6,995 research outputs found

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Conceitos e métodos para apoio ao desenvolvimento e avaliação de colaboração remota utilizando realidade aumentada

    Get PDF
    Remote Collaboration using Augmented Reality (AR) shows great potential to establish a common ground in physically distributed scenarios where team-members need to achieve a shared goal. However, most research efforts in this field have been devoted to experiment with the enabling technology and propose methods to support its development. As the field evolves, evaluation and characterization of the collaborative process become an essential, but difficult endeavor, to better understand the contributions of AR. In this thesis, we conducted a critical analysis to identify the main limitations and opportunities of the field, while situating its maturity and proposing a roadmap of important research actions. Next, a human-centered design methodology was adopted, involving industrial partners to probe how AR could support their needs during remote maintenance. These outcomes were combined with literature methods into an AR-prototype and its evaluation was performed through a user study. From this, it became clear the necessity to perform a deep reflection in order to better understand the dimensions that influence and must/should be considered in Collaborative AR. Hence, a conceptual model and a humancentered taxonomy were proposed to foster systematization of perspectives. Based on the model proposed, an evaluation framework for contextualized data gathering and analysis was developed, allowing support the design and performance of distributed evaluations in a more informed and complete manner. To instantiate this vision, the CAPTURE toolkit was created, providing an additional perspective based on selected dimensions of collaboration and pre-defined measurements to obtain “in situ” data about them, which can be analyzed using an integrated visualization dashboard. The toolkit successfully supported evaluations of several team-members during tasks of remote maintenance mediated by AR. Thus, showing its versatility and potential in eliciting a comprehensive characterization of the added value of AR in real-life situations, establishing itself as a generalpurpose solution, potentially applicable to a wider range of collaborative scenarios.Colaboração Remota utilizando Realidade Aumentada (RA) apresenta um enorme potencial para estabelecer um entendimento comum em cenários onde membros de uma equipa fisicamente distribuídos precisam de atingir um objetivo comum. No entanto, a maioria dos esforços de investigação tem-se focado nos aspetos tecnológicos, em fazer experiências e propor métodos para apoiar seu desenvolvimento. À medida que a área evolui, a avaliação e caracterização do processo colaborativo tornam-se um esforço essencial, mas difícil, para compreender as contribuições da RA. Nesta dissertação, realizámos uma análise crítica para identificar as principais limitações e oportunidades da área, ao mesmo tempo em que situámos a sua maturidade e propomos um mapa com direções de investigação importantes. De seguida, foi adotada uma metodologia de Design Centrado no Humano, envolvendo parceiros industriais de forma a compreender como a RA poderia responder às suas necessidades em manutenção remota. Estes resultados foram combinados com métodos da literatura num protótipo de RA e a sua avaliação foi realizada com um caso de estudo. Ficou então clara a necessidade de realizar uma reflexão profunda para melhor compreender as dimensões que influenciam e devem ser consideradas na RA Colaborativa. Foram então propostos um modelo conceptual e uma taxonomia centrada no ser humano para promover a sistematização de perspetivas. Com base no modelo proposto, foi desenvolvido um framework de avaliação para recolha e análise de dados contextualizados, permitindo apoiar o desenho e a realização de avaliações distribuídas de forma mais informada e completa. Para instanciar esta visão, o CAPTURE toolkit foi criado, fornecendo uma perspetiva adicional com base em dimensões de colaboração e medidas predefinidas para obter dados in situ, que podem ser analisados utilizando o painel de visualização integrado. O toolkit permitiu avaliar com sucesso vários colaboradores durante a realização de tarefas de manutenção remota apoiada por RA, permitindo mostrar a sua versatilidade e potencial em obter uma caracterização abrangente do valor acrescentado da RA em situações da vida real. Sendo assim, estabelece-se como uma solução genérica, potencialmente aplicável a uma gama diversificada de cenários colaborativos.Programa Doutoral em Engenharia Informátic

    Cooperative Interactive Distributed Guidance on Mobile Devices

    Get PDF
    Mobiles device are quickly becoming an indispensable part of our society. Equipped with numerous communication capabilities, they are increasingly being examined as potential tools for civilian and military usage to aide in distributed remote collaboration for dynamic decision making and physical task completion. With an ever growing mobile workforce, the need for remote assistance in aiding field workers who are confronted with situations outside their expertise certainly increases. Enhanced capabilities in using mobile devices could significantly improve numerous components of a task\u27s completion (i.e. accuracy, timing, etc.). This dissertation considers the design of mobile implementation of technology and communication capabilities to support interactive collaboration between distributed team members. Specifically, this body of research seeks to explore and understand how various multimodal remote assistances affect both the human user\u27s performance and the mobile device\u27s effectiveness when used during cooperative tasks. Additionally, power effects are additionally studied to assess the energy demands on a mobile device supporting multimodal communication. In a series of applied experiments and demonstrations, the effectiveness of a mobile device facilitating multimodal collaboration is analyzed through both empirical data collection and subjective exploration. The utility of the mobile interactive system and its configurations are examined to assess the impact on distributed task performance and collaborative dialogue between pairs. The dissertation formulates and defends an argument that multimodal communication capabilities should be incorporated into mobile communication channels to provide collaborating partners salient perspectives with a goal of reaching a mutual understanding of task procedures. The body of research discusses the findings of this investigation and highlight these findings they may influence future mobile research seeking to enhance interactive distributed guidance

