-B-58-R

Progress in Colloid & Polymer Science Volume 91 Pages 72-74 1993	Dynamic Lights Scattering Study of a 1,4-Isoprene-b-Styrene Copolymer
Progress in Colloid & Poymer cience Volume 91 Pages 135-137 1993	Solvent Reorientation Dynamics in Aroclor/Polymer Solutions
Journal of Molecular Liquids Volume 56 Pages 199-214 1993	Cooperative Dynamics in Relaxation: A Coupling Model Perspective
 J. Chem. Phys. Volume 99(5) Pages 4201-4209 September 1993	Nonexponential Relaxtions in Strong and Fragile Glass Formers
Journal of Non-Crystalline Solids Volume 162 Pages 268-274 1993	Absence of Difference Between 11B Nuclear Spin Relaxation and Li Ion Conductivity Relaxation in (LiCl)0.6-(Li2O)0.7-B2O3)1.0 Superionic Glasses
Physical Review B Volume 48(18) Pages 13 481-13 485 November 1993 Macromolecules	Analysis of NMR and Conductivity-Relaxation Measurements in Glassy Li2S-SiS2 Fast-Ion Conductors Chemical Structure and
Volume 26 (25) Pages 6824-6830 December 1993	Intermolecular Cooperativity: Dielectric Relaxation Results Space Applications of High
Physica C Volume 209 Pages 263-268 May 1993	Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
Journal of Crystal Growth Volume 128 Pages 483-487 1993	Sequential Etching of GaAs
Semiconductor Science and Technology Volume 8 Pages S112-S116 1993	Magneto-Optic and Magnetotransport Study of InAs/Ga1-xInxSb Superlattices
Physical Review B Volume 48(15) Pages 439-442 October 1993	Magnet-Optical Determination of T- Point Energy Gap in Bismuth

A

a,

٤.

D.B.59-R

•

•

.

π	Electronica Letters	Reactive Ion Etching of b-SiC in
1	Electronics Letters	
	Volume 29(1)	CC12F2/O2
	Pages 18 and 19	
	January 1993	
	Journal of Electronic Materials	Lattice Mismatched InGaAs on
	Volume 22(2)	Silicon Photodetectors Grown by
	Pages 201-206	Molecular Beam Epitaxy
	January 1993	Molecular Deam Ephany
\ <u></u>		Description Different De de series e Universit
	Applied Physics Letters	Proximity Effect Reduction Using
	Volume 62(5)	Thin Insulating Layers
	Pages 533-534	
	February 1993	
	Proceedings of the IEEE	X-Ray Lithography- An Overview
	Volume 81(9)	
Ì	Pages 1249-1274	
	September 1993	
ll	Analytical Chemistry	Surface Characterization
	Pages 311R-333R	
1	Lune 2002	
	June 1993	
	Journal of Vacuum Science	Determination of Acid Diffusion
	Technology B	Rate in a Chemically Amplified
	Volume 11(6)	Resist With Scanning Tunneling
	Pages 2597-2802	Microscope Lithography
	1993	
	IEEE Trans. on Appl.	YBa2Cu3O7-
	Superconductivity	8/LaAlO3/YBa2Cu3O7-8 Trilayers
	Volume 3 (1)	
	Pages 1438-1441	Transmission Lines for Measuring
	March 1993	the Superconducting Penetration
		Depth
1	IEEE Trans. on Appl.	A Novel Microstrip-Compatible
	Superconductivity	Technique for Depositing
	Volume 3(1)	YBa2Cu3O7-8 on Both Surfaces of
	Pages 1711-1714	a Substrate
1	March 1993	N
	Physical Review B	Structure of Intralayer and
	Volume 47(5)	Interlayer Pairing Interactions, the
	Pages 2780-2795	
		Anisotropy of Order Parameters,
1	February 1993	and the Transition Temperature in
l		Lavered Superconductors
	Physical Review A	Coordinate and Momentum
	Volume 47(5) Part A	Representations of the q-Deformed
	Pages R3465-R3467	Oscillator and Their Interpretation
	May 1993	
	Frontiers in Solid State Sciences	Superconductivity in High
	Volume 1	Magnetic Fields from a
	Pages 193-209	Microscopic Theory
	1993	L

D-B-60-R

.

-

1'6 SEP 1994 '

П	Phonons in Semiconductor	Phonon Assisted Optical Properties
	Nanostructures (NATO/ASI Series) J. P. Leburton et al. (eds) Pages 353-361 1993	of Semiconductor Nanostructures
	Physical Review B Volume 48(4) Page 2223 July 1993	Plasmons Localized at Point Charges in Semiconductor Quantum Wells
	Physical Review B Volume 48(8) Page 5679 August 1993	Surface Modes of the Clean Reconstructed W(100) Surface
	Physical Review B Volume 48(8) Page 5700 August 1993	Electron-Phonon Scattering Rates in Quantum Wires
	Physical Review B Volume 48(16) Page 12338 October 1993	Coupling of Electrons to Interface Phonons in Semiconductor Quantum Wells
	Physical Review B Volume 48(24) Page 18 037 December 1993	Effects of Boundary Conditions on Confined Optical Phonons in Semiconductor Nanostructures
	Physical Review E Volume 48(1) Pages R17-R20 July 1993	Interaction of a Relaxing System with a Dynamical Environment
	Macromolecules 1992 Pages 83-95 1993	The Coupling Model for Cooperative Relaxations and Its Applications
	Physical Review B Volume 47(14) Pages 8843-8850 April 1993	Vortex-Lattice Solutions of the Microscopic Gorkov Equations for a Type I Superconductor in a Strong Quantizing Magnetic Field
	Journal of Physics and Chemical Solids Volume 54(10) Pages 1281-1282 1993	Manifestations of the Landau Quantization in Type II Superconductors in High Magnetic Fields
	J. Appl. Phys. Volume 74(5) Pages 3303-3306 September 1993	Comparison of Interface Trap Densities Measured by the Jenq and Charge Pumping Techniques
	IEEE Transactions on Nuclear Science Volume 40(6) Pages 1341-1349 December 1993	Effects of Post-Stress Hydrogen Annealing on MOS Oxides after ⁶⁰ Co Irradiation or Fowler- Nordheim Injection

- -----

P.B-61-R

--

	Applied Physics Letters	Random Telegraphic Noise in
	Volume 63(19)	Double-Barrier Systems
	Pages 2652-2654	
N	November 1993	
	J. Vac. Sci. Technol. B	Variations in Substrate Temperature
$\mathbf{X}$	Volume 11(3)	Induced by Molecular-Beam
$\mathbf{X}$	Page 994	Epitaxial Growth on Radiatively
$\sim$	May/June 1993	Heated Substrates
	Physical Review B	Planar Vibrational Modes in
	Volume 48(23)	Superlattices
	Page17 172	
$\mathbf{X}$	December 1993	
	Proceedings of the 4th International	YBCO Josephson-Effect Devices
_	Superconductive Electronics	with YBCO/Insulator Composite
	Conference, ISEC93	Barriers
	Pages 256-257	
	1998	
	IEEE Trans. Applied	Electron Transport and Magnetic
	Superconductivity	Penetration Depth in Niobium-
	Volume $3(1)$	Silicon Multilayers
	Pages 1612 1615	
	1993	- * * *
	IEEE Transactions on Electron	Secondary Emission Properties as a
	Devices	Function of the Electron Incidence
	Volume $40(4)$	Angle
	Pages 824-829	
	April 1993	
	J. Appl. Phys.	Lattice Position of Si in GaAs
	Volume 73(12)	Determined by X-Ray Standing
	Pages 8161-8168	Wave Measurements
	June 1993	
	Physical Review B	Optical Absorption Spectroscopy of
	Volume 47(23)	Single Defects in GaAs/Al _x Ga _{1-x} As
	Page 16032	Tunnel Structures
	June 1993	
	Appl. Phys. Lett.	Fabrication of Silicon
	Volume 63(6)	Nandstructures with a Scanning
	Page 749	Tunneling Microscope
	August 1993	
	Appl. Phys. Lett.	Fabrication of GaAs
	Volume 63(25)	Nanostructures with a Scanning
	Page 3488	Tunneling Microscope
	December 1993	↓ <u>`</u>
	IEEE Transactions on Nuclear	Reduction of Charge Trapping and
	Science	Electron Tunneling in SIMOX by
	Volume 40(6)	Supplemental Implantation of
	Pages 1740-1747 December 1993	Oxygen

**1 6** SEP 1994

D-B-62-R

ŀ

. 7

 $\leq$ 

Journal of Applied Physics Volume 73(2) Pages 658-667 January 1993	Post-Irradiation Cracking of H ₂ and Formation of Interface States in Irradiated Metal-Oxide- Semiconductor Field-Effect Transistorss
Physical Review B Volume 47(2) Page 681 January 1993	Low-Frequency Excitations in Sodium b-Alumina: An NMR Study
Diamond and Related Materials Volume 2 Page 87-91 1993	Photoluminescence and Cathodoluminescence Studies of Semiconducting Diamond
Electronics Letters Volume 29(1) Pages 26-27 January 1993	Application of Micro-Airbridge Isolation in High Speed HBT Fabrication
1993 International Semiconductor Devices Research Symposium Proceedings Volume 1 Pages 389-392 1993	DC and Large-Signal AC Electron Transport Properties of GaAs/InGaAs/AlGaAs Heterostructure Barrier Varactors
1993 International Semiconductor Devices Research Symposium Proceedings Volume 1 Pages 775-778 1993	Efficient Computer Aided Design of GaAs and InP Second Harmonic Millimeter Wave TEDs
Solid State Electronics Volume 36(3) Pages 387-389 1993	Characterization of Molecular Beam Epitaxially Grown InSb Layers and Diode Structures
IEEE Transactions on Nuclear Science Volume 40(5) Pages 1342-1346 October 1993	Bonded Wafer Substrates for Integrated Detector Arrays
J. Appl. Phys. Volume 74(11) Pages 6686-6690 December 1993	Controlled p- and n-Type Doping of Homo- and Heteroepitaxially Grown InSt
 SSDM 93 Japan Society of Applied Physics Pages 234-236 August/September 1993	Parametric Investigation of Si ₁ - xGex/Si Multiple Quantum Well Growth
J. Vac. Sci. and Techno. B Volume 11(3) Pages 1077-1082 May/June 1993	Low Temperature Cleaning Processes for Si Molecular Beam Epitaxy

P.B.63-R

Ł

|

.

<b>T</b>		
	Physical Review B	Optically Detected Magnetic
	Volume 48(23)	Resonance of Shallow Donors in
. \	Page 17 031	GaAs
	December 1993	
\	Appl. Phys. Lett	Solid Dhase Perrowth of
		Solid-Phase Regrowth of
	Volume 63(3)	Amorphous GaAs Grown by Low-
	Pages 320-321	Temperature Molecular-Beam
	July 1993	Epitaxy -
	IEEE Transactions on Plasma	Field Theory of a Traveling Wave
	Science	Tube Amplifier with a Tape Helix
	Volume 21(6)	Tube Ampinier with a Tape Henx
	Pages 654-668	
	December 1993	
	Semiconductor Science and	The Effect of Interface Bond Type
	Technology	on the Structural and Optical
	Volume 8	Properties of GaSb/InAs
	Pages S106-S111	Superlattices
		Superiances
	1993	
	1993 IEEE MTT-S International	Status of Ferrite Technology in the
	Microwave Symposium Digest	United States
	Volume 1	
	Pages 203-206	
	1993	
	Physical Review B	Enhancement of Cyclotron Mass in
		Eminancement of Cyclotron Wass in
	Volume 47(3)	Semiconductor Quantum Wells
	Pages 1691-1694	
	January 1993	
	Applied Physics Letters	Dependence of InAs Phonon
	Volume 63(25)	Energy on Misfit-Induced Strain
	Pages 3434-3436	Energy on Misin Induced Strain
	December 1993	
	Physical Review B	Spin-Resolved Cyclotron
	Volume 47(11)	Resonance in InAs Quantum Wells:
	Pages 6807-6810	A Study of the Energy Dependent
	March 1993	g-Ractor
	IEEE Transactions on Electron	Simulation of Field Emission
	Devices	Microwiodes
	Volume 40(5)	Interologico -
	Pages 1009-1016	
	May 1993	
	Chemistry of Materials, 5:148-150	Photopatterning and Selective
	-	Electroless Metallization of
		Surface-Attached Ligands
	Thin Solid Films, 224:242-247	Palladium Ion Assisted Formation
	1 mm 50nu 1 mms, 224.242-247	
		and Metallization of Lipid Tubules
	Liquid Crystals, 13(1):163-170	Scanning Tunneling Microscopic
•		Study of the Interfacial Order in a
		Ferroelectric Liquid Crystal
	SPIE, 1924:30-41	Soft X-ray (14nm) Lithography
	JI 14, 1747.JU 71	
		with Ultrathin Imaging Layers and Selective Electroless Metallization

۹

D-B-64-R

 $\mathbb{P}$ 

ACS Symposium Series on Polymers for Microelectronics, 537:210	Top Surface Imaging Using Selective Electroless Metallization of Patterned Monolayer Films
Optical Engineering, 32(10):30	Projection X-ray Lithography with Ultrathin Imaging Layers and Selective Electroless Metallization
Science, 262:1669-1676	Lipid Tubules: A Paradigm for Molecularly Engineering Structures
Japanese Journal of Applied Physics, 32(1:12B):5829-5839	Patterning of Self-Assembled Films Using Lithographic Exposure Tools
Applied Physics Letters, 63(9):1285-1287	Ferroelectricity in a Langmuir- Blodgett Multilayer Film of a Liquid Crystalline Side-Chain Polymer
Journal of Vacuum Technology B, 11(6):2155	Lithographic Patterning of Self- Assembled Monolayer Films
Analytical Chemistry	Continuous Flow Immunosensor for Detection of Explosives
Journal of Vacuum Science and Technology B, 11(6):2155-2163	Lithographic Patterning of Self- Assembled Films

. . . . . .

R

D.B.65-R

SENT BY: PLASMA PHYSICS DIV. 9-16-94 ; 11:11 ; NAVAL RESEARCH LAB. -NRLCODE6802;# 2/13 NEW - NOT ENTERED 6:00 PLASMA PHYSICS DIVISION REFEREED JOURNAL PUBLICATIONS FOR CYPS "Plasma Dynamics Driven by Finite-Width Current Filaments and KV Potential Drops in Ionosphere-Magnesosphere Coupling" S.B. Ganguli, H.G. Minchell, and P.J. Palmadesso Geophysical Research Letters, 20, 975. 1991 - May 2.101 -- bige "Recurring Anti-Phase Signals in Coupled Nonlinear Oscillators: Chaotic or Random Time Series?" K.Y. 'Isang and I.B. Schwartz International Journal of Bifurcation and Chaos. 3, 773, 1993 Value -þage "Stochastic Tracking in Nonlinear Dynamical Systems" I. Triandal and I.B. Schwartz Physical Review E. 48, 486, 1993 L-August 718 "Sub-Alfvenic Plasma Expansion" B. H. Ripin, J. D. Huba, E. A. McLean, C. K. Manka, T. Poyser, H. R. Burris, and J. Grun Physics of Fluids B, 18, 1391, 1993. - actuber 5 "X-ray Damage Testing to Optical Components Using a Laser-Plasma Source" R. C. Elton, J. Grun, D. M. Billingz, F. C. Young, C. K. Manka, B. H. Ripin, H. R. Burris, J. Resnick, D. J. Ripin, and J. R. Millard Journal of Applied Physics, 74, 5432, 1993 November "Study of Gain in C-Band Deflection Cavites for a Krequency-Doubling Magnicon Amplifier" S.H. Gold, C.A. Sullivan, B. Halizi and W.M. Manhelmer IEEE Transactions on Plasma Science, 21, × 383, 1993 -August "New Results and Applications for the Quasioptical Gyrotron" A.W. Fliflet, R.P. Fischer, and W. M. Manheimer Physics of Fluids B. 5. 2682, 1993 July "Nonlinear Analysis of a Magnicon Output Cavity" B. Hafizi, S.H. Gold, W.M. Manheimer, and P. Springle Physics of Fluids B, 5, 3045, 1993 - August "Viscoresistive subilization of the Z pinch" F.L. Cochran and A.E. Robson Physics of Fluids B, 5, 2905, 1993 - August "Escape Time of Heliumlike Alpha Resonance-line Photons Emitted from Optically Thick Plasmas" J.P. Aprozoso Physical Review E. 47, 2798, 1993 "Modeling the Coaxial Double Z-pinch for the Al XI-Mg LX Luser at 228" A.N. Qi, D.A. Hammer, and J.P. Apruzase Journal of Applied Physics 74, 4303, 1993 Uchaber

D. B.66R

1 6 SEP 1994

## ; 9-16-94 ; 11:12 ; NAVAL RESEARCH LAB.-

NRLCODE6802;# 3/13

1 6 SEP 1994



"Radiative Z-Pinch Coupling to an Inductive Generator"

J.D. Giuliani, Jr., M. Mulbrandon, R. Terry, P.F. Ottinger, R.J. Commisso, C. Deeney, and P.D. LEPHI

Proceedings of the 9th Imernational Conference on High-Power Particle Beams. 1. p. 167, 1993

"High Power Relativistic Klypron Amplifier Research at the Naval Research Laboratory" M. Friedman and V. Serlin

Proceedings of SPIE, ed. Howard E. Brandt. 1872. 2. 1993

"The Two-Beam Configuration of the Relativistic Klystron Amplifier" V. Serlin and M. Priedman Proceedings of SPIE, ed. Howard E. Brandt, 1872, 96, 1993

"RF Convertor Simulation - Imposition of the Radiation Condition" D.G. Colombant, Y.Y. Lan, M. Friedman, J. Krall and V. Serlin International Journal of Infrared and Millimeter Waves. 14, 335, 1993

"External Modulation of Intense Relativistic Electron Beams with Spatial and Velocity Inhomovensities"

V. Serlin and M. Friedman

Applied Physics Letters, 62, 2772, 199.

"The Nike KRF Laser Program"

J.D. Sethian, S.E. Bodner, K.A. Gerber, R.H. Lenmberg, E.A. McLean. S.P. Obenschain, C.J. Pawiey, M.S. Pronko, J.A. Stamper, A.V. Deniz, J. Hardgrove, T. Lehecks and M.W. McGeoch Presented on the Eleventh International Conference on Laser Interaction and Related Plasma Phenomena, 1993

"The Nike 60 cm Electron Beam-Pumped KrF Amplifier" J.D. Sethian. S.P. Obenschain, C.J. Pawley, I.D. Smith, P.A. Corcoran, R. Altes and M. McGeoch

Proceedings of the Nimh IEEE Pulsed Power Conference, 1993

"ZFX - A 330 ki, 1 MV. Pulsed Power Driver Using a Parallel Riste Water Capacitor" J.D. Sethian, J.R. Boller, R.J. Commisso. J.C. Kellogg, B.V. Weber and F.C. Young Proceedings of The Ninth IEEE Pulsed Power Conference, 1993

"Effects of Random Phase Distortion and Nonlinear Optical Processes on Later Beam Uniformity with Induced Spatial Incoherence (ISI) R.H. Lehmberg, S.P. Öbenschgin, C.J. Pawley and M.S. Pronko Proceedings of SPIE 1870, 163, 1993

D-B-67R

NRLCODE6802;# 4/13



"Current Neusralization of Intense MeV Proton Bosins Transported in Low-pressure Gas" F.C. Young, D.D. Hinsheiwood, R.F. Hubbard and M. Lampe Physical Review Letters, 70, 2573, 1993 - Abril "Signutation of Electron Beam Transport in Low-pressure Gas Conditioning Cells" R.F. Hubbard, S.P. Slinker, R.F. Fernsler, G. Joyce and M. Lampe Journal of Applied Physics, 73; 4181, 1993 Lmar "Physics of Gal Breakdown for Ion Beam Transport in Gas" C.L. Olson, D.D. Hinshelwood, R.F. Hubbard and M. Lampe Il Nuovo Cimento, 106, 1705, 1993 10 10 "Plectron Beam Quality/Limitations and Beam Conditioning in Free Electron Lasers" P. Sprangle, B. Hafizi, G. Joyce and P. Scrafim Nuclear Instruments and Methods A, 331, 6, 1993 "Laser Synchrotron Radiation as a Compact Source of Tunable, Short Pulsa Hard x-rays" E. Esarcy, P. Sprangis, A. Ting and S.K. Ride Nuclear Instruments and Methods A. 331, 545, 1993 "Nonlinear Analysis of Relativistic Harmonic Generation by Intense Lasurs in Planmas" E. Esarey, A. Ting, P. Sprangie, D. Umstadior and X. Liu IEEE Trans. Plasma Sci., 21, 3 1993 - Februdany "Methods for Conditioning Electron Beams in Free-electron Lasors" P. Sprangle, B. Hafizi, G. Joyce and P. Serafim Physical Review Letters. 70, )\$, (1993 -May 2896, "Nonlinear Thomson Scattering of Intense Laser Pulses from Beams and Plasmas" E. Esarcy, S.K. Ride and P. Sprangle Physics Review E. 48, 3003, 1993 "Thomson Backgeentered x-rays from an Intense Laser Beam" C.M. Tanz, B. Hafizi and S.K. Ride Nuclear Instruments and Methods A, 331, 371, 1993 "Optically Guided Luser Wake-field Acceleration" E. Esarey, P. Springle, J. Krill, A. Ting and G. Joyce Physics of Fluids B. S. 2690. 1993 July "RF Convertor Simulation-imposition of the Radiation Condition" D.G. Colombane, Y.Y. Lau, M. Friedman, J. Krall and V. Serlin International Journal of Infrared Millimeter Waves, 14, 335, 1993 "Fundamental and Hermonics of Thomson Backscattered x-rays from an Intense Laser Beam" C.M. Tang, B. Hafizi and S.K. Ride j IEEE Transactions in Plasma Science, 1623, 1993 on Particle Accelerators, \$. 1623 D.B-68R

NRLCODE6802;# 5/13



## PLASMA PHYSICS DIVISION REFEREED JOURNAL PUBLICATIONS FOR CY92

"Effects of Flasms Turbulence on Electron Collection by a High-Voltage Spherical Probe in a Magnetized Plasma" P.J. Paimadasao, G. Ganguli Journal of Geophysical Research, 97, 6493, 1992 - may "Diodelike Response of High-Latitude Plasma in Magnetosphere lonosphere Coupling in the Presence of Field Aligned Currents" H.G. Mitchell Vr., S.B. Ganguli, P.J. Paimadesso Journal of Geophysical Research, 97, 12045, 1992 - August "Trucking Unstable Orbits in an Experiment" I.B. Schwartz, I. Triandaf Physical Review A, 46, 7439, 1992 L December "Tracking Unstable Steady States: Extending the Stability Regime of a Multimode Laser System" Z. Gills, C. Iwata, R. Roy, I.B. Schwartz, I. Triandaf Physical Review Letters, 69, 3169, 1992 -November "Predicting Attracting Out-of-Phase States in Coupled Josephson Junctiona" I.B. Schwartz, K.Y. Tsang International Journal of Bifurcation and Chaos, 2, 177, 1992 "Tracking Unstable Orbits in an Experiment" T.L. Carroli, L. Trindaf, I. Schwartz, L. Pocora Physical Review Lemms, 46, 6189, 1992 7439 - December A > "Interhyperhedral Diffusion in Josephson-Junction Armys" K.Y. Tsang, I.B. Schwartz Physical Roview Letters, 68. 2265. 1992 "Small Amplitude, Long Period Outbreaks in Sensonally Driven Epidemics" I.B. Schwartz Journal of Mathematical Biology, 30, 473, 1992 "Demonstration of Population Inversion by Resonant Photopumping in A Neon Gas Cell Intellisted by a Sodium Z Pinch" J.L. Porter, R.B. Spielman, M.K. Metzen, E.J. McGuire, L.E. Ruggies, M.P. Vargas, J.P. Apruzesa, R.W. Clark, J. Davis Physical Review Letters, 68, 796., 1992 - February "Design Considerations for 2-pinch Driven Photoresonant X- ray Lasing in Neonlike Krypton" J.W. Thornhill, J.P. Apruzase. J. Davis, R.W. Clark Journal of Applied Physics. 71, 4671., 1992 May "Improving Plasma Uniformity in Z-pinch-driven Neonliks Krypton X-ray Lasers" J.W. Thornhill, J. Davis, J.P. Apruzese, R.W. Clark Applied Optics, 31, 4940., 1992 August D.B.692 1 6 SEP 1994 _: 9-16-94 ; 11:14 : NAVAL RESEARCH LAB. -

NRLCODE6802;# 6/13

R

"Electron-lon Hybrid Instabilities Driven by Velocity Shear in a Magnetized Plasma" H. Romero, G. Ganguli Physics of Pluids B. 4, 1708, 1992 - Tuly "Electron-ion Hybrid Instability in Laser-Produced Plasma Expansions Across Magnetic Fields" T.A. Peyser, C.K. Manks, B.H. Ripin, G. Gunguli Physics of Fluids B. 4, 2448, 1992 -Actaul "Electrostatic Turbulence in the Earth's Central Plasma Sheet Produced by Multiple-Ring Ion Distributions' J.D. Hubs. J. Chen, R.R. Anderson Journal of Geophysical Research, 97. 1533, 1992 February "High-Latitude F Region Ionospheric Interchange Modes in the Presence of Powerful Radio Waves" P.K. Chaturvedi, M.Y. Kaskinen, S.L. Ossakow Journal of Geophysical Research, 97, 8559, 1992 June "Ion Acceleration and Coherent Structures Generated by Lower Hybrid Shear-Driven Instabilities" H. Romero, G. Ganerali, Y.C. Lee Physical Review Letters, 69, 3503, 1992 December "LASSII Pulsed Plasma Probe on CRRES" M.M. Bumback, P. Rodriguez, D.N. Walker, C.L. Siefring Journal of Spacecraft and Rockets, 29, 607. 1992 - August "Overview of the LASSII Experiment on the Combined Release and Radiation Effects Satellite" P. Rodriguez Journal of Spacecraft and Rockets, 29, 564, 1992 July - August P. Rodriguez "Preliminary Study of the CRRES Magnetospheric Barium Releases" J.D. Huba, P.A. Bernhardt, J.G. Lyon Journal of Geophysical Research, 97, 11, 1992 January "Probing the Magnetosphere Using Chemical Releases non the Combined Release and Radiation Effects Satellits" P.A. Bernhardt Physics of Fluids B, 4, 2249, 1992 " Skidding of the CRRES G-9 Barium Release" J.D. Huba, H.G. Mitcheil, J.A. Fedder, P.A. Bernhardt Geophysical Research Letters, 19, 1085, 1992 June "Theory of Smell-Scale Density and Electric Field Fluctuations in the Nightside Venus Ionosphere" J.D. Huba J.D. Huba Journal of Geophysical Research. 97, 43, 1992 January "Achromatism in Final Focusing Systems for High-Current Heavy-lon Beams" D.D.-M. Ho. K.R. Crandell, J. Haber Particle Accelerators, 37, 155, 1992 "Analysis of the Deflection System for a Magnetic-Field-Interested Magnicon Amplifier B. Hafizi, Y. Seo, S.H. Gold, W.M. Manheimer, P. Sprangle IEEE Transactions on Plasma Science, 20, 232, 1992 -June

