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ABSTRACT  

   

Big data that contain geo-referenced attributes have significantly reformed the 

way that I process and analyze geospatial data. Compared with the expected benefits 

received in the data-rich environment, more data have not always contributed to more 

accurate analysis. “Big but valueless” has becoming a critical concern to the community 

of GIScience and data-driven geography. As a highly-utilized function of GeoAI 

technique, deep learning models designed for processing geospatial data integrate 

powerful computing hardware and deep neural networks into various dimensions of 

geography to effectively discover the representation of data. However, limitations of 

these deep learning models have also been reported when People may have to spend 

much time on preparing training data for implementing a deep learning model. The 

objective of this dissertation research is to promote state-of-the-art deep learning models 

in discovering the representation, value and hidden knowledge of GIS and remote sensing 

data, through three research approaches. The first methodological framework aims to 

unify varied shadow into limited number of patterns, with the convolutional neural 

network (CNNs)-powered shape classification, multifarious shadow shapes with a limited 

number of representative shadow patterns for efficient shadow-based building height 

estimation. The second research focus integrates semantic analysis into a framework of 

various state-of-the-art CNNs to support human-level understanding of map content. The 

final research approach of this dissertation focuses on normalizing geospatial domain 

knowledge to promote the transferability of a CNN’s model to land-use/land-cover 

classification. This research reports a method designed to discover detailed land-use/land-
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cover types that might be challenging for a state-of-the-art CNN’s model that previously 

performed well on land-cover classification only. 
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CHAPTER 1                                                                                          

INTRODUCTION 

1.1 Big Data in GIScience 

Earth observation systems (Acker and Leptoukh, 2007; Li et al., 2016), web 

crawlers (Li, Yang and Yang, 2010), social media (Sui and Goodchild, 2011), 

cyberinfrastructure (Yang et al, 2010; Wright and Wang, 2011), and cloud-based data 

catalogs (Gorelick et al., 2017) generate uncountable volumes of data each day. This 

data-rich environment significantly reshapes the structure of geospatial research, and 

provides great possibilities for many geospatial data analyses, such as large-scale land 

change detection (Hansen and Loveland, 2012), global climate analysis (Faghmous and 

Kumar, 2014). The “3Vs” of big data (Lee and Kang, 2015)—volume, velocity and 

variety, respectively describe the 1) massive amounts of data created each day, 2) the 

rapidity of data generation and acquisition, and 3) the large number of data types to be 

analyzed. As integrated techniques for big data analysis progress, value and veracity 

become other essential characteristics of big data (Emani, Cullot and Nicolle, 2015). 

Value reflects the usability and practicality of a dataset. In practice, a majority of datasets 

might be useless for a data analysis task without their collection specifically planned to 

address that task (LaValle et al., 2011). Veracity is a significant measurement of data 

quality and reliability. In the context of big data, veracity not only refers to the accuracy 

of ground truth data, but also  indicates the trustworthiness of data sources and data 

generation. 

Claims that approximately 80% of data are geographically referenced signify the 

importance of the spatial dimension in big data (Franklin and Hane, 1992; Morais, 2012). 
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Big data containing geo-referenced attributes, which are viewed as big geospatial data, 

transform geography and related fields into data-driven disciplines (Graham and Shelton, 

2013; Kitchin, 2013; Miller and Goodchild, 2015; Robinson et al., 2017). To better 

understand the influences of big geospatial data, Miller and Goodchild (2015) categorized 

big geospatial data sources into five types—location-aware devices, in-situ sensors, 

satellite and aircraft-based Earth observation systems, radio frequency identification, and 

social media. Data generated from these sources have not only reformed the way in 

which people collect and process geospatial data, they have also reshaped the sight of 

data analysis and data visualization. Big geospatial data have already impressed 

remarkable changes on different dimensions of geography. 

(1) Location. Global navigation satellite systems (GNSS), such as GPS, Galileo, 

and Beidou, enable users to receive real-time, accurate geographical positioning services 

with portable devices. For example, timely-updated GPS signals help people understand 

real-time traffic patterns between a city and its neighborhoods using their smartphone 

(Luo et al., 2013; Pang et al., 2013). Aside from GNSS, inertial navigation systems that 

incorporate data derived from rotation sensors and motion sensors can support precise 

determination of indoor position, user orientation, and speed prediction when GNSS 

signals are blocked by building materials. 

(2) Places and regions are essential attributes for understanding natural and 

constructed elements of the Earth’s surface. Field investigations are often impractical to 

collect data for large areas, or under dangerous conditions such as flooding and other 

hazards. Various Earth observation data that are generated at a relatively rapid speed help 

people monitor and analyze events and phenomena without the workload of field 
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investigations. Examples of fields requiring huge amounts of geospatial data to explore a 

place or a region include the monitoring of global climate (Hansen et al., 2013), the 

terrestrial carbon cycle (Schimel et al., 2015), sea surface temperatures (Donlon et al., 

2012), and melting polar ice caps (Hall et al., 2013). 

(3) Physical systems and human systems. Much research has reported the 

significance of big geospatial data in a variety of geospatial applications that involve 

natural powers or human activities. For example, spatial details and spectral information 

in Earth observation data can help people receive in-depth knowledge about physical 

systems or human activities (Hansen and Loveland, 2012; Gómez, White and Wulder, 

2016) at different spatial scales. Such efforts associated with Earth observation data also 

include hurricane path tracking (Wang, Zhao and Shen, 2012), seismic monitoring 

(Mordret et al., 2016), land cover mapping (Gómez, White and Wulder, 2016), and land 

change detection (Hansen and Loveland, 2012). Moreover, big social media data and 

real-time GPS signals are potentially useful for predicting the trajectory and movement of 

citizens (Spangenberg, 2014), predicting human behavior (Majid et al., 2013), analyzing 

public health (Houston, et al., 2015), monitoring urbanization (Srivastava et al., 2012) 

and discovering areas of interest (Jiang et al., 2015). 

(4) Environment and society. The expansion of human activities renders the 

isolation of natural phenomena from cultural elements difficult in any geographical 

application. Big geospatial data offer hyperdimensional geographical aspects to explore 

the interaction, configuration and organization of a natural/human system (Graham and 

Shelton, 2013). Traditional field investigations and data analysis approaches lack a data-

rich environment, meaning that those methods might be insufficient to describe the 
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interaction between environments and societies. For example, an accurate urban air 

quality estimation should consider geographical location and sophisticated air pollutant 

emissions (Gupta et al., 2006). Understanding other interactions between environment 

and society, such as urban heat islands (Estoque, Murayama and Myint, 2017), water 

quality (Gholizadeh, Melesse and Reddi, 2016), and deforestation (Ishtiaque, Myint and 

Wang, 2016), also relies on big geospatial data 

1.2 Challenges of Big Geospatial Data Analysis 

While the benefits of big data have been reported, challenges associated with big 

geospatial data analysis have attracted considerable attention. In the big data era, it is 

generally believed that more data always lead to more accurate data analysis results. This 

belief prompts people to collect as much of as many types of data as possible, ignoring 

the cost of data collection and storage (Goodchild, 2013; Chen and Zhang, 2014). For 

instance, although big data are now stored and available for public use through large-

scale data portals and cyberinfrastructures, only limited amounts of the countless remote 

sensing images and spatio-temporal GIS datasets have been accessed or utilized. Data 

deficiency is still a major concern when designing geographical research. Compared to an 

emphasis on data collection, it may be more valuable to discover new uses of existing 

datasets. “Big but valueless” has become a decisive obstacle to benefiting from big 

geospatial data. 

Moreover, studies regarding feature engineering have confirmed the significance 

of sparse data features and data quality in big data analysis (Kasun, et al., 2013; LeCun, 

Bengio and Hinton, 2015; Najafabadi et al., 2015). The efficiency of traditional machine 

learning relies heavily on the quality of manually-prepared data, which is limited when 
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open-source data and volunteer geographical information contain disorganized content 

and untruthful information. For example, map elements and map metadata are generally 

missing in the majority of maps on the Internet (ref). These maps also may contain 

incorrect place names and map features. Lastly, a large portion of valuable content might 

be hidden in the data itself. An example related to this concern is the difference between 

land cover mapping and land use interpretation. Researchers generally focus on mapping 

different land cover types from a remote sensing imagery, while ignoring the 

functionality and configuration of this land cover that impacts the LULC properties. 