    3D Visualization Architecture for Building Applications Leveraging an Existing Validated Toolkit

    Get PDF
    The diagnostic radiology space and healthcare in general is a slow adopter of new software technologies and patterns. Despite the widespread embrace of mobile technology in recent years, altering the manner in which societies in developed countries live and communicate, diagnostic radiology has not unanimously adopted mobile technology for remote diagnostic review. Desktop applications in the diagnostic radiology space commonly leverage a validated toolkit. Such toolkits not only simplify desktop application development but minimize the scope of application validation. For these reasons, such a toolkit is an important piece of a company’s software portfolio. This thesis investigated an approach for leveraging a Java validated toolkit for the purpose of creating numerous ubiquitous applications for 3D diagnostic radiology. Just as in the desktop application space, leveraging such a toolkit minimizes the scope of ubiquitous application validation. Today, the most standard execution environment in an electronic device is an Internet browser; therefore, a ubiquitous application is web application. This thesis examines an approach where ubiquitous applications can be built using a viewport construct provided by a client-side ubiquitous toolkit that hides the client-server communication between the ubiquitous toolkit and the validated visualization toolkit. Supporting this communication is a Java RESTful web service wrapper around the validated visualization toolkit that essentially “webifies” the validated toolkit. Overall, this ubiquitous viewport is easily included in a ubiquitous application and supports remote visualization and manipulation of volumes on the widest range of electronic devices. Overall, this thesis provided a flexible and scalable approach to developing ubiquitous applications that leverage an existing validated toolkit that utilizes industry standard technologies, patterns, and best practices. This approach is significant because it supports easy ubiquitous application development and minimizes the scope of application validation, and allows medical professionals easy anytime and anywhere access to diagnostic images

    Mobile Augmented Reality: User Interfaces, Frameworks, and Intelligence

    Get PDF
    Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and perform seamless transitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences using MAR devices to provide universal access to digital content. Over the past 20 years, several MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discuss the latest studies on MAR through a top-down approach: (1) MAR applications; (2) MAR visualisation techniques adaptive to user mobility and contexts; (3) systematic evaluation of MAR frameworks, including supported platforms and corresponding features such as tracking, feature extraction, and sensing capabilities; and (4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields and the current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.Peer reviewe

    Scalable Exploration of Complex Objects and Environments Beyond Plain Visual Replication​

    Get PDF
    Digital multimedia content and presentation means are rapidly increasing their sophistication and are now capable of describing detailed representations of the physical world. 3D exploration experiences allow people to appreciate, understand and interact with intrinsically virtual objects. Communicating information on objects requires the ability to explore them under different angles, as well as to mix highly photorealistic or illustrative presentations of the object themselves with additional data that provides additional insights on these objects, typically represented in the form of annotations. Effectively providing these capabilities requires the solution of important problems in visualization and user interaction. In this thesis, I studied these problems in the cultural heritage-computing-domain, focusing on the very common and important special case of mostly planar, but visually, geometrically, and semantically rich objects. These could be generally roughly flat objects with a standard frontal viewing direction (e.g., paintings, inscriptions, bas-reliefs), as well as visualizations of fully 3D objects from a particular point of views (e.g., canonical views of buildings or statues). Selecting a precise application domain and a specific presentation mode allowed me to concentrate on the well defined use-case of the exploration of annotated relightable stratigraphic models (in particular, for local and remote museum presentation). My main results and contributions to the state of the art have been a novel technique for interactively controlling visualization lenses while automatically maintaining good focus-and-context parameters, a novel approach for avoiding clutter in an annotated model and for guiding users towards interesting areas, and a method for structuring audio-visual object annotations into a graph and for using that graph to improve guidance and support storytelling and automated tours. We demonstrated the effectiveness and potential of our techniques by performing interactive exploration sessions on various screen sizes and types ranging from desktop devices to large-screen displays for a walk-up-and-use museum installation. KEYWORDS - Computer Graphics, Human-Computer Interaction, Interactive Lenses, Focus-and-Context, Annotated Models, Cultural Heritage Computing
    corecore