D-B-70R

NRLCODE6802:# 7/13



"A Phase-Plate Mode Transducer for TE₁₀ Gyrotron Modes" W.M. Black, S.H. Gold International Journal of Electronics, 72, 1119, 1992

"Chaotic Scattering of Pitch Angles in the Current Sheet of the Magnetotail" G.R. Burkhart and J. Chen Journal of Geophysical Research, 97, 6479, 1992

"Conditioning Electron Beam in the Ion-Focused Regime" R.F. Fernder, R.F. Hubbard, S.P. Slinkor Physics of Fluids B, 4, 4153, 1992

"CPB Fire Control for Flost Datases" E.E. Nolting, C.R. Fisher, A. Lee, M. Lampe Journal of Defense Research, 21, 591, 1992

"Demonstration of Vacuum Field Emission from a Self-Assembling Biomolocular Microstructure Composite"

D.A. Kirkpatrick, G.L. Bergeron, M.A. Czarnaski, J.J. Hickman, G.M. Chow, R. Price, B.L. Rama, P.B. Schoen, W.B. Stockton, S. Barai, A.C. Ting, J.M. Schmar Applied Physica Letters, 60, 1555, 1992

march

"Design of an Electron Gun for a 280-GHz Inducted-Resonance-Electron-Cyclotron (IREC) Maser Experiment⁴ R.B. McCowan, R.A. Pendleton, A.W. Fililet IEEE Transactions on Electron Devices, 39, 1763, 1992

"Dissipative Beam Trapping in a Modified Batabon with Strong Focusing" Y. Sao, P. Sprangle Particle Accelerators, 39, 15, 1992

"Effect of Energy Spread and Gyromotion on Efficiency of a Smith-Purcell FEL" B. Hafizi, P. Sprangle, P. Serafim Nuclear Instruments and Methods A, 318, 560, 1992

"Electron Trapping and Acceleration in a Modified Elongated Beatron" Y. Song, A. Fisher, R. Prohaska, N. Rostoker Physics of Fluids E. 4. 3771, 1992

"Fabrication of Biologically Based Microstructure Composites for Vacuum Field Emission" G.M. Chow, W.B. Stockton, R. Price, S. Baral, A.C. Ting, B.R. Ratna, P.E. Shoen, J.M. Schnur, G.L. Bergeron, M.A. Czarnaski, J.J. Hickman, D.A. Kirkparrick

Materials Science and Engineering A, 158, 1, 1992

"Fast Plaamoid Formation in Double Arcades" J.M. Finn, P.N. Guzdar, J. Chan The Astrophysical Journal, 393, 800, 1992

"Field-Emission Arrays - A Potentially Bright Source" C.M. Tang, A.C. Ting, T. Swyden Nuclear Instruments and Methods A, 318, 353, 1992

DB-MR

NRLCODE6802;# 8/13

"Flute Instability of an Ion-Focused Slab Electron Beam in a Broad Plasma" D.H. Whittum, M. Lamps, G. Joyce, S.P. Slinker, S.S. Yu, W.M. Sharp Physical Review A, 46, 6684, 1992 L November "Generation of Stimulated Backscattered Harmonic Radiation from Intense-Laser Interactions with Beems and Plasmas" E. Esserey, P. Sprangia Physical Review A, 45, 5872, 1992 "Harmonic Generation in Laser-Pumped FELs and Stimulated Backscattering from Plasmas" E. Essney, P. Sprangle Nuclear Instruments and Methods A, 318, 533, 1992 "High Current WIPS Propagation" R.L. Feinstein, R.F. Hubberd Journal of Defense Research, 21, 369, 1992 "Interaction of Ultrabigh Daser Fields with Beams and Plasmas" P. Sprangle, E. Essrey Physics of Fluids B, 4, 2241, "Introduction to the Propagation of lotrase Electron Beams" M. Lampe Journal of Defense Research, 21, 279, 1992 "Lead Pulse Stability Issues" R.F. Hubbard, W. William, M. Fawley Journal of Defense Research, 21, 279, 1992 "Maximum Microwave Conversion Efficiency From a Modulated Intense Relativistic Electron Beem" D.G. Colombant, Y.Y. Lau Physical Review A, 45, 2179, 1992 Fibriary "Model of Cavity Coupling for Beam Breakup Control" D.G. Colombert, Y.Y. Lau Journal of Applied Physics, 72, 3874, 1992 Novembu "Modeling the Longitudinal Wall Impedance Instability in Heavy Ion Beams Using an R-Z PIC Code" D.A. Callahan, A.B. Lanodon, A. Friedman, D.P. Grote, I. Haber Particle Accelerators, 37-38, 97, 1992 "Modified Elongated Betatron Accelerator" N. Rostoker, S. Eckhouse, A. Fisher, M. Cavenago Journal of Defense Research, 21, 557, 1992 "Multimode Simulation of High Frequency Gyrotrons" S.H. Gold, A.W. Fliflet International Journal of Electronics, 72, 779, 1992 "Nonlinear Analysis of a Grating Free-Electron Laser" B. Hafizi, P. Sprangle, P. Serafim Physical Review A. 45. 8846, 1992 June D-B-72R 1 6 SEP 1994

ł

1 6 SEP 1994

R

"Nonlinear Dynamics of Charged Particles in the Magnetotail" J. Chen Journal of Geophysical Research. 97, 15011, 1992 -october Numerical Simulation of the Electromagnetic Instability of an Intense Beam in a Quadrupole Focusing System" J. Knail, C.M. Tang, T. Swyden Physical Review A, 46, 6750, 1992 - November "Observation of Harmonic Gyro-Backward-Wave Oscillation in a 100 GHz CARM Oscillator Experiment" R.B. McCowan, C.A. Sullivan, S.H. Gold, A.W. Fliflet International Journal of Electronics, 72, 1033, 1992 "On Chaotic Conductivity in the Magnetotail" D.L. Holland, J. Chan Geophysical Research Lethers, 19, 1231, 1992 -June "Propagation and Guiding of Intense Laser Pulses in Plasmus" P. Sprangie, B. Baarey, J. Krall, G. Joyce Physical Review Letters, 69, 2200., 1992 some "Simulation Studies of a Klystronlike Amplifier Operating in the 10-100 GW Regime" J. Krail, M. Friedman, Y.Y. Lau, V. Serlin IEEE Transactions on Electromagnetic Compatibility, 34, 222, 1992 - August "Target Chamber Propagation of Heavy ion Bearing in the Pressure Regime Above 10⁻⁹ Torr" R.F. Hubbard, M. Lampe, G. Joyce, S.P. Silnker, I. Haber, R.F. Fernsler Particle Accelerators, 37-38, 161, 1992 "The Fax Modified Betatron Accelerator" C. A. Kapetanskos Journal of Defense Research. 21, 541, 1992 "The MAGHIC Mode" M. Lampe, D.A. Keelev Journal of Defense Research, 21, 455, 1992 "Theory of Electromagnetic Instability of an Intense Beam in a Quadrupole Rocusing System" C.M. Tang, J. Krall, T. Swyden Physical Review A, 45, 7492, 1992 -may "3D Particle Simulation of Beams Using the WARP Code: Transport Around Bandes D.P. Grote, A. Friedman, I. Haber Particle Accelerators, 37-38. 131, 1992 "Three-Dimensional Particle Simulation of Heavy-Ion Fusion Beams" A. Friedman, D.P. Groce, I. Haber Physics of Fluids B, 4, 2203. (1992 "3D Simulation of High Gain FELs in an Optical Klystron Configuration" C.M. Tang. W.P. Marable Nuclear Instruments and Methods A, 318, 675, 1992

D.B.73R

NRLCODE6802;#10/13

"3D Simulations of Axially Contined Heavy Ion Beams in Round and Square Pipes" D.P. Grote, A. Friedman, I. Haber Particle Accelerators, 37, 141, 1992

"Tilled Resonator Experiments on a Quasioptical Gyrotron" T.A. Harmeaves, A.W. Fliffet, R.P. Fischer, M.L. Barsanti, W.M. Manheimer, B. Levush, T.M. Antonico International Journal of Electronics, 72, 807, 1992

"Tracking and Stability in WIPS Channels: Theoretical Analysis" R.F. Fernsier, R.F. Hubbard Journal of Defense Research, 21, 399, 1992

"Tunable, Short Palas Hard X-Rays from a Compact Laser Synchrotron Source" P. Sprangie, A. Ting, E. Esercy, A. Pisher Journal of Applied Physics, 72, 5032, 1992

"X-Band Dielectric Cerenkov Maser Amplifier Experiment" H. Kosai, E. Garate, A. Fisher, W. Main [EHE Transactions on Plaama Sciences, 20, 288, 1992 -JUNG

"On the Possibility of High Power Gyrotrons for Super Range Resolution Radar and Atmospheric Sensing" W.M. Manheimer International Journal of Electronics, 72, 1165, 1992

"Application of Gyrotrons to High Power Millimeter Wave Doppler Radars" W.M. Manheimer International Journal of Infrared and Millimeter Waves, 13, 1449, 1992

## PLASMA PHYSICS DIVISION REFEREED JOURNAL PUBLICATIONS FOR CY91

"On the Comparison Between Josephson-Junction Array Variations" K.Y. Tsang, K. Wiesentald Journal of Applied Physics, 70, 1075, 1991 -July

"Role of the Implosion Kinetic Energy in Determining the Kilovolt X-ray Emission From Aluminum Wire Arrey Implosions"

D.B.74R

C. Deeney, T. Nash, R. R. Prasad, L. Warren, K. G. Whitney, J. W. Thornhill, and M. C. Coulter Physical Raview A, 44, 10, 1991

-November

"Leakage Currents Outside an Impioding Z Pinch"

R. E. Terry, N. R. Pereira

Physics of Fluids B, 3, 195, 1991

"Achievable Pump Power and Gain in the AIXI - MgIX Photoresonant X-ray Laser"

J. P. Apruzase, M. Buis

Journal of Applied Physics, 70, 1957,,1991

August

"The Autonomous Chaotic Relaxation Oscillator: An Electrical Analogue to the Dripping Fancer" P.A. Bernhardt Physica D, 52, 489, 1991 "A Solvable Self-Similar Model of the Sausage Instability in a Resistive Z Pinch" M. Limpe Physica of Fluide B, 3 (7), 1521. 1991 "Beam Divergence from Sharp Emisters in a General Longitudinal Magnetic Field" Y.Y. Lau, D.G. Colombant, M.D. Pilloff Journal of Applied Physics, 70 (1), 4, 1991 "Beam Trapping in a Modified Betatron Accelerator" C.A. Kapetanakos, D. Dialetis, S.J. Marsh, L.K. Len, T. Smith Physical Review A, 44, 3900, (1991 -september "Cold Tests of Quasi-Optical Gyrotron Resonators" R.P. Fischer, T.A. Hargrenves, A.W. Fliffet IEEE Transactions on Microwave Theory and Techniques, 39, 1010, 1991 "Comment on Nondiffracting Beens" P. Sprangle, B. Hafizi Physical Review Letters, 66, 837, 199 nam "Compact, High-Current Accelerators and Their Prospective Applications" C.A. Kapetanakos, L.K. Len, T. Smith, D. Dialettis, S.J. Marsh, P. Loschialoo, J. Golden. J. Mathew. J.H. Chang Physics of Fluids B, 3 (8), 2396, [1991 August "Critique of Nondifficating Beams" B. Hafizi, P. Sprangle Comments on Plasma Physics and Controlled Fusion, 14, 297, 1991 "Deflection of Electron Beams by Ground Planes" R.F. Femsier, M. Lampe Physics of Fluids B, 3 (11), 3177, 1991 -November "Depressed Collector Experiments on a Quasioptical Gyrotron" T.A. Hargreaves, A.W. Fliflet, R.P. Fischer, M.L. Barsanti Physics of Fluids B, 3 (11), 3171, 1991 "Diffraction Effects in Directed Radiation Beams" B. Hafizi, P. Sprangie Journal of Optical Society of America A, 8, 705, 1991 "Diffusion of Magnetic Fields in a Toroidal Conducting Shell of Circular Cross Section" D. Dialetia. L.K. Len, J. Golden, C.A. Kapstanakos Journal of Applied Physics, 69 (4), 1813, 1991 - February "Electron-Hose Instability in the Ion-Focused Regime" D.H. Whittum, W.M. Sharp, S.S. Yu, M. Lampe, G. Joyce Physical Review Letters, 67, 991,, 1991 - August D-B-115R

"Elimination of Laser Prepulse by Relativistic Guiding in a Plasma" P. Sprangie, A. Zigler, E. Eservy Applied Physics Letters, 58 (4), 346, 1991 January "Evolution of a Finite Pulse of Radiation in a High-Power Free-Electron Laser" A. TINA B. Hafizi, P. Sprangie, C. M. Tang IEEE Journal of Quantum Electronics, 27, 2529, 1991 hpres mber "Experimental Theoretical, and Numerical Investigation of the Homogenization of Density Nonaniformities in the Periodic Transport of a Space-Charge Dominated Beam" I. Haber. D. Kehne, M. Raiser, H. Rudd Physical Review A, 44, 5194, 1991 - octobel "Frequency Up-Shifting of Laser Pulses by Copropagating Ionization Fronts" E. Eserey, G. Joyce, P. Sprangle Physical Review A, 44, 3908, 1991 - september "High-Voltage Millinseer-Wave Gyro-Traveling-Wave Amplifice" S.H. Gold, D.A. Kirkpatrick, A.W. Fliffet, R.B. McCowan, A.K. Kinkcad, D.L. Hardessy, M. Surv Journal of Applied Physics, 69 (9), \$696., 1991 -may "Kinetic Stabilization of Interchange Modes in an Axisymmetric Mirror by Large Orbit Radius Themasi lons" J. Krail, C.E. Seyler, R.N. Sudan Physics of Fluids B, 3 (4), 1015, 1991 - Abril "Octupole Correction of Geometric Aberrations for High-Current Heavy-Ion Beams" D.D. M. Ho. I. Haber, K.R. Crandall, S.T. Brandon Particle Accelerators, 36, 141, 1991 "Ohmic Effects in Quasioptical Resonators" T.A. Hargreeves, R.P. Fischer, R.B. McCowan, A.W. Fliffet international Journal of Infrared and Millimster Waves, 12, 9, 1991 "Output Switch for a Megavoit Electron Beam Generator" J. Mathow, J. Golden Review of Scientific Instruments, 62 (6), 1514, 1991 June "Patterning Tungsten Films with an Electron Beam Lithography System at 50 keV for X-ray Mask Applications" K.W. Rhee, A.C. Ting, L.M. Shirey, K.W. Foster, J.M. Andrews, M.C. Peckersh, Y.C. Ku Journal of Vacuum Science Technology B, 9 (6), 3292, 1991 Nov/Dec × nas "Quantum Extension of Child-Langmuir Law". Y.Y. Lau, D. Chernm, D.G. Colombant, P.T. Ho. Physical Review Letters, 66, 1446., 1991 – march "Recent Advances in Free Electron Laser Theory C.M. Tang Nuclear instruments and Methods A, 304, 526, 1991 "Reduction of Beam Breakup Growth by Cavity Cross-Couplings in Recirculating Accelerators" D. Colombast, Y.Y. Lau, D. Chemin Particle Accelerators, 35, 193, 1991

D.B.762

NRLCODE6802;#13/13

1 6 SEP 1994



"Simulation of Free-Electron Lasers in the Presence of Correlated Magnetic Field Errors" W.P. Marable, C. Tang, E. Esarey IEEE Journal of Quantum Electronics, 27, 2693, 1991 -Decembu

"Stability Regimes in a Helical Quedrupole Focusing Accelerator - Theory and Simulation J. Krail, C.M. Tang, G. Joyce, P. Sprangie Paysics of Fluids B, 3 (1), 204, 1991 January

"Status Report on the NIST-NRL Free Electron Laser" P.H. Dedenham, R.L. Ayree, W.A. Cassatt. B.C. Johnson, R.G. Johnson, E.R. Lindstrom. P.J. Liposky, A.B. Marvila, D.L. Mohr, J.K. Whintaker, N. D. Wilkin, M.A.D. Wilson, C. Tang. P. Sprangin, S. Penner Nuclear instruments and Methods A, 304. 208, 1991

"Stimulated Backschuered Harmonie Generation from Intense Laser Interactions with Beams and Plasmas" P. Sprangle, E. Essrey Physical Review Laters, 67, 2021, 1991

-october

"Studies of Synchrotron Radiation Emission from the Modified Betatron Accelerator" T.J. Smith, J. Golden, C.A. Kapennikos Journal of Applied Physics, 69 (10), 6836, 1991

L-may

"The Effects of Pleid Errors on Low-Ghin Free-Electron Lasers" E. Esarey, C. Tang, W.P. Marable IEEE Journal of Quantum Electronics, 27, 2682, 1991

December "Theoretical Analysis of Radiation Pulses is the NIST/NRL FEL Oscillator" C.M. Tang. B. Hafizi Nuclear Instruments and Methods A, 304, 497, 1991

"Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser Performance" W.P. Marable, E. Esarcy, C.M. Tang

W.P. Marable, E. Lawy, 781, 1991 Physics of Fluids B. 3,43), 781, 1991 march

"Theory of Electron-Beam Tracking in Reduced-Density Channels" R.F. Fernsler, S.P. Slinker, R.F. Hubbard Physics of Fluids B, J-(9), 2696. [1991 September

"Theory of Wake-Field Effonts of a Relativistic Electron Beam Propagating in a Plasma" H.S. Uhm. G. Joyce

Physics of Fluids B. 3 (7); 1587. 1991 July

"Time-Dependent Multimode Simulation of Gyrotron Oscillators" A.W. Fliffet, R.C. Lee, S.H.Gold, W.M. Manheimer, E. Ou Physical Roview A, 43, 11, 6166, 1991

"Vlasov Simulations of Very-Large-Amplitude-Wave Generation in the Plasma Wake-Field Accelerator"

D.B. 77R

J. Krall, G. Joyce. E. Essrey Physical Review A, 44, 6854, 1991 - November

PRES 1 the 59 replaced in their
entirety by PROES D-B-IR this D-B-77 dated 16 SEP 94
ated 16 SEP 94

D	2.4.2 How many papers were published in peer reviewed journals? (BRAC Criteria Electronic Devices Summary		
CSF		Number Published	Paper Titles (List)
ED \			
F <b>Y-9</b> 1		280	See Listing
FY-92		277	
FY-93		<u>290</u>	
Total		847	

CY91

CSF	Reference	Paper Titles
		(List)
ED	Optics Letters, Vol. 16, pp132-134	Mode Evolution of Induced
		Second-Harmonic Light in Optical
		Fiber
	Applied Optics, Vol. 30, 1944-	Correlation of Single Mode Fiber
	1957	Radiation Response and
		Fabrication Parameters
	Applied Optics, Vol. 30 (22),1-5	An Interferometric Method for
		Concurrent Measurement of
		Thermo-Optic and Thermal
		Expansion Coefficient
	IEEE Journal of Quantum	Spectroscopy and Laser Operation
	Electronics, Vol. 27, No. 4, 1031	of Nd:ZBAN Glass
	1038	
-	Proc. IEEE, Vol. 79, No. 3	Advanced Channelization
		Technology for RF, Microwave,
		and Millimeter Wave Applications
-	J. Applied Physics, Vol	Optical and Electrical
	73,No.2,925-928	Characterization of Magnesium-
		Doped Bismuth-Substited Lutetium
		Iron Garnet Nhin Films
	J.Appl.Phys., Vol. 70, No. 9, p.	A Thin Film Schottky Diode
	5144	Fabricated from Flame Grown
		Diamond
	Applied Optics, Vol. 31,No.1,120-	Image Speckle Contrast Reduction
	125	Resulting from Integrative
		Synthetic Aperture Imaging
	Optical Engineering, Vol. 31, NO.	Short Wavelength Imaging Laser
	11, 2355-2365	Radar Using a Digicon Detector
	Opt. Letters, Vol. 16, No. 10	Photorefractive Two Beam
		Coupling with White Light
	Applied Optics, 30, 401-406	Laser Beam Propagation Under
		Turbulent Conditions

	JOSA B, Vol 8, 2, pg. 300	Spectral and Temporal
、 、	JOSA B, VOI 8, 2, pg. 500	
		Characterization of Spontaneous
		Raman Scattering in the Transient
		Reigime
	Optics Communications, Vol. 86	Second Stokes Generation in
	-	Deuterium
	IEEE J. Quantum Elec., Vol. Q1	Tunable Laser Pumped 3 Micron
	27, #4, 895-897	Ho:YALO Laser
	Chemical Physics, Vol. 149,401-	Photochemical Bleaching of
	407	Absorbed Rhodamine 6G as a
	107	Probe of Binding Geometries on a
		Fused Silica Surface
\	Onting Communications, Vol	
	Optics Communications, Vol.	Achromatic Multibeam Coupling in
	80,p.317	KNB03:Rb
	IEEE JQE, Vol. 27, No. 9	Laser and Spectral Properties of
		Cr:Tm:Ho:ŶAG at 2.1 Microns
	Theory, JOSA B, 1843	Incoherent Multimode Raman
		Amplification Theory
	Opt. Commun, 83, 103,	Correlation Effects in Pump
		Depleted Broadband Stimulated
		Raman Amplification
	Letters, Wol 67, No. 4, 437-440,	Cavity Quantum Electrodynamic
	July	Enhancement of Stimulated
		Emission in Microdroplets
J	Ontion Lattons Vol. 16 1147	
	Optics Letters, Vol. 16, 1147	Supression of Photorefractive
		Beam Fanning
	Optics Leters, Vol. 16, 23, 1868	Time-gated Imaging Through
		Scattering Media using Stimulated
	<u>_</u>	Raman Amplification
	Optics Letters, Vol. 16, 1723,	Effects of Absorption on
	Nov. 15	Microdroplet Resonant Emission
	$\backslash$	Structure
	IEEE JQE, QE-27, No. 4, 1129-	Short Pulse 2.1 Micron Laser
	1131, May	Performance of Cr:Tm:Ho:YAG
	Proc. IEEE, Vol. 79, No. 1, Jan	Infrared Focal Plane Array
	····· ···· ···························	Technology
	Physical Review B, Vol. 43,	Comment on "Temperature-induced
	14715	Intraband Transitions in the n-type
	11/15	HgTe/CdTe Superlattices"
	Jour Vac Sci Tech D0(2) 1012	
	Jour. Vac. Sci. Tech., B9(3) 1813,	Shabnikov-de Oscillations and
	May/June	Quantum Hall Effect in
		Modulation-doped HgTe-CdTe
		Superlattices
1	Jour. Vac. Sci. Tech. B9, 1818	Theory for Electron and Hole
		Transport in HgTe-CdTe
		Superlattices
	Appl. Phys. Letts., 58, 2523	Interface-Roughness Limited
	* * *	Mobility in HgTe-CdTe
		Superlattices
	Jour. Appl. Phys., 69(8), 4178,	Development of High Power
	Apr.	CW KCL:Li(F2a) Color Center
	· · P· ·	Laser
11 I		

د

T	Dhua Day D. Val 44 2455	Magnetic Activation of Dinalar
	Phys. Rev. B., Vol. 44, 3455	Magnetic Activation of Bipolar
k		Plasmas in HgTe-CdTe
<u>\</u>		Superlattices
	Appl. Phys. Letts., 59 (7), p. 756,	Etalon Enhancement of Nonlinear
	Aug.	Optical Response in BiSb
	JOSA B, Vol. 8, No. 4, April	Alexandrite Laser Excitation of a
		Tm:Ho:YAG Laser
	Mat. Res. Soc. Proc. 206, 175	Gold Cluster Laden
		Polydiacetylenes: Novel Materials
		for Nonlinear Optics
	J. Appl. Phys., 70, 4317	Effects of Energy Gap and Band
		Structure on Free Carrier Nonlinear
		Susceptibilities in Semiconductors
<u> </u>	J. Appl. Phys. 69(3), p. 1648,	Intensity Dependent Upconversion
	Feb.	Efficiencies of Er ions in Heavy-
		metal Fluoride Glass
	Jour. Crystal Growth, 111, 693-	Strong Nonlinear Optical
	696	Enhancement in MBE Grown BiSb
	Phys. Rev. B, 44, 8376	Electron Mobilities and Quantum
	1 11ys. Acv. D, 44, 03/0	
		Hall Effect in Modulation-doped
		HgTe-CdTe Superlattices
	Opt. Lettsl, 16, 232	Continuous Wave 1.5 Micron
		Thulium Cascade Laser
	Solid State Comms., 80, 95	In-band Nonlinear Optical
		Properties of PbSnSe
	Electronics Letters, March	Polarization Insensitive Fiber Optic
		Michelson Interferometer
	Electronics Letters, March	Demonstration of a Hybrid Time
		Wavelength Division Multilpexed
		Interferometric Fiber Sensor
	IEEE Photonics Letts., June	Phase Tuning by Laser Ablation of
		LiNbO3 Interometric Modulators to
		Optimum Linearity
	Electronics Letters, March	Experimental Investigation of
		Polarization Induced Fading in
		Interferometric Fiber Sensor Array
	Optical Pulses	Response Of InP/GaInAsP/InP
	Applied Physics Letters, July	Heterojunction Bipolar Transistors
		to 1530 & 620nm Ultrafast Optical
		Pulses
	Electronics Letters, May	12 Watt Broad Area Semiconductor
	Liceromes Lewis, way	Amplifier
· · · · · ·	Electronics Letters August	Visibility Limits in a Fiber Optic
	Electronics Letters, August	Michelson Interferometer with
	Angl Dhan Lotte Isla	Birefringence Compensation
	Appl. Phys. Letts., July	Low Frequency Magnetic Field
		Mixing Near Period Doubling
		Bifurcation of a Fiber Optic
		Magnetometer
	IEEE Trans. on Magnetics, Vol. 27, #6, Nov	

