190 research outputs found

    Navigation in VR for visual analytics using the latest consumer-grade hardware

    Get PDF
    The Virtual Reality (VR) hardware market has been evolving rapidly since 2016. Consumer-level VR headsets or HMDs (head-mounted display), such as HTC Vive, have become more affordable and accessible during the last few years. As the hardware specifications improve, a greater level of immersion will be able to be achieved. This trend is paving the way for exciting new opportunities in the software market for exploiting the new possibilities afforded by these interactive display systems. One new avenue of design research in this space is immersive analytics, which refers to data visualization using immersive technologies. Many design challenges remain in such VR-based platforms such as user navigation and interface design. My research re-examines the validity of existing navigation techniques and VR interface design by building and testing an immersive data visualization environment using the latest VR hardware and software packages

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    In a context of global carbon emission reduction goals, buildings have been identified to detain valuable energy-saving abilities. With the exponential increase of smart, connected building automation systems, massive amounts of data are now accessible for analysis. These coupled with powerful data science methods and machine learning algorithms present a unique opportunity to identify untapped energy-saving potentials from field information, and effectively turn buildings into active assets of the built energy infrastructure.However, the diversity of building occupants, infrastructures, and the disparities in collected information has produced disjointed scales of analytics that make it tedious for approaches to scale and generalize over the building stock.This coupled with the lack of standards in the sector has hindered the broader adoption of data science practices in the field, and engendered the following questioning:How can data science facilitate the scaling of approaches and bridge disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?This thesis focuses on addressing this interrogation by investigating data-driven, scalable, interpretable, and multi-scale approaches across varying types of analytical classes. The work particularly explores descriptive, predictive, and prescriptive analytics to connect occupants, buildings, and urban energy planning together for improved energy performances.First, a novel multi-dimensional data-mining framework is developed, producing distinct dimensional outlines supporting systematic methodological approaches and refined knowledge discovery. Second, an automated building heat dynamics identification method is put forward, supporting large-scale thermal performance examination of buildings in a non-intrusive manner. The method produced 64\% of good quality model fits, against 14\% close, and 22\% poor ones out of 225 Dutch residential buildings. %, which were open-sourced in the interest of developing benchmarks. Third, a pioneering hierarchical forecasting method was designed, bridging individual and aggregated building load predictions in a coherent, data-efficient fashion. The approach was evaluated over hierarchies of 37, 140, and 383 nodal elements and showcased improved accuracy and coherency performances against disjointed prediction systems.Finally, building occupants and urban energy planning strategies are investigated under the prism of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants were determined to significantly impact optimal energy community designs in the context of weather and economic uncertainties.Overall, the thesis demonstrated the added value of multi-scale approaches in all analytical classes while fostering best data-science practices in the sector from benchmarks and open-source implementations

    Cognitive Foundations for Visual Analytics

    Full text link

    Visualization and Human-Machine Interaction

    Get PDF
    The digital age offers a lot of challenges in the eld of visualization. Visual imagery has been effectively used to communicate messages through the ages, to express both abstract and concrete ideas. Today, visualization has ever-expanding applications in science, engineering, education, medicine, entertainment and many other areas. Different areas of research contribute to the innovation in the eld of interactive visualization, such as data science, visual technology, Internet of things and many more. Among them, two areas of renowned importance are Augmented Reality and Visual Analytics. This thesis presents my research in the fields of visualization and human-machine interaction. The purpose of the proposed work is to investigate existing solutions in the area of Augmented Reality (AR) for maintenance. A smaller section of this thesis presents a minor research project on an equally important theme, Visual Analytics. Overall, the main goal is to identify the most important existing problems and then design and develop innovative solutions to address them. The maintenance application domain has been chosen since it is historically one of the first fields of application for Augmented Reality and it offers all the most common and important challenges that AR can arise, as described in chapter 2. Since one of the main problem in AR application deployment is reconfigurability of the application, a framework has been designed and developed that allows the user to create, deploy and update in real-time AR applications. Furthermore, the research focused on the problems related to hand-free interaction, thus investigating the area of speech-recognition interfaces and designing innovative solutions to address the problems of intuitiveness and robustness of the interface. On the other hand, the area of Visual Analytics has been investigated: among the different areas of research, multidimensional data visualization, similarly to AR, poses specific problems related to the interaction between the user and the machine. An analysis of the existing solutions has been carried out in order to identify their limitations and to point out possible improvements. Since this analysis delineates the scatterplot as a renowned visualization tool worthy of further research, different techniques for adapting its usage to multidimensional data are analyzed. A multidimensional scatterplot has been designed and developed in order to perform a comparison with another multidimensional visualization tool, the ScatterDice. The first chapters of my thesis describe my investigations in the area of Augmented Reality for maintenance. Chapter 1 provides definitions for the most important terms and an introduction to AR. The second chapter focuses on maintenance, depicting the motivations that led to choose this application domain. Moreover, the analysis concerning open problems and related works is described along with the methodology adopted to design and develop the proposed solutions. The third chapter illustrates how the adopted methodology has been applied in order to assess the problems described in the previous one. Chapter 4 describes the methodology adopted to carry out the tests and outlines the experimental results, whereas the fifth chapter illustrates the conclusions and points out possible future developments. Chapter 6 describes the analysis and research work performed in the eld of Visual Analytics, more specifically on multidimensional data visualizations. Overall, this thesis illustrates how the proposed solutions address common problems of visualization and human-machine interaction, such as interface de- sign, robustness of the interface and acceptance of new technology, whereas other problems are related to the specific research domain, such as pose tracking and reconfigurability of the procedure for the AR domain