1.3 Deep Learning in Applications Using Big Geospatial Data 

Artificial Intelligence (AI) is a discipline that creates intelligent machines that 

approach human intelligence in perception, learning, reasoning, and problem solving. AI 

techniques were initially developed in the 1950s, and have experienced three boom and 

bust cycles thanks to advances in computing engineering and automation. Software 

companies like Microsoft and Esri may have been the first to propose the term “GeoAI”, 

which attempts to integrate AI techniques and geospatial data into various dimensions of 

geography. Currently, the integration of GeoAI techniques into various geographical 

disciplines has been reported in a variety of applications, including automatic map 

recognition (Li, Liu and Zhou, 2018; Zhou, 2018), environmental health analysis 

(VoPham et al., 2018), air quality estimation (Li et al., 2017), geo-location discovery (Lin 

et al., 2015; Tian, Chen and Shah, 2017), ecological activity analysis (Miller-Rushing, 

Gallinat and Primack, 2019), rural area development prediction (Jean et al., 2016), the 

detection of interesting targets (Cheng and Han, 2016), and so on.  
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Recently, deep learning and its derivatives, such as reinforcement learning and 

graph learning, have become a new orientation in the third boom of AI development. The 

term “deep” in deep learning describes the deep architecture of a neural network to 

support a multi-layer data processing. The deep architecture increases the strength of 

processing data features into multi-level representations—from low-level data features to 

high-level abstract features (Bengio, Courville and Vincent, 2013). This means that deep 

learning can effectively handle more complex data features and patterns. Deep learning 

can be divided into three categories: unsupervised deep learning, supervised deep 

learning, and reinforcement learning. 

Unsupervised machine learning aims to discover hidden patterns from unlabeled 

data. Since the process of feature learning is not included, unsupervised machine learning 

is simple and quick for data analysis. Unsupervised machine learning has developed into 

a number of geo-referenced algorithms, such as spatially-aware clustering (Wu, Zurita-

Milla and Kraak, 2015; Yin et al., 2017), anomaly detection (Xiong and Zuo, 2018), 

dimensionality reduction (Romero, Gatta and Camps-Valls, 2016; Steiger, Resch and 

Zipf, 2016), and expectation–maximization optimization (Zhang et al., 2016). However, 

insufficient accuracy is the major restriction of these traditional unsupervised methods. 

For example, the accuracy of social media photo recognition might be lower than 60% by 

spectral unmixing (Hu et al., 2015; Zhou, Zhang and Wu, 2019), which is insufficient to 

support an accurate tourism AOI analysis. Deep neural networks (DNNs) significantly 

promote the power of unsupervised machine learning. A variety of DNNs such as 

autoencoders, deep belief nets, generative adversarial networks (GANs), and self-

organizing maps have  revealed promise in dimensionality reduction (Han, Zhong and 
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Zhang, 2017; Su et al., 2019), geotagged image and GPS fusion (Jiang, Kong and Fu, 

2017), indoor navigation (Khatab, Hajihoseini and Ghorashi, 2018), spatial interpolation 

(Li et al., 2017), urban growth modelling (Zhou et al., 2017), ground image generation 

(Deng, Zhu and Newsam, 2018), and others. 

Supervised machine learning algorithms are prominent and popular in GeoAI 

since they allow users to predefine criteria for the relationship between input data and 

output results. Compared with “shallow” machine learning techniques such as support 

machine vector, random forest, and adaptive boosting, deep supervised learning better 

manages complex representations of data and hyperdimensional data features, to support 

a great number of geospatial applications like land cover classification, land change 

detection, and object recognition (Cheng and Han, 2016; Zhang, Zhang and Du, 2016; 

Zhu et al., 2017).  

The focus of reinforcement learning is to maximize the possibility of obtaining 

the best results through numerous iterative feedbacks in an interactive environment. Deep 

learning aims to create a model to predict the outputs from new input data, while 

reinforcement learning uses positive and negative signals to iteratively adjust the actions 

of an agent to obtain the richest cumulative rewards. 

In a complex computing environment, reinforcement learning may become too 

formidable to effectively deal with problems of infinite probabilities. Thus, deep 

reinforcement learning—the product of integrating DNNs into reinforcement learning, 

becomes a promising AI technique (Mnih et al., 2015; Henderson et al., 2018). In the 

architecture of a deep reinforcement learning model, DNNs act as a powerful agent to 

recognize the state of complex patterns or features. The strength of cutting-edge deep 
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reinforcement learning has just been recognized in the community of GeoAI, and has 

been reported in a few applications (Liu et al., 2017; Peng et al., 2017; Hu et al., 2018). 

1.4 Motivations 

The motivation of this dissertation research is to promote the state-of-the-art deep 

learning models in big geospatial data analysis. The dissertation proposes three research 

questions associated with the current challenge of deep leaning-based big geospatial data 

analysis.  

Research question 1: how can useful input data promote deep learning models 

for a specific geospatial application? 

Section 1.3 identifies the significance of deep learning in discovering high-level 

data feature. Some data features might be hidden from a deep learning model. For 

example, LULC properties may be out of scope of a CNN that relies on the training data 

of different land-cover types. Moreover, two characteristics of big data—value and 

veracity - acknowledge that not all features derived from big geospatial data would be 

useful for a specific geographical application. In the case of building height estimation 

with shadows, Chapter 2 proposes a classification system to unify varied shadow shapes 

into limited numbers of categories, and then organizes each category as a useful input 

data for building height estimation. 

Research question 2: how does the integration of semantics with a deep learning 

model  support geospatial knowledge discovery? 

The success of deep learning relies on the amount and quality of training data. 

Semantics, which refers to the meaning of words, supports the formalization of human-

level understanding based on the characteristics of phenomena. Thus, semantic 
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information can provide substantial clues to the explicit organization of information 

derived from geospatial data. In case of map content recognition, Chapter 3 exploits the 

technique of semantic analysis to formalize map text and map features derived from 

digital maps to help people understand the content of a map.  

Research question 3: How can domain knowledge assist deep learning models in 

discovering geospatial knowledge with a limited amount of training data? 

Subsection 1.2 discusses the challenge of preparing large quantities of labeled 

data. Deep learning requires large amounts of data for representing complicated systems. 

Creating rules and “geospatial common sense” is crucial to raise the transferability of a 

deep leaning model to other geospatial applications with limited data. Considering the 

difference between land-cover categories and LULC types, Chapter 5 proposes an image-

semantic model to exploit rules and knowledge to semantically organize land-cover 

categories into more usable LULC types. 

1.5 Dissertation Structure 

The content of this dissertation includes four independent, mutually-related papers, 

which are presented in Chapter 2, 3 and 4, respectively. Table 1 lists the relevance of 

these three chapters. 

Table 1  

Dissertation structure 

  Chapter 2 Chapter 3 Chapter 4 

Academic 

disciplines 
Oblique Photogrammetry  Cartography 

Remote Sensing & GIS 

data 

Applications Building height estimation Digital map recognition Coastal scene recognition 

Techniques 

1. Shadow extraction 
Optical character 

recognition 
1. None 

2. CNNs-powered shape 

classification 
2. CNNs-powered multi-

label classification 
2. CNNs-powered multi-

task classification 

3. Geometrical relationship 3. Semantic query 3. Vector space models 
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between shadow and 

building  
(VSM) 

Data 1. Google Earth Pro 1. Internet maps 
1. Satellite images 
2. Coastline domain 

taxonomy 

Motivations Useful input data 
Integration of semantics 

and deep learning 

Domain knowledge and 

limited training data for 

deep learning models 

 

Chapter 2 aims to create useful input data, rather than raw geospatial data, to 

support deep learning models for geospatial data analysis. This chapter proposes an 

integrated framework to support building height estimation with open very high-

resolution (VHR) images based on representative shadow patterns.  