Π	Optics Letters, Vol. 16, #18, Sept.	A Fiber Optic DC & Low
$\backslash$	Opties Letters, vol. 10, #10, 5ept.	Frequency Electric Field Sensor
	Electronics Letters, August	A Technique for Measuring Facet
	Electronico Ectero, ragast	Reflectivity & Effective Index of a
		Laser Amplifier
	Opt. Ltrs, V. 16, p 1902,	1.06 Micron All Fiber Optic
	Opt. Lus, V. 10, p 1902,	Gyroscope w/Noise Subtraction
	Optics Letters, Vol. 16, #24, Dec	Dispersion in Rare-earth Doped
	opties Letters, vol. 10, #24, Dee	Fibers
	Journal of Lightwave Technology,	High Frequency Response of Fiber
	Vol. 9, No. 9, Sept. 1991	Optic Planar Acoustic Sensors
<u> </u>		High Derformer Film Ordin
	J. Underwater Acoustics, May	High Performance Fiber Optic
	1991	Hydrophone
	J. Underwater Acoustics, July	Acoustic Noise Measurements
l	1991	Utilizing High Performance Fiber
		Optic Hydrophones in the Arctic
	Applied Physics Letters,	50-Nanometer Linewidth Platinum
	Volume \$9, Page 2192	Sidewall Lithography by Effusive-
	(1991)	Source Metal Precursor Chemical
		Deposition and Ion-Assisted
		Etching
	Journal of Applied Physics,	High Resolution Electron Beam
	Volume70, Page 1793	Lithography with a Polydiacetylene
	(1991)	Negative Resist at 50KV
		e
	Surface Science,	Infrared Refelection Absorption
	Volume241, Page 357	Spectroscopy Study of
	(1991)	Chemisorption on the Ni(001)-
		c(2X2)Si Surface
	Journal of Vacuum Science	Investigations of Undeveloped e-
	Technology, Volume 9, Page 1367	beam Resist with a Scanning
	(1991)	Tunneling Microscope
	Inorganic Chimica Acta, Volume	Phimary and Secondary Neopentyl
	187, Page 207 (1991)	Arsines and Their Reactions with
		Trimethylgallium. Crystal and
		Molecular Structure of
16		Molecului Sulucture of
		[Me2GaAs(CH2CMe3)2]2
nasiveridifilmer er e av	Surface Science, Volume 249,	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at
	Page 159 (1991)	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface
		[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of
	Page 159 (1991)	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via
	Page 159 (1991) Langmuir, Volume 7, Page 683	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via
	Page 159 (1991) Langmuir, Volume 7, Page 683	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of
	Page 159 (1991) Langmuir, Volume 7, Page 683 (1991)	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via Nanosecond Time-scale Molecular Dynamics Simulations
	Page 159 (1991) Langmuir, Volume 7, Page 683 (1991) IEEE Transactions on Magnets,	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via Nanosecond Time-scale Molecular Dynamics Simulations Preparation of Thin Films of
	Page 159 (1991) Langmuir, Volume 7, Page 683 (1991) IEEE Transactions on Magnets, Volume 27, No. 2, Page 1406	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via Nanosecond Time-scale Molecular Dynamics Simulations Preparation of Thin Films of YlBa2Cu3O7-x by Magnetron
	Page 159 (1991) Langmuir, Volume 7, Page 683 (1991) IEEE Transactions on Magnets, Volume 27, No. 2, Page 1406 (1991)	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via Nanosecond Time-scale Molecular Dynamics Simulations Preparation of Thin Films of YlBa2Cu3O7-x by Magnetron Sputtering Techniques
	Page 159 (1991) Langmuir, Volume 7, Page 683 (1991) IEEE Transactions on Magnets, Volume 27, No. 2, Page 1406 (1991) IEEE Transactions on Magnets,	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via Nanosecond Time-scale Molecular Dynamics Simulations Preparation of Thin Films of YlBa2Cu3O7-x by Magnetron Sputtering Techniques Particle-Induced Modification of
	Page 159 (1991) Langmuir, Volume 7, Page 683 (1991) IEEE Transactions on Magnets, Volume 27, No. 2, Page 1406 (1991) IEEE Transactions on Magnets, Volume 27, No. 2, Page 884	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via Nanosecond Time-scale Molecular Dynamics Simulations Preparation of Thin Films of YlBa2Cu3O7-x by Magnetron Sputtering Techniques Particle-Induced Modification of Thin Film YBa2Cu3O7-ΔTransport
	Page 159 (1991) Langmuir, Volume 7, Page 683 (1991) IEEE Transactions on Magnets, Volume 27, No. 2, Page 1406 (1991) IEEE Transactions on Magnets,	[Me2GaAs(CH2CMe3)2]2 Submonolayer Cluster Formation at the Ge/Al2O3 (1102) Interface Modeling the Growth of Semiconductor Epitaxial Films via Nanosecond Time-scale Molecular Dynamics Simulations Preparation of Thin Films of YlBa2Cu3O7-x by Magnetron Sputtering Techniques Particle-Induced Modification of

۰ د

1

.

•

		Detection of Links Union Ilink
*	IEEE Transactions on Magnets,	Detection of Light Using High
	Volume 27, No. 2, Page 1536	Temperature Superconducting
	(1991)	Microstrip Lines
	Journal Applied Physics, 70, (9),	Light Detection Using High-Tc
	Page 4995 (1991)	Microstrip Transmission Lines as a
		Probe of Film Homogeneity
<u>↓</u>	Dhave and Dervices D. Volume 44	
	Physical Review B, Volume 44,	Response of Granular
	No. 17, Page 9609 (1991)	Superconducting YBa2.1Cu3.407-
		x to Light
	Thin Solid Films, 206, Pages 128 -	<b>YBa2Cu3O7-</b> = $\Delta$ Thin Films
	131 (1991)	Deposited by an Ultrasonic
		Nebulization and Pyrolysis Method
	IEEE Transactions on Magnete	
	IEEE Transactions on Magnets,	Microwave Devices Using
	Volume 27, No. 2, Page 2540	YBa2Cu3O7-ΔFilms Made by
	(1991)	Pulsed Laser Deposition
	Supercond. Science Technology,	High Temperature
8	4, Pages 449 - 452 (1991)	Superconductivity Space
		Experiment (HTSSE)
	Applied Devoice Letters 50 (22)	
	Applied Physics Letters, 59 (23),	Penetration Depth and Microwave
	Page 3033 (1991)	Loss Measurements with a
		YBa2Cu3O7-
		$\Delta$ /LaAlO3/YBa2Cu3O7- $\Delta$ Trilayer
		Transmission Line
	IEEE Transactions on Magnets,	High Temperature
	Volume 27, No. 2, Page 2533	Superconductivity Space
	(1991)	Experiment (HTSSE)
	IEEE Transactions on Magnets,	Investigation of
	Volume 27, No. 2, Page 1332	ErBa2Cu3O7/Cu2O/Normal Metal
	(1991)	Tunnel Structures
	Journal of Applied Physics, 70,	Beam Divergence from Sharp
	(1), 4 (1991)	Emitters in a General Longitudinal
		Magnetic Field
	IEEE Transactions on Microwave	Cold Tests of Quasi-Optical
	Theory and Techniques, 39, 1010	Gyrotron Resonators
	(1991)	$  \rangle$
	Physics of Fluids B, 3 (11), 3177	Depressed Collector Experiments
	(1991)	on a Quasioptical Gyrotron
	IEEE Journal of Quantum	Evolution of A Finite Pulse of
	Electronics, 27, 2529 (1991)	Radiation in a High-Power Free-
	Electronics, 27, 2529 (1991)	
		Electron Daser
	Journal of Applied Physics, 69 (9),	High-Voltage Millimeter-Wave
	6696 (1991)	Gyro-Traveling-Wave Amplifier
	International Journal of Infrared	Ohmic Effects in Quasioptical
	and Millimeter Waves, 12, 9	Resonators
	(1991)	
	· /	
	Nuclear Instruments and Methods	Recent Advances in Free Electron
	A, 304, 526 (1991)	Laser Theory
	IEEE Journal of Quantum	Simulation of Free-Electron Lasers
	Electronics, 27, 2693 (1991)	in the Presence of Correlated
11		Magnetic Field Errors
	Nuclear Instruments and Methods A, 304, 208 (1991)	Status report on the NIST-NRL Free Electron Laser

.

IEEE Journal of Quantum Electronics, 27, 2682 (1991The Effects of Field Errors on Low-Gain Free-Electron LasersNuclear Instruments and Methods A, 304, 497 (1991)Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL OscillatorPhysics of Fluids B, 3 (3), 781 (1991)Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser PerformancePhysical Review A, 43, 11, 6166 (1991)Time-Dependent Multimode Simulation of Gyotron Oscillators Optic Communications 86, 236Optic Communications 86, 236 (1991)Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69 Vol. 6, 1540-1545Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftVol. 6, 1540-1545 Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27, No. 2, p.2533Hi g h T em p e r a t u r e Super conductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF Spacecraft Disecraft Disc ScaceraftIEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF Spacecraft Disecra
Nuclear Instruments and Methods A, 304, 497 (1991)Theoretical Analysis of Radiation Pulses in the NIST/NRL FEL OscillatorPhysics of Fluids B, 3 (3), 781 (1991)Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser PerformancePhysical Review A, 43, 11, 6166 (1991)Time-Dependent Multimode Simulation of Gyrotron Oscillators Optic Communications 86, 236 (1991)Optic Communications 86, 236 (1991)Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataDataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)Chebrical Physics Letters, 178, 69 S30Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1345Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1345Hi g h T e m p e r at u r e SuperconductivityIEEE Trans. Nucl. Sci., NS-38 Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680 Advances in the Astronautical Science 74, 575-583Observation of Beryllium 7 on the Surface of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
A, 304, 497 (1991)Pulses in the NIŠT/NRL FEL OscillatorPhysics of Fluids B, 3 (3), 781 (1991)Phoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser PerformancePhysical Review A, 43, 11, 6166 (1991)Time-Dependent Multimode Simulation of Gyrotron Oscillators Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataUEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPIEEE Trans. Nucl. Sci., 38, 525- 530Bephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Comparison of Experimental Vol. 6, 1540-1545Vol. 6, 1540-1545Comparison of Experimental HomogeneityIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental HomogeneityIEEE Trans. Nucl. Sci., NS-38Comparison of Experimental HomogeneityIEEE Trans. Nucl. Sci., NS-38Comparison of Ferperimental HomogeneityIEEE Trans. Nucl. Sci., NS-38Comparison of Ferperimental HomogeneityIEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680 Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38Deservation of Beryllium 7 on the Surface of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38Discovery of Be-7 Accretion in Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Ast
OscillatorPhysics of Fluids B, 3 (3), 781Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser PerformancePhysical Review A, 43, 11, 6166Time-Dependent Multimode Simulation of Gyrotron OscillatorsOptic Communications 86, 236Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69Dephasing and Relaxation in Cohernical OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetic, Vol 27, No. 2, p.2533Hight Temper at ur e Super conductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Hight Temper at ur e Super conductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Hight Temper at ur e Super conductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Hight Temper at ur e Super conductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Observation of Beryllium 7 on the Surface of the LDEF Spacecraft Sucres State of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experiment of Nb Tunnel Junction DevicesJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film H
Physics of Fluids B, 3 (3), 781 (1991)Theoretical Consequences of Wiggler Field Error Reduction Techniques on Free-Electron Laser PerformancePhysical Review A, 43, 11, 6166 (1991)Time-Dependent Multimode Simulation of Gyrotron OscillatorsOptic Communications 86, 236 (1991)Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPIEEE Trans. Nucl. Sci., 38, 525- 530Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1345Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38, Vol. 2, p.2533Vol Super conductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38 Vol Sciences 74, 575-583Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680 Sciences 74, 575-583Observation of Beryllium 7 on the Surface of the LDEF Spacecraft Conservation of Beryllium 7 on the Surface of the LDEF Spacecraft Surface of the LDEF Spa
(1991)Wiggler Field Error Reduction Techniques on Free-Electron Laser PerformancePhysical Review A, 43, 11, 6166 (1991)Time-Dependent Multimode Simulation of Gyrotron OscillatorsOptic Communications 86, 236 (1991)Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69 (2014)Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1345Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1345Vol Science, NS-38, Comparison of Experimental Charge Collection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetick, Vol 27, No. 2, p.2533H i g h T e m p e r a t u r e Surface of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF Spacecraft Advances in the Astronautical Sciences 74, 575-583IEEE Trans. Nucl. Sci., NS-Spake Radiation Effects in InP
Techniques on Free-Electron Laser PerformancePhysical Review A, 43, 11, 6166Time-Dependent Multimode Simulation of Gyrotron OscillatorsOptic Communications 86, 236 (1991)Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69 1647 - 1654 (1991)Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Waveforms with Pisces CalculationsIEEE Trans. on Magnetics, Vol 27, No. 2, p.2533Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Observation effects in InPKetter Trans. Nucl. Sci., NS-38Space Radiation Effects in InP
Techniques on Free-Electron Laser PerformancePhysical Review A, 43, 11, 6166Time-Dependent Multimode Simulation of Gyrotron OscillatorsOptic Communications 86, 236 (1991)Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69 1647 - 1654 (1991)Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Waveforms with Pisces CalculationsIEEE Trans. on Magnetics, Vol 27, No. 2, p.2533Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Observation effects in InPKetter Trans. Nucl. Sci., NS-38Space Radiation Effects in InP
PerformancePhysical Review A, 43, 11, 6166Time-Dependent Multimode Simulation of Gyrotron OscillatorsOptic Communications 86, 236Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChenical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38 Not. 2, p.2533Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680 Sciences 74, 575-583Observation of Beryllium 7 on the Surface of the LDEF SpacecraftLieEE Trans. Nucl. Sci., NS-38 Net Letter Station Damage Assessment of Nb Tunnel Junction Devices
(1991)Simulation of Gyrotron OscillatorsOptic Communications 86, 236Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38 Radiation Damage Assessment of Nb Tunnel Junction DevicesIEEE Trans. Nucl. Sci., NS-38 Advances in the Astronautical Sciences 74, 575-583Advances in the Astronautical Sciences 74, 575-583IEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
(1991)Simulation of Gyrotron OscillatorsOptic Communications 86, 236Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38 Radiation Damage Assessment of Nb Tunnel Junction DevicesIEEE Trans. Nucl. Sci., NS-38 Advances in the Astronautical Sciences 74, 575-583Advances in the Astronautical Sciences 74, 575-583IEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Optic Communications 86, 236 (1991)Separation of Nuclear and Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69 (Chemical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nuc. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental Pisces CalculationsJ. Appl. Phys. 70, 4095-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27, No. 2, p.2533High T emperature Superconductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF Spacecraft Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
(1991)Electronic Contributions to Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChebnical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4095-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27, No. 2, p.2533H i g h Super conductivityIEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Cobservation of Beryllium 7 on the Surface of the LDEF SpacecraftNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftNature 349, 678-583Discovery of Be-7 Accretion in Discovery of Be-7 Accretion in Discovery of Be-7 Accretion in Discovery of Be-7 Accretion in Dave Earth Orbit
Femtosecond Four-wave Mixing DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4095-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. Nucl. Sci., NS-38Super conductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Be-7 Accretion in Ligke Earth OrbitAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Ligke Earth Orbit
DataIEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533T e m p e r a t u r e Super conductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38 Advances in the Astronautical Sciences 74, 575-583Radiation Damage Assessment of Nb Tunnel Junction DevicesAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Lige Eart or DisiIEEE Trans. Nucl. Sci., NS-39Space Radiation Effects in InP
IEEE Transactions of Nuclear Science, NS-38, Volume 6, Pages 1647 - 1654 (1991)SEU Flight Data From the CRRES MEPChemical Physics Letters, 178, 69 IEEE Trans. Nucl. Sci., 38, 525- 530Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533H i g h Super c n ductivityIEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF Spacecraft Ligit Surface of the LDEF Spacecraft Advances in the Astronautical Sciences 74, 575-583Space Radiation Effects in InP
Science, NS-38, Volume 6, Pages 16(7 - 1654 (1991)MEPChemical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nucl. Sci., NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics. Vol 27,No. 2, p.2533H i g h SuperconductivityIEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF Spacecraft Discovery of Be-7 Accretion in Lew Earth Orbit
1647 - 1654 (1991)Chemical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533H i g h SuperconductivityIEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Law Earth Orbit
Chemical Physics Letters, 178, 69Dephasing and Relaxation in Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533H i g h Super c on ductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth Orbit
Coherently-excited Ensembles of Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533T e m p e r a t u r e Super c on ductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Liee Trans. Nucl. Sci., NS-IEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Intermolecular OscillatorsIEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4095-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533H i g h SuperconductivityIEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Live Earth OrbitIEEE Trans. Nucl. Sci., NS-38Space Radiation Effects in InP
IEEE Trans. Nucl. Sci., 38, 525- 530Radiation Survey of the LDEF SpacecraftIEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics. Vol 27,No. 2, p.2533H i g h Super c on ductivityIEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
530SpacecraftIEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533I e m p e r a t u r e Super c on ductivity Space Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
IEEE Trans. Nuc. Sci.,NS-38, Vol. 6, 1540-1545Comparison of Experimental Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics. Vol 27,No. 2, p.2533H i g h SuperconductivityIEEE Trans. Nucl. Sci., NS-38 Nature 349, 678-680Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Vol. 6, 1540-1545Charge Collection Waveforms with Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533H i g h SuperconductivityIEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Law Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Pisces CalculationsJ. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics. Vol 27,No. 2, p.2533H i g h SuperconductivityIEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesIEEE Trans. Nucl. Sci., NS-38Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
J. Appl. Phys. 70, 4995-4999Light Detection Using High-T, Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics, Vol 27,No. 2, p.2533H i g h SuperconductivityT e m p e r a t u r e SuperconductivityIEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics. Vol 27,No. 2, p.2533H i g h Superconductivity Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Microstrip Lines as a Probe of Film HomogeneityIEEE Trans. on Magnetics. Vol 27,No. 2, p.2533H i g h Superconductivity Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
HomogeneityIEEE Trans. on Magnetics. Vol 27,No. 2, p.2533H i g h Superconductivity Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
IEEE Trans. on Magnetics. Vol 27,No. 2, p.2533H i g h Superconductivity Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
27,No. 2, p.2533Superconductivity Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Experiment (HTSSE)IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
IEEE Trans. Nucl. Sci., NS-38Radiation Damage Assessment of Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Nature 349, 678-680Nb Tunnel Junction DevicesNature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Nature 349, 678-680Observation of Beryllium 7 on the Surface of the LDEF SpacecraftAdvances in the Astronautical Sciences 74, 575-583Discovery of Be-7 Accretion in Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
Surface of the LDEF Spacecraft           Advances in the Astronautical         Discovery of Be-7 Accretion in           Sciences 74, 575-583         Low Earth Orbit           IEEE Trans. Nucl. Sci., NS-         Space Radiation Effects in InP
Sciences 74, 575-583Low Earth OrbitIEEE Trans. Nucl. Sci., NS-Space Radiation Effects in InP
IEEE Trans. Nucl. Sci., NS- Space Radiation Effects in InP
38,Vol.6,1153-1158 Solar Cells
IEEE Trans. Nuc. Sco., NS- Ionizing Space Radiation Effects on
38, Vol. 6, 1329-1335 Surface Acoustic Wave Resonators
IEEE Trans. Nuc. Sco., NS- Radiation Characterization of the
38,Vol. 6,1398-1402 ADSP2100A Digital Signal
Processor
IEEE Trans. Nuc. Sci., NS- Proton and Heavy Ion Upsets in
38,Vol. 6,1450-1456 GaAs MESFET Devices
Journal of Applied Physics, 69, Deep Level Transient Spectroscopy
1435 of Irradiated p-Type in InP Grown
by MOCVD by MOCVD

1		Comparison of Eugenimontal
	IEEE Trans. Nucl. Sci. NS- 38,1540-1545	Comparison of Experimental Charge Collection Waveforms with PISCES Calculations
	Journal of Applied Physics, 69,1119	Critical Current Enhancement in Proton-Irradiated T12CaBa2O8 Films
	J. Applied Physics, 69,6488	IDLTS Study of Proton Irradiated PType InP
	Journal of Applied Physics 69(9)	Deep Level Transient Spectroscopy Study of Proton Irradiated p-type InP
	IEEE Transactions on Magnetics 27,2665-2668	Superconducting Tunnel Junctions for use as Energy Resolving X-Ray Detectors
	J. Appl. Phys. 69,4891-4893	Magnetically Modulated Microwave Absorption Measurement of the Penetration Depth in a Polycrystalline YBa ₂ Cu ₃ O _{7-X} Thin Film
	Applied Physics Letters, 59(20)	Critical-Current Enhancement in Particle-irradiated Cuprate Superconductors
	IEEE Transactions on Magnetics, 27,884	Particle-Induced Modification of Thin Film YBaCu3O7-Xll
	Applied Physics Letters, 58,1563	Proton Radiation Effects in Microwave Cavities and Ring Resonators Fabricated from YBa2Cu3O7-X
	IEEE Trans. Nucl. Sci., NS- 38, Vol 6, 1284-1288	Radiation Effects in High Temperature Superconducting Films and Devices for the NRL High Temperature Superconductivity Space Experiment
	IEEE Trans. on Magnetics, Vol. 27, No. 2	Microwave Devices Using YBa2Cu307, Films Made by Fulsed Laser Deposition
	IEEE Trans. Nucl. Sci. NS- 38,1370-1376	Charge Collection in GaAs MESETTS and MODFETS
	Appl. Phys. Lett. 58,1563-1565	Proton Radiation Effects in Microwave Cavities and Ring Resonators Fabricated from YBa ₂ Cu ₃ O ₇₋₈
	J. Appl. Phys. 69,1119-1121	Critical Current Enhancement in Proton-Irradiated Tl ₂ CaBa ₂ Cu ₂ O ₈ Films
	IEEE Trans. on Magnetics 27,1536-1539	Detection of Light using High Temperature Superconducting Microstriplines

.

Ó	 J. of Superconductivity 4,57-60	Proton-Induced Reduction of R, Jc, and Tc in YBa,CU3O7-∂ Thin Films
	 J. Superconductivity, 4,57	Proton-Induced Reduction of Rs, Jc and Tc in YBa2Cu3O7 Thin Films
	Phys. Rev. Lett. 66,1785-1788	Observation of Ultrahigh Critical Current Densities in High-Tc Superconducting Bridge Constrictions
	Solid State Communications 78,631-633	Comparative Study of Microwave Surface Impedance of High Tc Superconductor Samples, Solid State Communications
	IEEE Trans. on Magnetics 27, 884- 887	Particle-Induced Modification of Thin Film YBa,CU307
	 11 IEEE Trans. Nuc. Sci., NS-38, Vol. 6,1370-1376	Charge Collection in GaAs MESFETs and MODFETS
	IEEE Trans. Nucl. Sci. NS- 38,1284-1288	Radiation Effects in High Temperature Superconducting Films and Devices for the NRL High Temperature Superconductivity Space Experiment
	IEEE Trans.Nuc.Sci.,NS-38, Vol. 6,1457-1462	Quantitative Comparison of single Event Upsets Induced by Protons and Neutrons
	Science and Technology of Thin Film Superconductors 2 Plenum Press, NY, NX Pages 67-74	Thin Films of Y1Ba2Cu307- dPrepared by 3-Target Co- Sputtering
	IEEE Volume 79(3) Pages 355	Advanced Channelization Technology for RF, Microwave, and Millimeterwave Applications
	Proceedings of 2nd European Symposium on Reliability of Electron Devices Failure Physics and Analysis (ESREF 91) Pages 411-422	GaAs MMIC Reliability Studies
	Canadian Journal of Physics Volume 69 (3 & 4) Pages 324-328	Effects of Neutron and Electron Irradiation on the Absorption Edge of GaAs
	29th Annual Proceedings of Reliability Physics 1991 IEEE Cat. No. 91CH2974-4 Pages 200-205	Reliability of InGaas HEMTs on GaAs Substrates

r	Proceedings of the 3rd Int'l.	Dielectric Breakdown Strength
	Symposium on Ultra Large scale Integration Science and Technology Electro Chemical Society Journal Volume 91-11 Pages 409-415	Analysis of SiO ₂ Using a Stepped- Field Method
	Physics of Fluids B, Volume B3(1) Page 212	Mode Selection by Priming in An Overmoded Electron Cyclotron Maser
	Surface Science Volume 248 Pages 201-206	Infrared Reflection Absorption Spectroscopy of Adsorbates on Semiconductors with Buried Metal Layers - O ₂ /GaAs
-	J. Vac. Sci. Technol A American Vacuum Society Volume 9 (6) Pages 3169-3172	Growth of Ultrathin Ni Layers on Ni(100): Infrared Spectroscopy of Adsorbed Carbon Monoxide as a Structural Probe
	Physical Review B American Institute of Physics Volume 44 (20) Pages 11 149 - 11 158	Preparation and Characterization of Carbon-Terminated b-SiC(001) Surfaces
	3rd International Conf. on InP and Related Materials Volume TuP.31 Pages 300-303	Low-Frequency Gain Dispersion, Optical Response. and 1f Noise in Ion-Implanted InP JFETs
	IEE Electronics Letters (IEE/London, UK) Volume 27 (21) Pages 1909-1910	InA1As/InGaAs/InP HEMTs with High Breakdown Voltages Using a Double-Recess Gate Process
	Proceedings of NASECODE VII Pages 49-52	Quantum Transport: Novel Approaches in the Formulation and Applications to Novel Semiconductor Devices
	Proceedings of NASECODE VII Pages 1-2	Intrinsic High-Frequency Oscillations and Equivalent Circuit Model in the Negative Differential Resistance Region of Resonant Tunneling Devices
	Appl. Phys. Lett. Volume 59(2) Pages 192-195	Monte Carlo Particle Simulation of Radiation Induced Heating in GaAs Field-Effect Transistors
	COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Volume 10 (4)	Quantrum Transport :Novel Approach in the Formulation and Applications to Quantum-Based Solid State Devices
	Pages 509-524	

COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Volume 10 (4) Pages 241-253	Intrinsic High-Frequency Oscillations and Equivalent Circuit Model in the Negative Differential Resistance Region of Resonant Tunneling Devices
American Institute of Physics Physical Review Letters Volume 67 (10) Pages 1330-1333	Light-Activated Telegraph Noise in A1GaAs Tunnel Barriers: Optical Probing of a Single Defect
Proceedings of 4th International Symposium on Silicon-On- Insulator Technology Devices The Electrochemical Society, Inc. Volume 90-6 Pages 278-287	Heavy Metal Gettering in SIMOX Using Implanted Carbon
American Institute of Physics J. Appl. Phys Volume 70 (9) Pages 4784-4789	Evaluation of Pulsed Radiation Effects in Buried Oxides by Fast C- V Measurements
American Institute of Physics J. Appl. Phys Volume 70 (8) Pages 4584-4592	Silicon-on-Insulator Device Islands Formed by Oxygen Implantation Through Patterned Masking Layers
Physical Review B Volume 43(15) Pages 12512 IEEE Transactions on Magnetics	Nuclear Magnetic Resonance Studies of Strain in Isolvalently Doped GaAs Detection of Light Using High
Volume 27(2) Page 1536	Temperature Supeconducting Microstrip Lines
 Journal of Applied Physics Volume 70 (9) Page 4995	Light Detection Using High T _c Microstrip Transmission Lines as a Probe of Film Homogeneity
Physical Review B Volume 44 (17) Page 9609	Response of Granular Superconducting Y- Ba2,1Cu3.407-x Films to Light
Journal of Crystal Growth Volume 109 Pages 314-317	Preparation and Characterization of MgO Thin Films Deposited by Spray Pyrolysis of Mg(2,4- Pentanedionate)2
IEE Electronics Letters Volume 27 (24) Pages 2265-2267	GaAs Vertical pin Diode Using MeV Implantation
American Institute of Physics Journal of Applied Physics Volume 70 (3) Pages 1793-1799	High Resolution Electron Beam Lithography with a Polydiacetylene Negative Resist at 50 kV
American Institute of Physics Appl. Phys. Lett. Volume 59 (11) Pages 1338-1340	Implantation Damage in GaAs- A1As Superlattices of Different Layer Thickness

