72,904 research outputs found

    Topology-Transparent Scheduling in Mobile Ad Hoc Networks Supporting Heterogeneous Quality of Service Guarantees

    Get PDF
    Transmission scheduling plays a critical role in mobile ad hoc networks. Many transmission scheduling algorithms have been proposed to maximize the spatial reuse and minimize the time-division multiple-access (TDMA) frame length. Most algorithms require information on the network topology and cannot adapt to the dynamic topology in mobile scenarios. To overcome this limitation, topology-transparent scheduling algorithms have been proposed. Most of them, based on Galois field theory, Latin square, and block design theory, assign time slots to users and guarantee that there is at least one collision-free slot in each frame for each user. To the best of our knowledge, none of these topology-transparent algorithms support multiple quality of service (QoS) requirements. In this paper, we exploit the variable-weight optical orthogonal codes (VW-OOC) to design a topology-transparent scheduling algorithm in wireless ad hoc networks with multiple QoS levels. We study the performance, in terms of minimum guaranteed throughput and average throughput, of our proposed algorithm analytically and by extensive simulations.published_or_final_versio

    Xcast Based Routing Protocol For Push To Talk Application In Mobile Ad Hoc Networks

    Get PDF
    Mobile ad-hoc networks comprise a type of wireless network that can be easily created without the need for network infrastructure or administration. These networks are organized and administered into temporary and dynamic network topologies. Unfortunately, mobile ad-hoc networks suffer from some limitations related to insufficient bandwidth. The proliferation of new IP Multimedia subsystem services (IMs), such as Push-to-talk (PTT) applications consume large amounts of bandwidth, resulting in degraded QoS performance of mobile ad-hoc networks. In this thesis, a Priority XCAST based routing protocol (P-XCAST) is proposed for mobile ad-hoc networks to minimize bandwidth consumption. P-XCAST is based on demand route requests and route reply mechanisms for every destination in the PXCAST layer. To build the network topology and fill up the route table for nodes, the information in the route table is used to classify the XCAST list of destinations according to similarities on their next hop. Furthermore, P-XCAST is merged with a proposed Group Management algorithm to handle node mobility by classifying nodes into two types: group head and member. The proposed protocol was tested using the GloMoSim network simulator under different network scenarios to investigate Quality of Service (QoS) performance network metrics. P-XCAST performance was better by about 20% than those of other tested routing protocols by supporting of group size up to twenty receivers with an acceptable QoS. Therefore, it can be applied under different network scenarios (static or dynamic). In addition Link throughput and average delay was calculated using queuing network model; as this model is suitable for evaluating the IEEE 802.11 MAC that is used for push to talk applications. The analytical results for link throughput and average delay were used to validate the simulated results

    Link Available Bandwidth Monitoring for QoS Routing with AODV in Ad Hoc Networks

    Full text link
    International audienceDue to bandwidth constraint and dynamic topology of mobile ad hoc networks, supporting Quality of Service is a challenging task. In this paper we present a solution for QoS routing based on an extension of the AODV reactive routing protocol that deals with bandwidth monitoring. The solution uses an IEEE 802.11 MAC layer as the underlying technology and the QoS routing decision is based on simple but accurate measurements, at the MAC layer, of the available bandwidth on each link of the route. In addition, to allow a QoS loss recovery, a notification mechanism is used to inform the source about bandwidth degradation on a link. This reactive solution using standard protocols is adapted to small and dynamic ad hoc networks. A complete simulation set shows that, with the proposed QoS routing protocol, bandwidth on a route is significantly improved without overhead

    Hybrid Wireless Network Approach for QoS

    Get PDF
    Fast improvement of wireless networks has stimulated variety of wireless applications that have been used in number of areas such as commerce, emergency services, military, education, and entertainment. As wireless communication capture popularity, specific research has been devoted to supporting real-time transmission with Quality of Service (QoS) requirements for wireless network applications. At the same time, a wireless hybrid network that combines a mobile wireless ad hoc network (MANET) and a wireless infrastructure network has been considered to be a better option for the next generation wireless networks. By directly implementing resource reservation-based QoS routing for MANETs, hybrids networks inherit invalid reservation and race condition problems in MANETs

    Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks

    Full text link
    Mobile ad hoc networks (MANETs) offer an excellent scenario for deploying communication applications because of the connectivity and versatility of this kind of networks. In contrast, the topology is usually extremely dynamic causing high rate of packet loss, so that ensuring a specific Quality of Service (QoS) for real-time video services becomes a hard challenge. In this paper, we evaluate the effect of using Multiple Description Coding (MDC) and Forward Error Correction (FEC) techniques for improving video quality in a multimedia content distribution system. A hybrid architecture using fixed and wireless ad hoc networks is proposed, which enables the use of multipoint-to-point transmission. MDC and FEC mechanisms can be combined with multipath transmission to increase the network efficiency and recover lost packets, improving the overall Quality of Experience (QoE) of the receiver. Simulations have been analyzed paying attention to objective parameters (Peak Signal to Noise Ratio, Packet Delivery Ratio, Decodable Frame Rate and interruptions) and subjective parameters. Results show that MDC increases the probability of packet delivery and FEC is able to recover lost frames and reduce video interruptions in moderate mobility scenarios, resulting in the improvement of video quality and the final user experience.This work was supported by project MIQUEL (TEC2007- 68119-C02-01/TCM) of the Spanish Ministry of Education and Science. The authors would like to thank the Editor and the reviewers for helpful suggestions to improve the quality of this paper.Acelas Delgado, P.; Arce Vila, P.; Guerri Cebollada, JC.; Castellanos Hernández, WE. (2014). Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks. Multimedia Tools and Applications. 68(3):969-989. https://doi.org/10.1007/s11042-012-1111-3969989683Apostolopoulos JG, Wong T, Tan W, Wee SJ (2002) On multiple description streaming with content delivery networks. IEEE INFOCOMBoukerche A (2009) Algorithms and protocols for wireless and mobile ad hoc networks. John Wiley & Sons IncChow CO, Ishii H (2007) Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput Commun 30:1754–1764Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC 3626Corrie B et al (2003) Towards quality of experience in advanced collaborative environments. Third Annual Workshop on Advanced Collaborative EnvironmentsGabrielyan E, Hersch R (2006) Reliable multi-path routing schemes for real-time streaming. International Conference on Digital Telecommunications, pp 65–65Gandikota VR, Tamma BR, Murthy CSR (2008) Adaptive-FEC based packet loss resilience scheme for supporting voice communication over adhoc wireless networks. IEEE Trans Mobile Comput 7:1184–1199Gharavi H (2008) Multi-channel for multihop communication links. International Conference on Telecommunications, pp 1–6Grega M, Janowski L, Leszczuk M, Romaniak P, Papir Z (2008) Quality of experience evaluation for multimedia services. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 4:142–153Hsieh MY, Huang YM, Chian TC (2007) Transmission of layered video streaming via multi-path on ad hoc networks. Multimed Tool Appl 34:155–177ITU—International Telecommunication Union (2007) Definition of quality of experience (QoE)”, Reference: TD 109rev2 (PLEN/12)ITU-R Recommendation BT.500-12 (2009) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaITU-T Recommendation P.910 (2000) Subjective video quality assessment methods for multimedia applications. International Telecommunication Union, GenevaKao KL, Ke ChH, Shieh CH (2006) An advanced simulation tool-set for video transmission performance evaluation. IEEE Region 10 Conference, pp 1–40Ke CH et al (2006) A novel realistic simulation tool for video transmission over wireless network. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trsutworthy ComputingKeisuke U, Cheeonn C, Hiroshi I (2008) A study on video performance of multipoint-to-point video streaming with multiple description coding over ad hoc networks. EEJ Trans Electron, Inf Syst 128:1431–1437Kilkki K (2008) Quality of experience in communications ecosystem. J Univers Comput Sci 14:615–624Li A (2007) RTP payload format for generic forward error correction. RFC 5109, Dec. 2007Li J, Blake C, Couto DD, Lee H, Morris R (2001) Capacity of ad hoc wireless networks. 7th Annual International Conference on Mobile Computing and Networking, pp 16–21Liao Y, Gibson JD (2011) Routing-aware multiple description video coding over mobile ad-hoc networks. IEEE Trans Multimed 13:132–142Lindeberg M, Kristiansen S, Plagemann T, Goebel V (2011) Challenges and techniques for video streaming over mobile ad hoc networks. Multimed Syst 17:51–82Mao S et al (2003) Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J Sel Area Comm 21:1721–1737Ni P (2009) Towards Optimal Quality of Experience Via Scalable Video Coding. Mälardalen University Press Licentiate Theses, SwedenPinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50:312–322Rong B, Qian Y, Lu K, Hu RQ, Kadoch M (2010) Multipath routing over wireless mesh networks for multiple description video transmission. IEEE J Sel Area Comm 28:321–331Schierl T, Ganger K, Hellge C, Wiegand T, Stockhammer T (2006) SVC-based multisource streaming for robust video trans- mission in mobile ad hoc networks. IEEE Wireless Comm 13:96–103Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circ Syst Video Tech 17:1204–1217Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circ Syst Video Tech 17:1103–1120VQEG (2008) Video quality experts group. Available online: http://www.vqeg.orgWang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612Wei W, Zakhor A (2004) Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc net- works. Proceedings of IEEE International Conference on Multimedia and Expo 2:1379–1382Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54:660–668Xunqi Y, Modestino JW, Bajic IV (2005) Performance analysis of the efficacy of packet-level FEC in improving video transport over networks. IEEE International Conference on Image Processing 2:177–180Zink M, Schmitt J, Steinmetz R (2005) Layer-encoded video in scalable adaptive streaming. IEEE Trans Multimed 7:75–8