Building height is valuable for a variety of foci in urban studies, such as flight 

safety control, urban air pollution, local temperature prediction, and residential energy 

consumption. Although traditional field investigations can obtain accurate building height 

information, this laborious and time-consuming work is not practical to support the 

update of numerous building heights in large urban areas. Moreover, elevation-related 

digital products (e.g. LiDAR data, DEM, DSM, and DTM) created for public use only 

cover selected areas, as updating them is quite costly for a large-scale region. Given the 

relationship between building structures and their shadow sizes, building shadows have 

been affirmed to provide an alternative data source to support building height estimation. 

The process of successful building height estimation with shadow size consists of two 

major steps: detecting building shadows and calculating the geometrical relationship 

between building shadow and building height.  

Compared with the numerous research activities associated with shadow detection, 

only a few investigations have been performed to predict the height of a building using its 

shadow size. First, this chapter creates a shadow pattern classification system 
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(ShadowClass) not only to determine the pattern category to which a particular shadow 

belongs but also to draw the corresponding shadow-derived line useful for building 

height estimation. Then, the proposed framework provides two separate strategies for 

calculating building height, including building height estimation with Google Earth Pro, 

and building height estimation with shadow area extraction. Experimental results of 

building height estimation were close to the ground truth values. Without the support of 

elevation products (e.g., LiDAR, DTM, etc.), the shadow in both oblique and 

orthorectified VHR images could support the height prediction for low-, mid-, and high-

floor buildings. 

Chapter 3 aims to integrate a deep learning model with semantics to support 

geospatial knowledge discovery. This chapter proposes a framework to support the 

discovery of on-demand maps from Internet resources through convolutional neural 

networks, optical character recognition, and semantic analysis.  

A map is an essential medium that provides symbolic representation and 

geographical information about 1) the characteristics of a place in terms of georeferenced 

location, 2) the distribution and pattern of phenomena over space, 3) the configuration of 

cultural and natural elements, and 4) the relationships between a variety of objects, areas, 

and phenomena. Over the last two decades, the progress of surveying, mapping, and web-

service techniques have facilitated much of the efficiency of map generation and map 

sharing, and the benefits of maps have been identified in many geospatial interpretations, 

analyses, visualizations, and communications.  

The considerable supply of maps currently available has encouraged researchers 

to focus on the efficiency of map retrieval and discovery, since the capability of 
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inefficient traditional interactive tools for map interpretation cannot meet the 

qualifications to process them. Map content recognition not only requires the conversion 

of map features into machine-readable map text, but also the semantic organization of 

this text into human understanding of map content.  

Chapter 4 aims to use domain knowledge to reinforce deep learning models for 

geospatial knowledge discovery with a limited amount of training data. This chapter 

proposes an integrated framework called an image-semantic model, which identifies land 

cover in a remote sensing image using a convolutional neural network (CNN)-powered 

multi-label classification with spatial weights, and then employs a vector space model to 

convert the resulting information into more comprehensible LULC types.  

Frequently updated remote sensing images provide the potential to support large-

scale land-cover classification and reinforce competence in understanding, estimating, 

and predicting the influences of natural forces and artificial activities on land surface. The 

rapid progress of CNNs provides significant possibilities in the extraction of high-level 

abstract features from a remote sensing image to characterize complicated land-cover 

scenarios. Thus, land-cover attributes derived from remote sensing images are 

insufficient for directly predicting the functionality and organization of different land 

parcels.  

The proposed Chapter 4 framework comprises three sections: (1) building a 

benchmark remote sensing dataset within limited land-cover categories, (2) performing 

multi-label land-cover classification with a pretrained CNN based on the training images 

available in the benchmark remote sensing dataset, and (3) organizing the land-cover 

categories to measure similarity with the vector space model, and then recognizing the 
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target land-cover/land-use scenarios. recognizing land-cover/land-use scenarios through 

organizing the land-cover categories to measure the similarity among different images 

with the vector space model. 

 The remainder of this dissertation is organized as follows. In Chapter 2, I report 

my research on building height estimation with shadows. In Chapter 3, I present my 

research on integrating semantics into a framework of deep learning to support map 

content recognition. The research focus of Chapter 4 is related to predict unknown land 

cover/land-use types with the proposed method that combines domain knowledge and the 

state-of-the-art CNNs for classification. In Chapter 5, I summarize the highlights of my 

dissertation research, and provide some future works worthy of attentions. 
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CHAPTER 2                                                                                                             

USING GEOAI TECHNIQUES TO SUPPORT BUILDING HEIGHT 

ESTIMATION BASED ON OPEN REMOTE SENSING DATA 

2.1 Introduction 

Building height is valuable for a variety of foci in urban studies, such as flight 

safety control, urban air pollution studies (Hang et al., 2012), local temperature prediction 

(Perini and Magliocco, 2014), and residence energy consumption (Abohela, Hamza and 

Dudek, 2013). Although a traditional field investigation can obtain accurate building 

height information, the laborious and time-consuming work is not practical to support 

massive building height updates in large-scale urban areas. Moreover, the elevation-

related digital products (e.g. LiDAR data, DEM, DSM, and DTM) created for public use 

only cover selected places, as updating these data are costly. Given the relationship 

between building structures and their shadow sizes, building shadow has been affirmed to 

be an alternative data source to support building height estimation (Liasis and Stavrou, 

2016; Qi, Zhai and Dang, 2016). This method becomes even more practical when 

geometrical shadows are visible in newly emerging very high resolution (VHR) images, 

such as GeoEye and Worldview. Such geometrical properties reinforce the significance 

of building shadows in places where elevation-related digital products are not updated in 

a timely manner (Comber et al., 2012; Raju, Chaudhary and Jha, 2014). 

The process of successful building height estimation using shadow shape consists 

of two major steps: 1) detecting building shadows and 2) calculating the geometrical 

relationship between building shadow and building height. Compared with the numerous 

research activities associated with shadow detection (Liu, Fang and Li, 2011; Zhang, Sun 
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and Li, 2014), only a few investigations have been performed to predict the height of a 

building using its shadow shape. The early-stage attempts were reported by Irvin and 

McKeown (1989), Cheng and Thiel (1995), and Shettigara and Summerling (1998). The 

accuracy of building height estimation may be limited in these works because of the 

restriction of image spatial resolution. However, these attempts proved the practicability 

of building height estimation using shadow shape. Massalabi et al. (2004) summarized 

the key parameters derived from shadow that could support building height prediction, 

including the elevation and azimuth of the sun, the elevation and azimuth of a 

sensor/camera, and the relative position of a building. Wang and Wang (2009) used these 

key parameters to create the geometrical relationship between the solar azimuth, the 

satellite azimuth, and the building shadows. Shao, Taff, and Walsh (2011) created a 

linear function involving building position and shadow properties to easily calculate 

building height. On the basis of the key parameters mentioned by Massalabi et al. (2004), 

Kim, Javzandulam, and Lee (2007) and Lee and Kim (2013) promoted building height 

estimation by matching the projected shadow to the actual shadow. However, their 

proposed algorithms could be faced with the challenge of dealing with shadow 

delineation in a complicated three-dimensional (3D) space.  

Thus, several investigations considered creating a 3D geometrical relationship 

involving the sun position, sensor position, and building position to measure building 

height (Wang, Yu and Ling, 2014; Qi, Zhai and Dang, 2016; Wang et al., 2017). To 

further simplify the calculation process, Izadi and Saeedi (2012) estimated building 

height by calculating the relative geometrical position of the sun, sensor, and building. 

They also reported an approach to promote the accuracy of building height using the 
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properties associated with building wall areas. Qi, Zhai, and Dang (2016) presented a 

framework to calculate the slope angle, the solar elevation and azimuth, and the satellite 

elevation and azimuth using information accessed from Google Earth. Hodul, Knudby, 

and Ho (2016) incorporated the effect of an undulating ground surface into the 3D 

geometrical relationship. They proposed a sky view factor model to predict building 

height using the amount of  obstructed sky derived from satellite images and the slope of 

the ground surface. However, the resolution of Landsat data seemed inefficient to support 

accurate building height estimation.  

Spatial resolution in a VHR image presents a new issue to be considered in 

building height estimation. Building shadows in a VHR image may have similar textures, 

patterns, and illuminations to other dark land cover (e.g., asphalt surface, water, etc.). 