•

	American Institute of Physics	Sub-30 nm Lithography in a
	Appl. Phys. Lett.	Negative Electron Beam Resist
	Volume 58 (22)	with a Vacuum Scanning Tunneling
	Pages 2526-2528	Microscope
	J. Vac. Sci. Technol	Scanning Tunneling Microscope
	Volume B9(6)	Lithography: A Solution to
	Pages 3024-3027	Elastron Souttoring
\		Electron Scattering
	Applied Physics Letters	X-Ray Rocking Curve
	Volume 58(8)	Measurement of Composition and
	Pages 825 - 827	Strain in Si-Ge Buffer Layers
		grown on Substrates
	Journal of Applied Physics	High-Energy Si Implantation into
	American Institute of Physics	InP:Fe
	Volume 70, No. 3	
	Pages 1750 - 1757	
<b>┣</b> ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━	Physical Review Letters	Exciton, Phonons, and Interfaces
1	Volume 67, No. 12	in GaAs/A1As Quantum-Well
1		
J	Page 1547	Structures
	IEEE Transactions on Microwave	Characteristics of Microstrip
1	Theory and Techniques	Transmission Lines with High-
	Volume 39 (8)	Dielectric-Constant Substrates
	Pages 1329-1337	
	IEEE Transactions on Electron	Design Parameters of a High
	Devices	Effciency 1.7 GHz Gyropeniotron
	Volume 38(10)	Amplifier
	Pages 2229-2233	
	6th Conference on Semi-Insulating	Photoreflectance Surface
	III-V Materials, Toronto, Canada	Characterization of InP:Fe
	Chapter 4	Substrates
	Pages 329-334	
	Appl. Phys. Lett.	Photoreflectance of Semi-Insulating
	Volume 58(24)	InP: Resistivity Effects on Exciton
	Pages 2824	Rhase
	Appl. Phys. Lett.	High Mobility InSb Grown by
	Volume 58 (17)	Organometallic Vapor Phase
	Pages 1905-1907	Epitaxy
	Physical Review B	Optically-Detected Magnetic
	Volume 43 (14)	Resonance of Group-IV and
	Pages 14 540 - 14556	Group-VI Inspurities in AlAs and
		$Al_xGa_{1-x}As$ with $x \ge 0.35$
	Semicond. Sci Technology	Studies of Donor States in Si-
1	Volume 6	Doped A1 ₁ Ga _{1-x} As Using
	B97-B100	Optically Detected Magnetic
		Resonance with Uniaxial Stress
	Materials Science Forum	Optically-Detected Magnetic
	Volumes 83-87	Resonance of Donor States in
	Pages 775-786	
	1 agus / 13-100	$Al_xGa_{1-x}As \ (x \ge 0.35)$ Doped
		with Group-IV and Group-VI
		Impurities

-- ----- - -----

- ----

_____

\ <u></u>		Dense Contraine Otale (D
1 Alexandre	J. Vac. Sci. Technology.	Raman Scattering Study of Dry
$\mathbf{X}$	Volume B9 (2)	Etching of GaAs: A Comparison
	Page 1403	of Chemically Assisted Ion Beam
		Etching and Reactive Ion Etching
	Superlattices and Microstructures,	Electroreflectance Studies of
	Academic Press, London, UK	Asymmetrically Couple Quantum
	Volume 10	Wells
	Pages 77-82	
	Mat. Res. Soc. Symp. Proc.	Chemically Assisted Ion Beam
	Volume 204	Etching of SiGe
	Pages 369-374	Lenning of Side
		Ortical Studies of Dry Etabert
	J. Vac. Sci. Technol	Optical Studies of Dry Etched
	Volume B9(2)	GaAs
	Pages 3546	
	Appl. Phys. Lett.	Selective Removal of a Si0.7Ge0.3
	Volume <u>58</u> (17)	Layer from Si(100)
	Pages 1899-1901	· · · /
	J. Appl. Phys.	The Nucleation and Growth of
	Volume 69 (8)	Germanium on (1102) Sapphire
	Pages 4216	Deposited by Molecular-Beam
		Epitaxy
	Materials Research Society Spring	Fabrication of Bond and Etch Back
	1991	Silicon on Insulator Using SiGe-
	Volume 220	MBE and Selective Etching
	\ \	
	Pages 291-295	Techniques
	Journal of Crystal Growth	Growth of (100) GaAs by Vertical
	Volume 109	Zone Melting
	Pages 228-233	
	IEEE Transaction on Electron	Optimization of SIMOX for VLSI
	Devices	by Electrical Characterization
	Volume 38(3)	•
	Page 463	
	IEEE Transactions on Nuclear	A Comparison of Methods for
li de la companya de	Science	Simulating Low Dose-Rate Gamma
1	Volume 38 (6)	Ray Testing of MOS Devices
1	Page 1560	Ray results of wides Devices
l	Physical Review Letters	Numerical Simulation of Interingia
		Numerical Simulation of Intrinsic
1	Volume 66(8)	Bistability and High-Frequency
	Page 1078	Current Oscillations in Resonant
		Tunneling Structures,
	IEDM	The Numerical Simulation of
	Pages 771-774	Particle Trajectories in Quantum
		Transport and the Effects of
		Scattering and Self-Consistency on
		the Performance of Quantum Well
		Devices
	Proceedings of IEEE	Thin Film Deposition and
	Volume 79(5)	Microelectronic and Optoelectronic
	Pages 677-700	Device Fabrication and
	1 agus 0//-/00	
		Characterization in Monocrystalline
		Alpha and Beta Silicon Carbide

5

t

•

•	Electronic Letters	High Temperature Operation of a
X	Volume 27(12)	Silicon Carbide Buried-Gate
$\mathbf{X}$	Pages 1038-1040	Junction Field Effect Transistors
<u> </u>	Journal of Electronic Materials	Electron Paramagnetic Resonance
$\mathbf{X}$	Volume 20(1)	and Optically-Detected Magnetic
$\backslash$		
$\backslash$	Page 49	Resonance of Donors in Al _x Ga ₁₋
$\mathbf{X}$		xAs
	Materials Research Society	Characterization of Si _{1-x} Ge _x /Si
$\mathbf{\lambda}$	Symposium Proceedings	Heterostructures Using Optically-
$\mathbf{X}$	Volume 220	Detected Magnetic Resonance
$\backslash$	Page 271	Delected Magnetic Resonance
$\mathbf{X}$	Semicond. Sci. Technol.	Magnetic Resonance of Sn-doped
$\mathbf{X}$	Volume 6	$Al_{X}Ga_{1-X}As$ Detected on
$\sim$	Pages B101-B104	Photoluminescence
	Applied Physics Letters	Photoluminescence and Magnetic
	Volume 58 (5)	Resonance Studies of $Er^{3+}$ in Me
	Page 502	
		Ion Implanted GaAs
	91 International Electron Devices	Interaction Efficiency of an
	Meeting	Emission Gated TWT
	Pages 589-591	1
	Journal of Electromagnetic Waves	Hybrid-Mode Fields in Isotropic
	and Applications	and Anisotropic Planar Microstrip
	VSP	Structures
	Volume 5(6)	
	Pages 577-606	
	agus J//-000	Drogrommobio Angles Vester
	2nd Workshop on Neural	Programmable Analog Vector-
	Networks:	Matrix Multiplier Using Capacitive
	Academic/Industrial/NASA/Defens	Weight Storage
	e	
	SPIE	
	Volume 1515	
	Page 795	
· <u></u> · <u></u>	Journal of Radiation Effects R&D	Response of SOS Starting
	Volume 10 (1)	Materials to High Total Dose
	Page 45	Irradiation
	Materials Research Society	Electronic Structures for
	Symposium Proceedings	(Si)m(GaP)n Superlattices
	Volume 220	
	Page 589	
	International Conference on	Double Crystal X-Ray Topograph
	Metallurgical Coatings and Thin	Characterization of an Electrical
	Films (ICMCTF91)	Induced Stress Variation in Metal-
	Thin Solid Films	Oxide-Semiconductor Field Effect
	Volume 206	Transistors
	Pages 18-26	
	International Conference on	Characterization of Silicon on
		Insulator Substrates Using
	Metallurgical Coatings & Thin	Insulator Substrates Using
	Metallurgical Coatings & Thin Films (ICMCTF91)	Insulator Substrates Using Reflection Mode Double Crystal X
	Metallurgical Coatings & Thin Films (ICMCTF91) Thin Solid Films	Insulator Substrates Using
	Metallurgical Coatings & Thin Films (ICMCTF91)	Insulator Substrates Using Reflection Mode Double Crystal X

۱ I

	·	
	J. Va. Sci. Technology.	Investigations of Undeveloped E-
1	Volume B9(2)	Beam Resist with a Scanning
	Pages 1367	Tunneling Microscope
K	Proceedings of the IEEE	Nanostructure Patterning
	Volume 79(8)	1
	Pages 1149	
	Nuclear Instruments and Methods	Type Conversion of Expitaxial
	in Physics Research	GaAs Layers After Heavy Ion MeV
	Elsevier Science Publishers B.V.	Implantation and Annealing
	(North-Holland)	
	Volume B59/60	
	Pages 1103-1105	
<b></b>	Nuclear Instruments and Methods	Dose-Rate Dependent Electrical
	in Physics Research	Activation of Silicon and Sulphur
	Elsevier Science Publishers B. V.	Implanted into GaAs
	(North-Holland)	Implanted into Gars
	Kolume B59/60	
	Pages 978-980	
	Journal of Applied Physics	Comment on: "The Effect of
	Voluma 69 (9)	Charge State on the Local
	Page 673	Vibrational Mode Absorption of the
		Carbon Acceptor in Semi-
· · · · · · · · · · · · · · · · · · ·		Insulating GaAs"
	Journal of Electronic Materials	Post-Irradiation Formation of Si-
	The Metallurgical Society	Si02 Interface States in a Hydrogen
	Volume 20(8)	Atmosphere at Room Temperature
	Pages 627-633	
	Applied Physics Letters	Model for Si-Si02 Interface State
	American Institute of Physics	Formation During Irradiation and
	Volume 59(23)	During Post-Irradiation Exposure
	Pages 3012-3014	to Hydrogen Environment
·····	Journal of the Electrochemical	Measurement of the Thickness and
	Society	Optical Properties of Thermal
	Volume 138 (6)	Oxides of Si Using Spectroscopic
	Page 1770	Ellipsometry and Stylus
		Profilometry.
	IEEE Transactions on Nuclear	Si-SiQ ₂ Interface State Generation
	Science	During X-Ray Irradiation and
	Volume 38 (6)	During Post-Irradiation Exposure
	Page 1101	to a Hydrogen Ambient
	IEEE Transactions on Electron	Liold Emission Triader
		Field Emission Triodes
	Devices	
	Volume 38(3)	
	Page 661-665	
	IEEE Transactions on Microwave	Monolithic Circuit for Reflection
	Theory and Techniques	Coefficient Measurement
		I N
	IEEE Microwave and Guided Wave	
	IEEE Microwave and Guided Wave Letters	

2

٠

. . .....

· · · · · · · · · · · · · · · · · · ·		Antiplacticization Effects
	Macromolecules	Antiplasticization Effects on a
	Volume 24	Secondary Relaxation in Plasticized
<u> </u>	Page 61-67	Glassy Polycarbonates
	Theory of Relaxation in Glass-	Couplings Between the
$\mathbf{A}$	Forming Liquids	Cooperatively Rearranging Regions
$\mathbf{X}$	Journal of Chemical Physics	of the Adam-Gibbs
$\mathbf{X}$	American Institute of Physics	
	Volume 94(4)	
	Page 3018-3029	
	Macromolecules	Correlation of Polymer Segmental
$\mathbf{X}$	American Chemical Society	Chain Dynamics with Temperature-
$\mathbf{X}$	Pages 1221-1224	Dependent Time-Scale Shifts
		Uncommon Nuclear-Spin
$\sim$	Physical Review B	
$\sim$	Volume 43 (10)	Relaxation in Fluorozirconate
	Pages 7481-7486	Glasses at Low Temperatures
	Macromolecules	Correspondence Between the
	Volume 24	Coupling Model Predictions and
	Pages 1561-1566	Computer Simulations: Diffusion
		of a Probe Polymer in a Matrix
		Having Different Degrees of
		Polymerization
	Journal of Polymer Science B:	Coupling Scheme Applied to
	Polymer Physics	Solvent Relaxation Modified by
	Volume 29	Dissolved Plymer Molecules
		Dissolved Flymer Molecules
	Pages 867-876	Transal a Theory of Delaystics in
	Journal of Non-Crystalline Solids	Toward a Theory of Relaxation in
	Volumes 131-133	Correlated Systems: Diffusion in
	Pages 233-237	the Phase Space of a Chaotic
		Hamiltonian
	Journal of Non-Crystalline Solids	Temperature Dependence of the
	Volume 131-133	Stretched Exponent in Structural
	Pages 80-83	Relaxation of Fragile Glass-
		Forming Molecular Liquids
	Journal of Non-Crystalline Solids	Nuclear Spin Relaxation and
	Volumes 131-133	Atomic Motion in Inorganic
	Pages 1001-1010	Glasses
	Journal of Non-Crystalline Solids	
		$\mathbf{H}$
	Volumes 121 122	Evidence of Modification of
	Volumes 131-133	Solvent Re-Orientation Dynamics
	Volumes 131-133 Pages 544-550	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra
	Volumes 131-133 Pages 544-550	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 Relaxation in Complex Systems	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer The Symmetric and Fully
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 Relaxation in Complex Systems and Related Topics	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer The Symmetric and Fully Distributed Solution to a
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 Relaxation in Complex Systems and Related Topics Edited by I. A. Campbell and C.	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer The Symmetric and Fully Distributed Solution to a Generalized Dining Philosophers
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 Relaxation in Complex Systems and Related Topics Edited by I. A. Campbell and C. Giovannella	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer The Symmetric and Fully Distributed Solution to a Generalized Dining Philosophers Problem: An Analogue of the
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 Relaxation in Complex Systems and Related Topics Edited by I. A. Campbell and C.	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer The Symmetric and Fully Distributed Solution to a Generalized Dining Philosophers Problem: An Analogue of the Coupling Theory of Relaxations in
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 Relaxation in Complex Systems and Related Topics Edited by I. A. Campbell and C. Giovannella Pages 309-316	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer The Symmetric and Fully Distributed Solution to a Generalized Dining Philosophers Problem: An Analogue of the Coupling Theory of Relaxations in Complex Correlated Systems
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 Relaxation in Complex Systems and Related Topics Edited by I. A. Campbell and C. Giovannella Pages 309-316 Materials Science Forum	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer The Symmetric and Fully Distributed Solution to a Generalized Dining Philosophers Problem: An Analogue of the Coupling Theory of Relaxations in Complex Correlated Systems Study of Dynamic Properties of
	Volumes 131-133 Pages 544-550 Journal of Non-Crystalline Solids Volumes 131-133 Pages 942-948 Relaxation in Complex Systems and Related Topics Edited by I. A. Campbell and C. Giovannella Pages 309-316	Solvent Re-Orientation Dynamics from Depolarized Rayleigh Spectra of Polymer in Aroclor Solutions From Conformational Transitions in a Polymer Chain to Segmental Relaxation in a Bulk Polymer The Symmetric and Fully Distributed Solution to a Generalized Dining Philosophers Problem: An Analogue of the Coupling Theory of Relaxations in Complex Correlated Systems

	Macromolecules	Test of Expected Correlation of
	American Chemical Society	Polymer Segmental Chain
	Volume 24(17)	Dynamics with Temperature-
<u>}</u>	Pages 4865 - 4867	Dependent Time-Scale Shifts in
		Concentrated Solutions
····	Journal of Chemical Physics	Solvent Rotational Mobility in
	American Institute of Physics	Polystyrene/Aroclor and
	Volume 95(4)	Polybutadiene/Aroclor Solutions.II
	Pages 2980-2987	A Photon Correlation
		Spectroscopic Study
	Journal of Non-Crystalline Solids	Mixed Alkali Effects in Ionic
	Elsevier Science Publishers B. V.	Conductors: A New Model and
	(North-Holland)	Computer Simulations
	Volumes 131-133	
	Pages 1109-1112	
	Journal of Polymer Science: Part B	Some Connections Between
1	Volume 29	Viscoelastic Properties of PVC and
	Pages 1493-1501	Plasticized PVC and Molecular
		Kinetics
	NATO ASI Series	The Coupling Scheme for
		Relaxation in Complex Correlated
	Series B: Physics	
	Volume 258	Systems Large Scale Molecular
	Pages 453 469	Systems
	Journal of Physics A: Math. Gen.	Diffusion with a Memory: A
	Volume 24	Model for Mixed Alkali Effect in
	Pages L881 - L886	Vitreous Ionic Conductors
	Superconductor Science and	High Temperature
	Technology	Superconductivity Space
	IOP Publishing	Experiment
	Volume 4	
	Pages 449-452	
	J. Appl. Phys. American Institute of	In 0.53 GaO.47As Metal-
	Physics	Semiconductor-Metal Photodetector
	Volume 70(7)	Using Light-Ion Bombarded p-
	Pages 3943-3945	Type Material
· · · · · · · · · · · · · · · · · · ·		
	Appl. Phys. Lett.	Epitaxial Growth of b-SiC on
	Volume 58(13)	Silicon-on-Sapphire Substrates by
	Pages 1419-1421	Chemical Vapor Deposition
	Review of Scientific Instruments	Passive Microelectrode Arrays for
	American Physical Society	Recording of Neural Signals: A
	Volume 62 (9)	Simplified Fabrication Process
	Page 2276-2280	
		Penetration Depth and Microwave
	Applied Physics Letters	
	Volume 59(23)	Loss Measuerments with a
	Pages 3033-3035	YBa2Cu307-
		d/LaALO3/YBa2CU307-d Trilayer
		Transmission Line
	TEEE Trans. on Magnetics	Ultra-Compact Microwave Filters
	IEEE Trans. on Magnetics	
	Volume 27(2) Pages 2696-2699	Using Kinetic Inductance Microstrip

,

.

1	Materials Letters	Etching Studies of Stress-Induced
	Volume 10(9,10)	Surface Plygonization in Si GaAs
	Pages 400-403	Wafers
	Mat. Res. Soc. Symp. Proc.	Initial Formation of SiGe/Si
	Volume 202	Epitaxial Structures and Oxides
	Pages 639-644	Produced by Wet Oxidation of
	Tuges correct	Amorphous $Si_XGe_{1-X}$ Layers
·	Journal of Electronic Materials	The Study of Relaxation in
	Volume 20(5)	Asymmetrically Strained Si1-
<u>_</u>	Pages 389-394	xGex/Si Superlattices
	Materials Research Society Symp.	The Effects of Stress on
	Proceedings	Interdiffusion in Si _x Ge _{1-x} /Si
	Volume 226	Superlattices
	Pages 129-139	
	Superlattices and Microstructures	Optical and Structural Studies of
	Volume 10 (1)	Si1-xGex/Si Strained Layer
	Pg 113-118	Superlattices
	Applied Physics Letters	Kinetics of Silicide Formation in
	Volume 59(4)	Chromium-Amorphous Silicon
	Pages 449-451	Multilayered Films.
	Studies of High Temperature	Response Function Characteristics
	Superconductors	of Pairing Correlations in the New
	Volume 6	High Tc Superconductors
	Page 269-295	Dunamia Lincor Deserves
	Physical Review	Dynamic Linear Response
	Volume 43(4)	
	Page 2059-2061	
	Physica C	Generalized Pairing Theory of
	Volume 174	Superconductivity in Layered
	Pages 161-179	Crystals
	Physica C	Superconductivity in Layered
	Volume 176	Materials. Pairing theory for
	Pages 457-476	Projectively Translation Invariant
		States
	Journal of Non-Crystalline Solids	Theoretical Aspects of Coupling
	Volume 131-133	Model Schemes of Slow Relaxation
	Pages 282-288	in Complex Correlated Systems
	Physical Review B	Linearized Gap Equation for a
	Volume 44(6)	Superconductor in a Strong
	Pages 2807-2810	
		Magnetic Field
	Solid State Communications	Quantum Translation Invariance
	Volume 77(7)	and the Superconducting Transition
	Pages 525-528	in Layered Bulk Materials
	Physical Review B	Quantumj-State Representations in
	Volume 44(18)	Strong Quantizing Magnetic Field:
	Pages 10 280	Pairing Theory of
	~	Superconductivity
	Physical Review B	High-T _c Superconductivity of
	Volume 44(18)	YBa2Cu3O7/PrBa2Cu3O7
	Pages 10 210	Superlattices: An Interlayer-
	1 4600 10 210	Coupling Model

	IEEE Transactions on Microwave	Optoelectronic Approach to On-
	Theory and Techniques	Chip Device and Circuit
	Volume 39(7)	Characterization at Microwave and
k	Pages 1179-1193	Millimeter-Wave Frequencies
	Physical Review B	Phonon-Mediated Indirect
	Volume 43(14)	Interactions Between Adatoms on
	Page 12045	Surfaces: O Adatoms on Si(100)
<u> </u>	Journal of Non-Crystalline Solids	Convolution Integral Formulation
	Volumes 131-133	of Dispersive Diffusion Transport:
	Pages 667-670	Numerical Solutions for the
	rages 007-070	Coupling Model Waiting Time
		Distribution
	Journal of Non-Crystalline Solids	Localized Segmental Motion and
	Volumes 131-133	Brillouin Scattering in a Polymer
	Pages 870-876	Liquid
	J. Non-Crystalline Solids, North	Volume-Dependent Rate Processes
	Holland	Predicted by the Coupling Model
	Volume 131-133	
	Pages 442-450	
	Jourgal of Applied Physics	Formation of Interface Traps in
	American Insitute of Physics	MOS Devices During Isochronal
	Volume 70 (12)	Annealing After Irradiation at 78
	Pages7434-7442	К.
	IEEE Transactions on Nuclear	Effects of Switched Gate Bias on
	Science	Radiation-Induced Interface Trap
	Volume 38 (6)	Formation
	Pages 1130-1139	
	App. Phys. Lett	Enhanced Photoemission from a
	Volume 58(16)	Bi-Metallic LaB6/Au Photocathode
	Page 1795	Di Molanio Daborra i notocanioac
	Applied Physics Letters	In-Situ Determination of Flux
	59(11)	Nonuniformities During Molecular
	Page 1317	Beam Epitaxial Growth
	Physical Review B	Surface Geometry of BaO on
	Volume 44(11)	W(100): A Surface-Extended X-
	Pages 5815-5826	Ray-Absorption Fine-Structure
		Study
	Mat. Res. Soc. Symp. Proc.	OMVPE Growth of Eiptaxial InSB
	Volume 216	Thin Films Using a Novel Group V
	Page 239	Source Compound
	Applied Physics Letters	Low-Temperature Organometallic
	Volume 58 (12)	Vapor Phase Epitaxy of InSb
	Pages 1311-1313	Using the Novel Sb Precursor
		Triisopropylantimony
	Journal of Non-Crystalline Solids	Nature of the Linear Frequency
	Volumes 131-133	Dependent AC Conductivity in
	Pages 1011-1017	Glassy Ionic Conductors
	Science and Technology of Thin-	Photoresistive Response of
	Film Superconductors 2	Superconducting Thin Films
	Pages 449-458	Superconducting Time Time
	rages 447-400	$\sum_{i=1}^{n}$

New Diamond Science and	Micro-Photoluminescences Studies of Diamond Films
Technology MRS Int. Conf. Proc. Page 723	
The Electrochemical Society Proceedings Volume 91-13 Pages 207-218	Enhancement of 2-Dimensional Electron Gas Mobility for Inverted Modulation-Doped Field-Effect Transistor Structures, and the Application of Low Temperature Buffers on the Inverted Structures
IEEE Transactions on Electron Devices Volume 38(6) Pages 1262-1270	Electron Transport in Rectifying Semiconductor Alloy Ramp Heterostructures
Microwave and Optical Technology Letters Volume 4(3) Pages 91-97	A Microwave Equivalent Circuit Model for Semiconductor Alloy Ramp
J. Appl. Phys. Volume 69(8) Pages 4228-4233	Be, S, Si, and Ne Ion Implantation in InSb Grown on GaAs
Nuclear Instruments and Methods in Physics Research Elsevier Science Publishers B.V. (North-Holland) Volume B59/60 Pages 592-599	MeV Ion Implantation in GaAs Technology
Physical Review B Volume 43(3) Page 2458	Gallium Interstitials in GaAs/AlAs Superlattices
 J. Appl. Phys. Volume 68(10) Pages 5109-5114	Line Tension of Extended Double Kinks in Thin Films
 Microwave Journal Volume 34(9) Pages 85-91 IEEE Trans. on Nuclear Science Volume 38 (6)	The High Temperature Superconductivity Space Experiment SIMOX with Epitaxial Silicon: Point Defects and Positive Charge
Pages 1253-1258 Proceedings Mat. Res. Society. 220, 199	Defect Centers Formed During Wet Oxidation of Si-GE/Si Heterostructures
Science 252:551-554	Deep UX Photochemistry of Chemisorbed Monolayers: Fabrication and Applications of Patterned Co-Rlanar Molecular Assemblies
Biosensors & Bioelectronics, 6:425-430	Modilation of a Gated Ion Channel Admittance in Lipid Bilayer
Solid State Technology, 34(10):77- 82	New Surface Imaging Techniques for Sub-0.5 Micrometer Optical Lithography