    Enhanced Ad Hoc On-Demand Distance Vector Routing Protocol For Mobile Ad Hoc Network Internet Connectivity

    Get PDF
    An ad hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any existing network infrastructure or centralized administration and consists of mobile nodes that use a wireless interface to communicate with each other. These mobile nodes serve as both hosts and routers so they can forward packets on behalf of each other. Hence, the mobile nodes are able to communicate beyond their transmission range by supporting multi hop communication. However, the fact that there is no central infrastructure and that the devices which can move randomly gives rise to various kinds of problems, such as routing and security and quality of service (QoS). In this thesis the problem of routing is considered. An Ad-Hoc network has certain characteristics, which impose new demand on the routing protocol the most important characteristic is the dynamic topology, which is a consequence of node mobility. Nodes can changes position quite frequently, which means that we need a routing protocol that quickly adapts to topology changes. The nodes in ad hoc network can consist of laptops and PDA (Personal Digital Assistants) and are often very limited in resources such as CPU capacity, storage capacity, battery power and bandwidth. This means that routing protocol should try to minimize control traffic, such as period update message. Instead the routing protocol should be reactive, thus only calculate routes upon receiving a specific request. The Internet Engineering Task Force (IEFT) currently has a working group called mobile Ad hoc network (MANET) that is working on routing specification for Ad hoc networks. This thesis evaluates some of the routing protocols such as AODV (Ad hoc on demand Distance vector) and DSR (Dynamic Sources Routing) and DSDV (Destination Sequenced Distance vector) for performance testing and an enhanced implementation of AODV, which is able to detect Internet gateway in the proactive, reactive, and hybrid situation. This evaluation is done by means of simulation using NS-2 developed by University California Berkeley. There are several ad hoc routing protocols, such as AODV, DSR, and DSDV that propose solutions for routing within a mobile ad hoc network. However, since there is an interest in communication between not only mobile devices in an ad hoc network, but also between a mobile device in an ad hoc network and a fixed device in a fixed network (e.g. the Internet), the ad hoc routing protocols need to be modified. In this thesis the ad hoc routing protocol AODV is used and modified to examine the interconnection between a mobile ad hoc network and the Internet. For this purpose Network Simulator 2, NS 2, has been used. Moreover, three proposed approaches for gateway discovery are implemented; propose a forwarding algorithm, and route determination algorithm for default route and host route in MANET are investigated