Such similar features increase the difficulty in visually distinguishing building shadows 

and their surrounding land covers. Thus, a number of studies reported their efforts in 

designing additional features and applying advanced machine learning models. Comber 

et al. (2012) proposed a rule-based classification to determine the stories of residential 

buildings based on shadow width. This work did not take the geometrical positions of the 

sun and the sensor into account in the input features used in its machine learning model. 

Qi and Wang (2014) proposed a method called corner–shadow–length ratio to calculate 

building height considering both the geometrical relationships between the building roof 

structure and solar, sensor, and building positions. Thus, this method supported the 

measurement of building height differently between flat roofs and pitched (sloping) roofs. 

However, slope roofs might not be visually recognizable in the geometrically corrected 

VHR image.  
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Currently, the approaches for building height estimation vary according to the 

availability of image metadata, spatial resolution, and other factors. A comprehensive 

framework should consider these variations to support accurate shadow delineation and 

building height estimation. This study proposes an integrated framework to support 

building height estimation based on various conditions. The remainder of the chapter is 

organized as follows. Section 2.2 discusses the works that can help in building height 

estimation from VHR images. Section 2.3 reports the proposed methodological 

framework. Section 2.4 presents the results of height estimation of multiple-story 

buildings. Section 2.5 summarizes the contributions of the work, along with prospective 

future efforts. 

2.2 Related Works 

2.2.1 Geometrical Relationships Between Building, Building Shadow, 

Collection Sensor, and Solar Position. 

Shadows are always observed from elevated artificial architectures, elevated hills 

and mountains, and clouds in a remote sensing image when these elevated objects block 

the visible light emitted by the sun. Currently, the availability of VHR images increased 

the accuracy of shadow height estimation using remote sensing data. Building shadows 

have become an inevitable artifact to be explored, as they may overlay other objects, such 

as buildings, roads, and vehicles, among others. This superimposition renders image 

analysis more difficult for a variety of applications involving land cover classification, 

land parcel segmentation, and object detection (Dare, 2005; Zhang, Sun and Li, 2014). 

According to   how a shadow generates, Arevalo, González, and Ambrosio (2005, 2008) 

divided shadows into self-shadow and cast shadow. Self-shadow is the dark area of an 
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object itself where light is not available. Conversely, cast shadow is the dark area thatis 

approximately similar to the projection of an object shape, where illumination is blocked 

by this object. The shadow visible in a VHR image is considered a cast shadow. 

Therefore, accessing the height of an elevated building based on the projection of its 

shadow shape is potentially possible. 

 

Figure 1. Geometrical relationship among building height, sun position, and sensor 

position. (A) First geometrical relationship between solar and sensor elevation (profile 

view); (B) Second relationship between solar and sensor elevation; (C) Relationship 

between solar and sensor azimuth (plan view); (D) 3D geometrical relationship. 

Figure 1 presents the plan view and the profile view to illustrate the geometrical 

relationship among building height, solar and sensor elevation, and solar and sensor 

azimuth. 𝛼 and 𝛽 denote the solar elevation and the sensor elevation, and 𝜃1 and 𝜃2 are 

the solar azimuth and the sensor azimuth, respectively. Figure 1(A) and (B) illustrate the 

profile view of the two types of geometrical relationships bewteen building height, sensor 

elevation, and solar elevation. In Figure 1(A), the sun and the sensor are located on the 

same side. Conversely, the sun and the sensor are located on opposite sides in Figure 

1(B). In these two subgraphs, the shadow edges visible from a VHR image are the line 

segments 𝐿𝐴𝐵 and 𝐿𝐴𝑂2, respectively. Figure 1(C) illustrates the plan view of the 

geometrical relationships among building position, sensor azimuth, and solar azimuth. As 
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shown in Figure 1(A), (B), and (C),  in practice, the solar and sensor elevation and the 

solar and sensor azimuth may affect the shadow shape of a building. Figure 1(D) 

illustrates the geometrical relationship in a  3D space of the solar and sensor azimuth, the 

solar and sensor elevation, and the building position. In this subgraph, the visible shadow 

edge is the line segment AO2. Based on the geometrical relationships shown in Figure 

1(D), the following subsection summarizes the previous approaches for building height 

estimation with shape detection. 

2.2.2 State-of-The-Art Approaches. 

Depending on the availability of data sources and the content of VHR images, the 

state-of-the-art approaches consist of three types of implementation of shadow-based 

building height estimation. Table 2 compares these three classes of methods. 

Table 2 

Three types of methods for building height estimation and shadows. 

 

Data 

Cost 

Computi

ng 

complex 

Automat

ic degree 

Result 

precision 

Google 

Earth Pro 

(Open VHR 

image) 

Commercial 

VHR image 

Image 

metadat

a 

Method 

1 
 √ √ High Difficult Auto High 

Method 

2 
√   Free Easy Manual Moderate 

Method 

3 
√ √  High Difficult 

Semi-

auto 
High 

 

Method 1: Only commercial VHR images with metadata are available. Spatial 

resolution and solar elevation are available under this condition. The workflow of 

building height estimation is composed of the following steps: 1) extract building 

shadows from the VHR image, 2) calculate the shadow length, 3) convert the pixel–unit 
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shadow length into the meter–unit one, and 4) predict the building height based on the 

shadow length and solar elevation (Shao, Taff and Walsh, 2011; Comber et al., 2012; 

Liasis and Stavrou, 2016). However, VHR images may be limited in their ability to 

support large-scale urban areas due to data storage load and data acquisition cost. 

Method 2: Only Google Earth Pro data are available. Google Earth Pro provides 

essential information to calculate the solar elevation of a VHR image. It was used to 

access solar and sensor azimuth, as well as the length of the line segments AO2 and BO2 

in Figure 1(D). Qi and Wang (2014) and Qi, Zhai and Dang (2016) report the strategy to 

use the information derived from Google Earth to predict building height. As the lengths 

of line segments 𝐿𝐴𝐵 and 𝐿𝐴𝑂2 shown in Figure 1(D) were manually measured by the 

Google Earth Pro tool, precision is a major concern in building height estimation using 

Google Earth. 

Method 3: Both Google Earth Pro and commercial VHR imagery are available. 

Under this condition, Google Earth Pro provides essential parameters, including the solar 

and sensor elevation, the solar and sensor azimuth, and the length of line segments AO2 

and BO2. The shadow shape derived from commercial VHR images can help to promote 

the precision of building height estimation. 

2.3 Methods 

2.3.1 Shadow Pattern Determination. 

Although shadows provide useful information to characterize the building 

structure, the variation of their shapes poses a great challenge to determine the shadow-

derived line useful in predicting building height. Therefore, I propose a shadow pattern 

classification system (ShadowClass), not only to determine the pattern category to which 
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a shadow area belongs, but also to draw the corresponding shadow-derived line useful for 

building height estimation. 

2.3.1.1 Shadow pattern classification system (ShadowClass). 

Figure 2 shows the 10 basic classes of shadow patterns and the patterns that mix 

multiple basic classes of shadow patterns. Gray polygons represent the shadow areas, and 

the red and orange dotted lines with round nodes denote the length of a shadow-derived 

line useful for building height estimation. 

The shape of each type of shadow pattern may be influenced by a variety of 

factors, such as building roof, building structure, sun azimuth, sensor azimuth, and 

neighboring land cover, among others. Buildings of contemporary architecture, such as 

skyscrapers and landmarks, always comprise varying and complex structures, thus 

making it impossible to assign their shadow shapes to a simple pattern category. In this 

case, complicated shadows generally encompassed multiple basic shadow pattern classes. 

Therefore, ShadowClass provides a complex pattern to determine the shadow patterns 

that are combined to produce a complicated shadow pattern. For example, three complex 

shadow examples comprise ()the individual patterns of Pattern 2 and Pattern 4, the 

individual patterns of Patterns 4 and Pattern 5, and the individual patterns of Patterns 1, 

Pattern 2, and Pattern 4. 
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Figure 2. Illustration of the pattern categories in ShadowClass. 

2.3.1.2 CNNs-based shadow pattern determination. 

(1) Data augmentation. 