\$

 Liquid Crystals, 10(4):585	Fast Switching Ferroelectric Side- Chain Liquid-Crystalline Polymer and Copolymer
Journal of Vacuum Science and Technology B, 9(6):3447-3450	Deep Ultraviolet Patterning of Monolayer Films for High Resolution Lithography
J. of Microencapsulation 8(3):301- 306	Controlled Release From Cylindrical Microstructures
Review of Scientific Instruments, 62(12):3082-3088	Autonulling a.c. Bridge for Accurate Measurement of Small Impedance Variations Using MOS Components
Journal of Applied Physics, 70:4679-4686	Artificial Dielectric Properties of Microscopic Metallized Filaments in Composites
IEEE Transactions on Plasma Science, 19:749-756	Measurements of Vacuum Field Emission From Bio/Molecular and Semiconductor-Metal Eutectic Composite Microstructures
Journal of Applied Physics, 70(10):5882-5884	The Process-Cpontrolled Magnetic Properties in Nanostructured Co/Ag Composite Films
Macromolècules, 24:6539-6541	Monolayers and Langmuir-Blodgett Films of a Ferroelectric Side Chain Polymer and its Constituent Mesogen
Journal of Applied Physics, 70(10):6404-6406	Magnetic Properties of Permalloy- Coated Tubules

C	$\mathbf{v}$	07	
C	н.	74	

CSF	Reference	Paper Titles
		(List)
ÉD	J. Lightwave Tech., Vol. 10, #2,	Photorefractive Effects in Proton
	Feb.	Exchanged LiTa03 Optical
$\langle \rangle$		Waveguides
	Appl Phys. Letts., Vol. 60, #11,	Periodic Filaments in Reflective
	March 1992	Broad Area Semiconductor Optical
		Amplifier
	IEEE Photonics Letters, Vol. 4,	Demonstration of Low Frequency
	#5, May 1992	Noise Reduction for Fiber Sensors
	"3, May 1992	Powered by Diode-pumped
		Nd:YAG Lasers
	Applied Optics, Oct. 1992	80 Femtosecond Pulses From an
~	Applied Opties, Oct. 1772	All Fiber Source
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Appl. Phys. Ltrs., Vol. 60, #9,	Blue Light Generation by
	March 1992	Frequency Doubling of AlGaAs
		Broad Area Amplifier Emission
	Photonics Letters, Vol. 4, #4, April	An Optical Injected Synchronous
	1992	Oscillator
	Optics Letts., Vol. 17, #5, March	A Fiber Optic AC Electric Field
	1992	Sensor Based on the
		Electrostrictive Effect
	Vol. 28, #3, p. 271, Jan. 1992	Remote Fiber Optic AC
	V01. 20, π3, p. 2/1, Jan. 1992	Magnetometer
······································	Technology, Vol. 10, #7, 992-999,	Fiber Optic Gyroscopes with
	July 1992	Depolarized Light
	Electronics Letters, Vol. 28, p.	High Resolution Fiber Grating Based Strain Sensor with
	236, Jan. 1992	
		Interferometric Wavelength Shift Detection
	The stress is Letters Mal 28 #4	Low Crosstalk Code Division
	Electronics Letters, Vol. 28, #4,	
	Feb. 1992	Multiplexed Interferometric Array
	IEE Proc. Jour., Vol. 139, #4, p.	Optical Microwave Techniques &
	288, Aug. 1992	Applications
	Electronics Letters, Vol. 28, #2,	Electrical Loss Mechanisms in
	Jan. 1992	Traveling Wave LiNb03 Optical
		Modulators
	Photonics Tech. Letts., Vol. 4, p.	Optical Polarization Division
	500, 1992	Multiplexing at 4Gb/s
	App. Opt., Vol 31(16)	Fiber Optic Two Beam
	Pages 2964	Interferometric Fringe Amplitude
	June 1994	Recovery Using Frequency Control
	Elec. Ltrs., Vol 28(21)	2.0W CW Diffraction Limited
	Oct 92	Tapered Amplifier w/Diode
		Injection
	Elec. Ltrs. Vol 28(20)]	Low Frequency Electrostrictive
	P. 1930, Sept 92	Ceramic Plate Voltage Sensor
	Optical Materials,	Growh, Processing, and Properties
	Vol. 1, p. 235, No. 4 (1992)	of CVD Grown Diamond

Π	Ontion Latters Vol. 17 No. 9	LE composto Color Contore In
	Optics Letters, Vol. 17, No. 8,	F-aggregate Color Centers In
	April 1992	Sodium Doped KI
fk.	Optics Letters, Vol. 17, 833-835,	Fiber Bragg Reflectors Prepared by
	1992	a Single Excimer Pulse
	Appl. Phys. Letts., Vol. 61, 429-	Electron Beam Modification of
	431, May 1992	Schottky Diode Characterisitics of
		Diamond
\	IEEE J. Quantum Electronics	Diode Pumped Amplifier/Laser
	Volume 28(4)	Using Leaky-Wave Fiber
	P. 1031-1038	Coupling: An Evaluation
	Applied Optics, Vol. 31, #1, 120-	Image Speckle Contrast Reduction
	125, Jan. 1992	Resulting from Integrative
		Synthetic Aperture Imaging
	JOSA B, Vol. 9, 11, p. 2107	Low-light Level Quantum Noise
	(1992)	Reduction in a Stimulated Raman
		Amplifier
1	Rev. Sci. Instr., Vol. 63, 1838-	A Simple Technique to Prevent
1	1839 (1992)	Misfire Arcing in Discharge
	1032 (1992)	
		Pumped Excimer Laser
	Opt. Lett. Vol. 17, No. 11, p. 833,	Ar2 Excimer Emission From a
	1992	Pulsed Discharge Excited
		Supersonic Gas Jet
	JOSA B, Vol. 17, No. 11, p. 833,	Threshold Reduction for Stimulated
]	(1992	Brillouin Scattering Using a
		Multipass Herriott Cell
······	Applied Optics, Vol. 31, 600-602,	SBS Phase Conjugation of an
	(1992)	Amplified Hydrogen Fluoride
1		Laser Beam
	Ontine Course Wel 02 186 162	
	Optics Comm., Vol. 93, 156-162,	Passive Stabilization of
	(1992)	Photorefractive Two-beam
		Coupling with Laser Diodes Using
		Achromatic Grating Techniques
	Optics Communications, Vol. 93,	Comparison Between
	609-618 (1992)	Photorefractive Beam Fanning
		Using Monochromatic and
		Actromatic Two-wave Mixing in
		SBN
	Phys. Rev. Ltrs., Vol. 69, 2503-	Optical Vortex Solitons Observed
	2506 (1992)	in Kerr Nonlinear Media
	Optics Letters, Vol. 17, 828-830,	CW Stimulated Raman Scattering
	(1992)	in Microdroplets
	JOSA B, Vol. 9, 43-50, (1992)	Spectral Properties of Lasing
		Microdroplets
	Applied Optics, Vol. 31, 1982-	Cavity Mode Identification of
	1991, (1992)	Fluorescence and Lasing in
	, ()	Microdroplets
	Modern Physics B Letters B, Vol.	
		Cavity Quantum Electrodynamic
	6, 447-457, (1992)	Enhancement of Spontaneous and
		Stimulated Emission in
		Microdroplets
	Optics Letters, Vol. 17, 970-972,	Microdroplet Resonant Emission
	(1992)	Structure
•		Laure

.

Π	Dhue Dour A V-1 45 6756	Conita mode Constant
	Phys. Rev. A, Vol. 45, 6756-	Cavity-mode Spontaneous
	6760, (1992)	Emission Rates in Liquid
		Microdroplets
	Optics Letters, Vol. 17, 493-495	Dark Soliton Prototype Devices:
	(1992)	Analysis Using Direct Scattering
		Theory
	Science, Vol. 258, 783-785, (1992)	Nanochannel Array Glass
	Appl. Phys. Letts., Vol. 61, 3151-	Nonlinear Optical Properties of
	3153, (1992)	Quantum Confined GaAs
	, ()	Nanocrystals in Vycor Glass
<u> </u>	Phyiscs, Vol. 1, No. 3, 493-531,	Large Weakly Saturating Third
	(1992)	order Nonlinear Susceptbilities in
	(1))2)	Semi-metals and Narrow-gap
		Semiconductors
<del>`</del>	Tesh D Vel 10 Ne 4 1502	
	Tech. B, Vol.10, No. 4, 1582,	Magnetic Generation of Electrons
	(1992)	and Holes in Semimetallic HgTe-
		CdTe Superlattices
	Jour Vac. Sci. Technol. B, Vol.	Nonlinear Optical Properties of
	10, 885, (1992)	InSbAs-Based Alloys and
		Superlattices
	Jour. Vac. Sci. Tech. B, Vol. 10,	Quantum Hall Effect in HgTe-CdTe
	No. 2, p. 905, 1992	Superlattices with Strong Three
		Dimensional Dispersion
	our. Quantum. Elec., Vol. 18, No.	Direct Upper Sate Resonant
	4, p. 1041, April 1992	Pumping of the 2.8 Micron Er:YLF
	,, p. 1011, 1.p. 1522	Laser
	Phys. Rev. B, Vol. 45, p. 1295,	Free Carrier Transport in
	1992	Superlattices - Smooth Transition
	1992	
		Between Quasi-2D and Uniform 3D Limits
	Lour Dhave Cham Mal 06 50 AT	
	Jour. Phys. Chem., Vol. 96, 5847,	Third Order Optical Nonlinearities
	1992	of Bis-Phthalocyanines
	Appl. Phys. Letts., Vol. 60, 2202,	Setback Modulation Doping of
	(1992)	HgTe-CdTe Multiple Quantum
		Wells
	Phys. Rev. Lett., 68, 2705 (1992)	Comment on Large Infrared
		Nonlinear Optical Response of C60
	Optics Letts., Vol. 17, No. 10, p.	Continuous Wave Modelocked 2
	731, May 1992	Micron Laser
	Phys. Rev. B, Vol. 46, No. 7, p.	Electron and Hole In-plane
	46 , Aug. 1992	Mobilities in HgTe-CdTe
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Superlattices
	Chem. Phys. Letts., 188, p. 492,	Off-resonant Nonlinear Optical
	(1992)	
	(1774)	Response of C60 Studied by
	And Dime Total TT 1 C1 1011	Degenerate Four-wave Mixing
	Appl. Phys. Letts., Vol. 61, 1814,	HgTe-CdTe Superlattices for IR
	(1992)	Detection Revisited
	Elec. Letts., Vol. 28, No. 13, p.	Even Length Median Filters in
	1258, June 1992	Optimal Signal Processing
	Optics Letts., Vol. 17, No. 11, pg.	Efficent Resonantly Pumped 2.8
	816, June 1992	Micron Er:GSGG Laser

	Optics Letts., Vol. 17, No. 10, P.	Intercavity Pumped 2.09 Micron
	736, May 1992	Ho:YAG Laser
	J. Appl. Phys., Vol. 71, 3394	Auger Recombination in HgCdTe
	(1992)	Quantum Wires and Quantum
		Boxes
0	J. Vac. Sci. Tech. B, 10, 1638,	Quantum Hall Effect and Setback
	(1992)	Modulation Doping in HgTe-CdTe
	(1772)	Heterostructures
	Int'l Jour. of Nonlinear Optical	Third Order Nonlinear Optical
	Physics, Vol. 1, No. 4, 699-726,	Properties of Metallo-
	(1992)	Phtalocyanines
	lec. Letts., Vol. 28, #8, April 1992	Observation of Photodetector
		Nonlinearities
	lec. Letts., Vol. 28, No. 6, March	Reflectrometric Two-mode
	1992	Elliptical-core Fiber Strain Sensor
	Elec. Letts., Sept. 1992	Low Frequency Electric Field
		Detection with an Electrostrictive
	κ	Ceramic Plate
	Appl. Phys. Ltrs., Vol. 61, 1992	Large Signal Switching
		Characteristics of a Psuedomorphic
		AlGaAs/InGaAs Modfet on a
		Picosecond Time Scale
	Appl. Phys. Ltrs., Vol. 61, #6, p.	21 Watt Broad Area Near-
	622 Aug 1002	diffraction Limited Semiconductor
	633, Aug. 1992	
	Anni Dhua I the Mai (1, 44	Amplifier
	Appl. Phys. Ltrs., Vol. 61, #4, p.	Lateral Temperature Profiling in
	384, July 1992	Broad Area Diode Lasers and
		Amplifiers using a
		Photoluminescence Microprobe
	J. of Lightwave Tech., Vol. 10,	Performance and Modeling of
	Oct. 1992	Proton-exchanged LiTa03
		Branching Modulator
	Appl. Phys. Ltrs., Vol. 61, p.	35 Ghz Metal-semiconductor-metal
	1760, 1992	Photodetectors on Crystalline
		Silicon
	IEEE J. Quan. Elec., Vol. 28, Oct.	Optoelectronic Transient
	1992	Characterization of Ultrafast
		Devices
	Elec. Letts., Vol. 28, #9, 826-827,	40 Ghz Low V Pi Ti:LiNb03
	Apr. 1992	Intensity Modulators
	Elec. Ltrs., Vol. 28, #12, p. 1082,	3.3 W CW Diffraction Limited
	June 1992	Broad Area Semiconductor
		Amplifier
	EEE Photonics Tech. Ltrs., Aug.	Shaping the Digital Switch
	1992	Surbuild are Difficulto when
	Elec. Ltrs., Vol. 28, #13, p. 1215,	Dual Wavelength Fiber
	June 1992	Interferometer w/Wavelength
		Selection via Fiber Bragg Orating
		Element
	Elec. Ltrs., Vol. 28, #12, p. 1126,	
		Single Polarization Fiber
	June 1992	Amplifiers

•

4

Ι	LIEE Dhot Teah Ltra Vol 4	Lies of a Doubly Palarized Lesor
	IEEE Phot. Tech. Ltrs., Vol. 4,	Use of a Doubly Polarized Laser
	Oct. 1992	for Remote Powering of an
		Integrated Optical Modulator
	J. Statistical Physics, Vol. 70, #1,	Observation of Stochastic
	Jan. 1993	Resonance Near a Subcritical
		Bifurcation
	IEEE Phot. Tech. Ltrs., Vol. 4, p.	Fiber Optic Bragg Grating
	1183, 1992	Differential Temperature Sensor
	Elec. Ltrs., Vol. 28, #20, p. 1894,	High Repetition Rate Figure Eight
	Sept. 1992	Laser w/Extracavity Feedback
	Elec. Ltrs., Vol. 28, #19, Sept.	Elimination of Coherent Rayleigh
	1992	Backscatter Induced Noise in Fiber
		Micherson Interferometer
\ <u>\</u>	Journal of Vacuum Science	20 nm Linewidth Platinum Pattern
	Technology, Volume B10,	Fabrication Using Conformal
	Page 2251 (1992)	Effusive-Source Molecular
	λ	Precursor Deposition and Sidewall
	$  \rangle$	Lithography
	Thin Solid Films, Volume	Deep UV Photochemistry and
	210/211, Page 359 (1992)	Patterning of Self-Assembled
		Monolayer Films
	Applied Physics Letters, Volume	Nonlinear Optical Properties of
	61, Page 3151 (1992)	Quantum-Confined GaAs
		Nanocrystals in Vycor Glass
	Thin Solid Films, Volume 209,	Sodium Fluoride Thin Films by
	Page 9 (1992)	Chemical Vapor Deposition
	Chemical Materials, Volume 4,	Synthesis, Characterization, and
	Page 833 (1992)	Chemical Vapor Deposition
		Properties of Primary and
		Secondary Neopentylstibine. New
		Antimony Precursors for MOCVD
	Organometallics, Volume 11, Page	Synthesis and Characterization of
	2163 (1992)	Neopentyl-and {(Trimethylsilyl)-
		methyl}antimony Compounds.
		Molecular Structures of
		(Me3CCH2)3Sb,
		(Me ₃ CCH ₂ ) ₃ SbI ₂ ,
		(Me3SiCH2)3Sb, and
		(Me3SiCH2)3SbI2
	Phys. Rev. A	X-Ray Spectral Emission from
	-	Sodium Wire Implosions on
		Saturn.
· · · · · · · · · · · · · · · · · · ·	Applied Phys. 71, 796	Spatially Dependent Effective Mass
		Optical Properties in Finite
		Demokalia Quantum W-ll-
		Parabolic Quantum Wells.
	Phys. Rev. A45(3),1569-1574	Observation of Density-Enhanced
		Dielectronic Satellite Spectra
		Produced During Subpicosecond
		Laser-Matter Interactions.
	Nuc. Instr. and Methods A322, 40-	Nuclear Spectroscopy Using
	42	Risetimes in Cerussite Scintillator,
	L 4-2	INSERTION TO CELLSSUE SCHILLING

	Rev. Sci. Instrum. 63(5), 2958- 2966	The Improvement of Phas Modulated Spectroscopi Ellipsometry.
	Rev. Sci. Instrum. 63(10),5052	Quantitative X-ray Emission from DPF Device.
	Rapid Communications Phy. Rev. B46,12068	Nonlinear Molecular Dynamics an Monte Carlo Algorithms, Rapi Communications.
	IEEE Trans.Nuc.Sci., NS- 39,1665-1670	Laser Confirmation of SEU Experiments in GaAs MESFE' Combinational Logic.
	Journal of Appl. Phys. 71,4201- 4207	Effect of Carrier Concentration o the Properties of Irradiation induced Defects in P-type Indiur Phosphide Grown by Metalorgani Chemical Vapor Deposition.
	Phys.Rev. B45, 2585	Magnetic-field Dependence of Critical Currents in Proton irradiated YBa ₂ Cu ₃ O ₇₋₈ films
		Conventional Behavior of th Pinning Force Density.
	IEEE Trans. Nuc. Sci.	Radiation Effects in GayIn _{1-y} A Devices.
	IEEE Trans. Nuc. Sci. NS-39, 1846-1850	CRRES Dosimetry Results an Comparisons Using the Spac Radiation Dosimeter and P-channed MOS Dosimeters.
an ee 'nadd' 16 88 48 9 49 9 49 19 19 19 19 19 19 19 19 19 19 19 19 19	IEEE Trans. Nuc. Sci. NS- 39,1836-1839	Comparison of SEU Rat Prediction Techniques.
	IEEE Trans. Nuc. Sci, NS-39, 1828-1835	Single Event Upset Rates in Space
	IEEE Trans. Nuc. Sci. NS-39, 1730-1738	Investigation of the Oxyge Vacancy A-center Defect Comple Profile in Neutron Irradiated Hig Resistivity Silicon Junction Particl Detectors.
•	Phys. Rev. B46,1134	Atomic Disorder and the Transitio Temperature of Cuprat Superconductors.
	IEEE Nuc. Trans. Sci. NS- 39,1600	The Relationship of Proton an Heavy Ion Opset Thresholds.
	IEEE Trans. Nuc. Sci, NS-39, 1613-1621	Applicability of LET to Singl Events in Microelectroni Structures.
	IEEE Trans. Nucl. Sci. NS-39, 1657	Picosecond Charge-Collectio Dynamics in GaAs MESFETs.
	IEEE Trans. Nuc. Sci. 38, 1359	Radiation Damage Assessment of Nb Tunnel Junction Devices.
	Nuclear Instruments and Methods in Physics Research A322,40-42	Nuclear Spectroscopy Usin Risetimes in Cerussite Scintillators

,

1	LIFFF T. N. C.: 20, 1965	Orden of meanity de Mathed for
	IEEE Trans. Nuc. Sci. 39, 1865	Order-of-magnitude Method for Estimating the Fluence that Optimizes the Critical Current in Survivability of High-T _c
		Microwave Devices in Space Environments.
	Solid State Communications, 83, 277-230	Thermal Annealing of Cu- ions in Irradiated NaCl:Cu Near 415K.
	Nucl. Instr. and Methods, B67,384	Transient Charge Collection from Ion Tracks in Semiconductors.
	Radiation Research 132,282	A Spatially Restricted Linear Energy Transfer Equation.
	IEEE Trans. Nuc. Sci., NS- 39,1982-1989	Space Radiation Effects on Optoelectronic Materials and Components for a 1300 nm Fiber Optic Data Bus.,
	IEEE Trans. Nuc. Sci., NS- 39,1630-1635	Spatial and Temporal Dependence SEU in a 64K SRAM.
	Nuclear Instruments and Methods in Physics Research, B67,384-389	Transient Charge Collection From Ion Tracks in Semiconductors.
	Phys. Rev. B45,9266	Photoemission Study of Hydrogen Adsorption on Vanadium Dioxide Near the Semiconductor-Metal Phase Transition.
	Phys. Rev. B45,2585	Magnetic Field Dependence of Critical Currents in Proton Irradiated YBa ₂ Cu ₃ O _{7-∂} Films:
		Conventional Behavior of the Pinning-Force Density.
	IEEE Trans. Micro. 40	Experimental Wide-Stopband Filters Utilizing Asymmetric Ferrite Junctions.
	IEEE Trans. Micro. Theory & Techn., 40,1168-1673	Microwave Characteristics of High Tc Superconducting Coplanar Waveguide Resonator.
	Integrated Ferroelectrics 1,223-237	Filament-Assisted Pulsed Laser Deposition of Epitaxial PbZr _x Ti ₁₋ _x O ₃ Films: Morphological and Electrical Characterization.
	Surf. & Coat. Technol. 51,290- 298	Pulsed Laser Deposition of Electronic Ceramics.
	Phys. Rev. B45,3048-3053	Quantum Nucleation and Thermal Activation of Vortex Rings in High Tc Superconductors.
	Matls. Res. Soc. Bull. XVII,37-43	Pulsed Laser Deposition of High T _c Superconducting Thin Films for Electronic Device Applications.
	Appl. Phys. Lett. 60, 1193-1195	Anion-Assisted Rulsed Laser Deposition of Leas Zirconate Titanate Films.

	J. Rad. Effects REs. and Eng.	Photocurrent Generation in
		Specially Treated Sapphire.
	IEEE Transactions on Plasma	Analysis of the Deflection System
	Science, 20, 232 (1992)	for a Magnetic-Field-Immersed
		Magnicon Amplifier
	International Journal of Electronics,	A Phase-Plate Mode Transducer for
	72, 1119 (1992)	TE _{1n} Gyrotron Modes
	Applied Physics Letters, 60, 1556	Demonstration of Vacuum Field
	(1992)	Emission from a Self-Assembling
		Biomolecular Microstructure
		Composite
	IEEE Transactions on Electron	Design of an electron Gun for a
	Devices, 39, 1763 (1992)	280 GHz Inducted-Resonance-
		Electron-Cyclotron (IREC) Maser
		Experiment
	Nuclear Instruments and Methods	Effect of Energy Spread and
	A, 318, 560 (1992)	Gyromotion on Efficiency of a
		Smith-Purcell FEL
\\	Materials Science and Engineering	Fabrication of Biologically Based
	A, 158, 1 (1992)	Microstructure Composites for
	· · · · · · · · · · · · · · · · · · ·	Vacuum Field Emission
	Nuclear Instruments and Methods	Field-Emission Arrays - A
	A, 318, 353 (1992)	Potentially Bright Source
	Nuclear Instruments and Methods	Harmonic Generation in Laser-
	A, 318, 533 (1992)	Pumped FELs and Stimulated
	11, 510, 555 (1552)	Backscattering from Plasmas
	Physical Review A, 45, 2179	Maximum Microwave Conversion
	(1992)	Efficiency From a Modulated
		Intense Relativistic Electron Beam
	International Journal of Electronics,	Multimode Simulation of High
	72, 779 (1992)	Frequency Gyrotrons
	Physical Review A, 45, 8846	Nonlinear Analysis of a Grating
	(1992)	Free-Electron Laser
	International Journal of Electronics,	Observation of Harmonic Gyro-
		Backward-Wave Oscillation in a
	72, 1003 (1992)	100 GHz CARM Oscillator
		Experiment
	IEEE Transactions on	Simulation Studies of a
	Electromagnetic Compatibility, 34,	Klystronlike Amplifier Operating in
	222 (1992)	the 10-100 GW Regime
	Nuclear Instruments and Methods	3D Simulation of High Gain FELs
		in an Optical Klystron
	A, 318, 675 (1992)	Configuration
	Internetional Journal of Discharge	
	International Journal of Electronics, 72,807 (1992)	Tilted Resonator Experiments on a Quasioptical Gyrotron
	IEEE Transactions on Plasma	X-Band Dielectric Cerenkov Maser
	Sciences, 20, 288 (1992)	Amplifier Experiment
	International Journal of Electronics,	On the Possibility of High Power
	72, 1165 (1992)	Gyrotrons for Super Range
	-, -,	Resolution Radar and Atmospheric
		Sensing
		Johnshing

۲ ž

.