    An ad hoc wireless mobile communications model for Special Operations Forces

    Get PDF
    The digitization of the battlefield enables special operators to use improved communications supported by computer networks across a range of missions. The communications paradigm is evolving toward mobile wireless ad hoc networks. This development enables an autonomous system of mobile nodes supporting peer-to-peer communications in forward-deployed military networks. Ad hoc networks have to establish a reliable, secure, instant, and usually temporary, communication infrastructure and to be able to access in a global communications infrastructure. Our model describes a global communication network supporting the special operator in mobile wireless communications. The main purpose is to provide a handheld wireless communications node which is capable of transferring voice, data, and imagery to and from parallel and vertical command structures within an environment replete with electronic countermeasures. The model will support the representation of requirements such as throughput, quality of service with low power consumption, and low probability of detection/interception. Special Forces are moving toward using commercial-off-the- shelf products and services based on availability and cost effectiveness. Using GloMoSim tool, we run simulations for a direct action scenario and compared the efficiency of on-demand and table-driven routing protocols under different bandwidths and communications loadshttp://www.archive.org/details/adhocwirelessmob00ogutFirst Lieutenant, Turkish ArmyApproved for public release; distribution is unlimited

    A power-controlled MAC supporting service differentiation in mobile ad hoc networks

    Get PDF
    The original power controlled multiple access (PCMA) protocol does not support service differentiation. In this paper, we extend PCMA to form a new media access control protocol supporting service differentiation in mobile ad hoc networks. To support QoS, we first introduce the in-station access category concept in 802.1 le to PCMA. For service differentiation between access categories, our major contribution is to propose a sender-initiated busy tone based mechanism that allows a user to gain quick channel access. This quick access mechanism is only performed when the number of access failures exceeds a threshold. An access category with higher priority is assigned a lower threshold for easier channel access, and vice versa. Through analysis and simulation, we demonstrate that our protocol can provide better quality of service than 802.11e in terms of throughput, delay, loss, and fairness. © 2005 IEEE.published_or_final_versio

    A Novel Clustering Tree-based Video lookup Strategy for Supporting VCR-like Operations in MANETs

    Get PDF
    Mobile Peer-to-Peer (MP2P) network is a promising avenue for large-scale deployment of Video-on-Demand (VoD) applications over mobile ad-hoc networks (MANETs). In P2P VoD systems, fast search for resources is key determinants for improving the Quality of Service (QoS) due to the low delay of seeking resources caused by streaming interactivity. In this paper, we propose a novel Clustering Tree-based Video Lookup strategy for supporting VCR-like operations in MANETs (CTVL) CTVL selects the chunks with the high popularity as "overlay router" chunks to build the "virtual connection" with other chunks in terms of the popularities and external connection of video chunks. CTVL designs a new clustering strategy to group nodes in P2P networks and a maintenance mechanism of cluster structure, which achieves the high system scalability and fast resource search performance. Thorough simulation results also show how CTVL achieves higher average lookup success rate, lower maintenance cost, lower average end-to-end delay and lower packet loss ratio (PLR) in comparison with other state of the art solutions

    Performance evaluation of High Definition video streaming over Mobile Ad Hoc Networks

    Full text link
    © 2018 Video Service Providers (VSPs) can collect and analyze an enormous amount of multimedia data from various cloud storage centers using real-time big data systems for supporting various online customers. The infrastructure-less nature of Mobile Ad Hoc Networks (MANETs) makes the video streaming a challenging task for VSPs. High packet-loss probability in MANETs can create a notable distortion in the received video quality. In this paper, High Definition (HD) videos are streamed over MANETs. First, a transmission model is designed followed by a distortion model to estimate network distortions, such as packet-loss rate and end-to-end delay. Based on the proposed models, a video streaming framework is designed to efficiently utilize the available bandwidth in MANETs, minimize the network distortions, and improve Quality of Service (QoS). Later, an Error Concealment (EC) technique is used to conceal the lost/dropped video frames to improve the Quality of Experience (QoE). Experimental results show that our proposed video streaming framework outperforms the state-of-the-art routing protocols designed for MANETs, such as Destination-Sequenced Distance Vector (DSDV) and Optimized Link Sate Routing (OLSR) protocols. In the end, both subjective and objective evaluations are performed to evaluate the perceptual quality of the concealed video data
    corecore