A convolutional neural network (CNN)-based binary classifier was developed to 

perform shadow pattern determination. Shape binary classification is an important 

concern for computer vision analysis, the research progress of which has been reported in 

the last two decades (Zhang and Lu, 2004; Shen, 2015). Generally, shape classification 

faces several challenges, including scale variation, rotation, and affine transformation 

(Krizhevsky, Sutskever and Hinton, 2012). Recently, the evolution of deep neural 

network algorithms and powerful computing hardware has reinforced a promising way 

for an efficient shape binary classification. Moreover, to enhance the robustness and 

transferability of CNN-powered shape classification, data augmentation is needed to 

increase the diversity of intraclass training samples and the similarity of interclass 

training samples (Taylor and Nitschke, 2017; Hernández-García and König, 2018). This 

study applies three strategies for performing data augmentation: 
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Strategy 1: Flipping. Two new images are created by flipping the original training 

image over the horizontal and vertical dimensions. 

Strategy 2: Rotation. Seventy-two new images are generated by rotating the 

original training image and its corresponding two flipped images every 5°, respectively.  

Strategy 3: Scaling. Four new images are generated by rotating the original 

training image and its corresponding flipped and rotated images. Assuming that the 

dimensionality of an image generated is 𝑥 × 𝑦, then the scaled images have the 

dimensionality of 4𝑥 × 4𝑦, 2𝑥 × 2𝑦, 𝑥 2⁄ × 𝑦 2⁄ , and 𝑥 4⁄ × 𝑦 4⁄ , respectively. 

The data augmention generated an additional 876 images for every original 

training image (original image + 2 flipped images + (1+2)×72 rotated images + 

(1+2+(1+2)×72)×4 scaled images). 

(2) CNN-reinforced shape classification. 

The Inception_ResNet_V2 is a cutting-edge CNN for scene classification that 

achieved state-of-the-art accuracy in image scene classification in the prestigious 

benchmark dataset called ILSVRC (Szegedy, et al., 2017). Therefore, this CNN model 

was used to classify the extracted shadow areas into a pattern defined in ShadowClass. 

Inception_ResNet_V2 is a systematic neural network integrating the architecture of two 

CNNs, namely, Inception V3 and ResNet, to take advantage of network depth in the 

classification while reducing a large load in terms of time and computation. The method 

also controls the effects of vanishing gradient and a degradation problem. Figure 3 shows 

the architecture of Inception-ResNet-V2. 



  24 

 

Figure 3. Illustration of Inception-resnet-V2 (Szegedy et al., 2017). 

The dimensions of the input image required by Inception_ResNet_V2 are 299 × 

299 × 3. In the first state, Inception-ResNet-V2 processes the input image with the Stem 

of Inception V4 to generate a feature map with dimensions of 35 × 35 × 256. The feature 

map is then processed consecutively by five independent blocks of Inception-ResNet-A 

and compressed by the block of Reduction-A. The results obtained by Reduction-A are 

further processed consecutively by 10 independent blocks of Inception-ResNet-B and 

compressed by the block of Reduction-B. The results generated by Reduction-B are 

processed consecutively by 10 independent blocks of Inception-ResNet-C and 

compressed by average pooling. Furthermore, the 1,792 features generated by average 

pooling are processed with Dropout. Finally, the Softmax classifier produces the top three 

scores of shadow pattern classes to which every input image belongs. 
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2.3.2 Height Calculation with Google Earth Pro. 

2.3.2.1 Solar declination. 

The angle between the ground surface and sunlight varies in different places on 

Earth because it is a spherical planet. Solar declination is the angle that specifies the solar 

position between the incident orientation of sunlight and the Earth’s equator. Coper (1973) 

and Bourges (1985) proposed algorithms to calculate solar declination considering the 

date when the corresponding satellite image was produced. The algorithm is expressed as 

follows: 

𝜔 = 0.3723 + 23.2567 sin 𝛿 + 0.1149 sin 2𝛿 − 0.1712 sin 3𝛿 − 0.758 cos 𝛿 +

0.3656 cos 2𝛿 + 0.0201 cos 3𝛿 (1) 

where 𝛿 is calculated by the following equation: 

{
𝛿 =

360(𝑦−𝑦0−0.5)

365.2422

𝑦0 = 78.801 + 0.2422(𝑌 − 1969) − 𝑖𝑛𝑡(0.25(𝑌 − 1969))
 (2) 

where 𝑌 is the year when the VHR image was created, and 𝑦 is the nth day of 𝑌. 

2.3.2.2 Solar elevation. 

Solar elevation, which is the angle 𝛽 in Figure 1(D), specifies the angle of 

sunlight over the horizontal dimension on the ground surface. Solar elevation is 

calculated by the following equation: 

𝛽 = arcsin⁡(sin𝜎 sin 𝛿 + cos 𝜎 cos 𝛿 cos𝜙) (3) 

where 𝜎 is the latitude of a building, and 𝜙 is the solar hour angle, which is obtained by 

the following equation: 



  26 

𝜙 = {
min(arccos (

−𝑏+√𝑏2−4𝑎𝑐

2𝑎
) , arccos (

−𝑏−√𝑏2−4𝑎𝑐

2𝑎
))

−min(arccos (
−𝑏+√𝑏2−4𝑎𝑐

2𝑎
) , arccos (

−𝑏−√𝑏2−4𝑎𝑐

2𝑎
))

 (4) 

where min() and −min() are used in the morning and in the afternoon, respectively. 

Moreover, 𝑎, 𝑏 and 𝑐 in Equation (4) are expressed as follows: 

{

𝑎 = (tan 𝜃2)
2(sin 𝜎)2 + 1

𝑏 = −sin 2𝜎 tan 𝛿 (tan 𝜃2)
2

𝑐 = (tan 𝜃2)
2(sin 𝜎)2(tan𝜃2)

2 − 1

 (5) 

where 𝜃2 is the sensor azimuth, as shown in Figure 1(D). 𝜃2 can be accessed by the Ruler 

tool in Google Earth Pro. The details of the sensor azimuth are presented in the following 

subsection. 

2.3.2.3 Solar and sensor azimuth 

The solar (sun) and sensor (satellite) azimuth, solar and sensor elevation, and 

building position are crucial concerns associated with the geometrical relationship 

between building height and shadow length. As shown in Figure 1(A), when the sun and 

the sensor are on the same side, line segment AB is the shadow visible from the VHR 

image. The length of this line segment is measured by the following equation: 

𝐿𝐴𝐵 =
tan𝛼 tan𝛽

tan𝛼−tan𝛽
× 𝐿𝐴𝐵 (6) 

As shown in Figure 1(B), when the sun and the sensor are on opposite sides, line 

segment AO2 is the shadow visible from the VHR image. The length of this line segment 

is measured by the following equation: 

𝐿𝐴𝑂2 = tan𝛽 × 𝐿𝐴𝐶 (7) 
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Without metadata defining the position and the altitude of the satellite, the sensor 

elevation 𝛼 cannot be specified in Google Earth. The solar elevation (𝛽) can be obtained 

by Equation (3). Moreover, sensor azimuth (𝜃1) and solar azimuth (𝜃2) are accessed by 

Google Earth Pro, as shown in Figure 4. 

 

Figure 4. Illustration of accessing the solar and the sensor azimuth from Google Earth 

Pro (Qi and Wang, 2014; Qi, Zhai and Dang, 2016). (A) Original building image. (B) 

Accessing the length of BO2 and the sensor azimuth (𝜃2) using the Ruler tool. (C) 

Accessing the length of AO2 and the solar azimuth using the Ruler tool (𝜃1). 

Figure 4(A) shows a building in a Google Earth satellite image. Based on this 

image, Qi and Wang (2014) and  Qi, Zhai and Dang (2016) reported an approach to 

access the essential parameters useful for building height estimation using the Ruler tool 

in Google Earth Pro. Figure 4(B) illustrates the Ground Length and the Heading of the 

yellow line drawn on the satellite image corresponding to the sensor azimuth and the 

length of BO2 in Figure 1(D), respectively. Figure 4(C) shows the Ground Length and the 

Heading of another yellow line draw on the satellite image corresponding to the solar 

azimuth and the length of AO2 in Figure 1(D), respectively.. 
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When receiving the values of the sensor and the solar azimuth and the lengths of 

AO2 and BO2, I calculate the building height using the approaches presented in 

Subsection 3.3.4. 