· · · · · · · · · · · · · · · · · · ·	International Journal of Infrared	Application of Gyrotrons to High
	and Millimeter Waves, 13, 1449	Power Millimeter Wave Doppler
	(1992)	Radars
	Physical Review B	Density-Gradient Analysis of Field
	Volume 46 (8)	Emission from Metals
	Pages 4874-4883	
·	Quality and Reliability Engineering	GaAs MMIC Reliability Studies
	International	Carls Wivite Rendonity Studies
k	Volume 8	
	Pages 295-300	
	Conference Proceedings 3rd	Failure Mechanisms in Life Tested
		HEMTs
	European Sympsoium on	
	Reliability of Electron Devices,	
	Failure Physics and Analysis	
	(ESREF '92)	
<u> </u>	Pages 167-170	
	Reliability of Gallium Arsenide	MIMIC Radiation Effects
	MMICs	
	Chapter 12	
	Rages 435-452	
))	J. Vac. Sci. Technol.	Fabrication of Parallel Quasi-One-
	Volume B 10(6)	Dimensional Wires Using a Novel
	Pages. 3196-3199	Conformable X-Ray Mask
		Technology
	J. Vac. Sci. Technol. A	Infrared Optical Properties of
	Volume 10 (1)	Dielectric/Metal Layer Structures of
	Pages 152-157	Relevance to Reflection Absorption
		Spectroscopy
	Physical Review B	Photoemission Study of Hydrogen
	Volume 45 (16)	Adsorption on Vanadium Dioxide
	Pages 9266-9271	near the Semiconductor-Metal
		Phase Transition
	J. Appl. Phys.	Study of the Initial Formation of
	Volume 71 (11)	Silicon Carbide by Reaction of
	Pages 5450-5459	Tetraethyl Silane with Silicon
	Surface Science	Study of the Initial Adsorption of
	Volume 276	Nitrogen on SiC(100)- $(2 \times 1)$
	Pages 59-68	
	J. Va. Sc. Technol. A.	Study of Fluorine (XeF2)
	Volume 10 (6)	Adsorption and of Oxygen/Fluorine
	Pages 3478-3485	Co-adsorption on Silicon Using
1	<u> </u>	Infrared Reflection Absorption
		Spectroscopy
	Electronics Letters	Observation of DC and Microwave
	Volume 28 (3)	Negative Differential Resistance in
	Page 268	InAIAs/InGaAs/InPHEMTs
	InP and Related Materials	Temperature Dependence of Low
	Conference	Frequency Gain Dispersion in Ion-
	Pages 226-229	Implanted INP JFETs
<b></b>	Surface Science 267	Intersubband Transitions in
11	Page 120-123	Piezoelectric Superlattices

1		
	Physical Review B	Effects of Nonparabolicity on
li de la companya de	Vol. 45	Collective Intersubband Excitations
	No.19	
	Page 11399 - 11402	
	Superlattices and Microstructures	Collective Intersubband Excitations
	Volume 12 (2)	in a Magnetic Field
	Pages 251	
	Superlattices and Microstructures	Real-Space Tight-Binding and
	Volume 11 (1)	Discrete Phase-Space Many-Body
	Pages 103-111	Quantum Transport in Granular
		Nanoelectronics
<b> </b>	IEEE Electron Device Letters	
		Hot-Electron-Induced Degradation
	Volume 13 (12)	of Front and Back Channels in
	Pages 603-605	Partially and Fully Depleted
		SIMOX MOSFET's
	Journal of Electronic Materials	Numerical Analysis of Silibon-on-
	Volume 21 (7)	Insulator Short Channel Effects in a
	Pages 683-687	Radiation Environment
	IEEE Electron Devices Society &	Reliability Study of a GaAs MMIC
1	IEEE Reliability Society	Amplifier
	Proc. 1992 Inter'l Reliability	
	Physics Symposium	
	Pages 327-831	
	Physical Review B	
	The American Dhusical Society	³¹ P.Electron-Nuclear Double
	The American Rhysical Society	Resonance of the P In Antisite in
	Volume 46 (3)	InP:Zn Detected via Luminescence
	Page 1377	
	J. Appl. Phys.	Photoresponse of Shallow Step,
	Volume 71 (4) $\land$	Weak-Link Bridges Using Inverted
	Pages 1878-1884	Cylindrical Magnetron-Sputtered
		$Y_1Ba_2Cu_3O_{7-x}$ Thin Films
	Appl. Phys. Lett.	$Y_1Ba_2Cu_3O_{7-x}$ and $LaA10_3$
	Volume $60(3)$	Composite Thin Films by Off-Axis
	Pages 389-391	Magnetron Sputtering
	App. Phys. Lett	Role of Hydrogen in the Growth of
	Volume <u>61</u> (9) Pages 1125-1127	Y ₁ Ba ₂ Cu ₃ O ₇ on MgO Substrates
		by Off-Axis Magnetron Sputtering
	Superconducting Devices and Their	Light Detection Using High -T _c
	Applications	Microstrip Lines
	Springer Proceedings in Physics	
	Volume 64	
	Page 180	
	Appl. Phys. Lett	Metalorganic Chemical Vapor
	Volume 60 (23)	Deposition of Low Microwave
	Page 2926	Surface Resistance YBa2Cu3O7 on
		(100) LaAlO ₃ and $(100)$ SrTiO ₃
······	IEEE Electron Device Letters	DC Characteristics of High
	Volume 13(9)	
		Breakdown Voltage p.i-n Diodes
	Pages 473-475	Made by 20-MeV Si Implantation in InP:Fe

-

	Journal of Electronic Materials	Co, Fe, and Ti Implants in InGaAs
	Volume 21 (9) Pages 923-928	and Co Implants in InP at 200°C
	Surface Science 263	Exchange and Correlation in Quasi-
	Page 471-474	Two-Dimensional Plasmas in Quantum Well Structures
	Physical Review Letters	Exchange and Correlation in the
	Volume 68 (12)	Nonhomogeneous Electron Gas in
	Page 1884	Semiconductor Heterojunctions
	Semiconductor Interfaces and	Photoluninescence Studies of
	Microstructures	Interface Roughness in GaAs/A1As
	Chapter 6	Quantum Well Structures
	Page 149	
	Physics of Fluids B: Plasma	Absolute Instabilities in
	Physics Volume 4 (11)	Gyropeneotron Amplifiers
	Pages 3800-3805	
	Materials Science Forum	Optically Detected Magnetic
	Vài 83-87	Resonance of Donor States in
	Page 775-786	$Al_xGa_{1-x}As$ (x $\geq 0.35$ ) Doped with
		Group-IV and Group-VI Impurities
	Materials Science Forum	Magnetic Resonance of X-Point
	Volume 83-87	Shallow Donors in A1Sb:Te Bulk
	Pages 793-798	Crystals and A1Sb MBE Layers
	Materials Research Society	Tge Effects of $P_2S_5$ Surface
	Symposium Proceedings Volume 236	Passivation on Dry Etched GaAs
	Pages 217-222	
	Semiconductor Wafer Bonding	Silicon On Insulator Fabrication
	Volume 92-7	from Wafer Bonding and Selective
	Pages 174-179	Etching Techniques using a
-		Silicon-Germanium Alloy Etch
		Stop
	American Vacuum Society/ J. Vac.	Near Band-Edge
	Scl. Technol. B	Photoluminescence from Si ₁₋
	Volume 10(2) Bagas 024 026	*Ge _x /Si Superlattices Grown by
	Pages 924-926	Molecular Beam Epitaxy
	J. Electrochem. Soc.	Selective Removal of Si _{1-x} Ge _x
	Volume 139 (10) Pages 2943-2947	from (100) Si Using HNO3 AND
	Appl. Phys. Lett.	Ge Profile from the Growth of
	Volume 61 (18)	SiGe Buried Layers by Molecular
	Pages 2217-2219	Beam Epitaxy
	Physical Review B	Resonant Tunneling in Coupled
	Volume 46 (15)	Quantum Dots
	Page 9538	
	Mat. Res. Soc. Symp. Proceedings	EL2 Related Anomalous Splitting
	Volume 262	in the Photoreflectance Response of
	Pages 289-294	Semi-Insulating GaAs

π		
	Appl. Phys. Lett	Anomalous Splitting in the
	Volume 61 (13)	Photoreflectance Response of
	Page 159	Semi-Insulating GaAs and
	C	Correlation with EL2
	Appl. Phys. Lett.	Post-Growth Annealing of Low
	Volume 61 (1)	Temperature-Grown Sb-Doped Si
	Pages 76-78	Molecular Beam Epitaxial Films
	Physical Review A	Self-Consistent Analysis of
	Volume 45 (10)	Wiggler Field Errors in Free-
	Pages 7488-7491	Electron Lasers
	IEEE Transactions on Nuclear	Dose Rate Independent Total Dose
	Science	Failure in 54F10 Bipolar Logic
	Volume 39 (6)	Circuits
	Pages 1800 1002	Circuits
<u>_</u>	Pages 1899-1902	
	J. Vac Sci. Technol. B	Modification of the
l	Volume 10 (2)	Microroughness of Molecular-
	Rages 800-802	Beam Epitaxially Grown
		GaAs/AlAs Interfaces Through
		Changes in the Growth
		Temperature
	Material Science and Engineering	a -SiC Buried-Gate Junction Field
	B11	Effect Transistors
	Pages 121-124	
	Materials Science Forum	Spectroscopic Investigation of the
	Vol. 83-87	Er Site in GaAs:Er
	Page 665-670	
	Materials Science Fortum	Photoluminescence Excitation
	Vol. 83-87	Spectroscopy of Cubic SiC Grown
	Page 1195-1201	by Chemical Vapor Deposition on
		Si Substrates
	Materials Science and Engineering	Optical Studies of Donors and
	B11	
	\ \	Acceptors in Cubic SiC
	Page 21-25	
	Mat. Res. Soc. Symp. Proc.	Growth and Characterization of
	Vol. 240	Ternary and Quaternary
	Page 117-122	Compounds of $In_{y}(Al_{x}Ga_{1-x})_{1-}$
		yAs on (100) InP
	J. Applied Physics	Site Transfer of Si in GaAs after
	Volume 72 (7)	Heavy Ion MeV Implantation and
		Annooling
	Page 2692	Annealing
	Physical Review B	Interface Phonons of Quantum
	Vol. 45 (16)	Wires
	Pages 9091 - 9102	
	Superlattices and Microstructures	Optical Absorption Due to Interface
	Volume 12 (4)	Phonons and Interface Rlasmons of
	Page 553	Quantum Dots
	IEEE Transactions on Plasma	Self-Consistent Field Theory of a
	Science	Helix Traveling Wave Tube
	Volume 20 (5)	Amplifier
	Pages 543-553	

n	L Electronica Latters	In AlA office A a Ustanoismation
	Electronics Letters Volume 28 (15)	InAlAs/InGaAs Heterojunction Bipolar Transistors with an Al/As
		Etch-Stop Layer
	Pages 1388-1390	Elen-Stop Layer
	J. Vac. Sci. Technol.	Characterization of the Electrical
	Volume A 10 (4)	Bias Induced Strain Variation in
	Pages 1012-1019	MOSFETs Using X-Ray Double
		Crystal Topography
	J. Vac. Sci. Technol.	Non-Destructive Evaluation of
	Volume A 10 (4)	Silicon-on-Insulator Substrates
	Pages 1006-1011	Using X-Ray Double Crystal
		Topography
	J. Vac. Sci. Technol.	Proximity Effect Reduction in X-
	Volume B 10 (6)	Ray Mask Making Using Thin
	Pages 3062-3066	Silicon Dioxide Layers
	J. Appl. Phys.	Electron Tunneling Spectroscopy
	Volume 72 (11)	and Defects in
	Page 5333	GaAs/A1GaAs/GaAs
		Heterostructures
	R&D Magazine	Nanofabrication: How Small Can
	Page 123	Devices Get?
	Ultramicroscopy	High Resolution Lithography with
	Volume 42 (44)	a Vacuum STM
	Pages 1309-1316	
	J. Mater. Res.	Silicon Cross Doping and its Effect
	Volume 7 (8)	on the Si or Be Implantation
	Pages 2186-2193	Doping of Gallium Arsenide
		Grown on (100) Silicon by
		Metalorganic Chemical Vapor Deposition,
	J. Mater. Res.	Observations on the Electrical
	Volume 7 (9)	Characterization of the
	Pages 2465-2477	Heteroiepitaxially Grown Cubic
	1 agos 2705-2777	SiC
	Surface Science 263	Properties of 2D Electrons and
	Pages 595-599	Associated Bound Donors in Delta-
		Doped InSb
	Physical Review B	EL2-Copper Interaction in Heat-
	The American Physical Society	Treated GaAs
	Volume 46	
	Pages7229	
	Springer Proceedings in Physics	Transport Measurements and
	Amorphous and Crystalline Silicon	Shallow Donors in Cubic SiC
	Carbide III	
	Volume 56	
	Page 155	
	The Physics of Non-Crystalline	Fundamental Issues Confronting
	Solids	Models of Non-Linear Structural
	The Society of Glass Technology	Relaxation
	Pages 309-314	

	The Physics of Non-Crystalline Solids	Correlation of the Stretch Exponent with the Decoupling Index in Ionic
	The Society of Glass Technology Pages 342-346	Glasses from the Coupling Model
0	Macromolecules	Generalized Fokker-Planck
	Volume 25	Approach to the Coupling Model
\ \	Pages 2184-2191	and Comparison with Computer
		Simulations
$\mathbf{X}$	The Physics of Non-Crystalline	Nuclear Spin Relaxation in
	Solids	Fluorozirconate Glass
	Pages 178-182	
$\sim$	Macromolecules	Trends in the Temperature
$\mathbf{X}$	Volume 25 (15)	Dependency of Segmental
	Pages 3906-3909	Relaxation in TMPC/PS Blends
$\backslash$	Physics and Chemistry of Glasses	The Nature of the Linear Frequency
$\backslash$	Volume 33 (4)	Dependent Alternating Current
$\backslash$	Pages 1-7	Conductivity Interpolating Between
$\backslash$		Conductivity Relaxation and
	۲.	Vibrational Responses in Alkali
·····		Oxide Glasses
	NATO ASI Series: Structure and	Interpretation of Dynamical
	Dynamics of Strongly Interacting	Properties of Polymeric Cluster
	Colloids and Supramolecular	Solutions
	Aggregates in Solution	
	SH Chen et al (Eds)	
	Kluwer Academic Publishers	
	Volume 369 Pages 221 228	
	Pages 221-228     Solid State Ionics	Comparisons Potuson the
	Volumes 53-56	Comparisons Between the
	Pages 936-946	Coupling Model Predictions, Monte Carlo Simulations and Some
	1 ages 330-340	Recent Experimental Data of
		Conductivity Relaxations in Glassy
		Ionics
·····	Macromolecules	Viscoelastic Properties of
	I Volume 25 (10)	Δmornhous Polymers 1
	Volume 25 (19) Pages 4921-4924	Amorphous Polymers. 1. Different Temperature Dependences
	Volume 25 (19) Pages 4921-4924	Different Temperature Dependences
		Different Temperature Dependences of Segmental Relaxation and
	Pages 4921-4924	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion
	Pages 4921-4924 Macromolecues	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous
	Pages 4921-4924 Macromolecues Volume 25 (19)	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of
	Pages 4921-4924 Macromolecues Volume 25 (19) Pages 4915-4919	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol)
	Pages 4921-4924 Macromolecues Volume 25 (19) Pages 4915-4919 Physical Review B	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol) Anomalous Reduction of Solvent
	Pages 4921-4924 Macromolecues Volume 25 (19) Pages 4915-4919 Physical Review B Volume 46, No. 13	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol) Anomalous Reduction of Solvent Friction in Chlorinated Biphenyl
	Pages 4921-4924 Macromolecues Volume 25 (19) Pages 4915-4919 Physical Review B Volume 46, No. 13 Pages 8126-8131	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol) Anomalous Reduction of Solvent Friction in Chlorinated Biphenyl Solutions of 1, 2 - Polybutadiene
	Pages 4921-4924MacromolecuesVolume 25 (19)Pages 4915-4919Physical Review BVolume 46, No. 13Pages 8126-8131Macromolecules	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol) Anomalous Reduction of Solvent Friction in Chlorinated Biphenyl Solutions of 1, 2 - Polybutadiene Interpretation of Anomalous
	Pages 4921-4924MacromolecuesVolume 25 (19)Pages 4915-4919Physical Review BVolume 46, No. 13Pages 8126-8131MacromoleculesVolume 25 (24)	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol) Anomalous Reduction of Solvent Friction in Chlorinated Biphenyl Solutions of 1, 2 - Polybutadiene Interpretation of Anomalous Momentum Transfer Dependence
	Pages 4921-4924MacromolecuesVolume 25 (19)Pages 4915-4919Physical Review BVolume 46, No. 13Pages 8126-8131Macromolecules	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol) Anomalous Reduction of Solvent Friction in Chlorinated Biphenyl Solutions of 1, 2 - Polybutadiene Interpretation of Anomalous Momentum Transfer Dependence of Local Chain Motion of Polymers
	Pages 4921-4924MacromolecuesVolume 25 (19)Pages 4915-4919Physical Review BVolume 46, No. 13Pages 8126-8131MacromoleculesVolume 25 (24)	Different Temperature Dependences of Segmental Relaxation and Terminal Dispersion An Explanation of Anomalous Dielectric Relaxation Properties of Poly(propylene glycol) Anomalous Reduction of Solvent Friction in Chlorinated Biphenyl Solutions of 1, 2 - Polybutadiene Interpretation of Anomalous Momentum Transfer Dependence

.

٠

	Dhuring	Fractal Phase Space Transport
	Physica A	Dynamics and Relaxations in
	Volume 191	
	Pages 523-531	Complex Correlated Systems
	Journal de Physique IV	Structural Relaxation and
	Colloquie C2, Suppl. au Journal de	Conductivity Relaxation in Glassy
	Physique III	Ionics
	Volume 2	
	Pages C2-61-C2-73	
L	Fages C2-01-C2-75	Nuclear Magnetic Resonance and
	Journal de Physique IV	Ionic Motion in Fluorozirconate
	Colloquie C2, Suppple au Journal	
	de Physique III	Glasses
	Volume 2	
	Pages C2-159-C2-163	
<u>_</u>	Principles & Applications of	Space Applications of
	Superconducting Quantum	Superconductivity
	Interference	
	World Scientific	
	Volume 5	
	Pages 275-342	Concer Amplications of High
	FED Journal	Space Applications of High
	Volume $3(2)$	Temperature Superconductivity:
	Pages 12-2	The High Temperature
		Superconductivity Space
		Experiment (HTŠSE)
	Cryogenics	A Conference Report: Second
	Volume 32 (12)	Symposium on High Temperature
	Pages 1169-1170	Superconductors in High
	Pages 1109-1170	Frequency Fields
		Defects in Vertical Zone Melt
	Inst. Phys. Conf.	
	Ser. No 120	(VZM) GaAs
	Chapter 2	
	Pages 61-66	
	J. Appl. Phys.	Evaluation of Local Vibrational
	Volume 72 (6)	Mode Absorption CAused by
	Page 2505	Carbon in GaAs
	Applied Physics Letters, American	Determination of Band Gap and
	Institute of Physics	Effective Masses in InAs/Ga ₁ .
		xInxSt Superlattices
	Volume 61 (2)	XIIIX58 Superlattices
	Pages 207-209	
	J. Electrochemical Society	High Selectivity Patterned
	Volume 139 (9)	Substrate Epitaxy of In _x Ga ₁ .
	Page L84	$_{x}As/GaAs(0 \pm x \pm 1)$ by
		Conventional LPOMVPE
	J. Appl. Phys	High Temperature Characteristics
	Volume 72 (10)	of Amorphous TiSWix Nonalloyed
	Pages 4954 -4957	Ohmic Contacts to GaAs
		Reduction of DX Centers in
	Journal of Electrochemical Society	
	Volume 139 (4)	Superlattice Alloy-Like Material
	Pages 1219-1222	High Electron Mobility Transistors

1		
	6th International SAMPE Electronic	
	Conference	Silicon MSM Photodetectors
	Volume 6	Grown By MBE
N	Pages 816-822	
	Microwave Journal	The Navy's Role in Vacuum Tube
	Volume 35 (3)	Electronics. Part 1: The Tri-
	Pages 82-90	Service Program
<u> </u>	Materials Science and Engineering	Chemical Vapor Deposition of b
	B11	-SiC on Silicon-on-Sapphire and
		Silicon-on-Insulator Substrates
\	Pages 125-129	
	J. Vac. Sci. Technol.	Comparative Mobility Degradation
	Volume B (10)	in Modulation-Doped GaAs
	Pages. 2890-2892	Devices After E-Beam and X-Ray
		Lithography
	J. Vac. Sci. Technol.	Conductance Quantization in a
	Volume B 10 (6)	GaAs Electron Waveguide Device
	Pages. 2966-2969	Fabricated by X-Ray Lithography
	Synthetic Microstructures in	Advance Materials Processes for
	Biological Research	Bio-Probes
		DIO-LIQUES
	Pages. 3-16	
	Appl. Phys. Lett.	Stress and Its Effect on the
	Volume 60 (9)	Interdiffusion in Si _{1-x} Ge _{x/} Si
	Page 1087	Superlattices
	Mat. Res. Soc. Symp Proc.	An Alternate Mechanism for
	Volume 256	Porous Si Photoluminescence:
	Pages 107-110	Recombination in SiH _x Complexes
	Proceedings of 6th International	Stresses and Allloy Mixing in Si1-
	SAMPE Electronics Conference	$_{\rm x}Ge_{\rm x}/Si$ Superlattices
	Pages 823-834	XOCX/SI Superlatuces
	Physica C	Pairing in Layered
	Volumes 185-189	
		Superconductors in the Presence of
	Pages 1543-1544	a Magnetic Field
	Pramana - J. Physics	Bivariate Averaging Functions,
	Volume 38 (3)	Translation and Scale
	Pages 233-247	Autocorrelations, Fourier and
		Mellin Transforms, the Wiener-
		Khinchine Theorem and Their
		Inter-Relationships
	Physical Review B	Solutions of the Microscopic
	Volume 46 (2)	Gorkov Equations for a
	Pages 1224-1227	Superconductor in a Strong
	1 4500 1227-1221	
	Dromono I Dhya (Drintad in	Quantizing Magnetic Field
	Pramana - J. Phys (Printed in	Magnetic Field Dependence of Tc
	India)	and Temperature Dependence of
	Volume 39 (6)	Hc2 in Layered Superconductors
	Pages 615-631	with Open Normal State Fermi
		Surface
	Modern Physics Letters A	Uncertainty Principle, Squeezing
	Volume 7 (40)	and Quantum Groups
	Pages 3759-3764	
1		

-

n	TEED MET O Later Management	A Hetere June Dessions for 40
	IEEE MTT-S Intern. Microwave	A Heterodyne Receiver for 40-
	Symposium	GHz-Modulated 1.3-µm Optical
	Pages 1413-1416	Signals Using a Multi-Tasked InP-
		Based HEMT
	Physical Review B	Infrared Absorption Due to
	Volume 46 (3)	Electron-Lattice-Vibration
	Page 1620	Scattering in A1As/GaAs Quantum
		Wells
	Superlattices and Microstructures	Phonon Assisted Cyclotron
	Volume 12 (3)	Resonance in Quantum Wells
	Page 331	
<b></b>	Applied Physics Letters	Evaluation of the 3-Level Charge
	Volume 60 (18)	Pumping Technique for
	Pages 2261-2263	Characterizing Interface Traps
	Journal of Electronic Materials	Effects of Hydrogen Annealing on
	Volume 91 (7)	MOS Oxides
	Pages 775-780	
	Solid-State Electronics	Theory and Massurament of
	Volume 25 (6)	Theory and Measurement of
	Volume 35 (6)	Quantization Effects on Si-SiO ₂
· · · · · · · · · · · · · · · · · · ·	Pages 843-854	Interface Trap Modelling
	Appl. Phys. Dett .	Time-Dependence of the Interface
	Volume 61 (25)	Trap Build-Up Deuterium-
	Pages 3014-3016	Annealed Oxides after Irradiation
1	IEEE Transactions on Nuclear	The Time-Dependence of Post-
	Science	Irradiation Interface Trap Build-up
	Volume 39 (6)	in Deuterium-Annealed Öxides
	Pages 2220-2229	
	App. Phys. Lett.	Large Temperature Changes
	Volume 61 (19)	Induced by MBE Growth on
	Page 2338	Radiatively Heated Substrates
	Surface and Interface Analysis	Performance of MgO/Au Cermet
	Volume 18	Films as Secondary Electron
	Pages 514-524	Emission Cold Cathodes
	Applied Surface Science	Analysis of Oxygen Binding-
	Volume 59]	Energy Variations for BaO on W
	Pages 227-237	~~
	Superlattices and Microstructures	Light-Activated Resistance
	Vol. 11 (3)	Switching in GaAs/AlGaAs
	Pages 293-296	Naturally-Occuring Nanostructures
	IEEE Trans. of Nuclear Science	Electron and Hole Trapping in
	Volume 39 (6)	Irradiated SIMOX, ZMR and
	Pages 2086-2097	BESOI Buried Oxides
	Journal of Non-Crystalline Solids	Raman Scattering Studies of
	Volume 140	Microcrystalline Inclusions in
	Pages 166-171	Fluoride Glasses and Fibers
	Physical Review B.	Far-Infrared Photoresponse of
	Volume 46 (13)	
		Granular YBa _{2.1} Cu _{3.4} O _{7-x}
L	Page 8472	$\mathbf{h}$

	J. Vac. Sci. Technol B Volume 10 (3)	Electrical Characterization of Low Temperature GaAs Layers, and
	Pages 1074-1077	Observation of the Extremely Large
		Carrier Concentrations in Undoped
		Material
	IEEE Transactions on Electron	High-Frequency Simulation of
	Devices	Semiconductor Alloy Ramp
	Volume 39 (5)	Heterostructures
	Pages 1063-1069	
	Microwave and Optical Technology	Modulated-Impurity-Concentration
	Letters	Transferred-Electron Devices
	Volume 5 (8)	Exhibiting Large Harmonic
	Pages 354-359	Frequency Content
	Microwave and Optical Technology	Alloy Ramp Heterostructure Diodes
	Letters	for Microwave Mixer Applications
	Volume 5 (9)	
	Pages 417-420	
	Applied Physics Letters	Distribution of Ge in O ⁺ Implanted
	Volume 61 (26)	SIlicon
	Pages 3142-3144	
	Eleventh Annual MBE Workshop,	RHEED Study of Sb Incorporation
	September 16-18, 1991, Austin,	During MBE Growth of GaSb and
	TX	AlSb
	J. Vac. Sci. & Technol B	
	Volume 10(2)	
	Pages 895-897	
	Applied Physics Letters	Accurate Determination of Effective
	Volume 61 (5)	Quantum Well Thickness: Infrared
1		Quantum wen mickness. Innared
	Pages 583-585	Absorption by Transverse-Optical
		Absorption by Transverse-Optical Phonons
		Absorption by Transverse-Optical Phonons Observation of Negative Persistent
	Pages 583-585 Applied Physics Letters Volume 60 (17)	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel
	Pages 583-585 Applied Physics Letters	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single
	Pages 583-585 Applied Physics Letters Volume 60 (17)	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society,	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep.Ultraviolet Lithography of Monolayer Films With Selective
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society,	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics,	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel CaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum-
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics, 7:11-20	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics,	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers Demonstration of Vacuum Field
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics, 7:11-20	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep.Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers Demonstration of Vacuum Field Emission from a Self-Assembling
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics, 7:11-20	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers Demonstration of Vacuum Field Emission from a Self-Assembling Biomolecular Microstructure
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics, 7:11-20 Applied Physics Letters, 60:1556	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers Demonstration of Vacuum Field Emission from a Self-Assembling Biomolecular Microstructure Composite
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics, 7:11-20	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers Demonstration of Vachum Field Emission from a Self-Assembling Biomolecular Microstructure Composite The Behavior of Ferroelectric
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics, 7:11-20 Applied Physics Letters, 60:1556	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers Demonstration of Vacuum Field Emission from a Self-Assembling Biomolecular Microstructure Composite The Behavior of Ferroelectric Liquid Crystalline Compounds at
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics, 7:11-20 Applied Physics Letters, 60:1556 Thin Solid Films, 210/211:114-117	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers Demonstration of Vacuum Field Emission from a Self-Assembling Biomolecular Microstructure Composite The Behavior of Ferroelectric Liquid Crystalline Compounds at the Air/Water Interface
	Pages 583-585 Applied Physics Letters Volume 60 (17) Pages 2113-2115 Journal of Electrochemical Society, 139(6):1677-1680 Thin Solid Films, 210/211:359-363 Biosensors and Bioelectronics, 7:11-20 Applied Physics Letters, 60:1556	Absorption by Transverse-Optical Phonons Observation of Negative Persistent Photoconductivity in an n-channel GaAs/Al _x Ga _{1-x} As Single Heterojunction Deep Ultraviolet Lithography of Monolayer Films With Selective Electroless Metallization Deep UV Photochemistry and Patterning of Self-Assembled Monolayer Films Voltage Modulation of a Gated Ion Channel Admittance in Platinum- Supported Lipid Bilayers Demonstration of Vacuum Field Emission from a Self-Assembling Biomolecular Microstructure Composite The Behavior of Ferroelectric Liquid Crystalline Compounds at

ŧ	Materials Research Society Symposium Proceedings, 260:659- 664	Patterned Electroless Metallization of Ligand-Modified Surfaces
	Materials Research Society Symposium Proceedings, 260:905- 910	Selective Metallization of CVD Diamond Films
	Materials Science & Engineering, A158:1-6	Fabrication of Biologically Based Microstructure Composites for Vacuum Field Emission
	Conf on Lasers and Electrooptics Pager CPD 28, P. 60] May 10, 1992	A Single Polarization Doped Fiber Amplifier

CY93		
CSF	Reference	Paper Titles (List)
ED	Phys. Review Ltrs., Vol. 70, #1, Jan. 1993	Observation of Stochastic Resonance in a Tristable System
	Optics Ltrs., Vol. 18, p. 72, 1993	Fiber Optic Bragg Grating Strain Sensor w/Drift Compensated High Resolution Interferometric Wavelength Detection
	Appl. Phys. Ltrs., Vol. 62, Jan. 1993	Integration of Low Temperature GaAs on Si Substrates
	Elec. Ltrs., Vol. 5, Aug. 1993	Interferometric Measurements of Lateral Phase Profile & Thermal Lensing in Broad Area Diode Amplifiers
	Appl. Phys. Ltrs, Vol 62 1993	11.6W Peak Power Diffraction Limited Diode to Diode Amplfier
	Optics Ltrs., Vol 18(5) March 93	Effects of Parasitic Fabry-Perot Cavities in Fiber Optic Dispersion
	Optics Ltrs, Vol 18(9) May 93	Reflective Fiber Ring Resonator w/Polarization Independent Operation
	J. Underwater Accoustics Vol 43(2) Page 569 April 93	Fiber Optic Heading Sensor for the All-Optical Towed Array
	App. Phys. Ltrs. Vol 62(3) Page 2911 June 93	Role of Dispersion in Limiting Pulse Width in Fiber Lasers
	J. Underwater Acoustics Vol 43(2) Page 417 April 93	Measurement of Inpit Polarization Induced Phase Noise in the AOTA
	J. Underwater Acoustics Vol 43(2) Page 597, April 1993	Interferometric Fiber optic Acoustic Sensing
	J. Underwater Acoustics Vol 43(2) P. 551, April 1993	All Optical Towed Array Sea Test Results
	J. Underwater Acoustics Vol 43(2) P. 517, APRIL 1993	Testing of a Rlanar Fiber Optic Hydrophone on KAMLOOPS
	J. Underwater Acoustics Vol 43(2) P. 387, April 1993	Arctic Test of a High Performance Fiber Optic Hydrophone Array
	J. Underwater Acoustics Vol 43(2_ P. 353, April 1993	At-Sea Noise Performance of Small Diameter and Extended Fiber Optic Hydrophones for Towed Arrays

CY93

.

