43,988 research outputs found

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page

    Computational prediction of splicing regulatory elements shared by Tetrapoda organisms

    Get PDF
    Background: auxiliary splicing sequences play an important role in ensuring accurate and efficient splicing by promoting or repressing recognition of authentic splice sites. These cis-acting motifs have been termed splicing enhancers and silencers and are located both in introns and exons. They co-evolved into an intricate splicing code together with additional functional constraints, such as tissue-specific and alternative splicing patterns. We used orthologous exons extracted from the University of California Santa Cruz multiple genome alignments of human and 22 Tetrapoda organisms to predict candidate enhancers and silencers that have reproducible and statistically significant bias towards annotated exonic boundaries.Results: a total of 2,546 Tetrapoda enhancers and silencers were clustered into 15 putative core motifs based on their Markov properties. Most of these elements have been identified previously, but 118 putative silencers and 260 enhancers (~15%) were novel. Examination of previously published experimental data for the presence of predicted elements showed that their mutations in 21/23 (91.3%) cases altered the splicing pattern as expected. Predicted intronic motifs flanking 3' and 5' splice sites had higher evolutionary conservation than other sequences within intronic flanks and the intronic enhancers were markedly differed between 3' and 5' intronic flanks.Conclusion: difference in intronic enhancers supporting 5' and 3' splice sites suggests an independent splicing commitment for neighboring exons. Increased evolutionary conservation for ISEs/ISSs within intronic flanks and effect of modulation of predicted elements on splicing suggest functional significance of found elements in splicing regulation. Most of the elements identified were shown to have direct implications in human splicing and therefore could be useful for building computational splicing models in biomedical researc

    Comparative analysis of knowledge representation and reasoning requirements across a range of life sciences textbooks.

    Get PDF
    BackgroundUsing knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms?ResultsOur existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important.ConclusionsWith some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps heavily with those already being used for biomedical ontologies, this work suggests a natural pathway to include such representations as part of the life sciences curriculum at different grade levels

    Semantic Integration of Cervical Cancer Data Repositories to Facilitate Multicenter Association Studies: The ASSIST Approach

    Get PDF
    The current work addresses the unifi cation of Electronic Health Records related to cervical cancer into a single medical knowledge source, in the context of the EU-funded ASSIST research project. The project aims to facilitate the research for cervical precancer and cancer through a system that virtually unifi es multiple patient record repositories, physically located in different medical centers/hospitals, thus, increasing fl exibility by allowing the formation of study groups “on demand” and by recycling patient records in new studies. To this end, ASSIST uses semantic technologies to translate all medical entities (such as patient examination results, history, habits, genetic profi le) and represent them in a common form, encoded in the ASSIST Cervical Cancer Ontology. The current paper presents the knowledge elicitation approach followed, towards the defi nition and representation of the disease’s medical concepts and rules that constitute the basis for the ASSIST Cervical Cancer Ontology. The proposed approach constitutes a paradigm for semantic integration of heterogeneous clinical data that may be applicable to other biomedical application domains

    Public or private economies of knowledge: The economics of diffusion and appropriation of bioinformatics tools

    Get PDF
    The past three decades have witnessed a period of great turbulence in the economies of biological knowledge, during which there has been great uncertainty as to how and where boundaries could be drawn between public or private knowledge especially with regard to the explosive growth in biological databases and their related bioinformatic tools. This paper will focus on some of the key software tools developed in relation to bio-databases. It will argue that bioinformatic tools are particularly economically unstable, and that there is a continuing tension and competition between their public and private modes of production, appropriation, distribution, and use. The paper adopts an ?instituted economic process? approach, and in this paper will elaborate on processes of making knowledge public in the creation of ?public goods?. The question is one of continuously creating and sustaining new institutions of the commons. We believe this critical to an understanding of the division and interdependency between public and private economies of knowledge

    National Center for Biomedical Ontology: Advancing biomedicine through structured organization of scientific knowledge

    Get PDF
    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease
    corecore