2.3.3 Height Calculation with Shadow Area Extraction 

The proposed approach for building height estimation with shadow area 

extraction consists of four sections. The first section converts an RGB color image into a 

grayscale one and then performs image enhancement using an algorithm called adaptive 

gamma correction with weighted distribution (AGCWD) (Huang, Cheng and Chiu, 2013; 

Rahman et al., 2016). Grayscale conversion and contrast enhancement have been reported 

to make shadows distinct from other land cover features (Liu, Fang and Li, 2011; Liasis 

and Stavrou, 2016), facilitating efficient shadow extraction. The second section exploits 

an algorithm called simple linear iterative clustering (SLIC) to segment the image 

preprocessed by the previous section into multiple superpixels and then classifies these 

superpixels into shadow and non-shadow areas. The third section detects and simplifies 

the contour of each shadow area. The last section calculates the shadow length defined in 

ShadowClass. I predict the building height by considering the shadow length and the 

relationship among the solar position, sensor position, and building position. 

2.3.3.1 Image pre-processing. 

AGCWD enhances the contrast of an image by dynamically applying the 

parameters derived from the whole image content (Huang, Cheng and Chiu, 2013). In this 

study, I use the AGCWD to process the contrast of VHR images to draw shadow areas 

distinct from other land covers through three steps (Huang, Cheng and Chiu, 2013): 

histogram analysis, weighting distribution adjustment, and gamma correction.  
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The cumulative density function (𝑐𝑑𝑓) and the probability density function 

(𝑝𝑑𝑓(𝑖)) of a VHR image are expressed as follows: 

{
𝑝𝑑𝑓(𝑖) ⁡= 𝑛𝑢𝑚𝑖/𝑛𝑢𝑚𝑎𝑙𝑙

𝑐𝑑𝑓 = ∑ 𝑝𝑑𝑓(𝑖)
𝑖𝑚𝑎𝑥
𝑖𝑚𝑖𝑛

 (8) 

where 𝑛𝑢𝑚𝑖 is the frequency of intensity 𝑖, 𝑛𝑢𝑚𝑎𝑙𝑙 is the total number of an image and 

𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 are the maximal and minimal intensity in this VHR image, respectively. 

Based on the cumulative density function and the probability density function in 

Equation (8), the adaptive gamma correction (AGC) converts the original intensity 𝑖 into 

a new value 𝑖𝑎𝑔𝑐 by the following expression, where 𝑝𝑑𝑓𝑚𝑎𝑥 is the maximal probability 

density function,  

𝑖𝑎𝑔𝑐 = 𝑝𝑑𝑓𝑚𝑎𝑥 × (
𝑝𝑑𝑓(𝑖)

𝑝𝑑𝑓𝑚𝑎𝑥
)
1−𝑐𝑑𝑓

 (9) 

To further correct the result of the histogram analysis in AGC, AGCWD uses a 

weighting distribution function to process the probability density function and the 

cumulative density function expressed in Equation (8). The probability density function 

with weighting distribution (𝑝𝑑𝑓𝑤𝑑) is expressed as follows: 

𝑝𝑑𝑓𝑤𝑑 = 𝑝𝑑𝑓𝑚𝑎𝑥 × (𝑝𝑑𝑓(𝑖)𝑛𝑜𝑟𝑚)
𝜎 (10) 

where σ is the user-defined parameter to control the distribution of histogram statistics, 

and 𝑝𝑑𝑓(𝑖)𝑛𝑜𝑟𝑚 is the normalized 𝑝𝑑𝑓(𝑖). Accordingly, the cumulative density function 

with weighting distribution (𝑐𝑑𝑓𝑤𝑑) is expressed as follows: 

𝑐𝑑𝑓𝑤𝑑 = ∑ (𝑝𝑑𝑓𝑤𝑑(𝑖) × ∑ 𝑝𝑑𝑓(𝑖)
𝑖𝑚𝑎𝑥
𝑖𝑚𝑖𝑛

)
𝑖𝑚𝑎𝑥
𝑖𝑚𝑖𝑛

 (11) 
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where 𝐶𝑙𝑜𝑤  and 𝐶ℎ𝑖𝑔ℎ  are the low-contrast or high (or moderate)-contrast image, 

respectively, and 𝜏 is the threshold used for a binary contrast classification.  

Based on Equations (10) and (11), the original intensity 𝑖 in the VHR image 

becomes 𝑖𝑎𝑔𝑐𝑤𝑑 after AGCWD by the following expression:  

𝑖𝑎𝑔𝑐𝑤𝑑 = 𝑝𝑑𝑓𝑚𝑎𝑥 × (
𝑝𝑑𝑓𝑤𝑑(𝑖)

𝑝𝑑𝑓𝑚𝑎𝑥
)
1−𝑐𝑑𝑓𝑤𝑑

 (12) 

2.3.3.2 Shadow area extraction 

(1) Superpixel-based segmentation 

I apply a popular object-based segmentation called SLIC (Achanta et al., 2012) to 

segment the input contrast-enhanced VHR image. Compared with the graph-based 

segmentation approaches, superpixel-based segmentation such as SLIC is more efficient 

to group the connected pixels into meaningful sub-regions. Moreover, SLIC speeds up 

the process of clustering multiple pixels by measuring the distance over spatial space and 

intensity (color) differences between…. In SLIC, the image space, including intensity and 

spatial space, is represented as (𝐿, 𝐴, 𝐵, 𝑋, 𝑌) , where 𝐿, 𝐴, and 𝐵 denote the three 

channels of image color space, and 𝑋 and 𝑌 denote the distance over the horizontal and 

vertical dimensions, respectively. As the image enhanced by AGCWD only contains one 

channel, intensity space (𝐷𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) and spatial space (𝐷𝑠𝑝𝑎𝑡𝑖𝑎𝑙) in the enhanced VHR 

image are represented as (𝐼, 𝑋, 𝑌), where 𝐼 is the intensity of one channel. Then, every 

pixel in an image joins the nearest cluster center pixel. The “nearest” is measured by the 

distance of image space, which is expressed as follows: 

𝐷𝑡𝑜𝑡𝑎𝑙 = 𝐷𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 +
𝜃

√𝑁
× 𝐷𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (13) 
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where 𝜃 is the ratio between spatial distance and intensity difference. A higher 𝜃 

generates a result that contains superpixels within a larger size, and vice versa. 𝑁 denotes 

the approximate number of superpixels after segmentation. Moreover, for a pixel located 

at position (𝑥0, 𝑦0), the image gradient is computed by the L2 norm, which is shown in 

the following equation: 

𝑔(𝑥0, 𝑦0) = 𝐿2(𝐼(𝑥0 + 1, 𝑦0) − 𝐼(𝑥0 − 1, 𝑦0))
2 + 𝐿2(𝐼(𝑥0, 𝑦0 + 1) − 𝐼(𝑥0, 𝑦0 − 1)) (14) 

where 𝐿2() is the L2 norm, and 𝐼(𝑥, 𝑦) is the intensity vector of a pixel at the coordinate 

(𝑥, 𝑦). 

Assuming that the result of segmentation is 𝑆𝑒𝑔𝑛𝑢𝑚 ∋ {𝑠1, 𝑠2, … , 𝑠𝑛𝑢𝑚}, where 

𝑛𝑢𝑚 is the number of superpixels or segmented image regions, 𝑠𝑖 is the ith superpixel. I 

calculate the histogram for each superpixel to obtain the result: 𝐻𝑖𝑠𝑡𝑛𝑢𝑚 ∋

{ℎ1, ℎ2, … , ℎ𝑛𝑢𝑚}, where ℎ𝑖 is the histogram corresponding to 𝑠𝑖. Then, I generate a 

feature vector including the density of every bin to determine whether a superpixel 

belongs to the shadow class. Finally, I fuse the shadow superpixels into a new image. 