----

•

π		
	J. Underwater Acoustics	Development of Fiber Optic
	Vol 43(2)	Hydrophones for High Pressure
	P. 405, April 1993	Applications
	-	
	Elec. Ltrs.,	4.5W CW Near Diffraction Limited
	Vol 29(2), Jan 1993	Tapered Stripe Semiconductor
	VOI 27(2), 3dii 1775	Optical Amplifier
·		
	Elect. Ltrs.	Intracavity Dispersion
	Vol 29(4), Feb 93	Measurement in a Mode-locked
		Fiber Laser
	J. Quan. Elec.	High Power Near Diffraction
	Vol 29(6) June 93	Limited Large Area Travelling
		Wave Semiconductor Amplifier
<b>├</b>	Ann Dhree I tro	Filament Formation in a Tapered
	App. Phys. Ltrs	
	Vol 62, P. 2304	GaAlAs Tapered Amplifier
	May 93	
	Quantum Elec. Ltrs.	An Efficient 1.46 Micron Thulium
	Vol 29(2), P. 103-106	Laser via a Cascade Process
	Feb 93	
·····	Opt. Mati's. Vol 2	Nonresonant Optical Nonlinearities
	P. 33, 1993	of Quantum Confined Nanocrystals
	1. 55, 1999	of CuBr in Glass
	<u> </u>	
	Opt. Ltrs.	Optical Vortex Solitons and the
	Vol 18, 586 1993	Stability of Dark Soliton Stripes
	Applied Spectroscopy Reviews	The Nuclear Quadrupole Interaction
	Vol 28, P. 123-164 (1993)	in High Temperature
		Superconductors
	Semiconductor Sci & Tech	Magneto-Optic and Magneto-
	Vol 8 (S112) 1993	Transport Study of InAS/GaInSb
		Superlattices
	Semiconductor Sci. & Tech.	Novel Magneto-Transport and
	Vol. 8., S48 (1993)	Magneto-Optical Transport in
		Semimetallic HgTe-CdTe
		Superlattices
	Semiconductor Sci. & Tech.	Sb/GaSb Multilayer Structures for
	Vol. 8, S117 (1993)	Potential Applications as an Indirect
		Nacrow Band-Gap Material
	Jour. Crystal Growth	Molecular Beam Epitaxial Growth
	Vol. 127, p. 777 (1993)	of Sb/GaSb Multilayer Structures
	Appl. Phys. Ltrs.,	Nanometer Fabrication in HgCdTe
	Vol. 62, 2362 (1993)	by Electron Cyclotron Resonance
		Microwave Rlasma Reactive Ion
		Etching
	Photonics Spectra Jour.	Fullerenes and Photonics
	p. 93 (1993)	
L		Proodband Thomas Northard Linite
	Appl. Phys. Lettl,	Broadband Thermal Optical Limiter
	Vol. 63, 1483-1485 (1993)	
	Opt. Comms.,	Optical Limiting in Semiconductor
	Vol. 103, 405-409 (1993)	Nanocrystals in Glass
L	,,,,	

п		
	JOSA B,	High Precision Identification of
	Vol. 10, 1955-1968 (1993)	Morphology Dependent
		Resonances in Optical Processes in
		Microdroplets
	J. Appl. Phys.,	Micropatterned Diamond Substrates
	Vol. 74, 5280-5281 (1993)	
	Physica B	Narrow-Gap HgTe-CdTe
	Vol. 191, 171 (1993)	Superlattices
	J. Vac. Sci. Tech., A <u>11</u> ,	Preparation of Sb/GaSb [111]-
	100-101 (1993)	Oriented Multilayered Structures
		Using Molecular Beam Epitaxy and
		Migration Enhanced Epitaxy
└── <u>─</u> ─── <u>─</u> ──	Jour. Elec. Mat'ls.,	Nanometer Scale Fabrication in
	Vol. 22, 1055 (1993)	HgCdTe using Methane/Hydrogen
		Electron Cycotron Resonance
		Microwave Plasmas
	Semiconductor Sci. & Tech.,	Methods for Magneto-Transport
	Wol. 8, 805 (1993)	Characterization of IR Detector
		Materials
	Appl. Phys. Lett., Vol. 63, 1098	Sb/GaSb Heterostructures and
	(1993)	Multlayers
	Jour. Appl. Phys.	Anisotropic Screening and Ionized
	Vol. 74, 6676 (1993)	Impurity Scattering in
		Semiconductor Superlattices and
		Multiple Quantum Wells
	Jour. Appl. Phys.,	Normal Incidence
	Vol. 74, 2810 (1993)	
	VOI. 74, 2010 (1995)	Electroabsorption in GaAlSb/AlSb
		L-Valley Quantum Wells for 3-5
		Micron Optical Modulation
	J. Vac. Sci. Technol., A11	ECR-RIE of Fine Features in
	1763 (1993)	HgCdTe Using CH4/H2 Plasmas
	Int'l. Jour. Nonlinear Opt. Phys.,	Type II Superlattices and Variable
	Vol. 2, 415 (1993)	Overlap Superlattices as Nonlinear
		Optical Materials for the Far
	\\	Infrared
	Phys. Rev. B,	Shubnikov-de Haas Oscillations
	Vol. 48, 1959 (1993)	and Quantum Well Features in
		InAs/GaInSb Superlattices
	Phys. Rev. B,	Semimetal-to-Semiconductor
	Vol. 48, 11431 (1993)	Transitions in Bismuth Thin Films
	Optics Ltrs.,	Excited State Absorption Enhanced
	Vol. 18, No. 19, 1603-1605	Thermal Optical Limiting with C60
	(1993)	Anomina Optical Entituding with COO
	Appl. Phys. Ltrs.,	An Optical Limiter Using
· · · · · · · · · · · · · · · · · · ·	Vol 63(14), 1880-1882 (1993)	PbPc(CP)4
[ ]	Phys. Rev. B,	Magneto Optical Determination of
	Vol. 48, No. 13, 11439 (1993)	T-point Energy Gap in Bismuth
	Phys. Rev. B,	Nonlinear Optical Properties of the
	Vol. 48, No. 13, 9447 (1993)	Fullerenes C60 and C70 at 1.064
		Microns
	Optics Ltrs.,	Strain Sensitive Elastic Scattering
	Vo. 18, 1104-1106 (1993)	from Cylinders

- - ------

	Int'l J. NL Opt. Phys.,	Characterization of a Low F-
	Vol. 2, 577-611 (1993)	Number Thermal Broadband
		Limiter
	Appl. Phys. Ltrs.	Interface Roughness Scattering in
	Vol. 63, 2210 (1993)	Semiconducting and Semimetallic
	VOI. 05, 2210 (1775)	InAs/GaInSb Superlattices
	CVGIP: Graphical Models and	Theory and Design of Local
	Image Processing, Vol. 55, No. 6,	Interpolators
	464-481 (1993)	
	App. Phys. Ltrs	Photo\induced Current transient
	Vol 63(3)	Spectroscopy of Boron dloped
	9 Aug 93	Diamond
<del></del>	J Aug JJ	
	JOSA A,	Effects of Non-Redundancy on a
	567-572 (1993)	Synthetic Aperture Imaging System
	Applied Optics,	Compensation of Spacer Thickness
	(1993)	Variations in the Holographic
		Fabry-Perot Filter
······	Optics Ltrs.,	Resolution Limits for Imaging
	Vol. 18, p. 1724 (1993)	Through Turbid Media with
	(01. 10, p. 1724 (1995)	
		Diffuse Light
	Opt. Ltrs.,	High Average Power Operation of
	Vol. 18, 1724 (1993)	a Q-Switched Diode Pumped
		Ho:Tm:Laser
	Optics Litis	Imaging Through a Strong
	Vol 18	Scattering Medium with Nonlinear
	P. 2132, 1993	Optical Field Cross-Correlation
	1. 2132, 1992	Techniques
	Ann Dhug I tro	High Power Continuous Wave
	App. Phys. Ltrs.	
	Volume 63(17)	Blue Ligh Generation in KNbO3
	P. 2327, Oct. 93	
	IEEE Phot. Ltrs.	5.25 CW Near Diffraction Limited
	Volume 5(10)	Tapered Stripe Semiconductor
	P. 1180, Òct. 93	Optical Amplifier
	Elect. Ltrs.	Fiber Optic Magnetometer System
	kVol 29(11)	for Undersea Application
	P. 1032, May 1993	
	Elec. Ltrs.	Fiber Bragg Grating Based Er-
	Volume 29(11)	Fiber Laser STrain Sensor System
	P. 1032, May 1993	K
	Iotucs Ktrs,	Multiplexed Fiber Bragg Grating
	/vikyne 18(16)	Strain Sensor System with a Fiber
	P. 1370, Aug 93	Fabry-Perot Wavelenths Filter
	IEEE Photonics Tech. Ltrs.	High Resolution Fiber Optic Low
	Volume 5(8), Aug 93	Frequency Voltage Sensor Based
		on the Electrostrictive Effect
	Appl. Phys. Ltrs., Vol. 63, #14,	Ultrafast Photodetection with an
	Oct. 1993	AlInAs/GaInAs Heterojunction
		Bipolar Transistor
· · · · · · · · · · · · · · · · · · ·	IEEE Photonics Ltrs., Vol. 5, #8.	High Power Ring Laser using a
		Broad Area GaAlAs Amplifier
	p.919, Aug. 1993	
	IEEE Trans. on Microwave Theory	Microwave Optical Mixing in
	& Tech., Vol. 41, Dec. 1993	LiNb03 Modulators

t 🤋

<u></u>	Opt. Ltrs., Vol. 18, #18, Sept. 1993	Fiber Optic Current Sensor using Orthoconjugate Loop Mirror
(	Ltrs., Vol 5, #11, p. 1347, Nov. 1993	Fiber Optic Prism True Time Delay Antenna Feed
	Optics Ltrs., Vol. 18, #22, p. 1931, Nov. 1993	Difference Frequency Mixing in AgGaS2 by using High Power GaAlAS Tapered Semiconductor Diodes
	Applied Physics Letters, Volume 63, Page 159 (1993)	Conformal Chemical Beam Deposition of the Thin Metal Film for Fabricating High Density Trench Capacitor Cells
	Journal Vacuum Science Technology, Volume A 11, Page 1733 (1993)	First-Principles Electronic Properties of Model Silicon-Based Quantum Wires
	Diamond and Related Materials, Volume 2, Page 1078 (1993)	Aerosol Doping of Flame Grown Diamond Films
	Applied Physical Letters, Volume 63, Page 3324 (1993)	Organometallic Chemical Vapor Deposition and Characterization of Indium Phosphide Nanocrystals in Vycor Porous Glass
	Organometallic Chemicals, Volume 449, Page (19 (1993)	Primary and Secondary Trimethylsilylmethylstibines. Synthesis, Characterization and Chemical Vapor Deposition Properties
	Journal Applied Physics, 74 (11), Pages 6780 - 6787 (1993)	Morphology and Transport of YBa2Cu3O7-x Sputtered in Argon, Oxygen, and Hydrogen: Dependence on Deposition Temperature
	Physica C 209, Pages 263-268 (1993)	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
	FED Journal, Volume 3, Supplement 1, Pages 35 - 43 (1993)	Space Applications of High Temperature Superconductivity: The High Temperature Superconductivity Space Experiment (HTSSE)
	IEEE Transactions on Applied Superconductivity, Volume 3, No. 1, Page 2885 (1993)	The Nigh Temperature Superconductivity Space Experiments HTSSE I - Components and HTSSE II - Subsystems and Advanced Devices
	J. Appl. Phys. 74(1),53	VUV Spectroscopy Study of Excimer Laser-Generated Plasmas.
	IEEE Trans. on Magnetics, 29/6,3252-3454	Magnetically Tunable Band-Pass Filter Utilizing Coplanar-Slotline Junction.

------

ŧ

.

.

- -----

	Nuclear Instruments and Methods	Cryogenic Radiation Detectors.
	in Physics Research B79,832-834	
	J. Appl. Phys. 73(12), 8134	K-Shell X-Ray Yield Scaling for Aluminum X-pinch Plasmas.
	J. Vac. Sci. & Techn., A11,1763- 1767	Electron Cyclotron Reactive Ion Etching of Fine Features of $Hg_{x}Cd_{1-x}Te$ using $CH_{4}/H_{2}$ Plasmas.
	Appl. Phys. Letters, 62,2362-2364	ECR-RIE of Submicron Features in Mercury Cadmium Telluride Using CH ₄ /H ₂ Plasmas.
	Solid State Communications, 88,671-675	Observation of Giant Flux-Flow in Superconducting Yba ₂ Cu ₃ O ₇ Films.
_	V. Electronic Materials, 22,1055- 1060	Nanometer Fabrication in Mercury Cadmium Telluride by Electron Cyclotron Resonance Microwave Plasma Reactive Ion Etching.
	Diamond and Related Materials 3,105-111	Comparison of $Co/H_2$ and $CH_4+O_2/H_2$ Plasmas for Diamond Thin Film Deposition by ECR-PACVD
	IEEE Trans. Nuc. Sci., NS-40, 1725	A Practical System Hardness Assurance Program.
	IEEE Transactions on Nuc. Sci. NS-40,1300	Low Temperature Proton Irradiation of GaAs MESFETS.
	IEEE Transactions on Nuc. Sci. NS-40, 1888	Geometrical Factors in See Rate Calculations, 1993.
	IEEE Transactions on Nuc. Sci. NS-40, 1660	Heavy Ion and Proton Analysis of a GaAs C-HIGFET SRAM.
	IEEE Transactions on Nuc. Sci. NS-40, 1628	Displacement Damage Effects in Mixed Particle Environment for Shielded Spacecraft CCDs.
	IEEE Transactions on Nuc. Sci. NS-40, 1926	Numerical Simulation of Heavy Ion Charge Generation and Collection Dynamics.
	IEEE NS-40, 1918	Practical Approach to Determing Charge Collection in Multi-Junction Structures Due to Ion Shunt Effects.
	IEEE Trans. Nuc. Sci., NS- 40,1709	One Hundred Percent Abrupt Failure Between Two Radiation Levels in Step-Stress Testing of Electronic Parts
	Journal of Applied Physics, 73(11)	Radiation-Induced Reverse Dark Currents in $In_{0.53}Ga_{0.47}As$ Photodiodes.
	Nuclear Instruments and Methods in Physics Research	Scintillation Decays in a Trans- stilbene Crystal.

- 45 -

n		SEDS MIL STD 1772 Ether Ortic
1	IEEE Transactions on Nuc. Sci.	SEDS MIL-STD-1773 Fiber Optic
	NS-40,1638	Data Bus: Proton Irradiation Test
		Results and Spaceflight SEU Data.
	IEEE Transaction on Nuc. Sci.	SEU Rate Prediction and
		Measurement of GaAs SRAMs
		Onboard the CRRES Satellite.
<b>├</b> ────	IEEE Transactions on Nuc. Sci.	Single Event Induced Charge
	NS-40,1867	Transport Modeling of GaAs
	113-40,1807	MESFETs.
<u>↓</u>		
	IEEE Transactions on Nuc. Sci.,	Single Event Dynamics of High-
	NS-40,1858	Performance HBTs and GaAs
		MESFETS.
	IEEE Transactions on Nuc. Sci.	The Shape of Heavy Ion Upset
	NS-40, 1812	Cross Section Curves.
	INEE Transactions on Nuc. Sci.	Damage Correlations in
	NS 40,1372	Semiconductors Exposed to
	110 40,1372	Gamma, Electron and Proton
		Radiations.
	Journal of Applied Physics, 74,3	Time Dependence of Radiation
		Induced Generation Currents in
		InGaAs Photodiodes.
	IEEE Transactions on Plasma	Study of Gain in C-Band
	Science, 21, 4, 383 (1993)	Deflection Cavities for a
		Frequency-Doubling Magnicon
8	$\mathbf{X}$	Amplifier
	Physics of Fluids B, 5, 2682	New Results and Applications for
	(1993)	the Quasioptical Gyrotron
		Nonlinear Analysis of a Magnicon
	Physics of Fluids B, 5, 3045	
	(1993)	Output Cavity
	International Journal of Infrared	RF Converter Simulation -
	and Millimeter Waves, 14, 335	Impositioin of the Radiation
	(1993)	Condition
	Applied Physics Letters, 62, 2772	External Modulation of Intense
	(1993)	Relativistic Electron Beams with
	· · ·	Spatial and Velocity
		Inhomogeneities
	Nuclear Instruments and Methods	Electron Beam Quality Limitations
	A, 331, 6 (1993)	and Beam Conditioning in Free
	· · · · · · · · · · · · · · · · · · ·	Electron Lasers
	Develoal Daview Letters 70, 10	
	Physical Review Letters, 70, 19	Methods for Conditioning Electron
	(1993)	Beams in Free-electron Lasers
	International Journal of Infrared	RF Converter Simulation-
	Millimeter Waves, 14, 335 (1993)	imposition of the Radiation
		Condition
	IEEE Trans. of Applied	Properties of MultNayer Films of
	Superconductivity	Y1Ba2Cu3O7-x/LaA1O3
	Volume 3	
	Pages 1616-1619	
		Import Ionization and Light
	IEEE Transactions on Electron	Impact Ionization and Light
	Devices	Emission in High-Power
	Devices Volume 40(7) Pages 1211-1214	Emission in High-Power Pseudomorphic AlGaAs/InGaAS HEMT's

٩,

.

•

Quality and Reliability Engineering International Volume 9 Pages 367-370	Failure Mechanisms in Life-Tested HEMTs
Materials Science and Engineering B20 Pages 26-28	Theoretical and Experimental Study of Failure Mechanisms in r.f. Reliability Life Tested High Electron Mobility Transistors
International Journal of Electronics Volume 75(4) Pages 641-645	New Tunnelling Transistor for Current Switching Logic
Proceedings 2nd ESA Electronic Components Conference Pages 285-288	GaAs Device Heavy Ion Radiation Effects
IEEE Transactions on Nuclear Science Volume 40(6) Pages 1735 - 1739	Temperature Dependent GaAs MMIC Radiation Effects
Quality and Reliability Engineering International Volume 2 Pages 367,370	Failure Mechanisms in Life Tested HEMTs
IEEE Trans on Nuclear Science Volume 40(6)	Temperature Dependent GaAs MMIC Radiation Effects
Physics of Fluids B Volume 5 (4) Pages 1349-1357	A Theory of Cavity Excitation by Modulated Electron Beam in Connection with Application to a Klystron Amplifier
Particle Accelerators Volume 43 (102) Pages 93-105	Realization of Improved Efficiency in a Gyroklystron Amplifier
Appl. Phys. Lett Volume 63(7) Page 949	Control of Interface Stoichiometry in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy
Physical Review B Volume 48(4) Pages 2436-2444	Growth of Thin Ni Films on GaN(0001)-(1 X 1)
Applied Physics Letters Volume 62(25) Pages 3297-3299	Infrared Spectroscopic Study of the Chemisorption of CF3 Species on Silicon
Diamond and Related Materials Journal Volume 2	Diamond Metal-Semiconductior- Metal Ultraviolet Photodetectors
Pages 1020-1023 Microwave and Optical Technology Letters Volume 6(1) Pages 81-83	Circuit Model of Low-Frequency Transconductance and Output Resistance Dispersion in Ion- Implanted InP JFETs

ñ		
	Fifth International Conference on Indium Phosphide and Related Materials TuC3	Sinusoidal and Transient Response of Traps in Double-Recessed InAlAs/InGaAs/InP HEMT's
	Pages 251-254	
	Fifth International Conference on Indium Phosphide and Related Materials TuP4 Pages 341-344	Fe and Ti Compensation Implants in n- and p- In0.52Al0.48As and p- I nP
<u>_</u>	Solid-State Electronics	Low Frequency Coin Dispersion in
	Volume 36 (10) Pages 1445-1453	Low-Frequency Gain Dispersion in Ion-Implanted InP JFETs
	Electronics Letters	Impact Ionisation in High-Output-
	Volume 29(21) Pages 1888-1890	Conductance Region of 0.5 mm AlSb/InAs HEMTs
	Physical Review B	Collective Intersubband Spin- and
	Volume 47(15) Page 9981	Charge-Density Excitations in Tilted Magnetic Fields
	21st International Conference on	Effects of Nonparabolicity on
	The Physics of Semiconductors Volume 2	Collective Intersubband Spin- and Charge Density Excitations
	Pages 721 724	Magagagania Dhugiag and
	Physics Reports Volume 234(2&3)	Mesoscopic Physics and Nanoelectronics: Nanoscience and
	Pages 73-174	Nanotechnology
	Physical Review B	High-Frequency Behavior of
	Volume 48(23)	Quantum-Based Devices:
	Pages 17217-17232	Equivalent-Circuit,
		Nonperturbative Response, and Phase-Space Analyses
	IEEE Electron Device Letters	Successive Charging/Discharging
	Volume 14(9)	of Gate Oxides in SOI MOSFET's
	Pages 435-437	by Sequential Hot-Electon
		Stressing of Front/Back Channel
	Journal of Applied Physics	The Nature of Donor Conduction in
	Volume 74(9) Pages 5901-5903	n-GaN
	Applied Physics Letters	Atomic Structure of Ge-related
	Volume 63(22)	Point Defects in Ge-incorporated
	Pages 3049-3051	Oxide Films
	Physical Review B	Electron-Spin-Resonance Studies
	Volume 48(24) Page 17878	of Donors in Wurtzite GaN
	IEEE Trans. on Appl.	Microwave Losses in Kinetic-
	Superconductivity	Inductance Devices Fabricated
	Volume 3(1) Pages 2808-2811	From NbCN/MgO/NbCN Trilayers
	Appl. Phys. Lett.	Microwave Measurement of the
	Volume 62(15)	Dielectric Constant of
	Pages 1845-1847	Sr0.5Ba0.5TiO3 Ferroelectric Thin
1		Films

•

Л	IEEE Trans. on Appl.	Superconducting Kinetic-
1	Superconductivity	Inductance Microwave Filters
	Volume 3(1)	Inductance wherewave Filters
I	Pages 8-16	
	Proceedings 4th European	Failure Analysis of MMIC Power
	Symposium on Reliability of	Amplifiers
	Electron Devices	
	Failure Physics and Analysis	
	Pages 453-458	
	Physical Review B	Optically Detected Magnetic
	Volume 48(19)	Resonance in Zinc-Doped Indium
	Page 14 157	Phosphide Under Uniaxial Stress
	Journal of Applied Physics	Morphology and Transport of
	Volume 74(11)	YBa ₂ Cu ₃ O _{7-x} Sputtered in Argon,
	Pages 6780-6787	
	1 4503 0700-0707	Oxygen, and Hydrogen:
	$\square$	Dependence on Deposition
		Temperature
	IEEE Trans. Applied	The Effects of Added Gases in the
	Superconductivity	Sputter Deposition of
1	Volume 3(1)	Y ₁ Ba ₂ Cu ₃ O ₇ Thin Films
	Pages 1520-1523	
	J. of Electronic Materials	MeV Energy Sulfur Implantation in
	Volume 22(5)	GaAs and InP
	Pages 559-566	
	Optical Engineering	Thin Silicon Nitride Films to
	Volume 32(10)	Increase Resolution in E-beam
	Pages 2452-2458	Lithography
	Materials Research Society	Materials Issues In X-Ray
	Symposium Proceedings	Lithography
	Volume 306	Entiography
	Pages 3-18	
	Journal of Vacuum Science	Peduation and Elimination of
		Reduction and Elimination of
	Technology B	Proximity Effects
	Volume 11(6)	
·····	Pages 2733-2740	
	Diamond and Related Materials	Aerosol Doping of Flame Grown
	Volume 2	Diamond Films
	Pages 1078-1082	
	Proceedings of the Third	Luminescence Studies of Flame
	International Symposium on	Grown Boron Doped Diamond
	Diamond Materials	Films
	Volume 193(17)	
	Pages 808-814	
	J. Appl. Phys.	X-Ray Double-Crystal Analysis of
	Volume 73(3)	Misorientation and Strain in
	Pages 1154-1160	GaAs/Si and Related
	1 agus 1154-1100	
	Diana and David and D	Heterostructures
	Physical Review B	High-Resolution X-ray Analysis of
	Volume 48(12)	Strain in Low-Temperature GaAs
1	Pages 8911-8917	$\mathbf{X}$

.