    Análise visual aplicada à análise de imagens

    Get PDF
    Orientadores: Alexandre Xavier Falcão, Alexandru Cristian Telea, Pedro Jussieu de Rezende, Johannes Bernardus Theodorus Maria RoerdinkTese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação e Universidade de GroningenResumo: Análise de imagens é o campo de pesquisa preocupado com a extração de informações a partir de imagens. Esse campo é bastante importante para aplicações científicas e comerciais. O objetivo principal do trabalho apresentado nesta tese é permitir interatividade com o usuário durante várias tarefas relacionadas à análise de imagens: segmentação, seleção de atributos, e classificação. Neste contexto, permitir interatividade com o usuário significa prover mecanismos que tornem possível que humanos auxiliem computadores em tarefas que são de difícil automação. Com respeito à segmentação de imagens, propomos uma nova técnica interativa que combina superpixels com a transformada imagem-floresta. A vantagem principal dessa técnica é permitir rápida segmentação interativa de imagens grandes, além de permitir extração de características potencialmente mais ricas. Os experimentos sugerem que nossa técnica é tão eficaz quanto a alternativa baseada em pixels. No contexto de seleção de atributos e classificação, propomos um novo sistema de visualização interativa que combina exploração do espaço de atributos (baseada em redução de dimensionalidade) com avaliação automática de atributos. Esse sistema tem como objetivo revelar informações que levem ao desenvolvimento de conjuntos de atributos eficazes para classificação de imagens. O mesmo sistema também pode ser aplicado para seleção de atributos para segmentação de imagens e para classificação de padrões, apesar dessas tarefas não serem nosso foco. Apresentamos casos de uso que mostram como esse sistema pode prover certos tipos de informação qualitativa sobre sistemas de classificação de imagens que seriam difíceis de obter por outros métodos. Também mostramos como o sistema interativo proposto pode ser adaptado para a exploração de resultados computacionais intermediários de redes neurais artificiais. Essas redes atualmente alcançam resultados no estado da arte em muitas aplicações de classificação de imagens. Através de casos de uso envolvendo conjuntos de dados de referência, mostramos que nosso sistema pode prover informações sobre como uma rede opera que levam a melhorias em sistemas de classificação. Já que os parâmetros de uma rede neural artificial são tipicamente adaptados iterativamente, a visualização de seus resultados intermediários pode ser vista como uma tarefa dependente de tempo. Com base nessa perspectiva, propomos uma nova técnica de redução de dimensionalidade dependente de tempo que permite a redução de mudanças desnecessárias nos resultados causadas por pequenas mudanças nos dados. Experimentos preliminares mostram que essa técnica é eficaz em manter a coerência temporal desejadaAbstract: We define image analysis as the field of study concerned with extracting information from images. This field is immensely important for commercial and interdisciplinary applications. The overarching goal behind the work presented in this thesis is enabling user interaction during several tasks related to image analysis: image segmentation, feature selection, and image classification. In this context, enabling user interaction refers to providing mechanisms that allow humans to assist machines in tasks that are difficult to automate. Such tasks are very common in image analysis. Concerning image segmentation, we propose a new interactive technique that combines superpixels with the image foresting transform. The main advantage of our proposed technique is enabling faster interactive segmentation of large images, although it also enables potentially richer feature extraction. Our experiments show that our technique is at least as effective as its pixel-based counterpart. In the context of feature selection and image classification, we propose a new interactive visualization system that combines feature space exploration (based on dimensionality reduction) with automatic feature scoring. This visualization system aims to provide insights that lead to the development of effective feature sets for image classification. The same system can also be applied to select features for image segmentation and (general) pattern classification, although these tasks are not our focus. We present use cases that show how this system may provide a kind of qualitative feedback about image classification systems that would be very difficult to obtain by other (non-visual) means. We also show how our proposed interactive visualization system can be adapted to explore intermediary computational results of artificial neural networks. Such networks currently achieve state-of-the-art results in many image classification applications. Through use cases involving traditional benchmark datasets, we show that our system may enable insights about how a network operates that lead to improvements along the classification pipeline. Because the parameters of an artificial neural network are typically adapted iteratively, visualizing its intermediary computational results can be seen as a time-dependent task. Motivated by this, we propose a new time-dependent dimensionality reduction technique that enables the reduction of apparently unnecessary changes in results due to small changes in the data (temporal coherence). Preliminary experiments show that this technique is effective in enforcing temporal coherenceDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2012/24121-9;FAPESPCAPE

    GeoAI-enhanced Techniques to Support Geographical Knowledge Discovery from Big Geospatial Data

    Get PDF
    abstract: Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of GIScience and data-driven geography. As a highly-utilized function of GeoAI technique, deep learning models designed for processing geospatial data integrate powerful computing hardware and deep neural networks into various dimensions of geography to effectively discover the representation of data. However, limitations of these deep learning models have also been reported when People may have to spend much time on preparing training data for implementing a deep learning model. The objective of this dissertation research is to promote state-of-the-art deep learning models in discovering the representation, value and hidden knowledge of GIS and remote sensing data, through three research approaches. The first methodological framework aims to unify varied shadow into limited number of patterns, with the convolutional neural network (CNNs)-powered shape classification, multifarious shadow shapes with a limited number of representative shadow patterns for efficient shadow-based building height estimation. The second research focus integrates semantic analysis into a framework of various state-of-the-art CNNs to support human-level understanding of map content. The final research approach of this dissertation focuses on normalizing geospatial domain knowledge to promote the transferability of a CNN’s model to land-use/land-cover classification. This research reports a method designed to discover detailed land-use/land-cover types that might be challenging for a state-of-the-art CNN’s model that previously performed well on land-cover classification only.Dissertation/ThesisDoctoral Dissertation Geography 201
    corecore