(2) Vegetable area removal 

In a VHR image covering urban areas, the shadow of trees may overlap with 

artificial architectures. Therefore, I attempt to detect trees from the VHR image and 

remove their shadows. Whereas the normalized difference vegetation index is a popular 

parameter to determine whether a pixel contains plant content, a near-infrared waveband 

is not available in the majority of VHR images. Therefore, I apply an algorithm called the 

triangular greenness index (TGI) to detect vegetated areas with RGB channels (Hunt, 

2013). Equation (15) shows the TGI value of a pixel: 
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𝑇𝐺𝐼 = 𝑤𝑔𝑟𝑒𝑒 − 0.39 × 𝑤𝑟𝑒𝑑 − 0.61 × 𝑤𝑏𝑙𝑢𝑒 (15) 

where 𝑤𝑔𝑟𝑒𝑒 , 𝑤𝑟𝑒𝑑 , and 𝑤𝑏𝑙𝑢𝑒  refer to the intensity of the green, red, and blue 

wavelengths of a pixel, respectively. 

Then, I set a threshold to select the pixels with a high TGI value and remove these 

pixels and their connected shadow areas from the original result of the shadow area 

extraction. 

2.3.3.3 Contour detection and edge simplification 

The result of shadow extraction is a binary image that assigns every pixel to two 

values: shadow or non-shadow. However, the shadow area extracted from a VHR image 

encompasses rough edges. Moreover, the shadow area may carry complicated shapes 

mainly because of the structure of a building roof and the neighboring land cover on the 

ground surface. Therefore, raw shadow areas fail to precisely characterize the form of a 

building body, let alone to model the relationship between shadow shape and building 

height. To address the challenges mentioned above, this study performs contour detection 

and edge simplification to smooth and straighten the rough shadow edges. 

 I use the marching squares algorithm (MSA) to detect the contour from the rough 

shadow edges. MSA aims to find the edge in every 2 × 2 pixels’ window based on a two-

dimensional image array. Figure 5(A) shows all 16 possible configurations possibly 

observed in the 2 × 2 pixels’ window. Each circle denotes a pixel that only has either of 

two binary values, namely, shadow and non-shadow, which are represented by black and 

white, respectively. The red line is the edge interpolated in the 2 × 2 pixels’ window to 

divide the shadow and the non-shadow area, that is, the edge of the shadow area. Except 

for cases 1 and 2 in which no edge exists, an edge can be drawn from other cases. I use 
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all the 16 cases to generate an approximate contour from the rough shadow edges, 

maintaining the trade-off between the number of vertices remaining and the similarity of 

the approximate contour and the original shadow shape. 

 

Figure 5. Illustration of (A) the 16 possible configurations of the MSA, and (B) the 

sample workflow of the Ramer–Douglas–Peucker algorithm. 
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I then apply the Ramer–Douglas–Peucker algorithm to simplify the contours 

generated by the MSA to represent the shadow shape with approximate line segments 

containing fewer vertices. I assume that I have an original curve {𝑣1, 𝑣2, … , 𝑣𝑘}, where 

𝑣𝑘is the sequentially numbered vertex in this curve. The Ramer–Douglas–Peucker 

algorithm simplifies this curve using the following steps: 

Step 1. Create a line segment connecting the starting point 𝑣1 and the ending point 𝑣𝑘 

and then define the distance to generate a buffer zone around the line segment. The buffer 

size is given based on specific applications. 

Step 2. Remove all vertices inside the buffer zone. The remaining vertices are 

{𝑣1, 𝑣
′
1
, 𝑣′2, … , 𝑣𝑘}. 

Step 3. Create a new line segment connecting 𝑣1  and 𝑣′
2
 and then define the distance to 

generate a buffer zone around the line segment. 

Step 4. Examine whether 𝑣′
2
 is located in the buffer zone, and remove or maintain 𝑣′

2
 by 

following the rules defined in Step 2. 

Step 5. Repeat Steps 3 and 4 using other vertices until the line segment is connected to 

the end point.  

Figure 5(B) shows an example of how this algorithm works. I have an original 

shadow edge A-B-C-D-E. The first step creates a line segment connecting point A and 

point E and generates a buffer zone around the line segment AE. Following the rule 

defined in Step 2, I remove point B from the line segment AE as this point is located 

inside the buffer zone. The second step creates a new line segment connecting point A 

and point D and generates a buffer zone around the line segment AD. In this case, I 
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maintain point C as it is outside of the buffer zone. I then create a new line segment 

connecting point C and point E and generate a buffer zone around the line segment CE. 

In this case, I still maintain point D. Overall, the Ramer–Douglas–Peucker algorithm 

simplifies the original shadow edge to a new line: A-C-D-E. 

2.3.4 Building Height Estimation. 

(1) Building height estimation using Google Earth Pro  

When the building wall is visible in the VHR image: 

As shown in Figure 4(B), I can obtain the solar azimuth and the length of BO2 

when the building wall is visible in the VHR image. On the basis of the geometrical 

relationship shown in Figure 4(D), I have two approaches to calculate the building height. 

The first approach uses solar elevation, which was introduced in Equation (3), and the 

length of AO2, which is expressed as follows: 

𝐻 = 𝐿𝐴𝑂2 tan𝛽 (16) 

where 𝐻 is the building height. 

Another approach uses the solar and sensor azimuth and the length of AO2 and 

BO2. The following equations are based on the geometrical relationship shown in Figure 

4(D): 

{
 
 

 
 𝐿𝐴𝑂2 =

𝐻

tan𝛽

𝐿𝐵𝑂2 =
𝐻

tan𝛼

𝐿𝐴𝐵
2 = 𝐿𝐴𝑂2

2 + 𝐿𝐵𝑂2
2 − 2𝐿𝐴𝑂2

2 𝐿𝐵𝑂2
2 cos 𝜃

 (17) 

In Equation (17), tan𝛼 and 𝐿𝐴𝐵 are the unknown parameters. By consolidating 

the three expressions in Equation (17), building height is expressed as follows: 
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𝐻 = tan𝛽(𝐿𝐵𝑂2𝑐𝑜𝑠𝜃 + √𝐿𝐴𝑂2
2 + 𝐿𝐵𝑂2

2 − 2𝐿𝐴𝑂2
2 𝐿𝐵𝑂2

2 cos 𝜃 + 𝐿𝐵𝑂2
2 𝑠𝑖𝑛2𝜃) (18) 

When the building wall is not visible in the VHR image: 

As shown in Figure 4(B), the solar azimuth and the length of BO2 are not 

available when the building wall is invisible in the remote sensing image. Therefore, the 

expression in Equation (16) is the only approach that can be used to calculate building 

height from shadow length. 

(2) Building height estimation using shadow area extraction 

Assume that the length of an extracted shadow area is 𝑝𝑛𝑢𝑚 pixels in the VHR 

image and that the spatial resolution is 𝑠𝑟. The length of this shadow (𝐿𝐴𝑂2) is computed 

by the following equation: 

𝐿𝐴𝑂2 = 𝑝𝑛𝑢𝑚 × 𝑠𝑟 (19) 

Then, I substitute the 𝐿𝐴𝑂2 obtained by Equation (19) into Equation (16) to obtain 

the height of the building associated with this shadow. 

2.4 Experiments 

This section collects a number of VHR images to test the performance of the two 

approaches for building height estimation: 1) building height estimation using Google 

Earth Pro and 2) building height estimation using shadow extraction. Subsection 3.4.1 

introduces the dataset used for the experiment. Subsection 3.4.2 compares the results of 

shadow extraction by various methods, as the shadow extraction result is critical to the 

precision of building height estimation. Subsection 3.4.3 presents the results of building 

height estimation using the two approaches. 
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2.4.1 Experimental dataset 

The experimental dataset consisted of training images included in the 

ShadowClass and test VHR images. First, I created five original binary images 

corresponding to each basic pattern of the ShadowClass shown in Figure 2 and prepared 

43,300 training samples, including the original images and those generated by data 

augmentation. I then collected 18 test images covering Los Angles, San Diego, and Las 

Vegas from Google Earth Pro (Figure 6). The shadows in these collected test images 

varied in scale, size, orientation, and shape and were located in different landscape 

scenario and contexts, including downtown, dense residential, sparse residential, and 

industrial areas. 

 

Figure 6. Illustration of the selected test VHR images. 

2.4.2 Shadow Extraction Results. 

As mentioned above, the quality of the resulting shadow extraction plays a 

decisive role in building height estimation. Figure 7 compares the image enhancement 

results with a Gaussian filter, histogram equalization, traditional AGC, and AGCWD. 