<b>n</b>		
	21st International Conference on	Exchange Interactions in
	the Physics of Semiconductors	Intersubband Transitions in
<u>.</u>	Volume 2	Semiconductor Heterostructures
	Pages 788-791	
	Proceedings 21st International	Interface Roughness in GaAs/AlAs
	Conference on The Physics of	Quantum Well Structures
	Semiconductors	
	Volume 2	
<u> </u>	Pages 1120-1123	
	Physical Review Letters	Nonlinear Theory of Gyroharmonic
	Volume 70(3)	Radiation from Spatiotemporally
	Pages 291-294	Modulated Electron Beams
	Physics of Fluids B	Linear Analysis of Backward Wave
	Volume 5(5)	Oscillations in Azimuthally Varying
	Pages 1639-1646	Tansverse Electric (TE) Modes
\ <u>\</u>	Journal of Electronic Materials	Characterization of Crystalline Low
	Volume 22(120)	Temperature GaAs Layers
	Pages 1391-1393	Annealed from an Amorphous
<u> </u>		Phase
	Physical Review B	Photoluminescence and Optically
	Volume 47(3)	Detected Magnetic Resonance of
	Page 1305	Si/Si1-xGex Strained-Layer
	Ň	Superlattices Grown by Molecular-
	$\backslash$	Beam Epitaxy
J	Appl. Phys. Lett.	Observation of Optically Detected
	Volume 63(19)	Magnetic Resonance in GaN Films
	Page 2673	Transhede Resonance In Out ( I IIIIs
	J. Vac. Sci Technol B	Concentration Dependence of Ge
	Volume 11(4)	Segregation during the Growth of a
	Pages 1392-1395	SiGe Buried Layer
	J. Vac. Sci. Techno. B	Ge Segregation During the Growth
	Volume 11(3)	of a SiGe Buried Layer by
	Pages 1120-1123	Molecular Beam Epitaxy
	Physical Review B	Electronic Structure of c(2X2) Ba
	Volume 47(16)	Adsorbed on W(001)
	Page 10748	
	Physical Review B	First-Principles Calculations of
	Volume 47(8)	Spin-Orbit Splittings in Solids
	Page 4238	using Nonlocal Separable
	1 age 7230	Decudencianticle
		Pseudopotentials
	J. Vac. Sci. Technol. B.	Effect of Interfacial Bond Type on
	Volume 11(4)	the Electronic and Structural
· · · ·	Page 1693	Properties of GaSb/InAs
		Superlattices
	Proceedings of the SOTAPOCS	Characterization of Bulk Semi-
	XVIII Conference by the Electro	Insulating GaAs Grown by a
	Chemical Society	Vertical Molten Zone MethodSb
	Volume 93-27	Surface Segregation and Doping in
	Page 263	
	r age 203	Si(100) Grown at Reduced
		Temperature by Molecular Beam
1		Epitaxy

	Appl. Phys. Lett	Sb Surface Segregation During
H	Volume 63(10)	Heavy Doping of Si(100) Grown at
1	Pages 1381-1383	Low Temperature by Molecular
	Ũ	Beam Epitaxy
	J. Vac. Sci. Techno. B	Sb Surface Segregation During
	Volume 11(3)	Heavy Doping of Si(100) Grown at
	Pages 1115-1119	Low Temperature by Molecular
	rages 1113-1119	Beam Epitaxy
I		
	Appl. Phys. Lett.	Field Emission from an Elliptical
	Volume 63(5)	Boss: Exact Versus Approximate
	Pages 702-704	Treatments
	Journal of Vacuum Science	Numerical Smulation of Field
	Technology B	Emission from Silicon
	Volume 11(2)	
	Pages 371-378	
<u> </u>	Journal of Applied Physics	Deposition and Surface
	Volume 73(6)	Characterization of High Quality
	Pages 3108-3110	Single Crystal GaN Layers
<u>├</u> ────────────────────────────────────	Journal of Applied Physics	Influence of Buffer Layers in the
	Volume 73(9)	Deposition of High Quality Single
]	Rages 4700-4702	Crystal GaN Over Sapphire
	Rages 4700-4702	Substrates
	Superlattices & Microstructures	Radiative Recombination of Free
l		
ł	Volume 13(2)	Excitons in GaAs Quantum Wells
·	Pages 271-273	
	Springer Series in Chemical	Radiative Recombination of Free
	Physics \	Excitons in GaAs Quantum Wells
	Volume 55	
	Pages 472-474	
	J. Vac. Sci. Technol. B.	Comparison of Optical Pyrometry
	Volume 11(3)	and Infrared Transmission
	Pages 1003-1006	Measurements on Indium-Free
		Mounted Substrates During
	$\backslash$	Molecular-Beam Epitaxial
	Journal de Physique IV	Lifetime of Excitons in GaAs
	Volume 3	Quantum Wells
	Pages 19-25	
	J. Vac. Sci. Technol. B	Optically Detected Magnetic
	Volume 11(3)	Resonance of Sharp Luminescence
	Page 1154	from Si/Si1-xGex Superlattices
	Electronics Letters	Observation of New Vibronic
	Volume 29(19)	Luminescence Band in
	Page 1727	Semiconducting Diamond
	IEE Proceedings-H	Waveguiding Structures Employing
	Volume 140(3)	the Solid ₅ State Magnetoplasma
	Pages 147-164	Effect for Microwave and
		Milimetre-Wave Propagation
	1993 IEEE AP-S International	Auxiliary Vector Function Method
	Symposium Digest	for Vector Variational Approach for
	Volume 1	The Solution of Complex
	Pages 412-415	Anisotropic Media Using Finite
		Element Numerical Method

-----

1	1993 IEEE AP-S International	Finite Element Method for
1.	Symposium Digest	Nonhermitian Bianisotropic Media
<b>  </b> \	Volume 1	
	Pages 424-427	
	1993 IEEE AP-S International	Fundamental Properties of Chiral
	Symposium Digest	Type Media
	Volume 1	
	Pages 189-192	
	IEEE Proceedings-H	Nonreciprocal Electromagnetic
	Volume 140(3)	Properties of Composite Chiral-
	Pages 242-248	Ferrite Media
<u>_</u>	1993 SBMO International	Properties of Composite Chiral -
	Microwave Conference/Brazil	Ferrite Media
	Proceedings	
	Volume 1	
<u>├</u>	Pages 577-586 1993 SBMO International	Weighted Desidual Fights Flags at
		Weighted Residual Finite Element
	Microwave Conference/Brazil	Method for General Nonhermitian
	Proceedings	Anisotropic Media
	Volume 1	
	Pages 597-602	
	Journal of Applied Physics	Submillimeter Wave Low
	Volume $\sqrt[7]{4(4)}$	Temperature Admittance of N-
	Pages 2633-2637	GaAs and N-InP Diode Structures
	IEEE Transactions on Electron	Compressing Photodetectors for
	Devices	Long Optical Pulses Using a
	Volume 40(10)	Lateral Blooming Drain Structure
	Pages 1740-1744	
	J. of Electronic Materials	Diode Structures from Amorphous
	Volume 22(12)	Low-Temperature GaAs
	Pages 1437-1440	
	IEEE SOI Conference Proceedings	Electron Trapping in Simox with
	Pages 70-71	Supplemental Implant
	10/05-07/93	
		Theory of Electromegnetic West
	Superlattices and Microstructures	Theory of Electromagnetic Wave
	Volume 13(1)	Propagation in Superlattices with
	Page 93	Optically Anisotropic Layers
	Physical Review B	Subband Structures of Strained
	Volume 48(8)	A1Sb/InAs/A1Sb Quantum Wells
	Page 5338	
r.	The Physics of Semiconductors	Quasi-Two Dimensional Electrons
	World Scientific Co.	in AlSb/InAs Quantum Wells
	Page 745	
	J. Appl. Phys.	Observation of Ion-Implantation-
	Volume 74(5)	Damage-Created n-Type
	Pages 3091-3098	Conductivity in InR after High-
	-	Temperature Annealing
	J. Appl. Phys.	Identification and Activation
	Volume 74(3)	Energies of Shallow Donors in
	Page 1805	Cubic SiC
	1 450 1000	

•

•

1		
	Physical Review B	Nitrogen Donor Excitation Spectra
	Volume 48(16)	in 3C-SiC)
	Page 12289	
	Physical Review B	Hydrogen Permeability in
	Volume 47(7)	Thermally Grown Films of SiO2
	Pages 4115-4118	on Silicon Substrates
<u> </u>	Physical Review B	Evidence of Long-Range Density
	Volume 48(24)	Gradient in SiO2 Films on Si from
	Pages 17-972-17-985	H2-Permeability Measurements
\		
	IEEE Transactions on Microwave	Losses in Y-Junction Stripline and
	Theory and Techniques	Microstrip Ferrite Circulators
	Volume 41(6/7)	
	Pages 1081-1086	
	Microwave and Optical Technology	Measurement of the Current-
	Letters	Density Distribution in High-
	Volume 6(13)	Temperature Superconducting
1	Pages 725-728	Microstrip by Means of Kinetic-
	×	Inductance Photoresponse
<b>}</b>	Proceedings of the Sixth European	Applications of the Coupling Model
1	Conference - Academy of Mining	to Some Problems in Mechanical
	and Metallurgy	Spectroscopy of Metals
	Materials Science Forum	specific scopy of Metals
	Volume 119 121	
<u>[</u>	Macromolecules	Viscoelastic Properties of
	Volume 26(5)	Amorphous Polymers. 2.
	Pages 1065-1071	Anomalous Temperature
		Dependence of the Steady-State
		Recoverable Compliance in Low
		Molecular Weight Polymers
	Physical Review B	Extended Kronmuller Model for
	Volume 47(9)	Cooperative Relaxations in Metallic
	Pages 5041-5046	Glasses
· · · · · · · · · · · · · · · · · · ·	Journal of Non-Crystalline Solid	Single Particle Jumps and
	Volume 155	Correlated Ionic Motions in Glass-
		Ceramics
	Pages 189-193	
	J. Chem. Phys.	Comparisons Between Coupling
	Volume 98 (9)	Model and Molecular Dynamics
	Pages 7588-7592	Simulation for Local Chain
		Motions in Bulk Amorphous
		Polymers
	J. Chem. Phys.	Breakdown of the Rouse Model for
	Volume 98(8)	Polymers Near the Glass Transition
	Pages 6488-6491	Temperature
	J. Chem. Phys.	Difference Between Nuclear Spin
	Volume 98(8)	Relaxation and Ionic Conductivity
	Pages 6424-6430	Relaxation in Superionic Glasses
	Macromolecules	
		Intermolecular Cooperativity and
	Volume 26(11)	the Temperature Dependence of
	Pages 2688-2690	Segmental Relaxation in
		Semicrystalline Polymers

A		
	Solid State Ionics	Comparisons Between 23 Na and
	Volume 61	27 Al Nuclear Spin Relaxations and
	Pages 345-353	Electrical Conductivity Relaxation
		in Na b -Alumina
	Proceedings of X11 International	Modelling Ionic Transport from the
	Conference on Defects in Insulating	Structure of Silicate Glasses
	Materials	
	08/16-22/92	
	Volume 1	
<u> </u>	Pages 53-68	Dumonia Linha Contania - Chudry of
	Progress in Colloid & Polymer	Dynamic Lights Scattering Study of
	Science	a 1,4-Isoprene-b-Styrene
	Volume 91	Copolymer
	Pages 72-74	
	Progress in Colloid & Poymer	Solvent Reorientation Dynamics in
Ì	cience	Aroclor/Polymer Solutions
	Volume 91	-
	Pages 135-137	
	Journal of Molecular Liquids	Cooperative Dynamics in
	Volume 56	Relaxation: A Coupling Model
	Pages 199-214	Perspective
	J. Chem. Phys.	Nonexponential Relaxtions in
	Volume 99(5)	Strong and Fragile Glass Formers
	Pages 4201-4209	
	Journal of Non-Crystalline Solids	Absence of Difference Between
	Volume 162	11B Nuclear Spin Relaxation and
	Pages 268-274	Li Ion Conductivity Relaxation in
		(LiCl)0.6-(Li2O)0.7-B2O3)1.0
		Superionic Glasses
	Physical Review B	Analysis of NMR and
	Volume 48(18)	Conductivity-Relaxation
	Pages 13 481-13 485	Measurements in Glassy Li2S-SiS2
		Fast-Ion Conductors
	Macromolecules	Chemical Structure and
		<b>\</b>
	Volume 26 (25)	Intermolecular Cooperativity:
	Pages 6824-6830	Dielectric Relaxation Results
	Physica C	Space Applications of High
	Volume 209	Temperature Superconductivity:
	Pages 263-268	The High Temperature
		Superconductivity Space
		Experiment (HTSSE)
	Journal of Crystal Growth	Sequential Etching of GaAs
ł	Volume 128	
	Pages 483-487	$\backslash$
	Semiconductor Science and	Magneto-Optic and
	Technology	Magnetotransport Study of
	Volume 8	InAs/Ga1-xInxSb Superlattices
		masi Gar-Anixou Superianices
	Pages S112-S116	Manuel Outin 1D (
	Physical Review B	Magnet-Optical Determination of T-
	Volume 48(15)	Point Energy Gap in Bismuth
	Pages 439-442	

.....

Electronics Letters Volume 29(1) Pages 18 and 19Reactive Ion Etching of b-SiC ir CC12F2/O2Journal of Electronic Materials Volume 22(2) Pages 201-206Lattice Mismatched InGaAs on Silicon Photodetectors Grown b Molecular Beam EpitaxyApplied Physics Letters Volume 62(5) Pages 533-534Proximity Effect Reduction Usin Thin Insulating LayersProceedings of the IEEE Volume 81(9)X-Ray Lithography- An Overvie	l
Pages 18 and 19Journal of Electronic MaterialsLattice Mismatched InGaAs on Silicon Photodetectors Grown b Molecular Beam EpitaxyApplied Physics LettersProximity Effect Reduction Usin Thin Insulating LayersPages 533-534Y-Ray Lithography- An Overvie	
Journal of Electronic Materials Volume 22(2) Pages 201-206Lattice Mismatched InGaAs on Silicon Photodetectors Grown b Molecular Beam EpitaxyApplied Physics Letters Volume 62(5) Pages 533-534Proximity Effect Reduction Usin Thin Insulating LayersProceedings of the IEEEX-Ray Lithography- An Overvie	
Volume 22(2) Pages 201-206Silicon Photodetectors Grown b Molecular Beam EpitaxyApplied Physics Letters Volume 62(5) Pages 533-534Proximity Effect Reduction Usin Thin Insulating LayersProceedings of the IEEEX-Ray Lithography- An Overvie	
Pages 201-206Molecular Beam EpitaxyApplied Physics LettersProximity Effect Reduction UsinVolume 62(5)Thin Insulating LayersPages 533-534Proceedings of the IEEEProceedings of the IEEEX-Ray Lithography- An Overvie	
Applied Physics Letters Volume 62(5) Pages 533-534Proximity Effect Reduction Usin Thin Insulating Layers X-Ray Lithography- An Overvie	y
Applied Physics Letters Volume 62(5) Pages 533-534Proximity Effect Reduction Usin Thin Insulating Layers X-Ray Lithography- An Overvie	•
Volume 62(5) Pages 533-534Thin Insulating LayersProceedings of the IEEEX-Ray Lithography- An Overvie	וס
Pages 533-534           Proceedings of the IEEE         X-Ray Lithography- An Overvie	-0
Proceedings of the IEEE X-Ray Lithography- An Overvie	
	w
Pages 1249-1274	
Analytical Chemistry Surface Characterization	
Pages 311R-333R	
Journal of Vacuum Science Determination of Acid Diffusion	
Technology B         Rate in a Chemically Amplified	
Volume 11(6) Resist With Scanning Tunneling	
Pages 2597-2602 Microscope Lithography	
VEEE Trans. on Appl. YBa2Cu3O7_	
Superconductivity 8/LaAlO3/YBa2Cu3O7-8 Trilay	ers
Volume 3 (1) Volume 5 (1)	
Pages 1438-1441 Transmission Lines for Measuring Penetration	
Depth	
IEEE Trans. on Appl. A Novel Microstrip-Compatible	
Superconductivity Technique for Depositing	_
Volume 3(1) YBa2Cu3O7-8 on Both Surfaces	s of
Pages 1711-17(4 a Substrate	
Physical Review B Structure of Intralayer and	
Volume 47(5) Interlayer Pairing Interactions, th	ie
Pages 2780-2795 Anisotropy of Order Parameters	
and the Transition Temperature i	
Layered Superconductors	
Physical Review A Coordinate and Momentum	
	- A
Volume 47(5) Part A Representations of the q-Deform	
Pages R3465-R3467 Oscillator and Their Interpretation	11
Frontiers in Solid State Sciences Superconductivity in High	
Volume 1 Magnetic Fields from a	
Pages 193-209 Microscopic Theory	
Phonons in Semiconductor Rhonon Assisted Optical Propert	
Nanostructures of Semiconductor Nanostructure	s
(NATO/ASI Series)	
J. P. Leburton et al. (eds)	
Pages 353-361	
Physical Review B Plasmons Localized at Point	
Volume 48(4) Charges in Semiconductor	
Page 2223 Quantum Wells	
Physical Review B     Surface Modes of the Clean	
Volume 48(8) Reconstructed W(100) Surface	
Page 5679	
Physical Review B Electron-Phonon Scattering Rate	S
Volume 48(8) in Quantum Wires	
Page 5700	

.

n		
	Physical Review B	Coupling of Electrons to Interface
	Volume 48(16)	Phonons in Semiconductor
1	Page 12338	Quantum Wells
	Physical Review B	Effects of Boundary Conditions on
	Volume 48(24)	Confined Optical Phonons in
	Page 18 037	Semiconductor Nanostructures
	Physical Review E	Interaction of a Relaxing System
		with a Dynamical Environment
	Volume 48(1)	with a Dynamical Environment
<u> </u>	Pages R17-R20	
	Macromolecules 1992	The Coupling Model for
	Pages 83-95	Cooperative Relaxations and Its
		Applications
	Physical Review B	Vortex-Lattice Solutions of the
	Volume 47(14)	Microscopic Gorkov Equations for
	Pages 8843-8850	a Type II Superconductor in a
	0	Strong Quantizing Magnetic Field
	Journal of Physics and Chemical	Manifestations of the Landau
	Solids	Quantization in Type II
	Volume 54(10)	Superconductors in High Magnetic
1	Pages 1281-1282	Fields
	J. Appl. Phys.	Comparison of Interface Trap
	Volume 74(5)	Densities Measured by the Jenq and
	Pages 3303-3306	Charge Pumping Techniques
	IEEE Transactions on Nuclear	Effects of Post-Stress Hydrogen
	Science	Annealing on MOS Oxides after
	Volume 40(6)	⁶⁰ Co Irradiation or Fowler-
	Pages 1341-1349	Nordheim Injection
	Applied Physics Letters	Random Telegraphic Noise in
	Volume 63(19)	Double-Barrier Systems
		Double-Damer Systems
	Pages 2652-2654	
1	J. Vac. Sci. Technol. B	Variations in Substrate Temperature
	Volume 11(3)	Induced by Molecular-Beam
	Page 994	Epitaxial Growth on Radiatively
		Heated Substrates
	Physical Review B	Planar Vibrational Modes in
	Volume 48(23)	Superlattices
l/ 1	Page17 172	$\langle \cdot \rangle$
	Proceedings of the 4th International	YBCO Josephson-Effect Devices
	Superconductive Electronics	with XBCO/Insulator Composite
	Conference, ISEC93	Barriers
1	Pages 256-257	
	IEEE Trans. Applied	Electron Transport and Magnetic
	Superconductivity	Penetration Depth in Niobium-
	Volume 3(1)	Silicon Multilayers
Í	Pages 1612-1615	<u>\</u>
	IEEE Transactions on Electron	Secondary Emission Properties as a
	Devices	Function of the Electron Incidence
1 1	Volume 40(4)	Angle
1	Pages 824-829	~ \
		Lattice Position of Si in GeAs
	J. Appl. Phys.	Lattice Position of Si in GaAs
		Lattice Position of Si in GaAs Determined by X-Ray Standing Wave Measurements

Π	Dhysical Daview D	Ontical Absorption Spectroscopy of
1	Physical Review B	Optical Absorption Spectroscopy of
	Volume 47(23)	Single Defects in $GaAs/Al_XGa_{1-X}As$
	Page 16032	Tunnel Structures
	Appl. Phys. Lett.	Fabrication of Silicon
	Volume 63(6)	Nanostructures with a Scanning
	Page 749	Tunneling Microscope
	Appl. Phys. Lett.	Fabrication of GaAs
	Volume 63(25)	Nanostructures with a Scanning
	Page 3488	Tunneling Microscope
	IEEE Transactions on Nuclear	Reduction of Charge Trapping and
	Science	Electron Tunneling in SIMOX by
	Volume 40(6)	Supplemental Implantation of
	Pages 1740-1747	Oxygen
	Journal of Applied Physics	Post-Irradiation Cracking of H ₂
	Volume 73(2)	and Formation of Interface States in
	Pages 658-667	Irradiated Metal-Oxide-
		Semiconductor Field-Effect
	$  \rangle$	Transistorss
	Physical Review B	Low-Frequency Excitations in
	Volume 47(2)	Sodium b-Alumina: An NMR
	Page 681	Study
	Diamond and Related Materials	Photoluminescence and
	Volume 2	Cathodoluminescence Studies of
	Page 87-91	Semiconducting Diamond
	Electronics Letters	Application of Micro-Airbridge
	Volume 29(1)	Isolation in High Speed HBT
	Pages 26-27	Fabrication
	1993 International Semiconductor	DC and Large-Signal AC Electron
	Devices Research Symposium	Transport Properties of
	Proceedings	GaAs/InGaAs/AlGaAs
	Volume 1	Heterostructure Barrier Varactors
	Pages 389-392	
	1993 International Semiconductor	Efficient Computer Aided Design
	Devices Research Symposium	of GaAs and InP Second Harmonic
	Proceedings	Millimeter Wave TEDs
	Volume 1	$\mathbb{N}$
	Pages 775-778	
	Solid State Electronics	Characterization of Molecular Beam
	Volume 36(3)	Epitaxially Grown InSb Layers and
	Pages 387-389	Diode Structures
	IEEE Transactions on Nuclear	Bonded Wafer Substrates for
	Science	Integrated Detector Arrays
	Volume 40(5)	
	Pages 1342-1346	
	J. Appl. Phys.	Controlled p- and n-Type Doping
	Volume 74(11)	of Homo- and Heteroepitaxially
	Pages 6686-6690	Grown InSb
	SSDM 93	Parametric Investigation of Si1-
	Japan Society of Applied Physics	$_xG_{ex}/Si$ Multiple Quantum Well
	Pages 234-236	Growth
	1 100 20 1 200	

	Sci. and Techno. B	Low Temperature Cleaning
		Processes for Si Molecular Beam
Volume		
	077-1082	Epitaxy
	al Review B	Optically Detected Magnetic
	e 48(23)	Resonance of Shallow Donors in
Page 1		GaAs
Appl. F	Phys. Lett	Solid-Phase Regrowth of
	e 63(3)	Amorphous GaAs Grown by Low-
Pages 3	320-321	Temperature Molecular-Beam
		Epitaxy
	ransactions on Plasma	Field Theory of a Traveling Wave
Science		Tube Amplifier with a Tape Helix
Volume		1 1
	554-668	
Semico	nductor Science and	The Effect of Interface Bond Type
Techno		on the Structural and Optical
Volume		Properties of GaSb/InAs
	50 5106-S111	Superlattices
	EE MTT-S International	
		Status of Ferrite Technology in the United States
	vave Symposium Digest	United States
Volume		
Pages 2	203-206	
	l Review B	Enhancement of Cyclotron Mass in
Volume		Semiconductor Quantum Wells
	691-1694	
Applied	Physics Letters	Dependence of InAs Phonon
	63(25)	Energy on Misfit-Induced Strain
Pages 3	434-3436	
Physica	al Review B	Spin-Resolved Cyclotron
Volume	e 47(11)	Resonance in InAs Quantum Wells:
	5807-6810	A Study of the Energy Dependent
	$\mathbf{X}$	g-Factor
T JAJA	ransactions on Electron	Simulation of Field Emission
Devices		Microtriodes
Volume		
	009-1016	
Chemic	try of Materials, 5:148-150	Photopatterning and Selective
		Electroless Metallization of
		Surface Attached Ligands
This C	olid Films, 224:242-247	Palladium Ion Assisted Formation
	///u 1/111115, 224.242-247	and Metallization of Lipid Tubules
	$C_{matcha} = 12(1) \cdot 162 \cdot 170$	
	Crystals, 13(1):163-170	Scanning Tunneling Microscopic
		Study of the Interfacial Order in a
		Ferroelectric Liquid Crystal
I SPIE 1		
	924:30-41	Soft X-ray (14nm) Lithography
51 112, 1	.924:30-41	with Ultrathin Imaging Layers and
		with Ultrathin Imaging Layers and Selective Electroless Metallization
ACS Sy	mposium Series on	with Ultrathin Imaging Layers and Selective Electroless Metallization Top Surface Imaging Using
ACS Sy	mposium Series on rs for Microelectronics,	with Ultrathin Imaging Layers and Selective Electroless Metallization

-----

•

- - - ---

Optical Engineering, 32(10):30	Projection X-ray Lithography with Ultrathin Imaging Layers and Selective Electroless Metallization
Science, 262:1669-1676	Lipid Tubules: A Paradigm for Molecularly Engineering Structures
Japanese Journal of Applied Physics, 32(1:12B):5829-5839	Patterning of Self-Assembled Films Using Lithographic Exposure Tools
Applied Physics Letters, 63(9):1285-1287	Ferroelectricity in a Langmuir- Blodgett Multilayer Film of a Liquid Crystalline Side-Chain Polymer
Journal of Vacuum Technology B, 1(6):2155	Lithographic Patterning of Self- Assembled Monolayer Films
Analytical Chemistry	Continuous Flow Immunosensor for Detection of Explosives
Journal of Vacuum Science and Technology B, 11(6):2155-2163	Lithographic Patterning of Self- Assembled Films