The result generated by histogram equalization could not support shadow extraction 

because the objects were obviously visible in the shadow areas. Even some parts of the 

shadow areas seemed brighter than the other land cover surrounding them. The Gabor 
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filter outperformed histogram equalization in differentiating between shadows and other 

land covers. However, the distribution of grayscale, or the intensity histogram, seemed 

imbalanced in the results produced by the Gabor filter. This result might pose a challenge 

to illuminating the shadow areas to make them more distinct from other dark land cover 

such as asphalt. Both AGC and AGCWD generated a new image, making the shadow 

areas much more distinguishable. Generally, only a few differences were observed in the 

results processed by AGC and AGCWD. In some cases, the shadow areas in the results 

generated by AGCWD remained the intensity of high frequencies more complete. 

Reported as a state-of-the-art technique for image contrast processing, AGCWD can 

effectively be used to generate an image-making shadow and other land cover 

distinguishable (Liu, Fang and Li, 2011; Liasis and Stavrou, 2016).      
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Figure 7. Illustration of buildings visualized by VHR images and image processing 

results by the Gabor filter, histogram equalization, traditional AGC, and AGCWD (Liu, 

Fang and Li, 2011; Liasis and Stavrou, 2016). 

Figure 8 shows the results of raw shadow extraction, shadow contour detection, 

and shadow area extraction after polygon simplification of the image processed by 

AGCWD. As the VHR image presented the detailed shapes of the majority of land covers, 

the results of the raw shadow extraction contained tree shadows, roads, and other dark 

land covers within the RGB channels. Moreover, a variety of objects visible in the 

shadow areas led to an incomplete and fragmented extracted shadow. These two factors 
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caused the raw shadow extraction to appear with salt and pepper noises and stripe noises. 

Raw shadow extraction from VHR images could not obtain a precise shadow area for 

building height estimation.  

I removed the tree shadows using the method expressed in Equation (8), along 

with other kinds of noise. As roads can connect to building shadow areas in some cases, I 

had to visually remove the dark area belonging to roads. I then detected the primary 

contour associated with each shadow area. Although the results of contour detection 

created concise shapes of shadows, these shapes still carried rough edges, posing a 

challenge in precisely measuring the length of a line segment.  

Thus, I further simplified the shadow shapes using the Ramer–Douglas–Peucker 

algorithm. Comparing the results of shadow contour extraction and those generated by 

shadow polygon simplification, many rough shadow edges were smoothed and became 

straight. Straight lines useful for length calculation were available in the results of 

shadow polygon simplification.  



  41 

 

Figure 8. Illustration of buildings visualized by VHR images, images enhanced by 

AGCWD, and results of raw shadow extraction, shadow contour extraction, and shadow 

polygon simplification. 

2.4.3 Accessing Parameters from Google Earth Pro. 

I predicted the building height from the collected test VHR image using two 

approaches. The first approach performed building height estimation using Google Earth 

Pro. I accessed the solar and sun azimuth, image date, geographical coordinates, and 

altitude using the Ruler tool in Google Earth Pro and measured the length of a selected 

line segment useful for building height estimation on Google Earth Pro. I applied the 
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methods expressed in Subsection 3.2 to obtain the building height values. Figure 9 shows 

the line segment I selected from Google Earth for building height estimation. The red line 

is the length of BO2 and the solar azimuth (𝜃2) shown in Figure 4(B), and the yellow line 

is the length of AO2 and the sensor azimuth measured with the Ruler tool (𝜃1) shown in 

Figure 4(C). 

 

Figure 9. Illustration of buildings visualized by the VHR image, the line segment for 

accessing the length of AO2 and the sensor azimuth (𝜃1) shown in Figure 4(C), and the 

length of BO2 and the solar azimuth (𝜃2) shown in Figure 4(C). 

The second approach focuses on predicting building height with the extracted 

shadows. Considering the cost of accessing VHR images, I used the altitude and the 

width of roads to estimate the spatial resolution of every test VHR image derived from 

Google Earth Pro. On the basis of the results of shadow polygon simplification, I fine-

tuned an ImageNet-Pretrained Inception_ResNet_V2 model, which was accessed from 

the Tensorflow Github repository, with the dataset prepared in ShadowClass. I used this 
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fine-tuned CNN model to classify every simplified shadow polygon into a predefined 

basic shadow pattern of ShadowClass. 

Figure 10 shows the clarification result of the shadow pattern for the selected 

buildings shown in Figure 9. In the shadow pattern demonstrations and simplified 

shadow polygons, I drew the position of the line segment from which I calculated the 

length for building height estimation. The gray polygons refer to the basic pattern in 

ShadowClass, and the red dotted lines denote the position of the line segment used for 

building height estimation. I then calculated the length of these line segments using the 

method expressed in Equations (19) and (16). 

 

Figure 10. Illustration of the buildings visualized by VHR images, the results of shadow 

extraction, the shadow pattern to which an extracted shadow was assigned, and the 

selected shadow length for building height estimation. 
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2.4.4 Results of Building Height Estimation. 

Table 3 lists the detailed information related to the testing of VHR images 

accessed from Google Earth Pro, including image data, city where the building is located, 

approximate geographical coordinates, and altitude. The 3D Buildings layer in Google 

Earth Pro enables the measurement of the height of buildings through the 3D path 

function of the Ruler. For buildings lower than around eight floors, for which the 

corresponding 3D models were not created, I used the Google street view photos to 

measure their height and compared the results of ground truth building height to 

predictive building height.  

Method 1: building height estimation using Google Earth Pro  

Method 2: building height estimation using shadow area extraction 

Table 3 

Building height estimation using two different methods 

Buildings 
Image 

date 
City 

Approximate 

geographical 

coordinate 

Altitu

de 

Ground 

truth 

height 

Estimated 

height 

(Method 1) 

Estimated 

height 

(Method 2) 

> 10 floors 

Building 1 
11/18/20

17 
LV* 

(36°05'59.91"N, 

115°10'28.25''W) 
479m 75m 72.8±5m 73.5m 

Building 2 
11/18/20

17 
LV 

(36°06'37.41''N, 

115°10'08.70"W) 
677m 192m 200.1±5m 190.8m 

Building 3 
11/18/20

17 
LV 

(36°08'16.95''N, 

115°09'16.68''W) 
481m 145m 139.5±5m 147.1m 

Building 4 9/3/2016 LV 
(36°07'22.54"N, 

115°10'27.46"W) 
764m 90m 90.5±5m 88m 

Building 5 
10/19/20

16 

LA*

* 

(34°03'14.53"N, 

118°15'21.09"W) 
546m 148m 147.2±5m 148.4m 

Building 6 
3/23/201

6 

SD*

** 

(32°42'37.48"N, 

117°10'07.09"W) 
314m 135m 132.8±5m 133.5m 

Building 7 
2/11/201

5 
SD 

(32°43'05.26"N, 

117°09'37.08"W) 
321m 100m 105.4±5m 96.2m 

Building 8 
4/15/201

5 
SD 

(32°42'31.06"N, 

117°09'54.82"W) 
276m 110m 108.9±5m 109m 
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5 - 10 floors 

Building 1 
3/28/201

7 
LA 

(34°03'04.41"N, 

118°14'40.21"W) 
213m 42m 40.5±5m 40.3m 

Building 2 
4/15/201

5 
SD 

(32°42'34.93"N, 

117°12'59.64"W) 
452m 37m 37.2±5m 42.5m 

Building 3 
4/15/201

5 
SD 

(32°43'04.69"N, 

117°09'37.37"W) 
309m 27m 30.1±5m 25.3m 

Building 4 
3/23/201

5 
LV 

(36°09'50.33"N, 

115°08'40.56"W) 
358m 32m 31±5m 33.8m 

Building 5 
3/23/201

5 
LV 

(36°07'03.52"N, 

115°09'24.84"W) 
346m 38m 36.5±5m 40m 

Building 6 
3/25/201

4 
LV 

(36°06'48.99"N, 

115°08'22.29"W) 
178m 26m 27.9±5m 27.2m 

1 - 5 floors 

Building 1 
8/14/201

8 
SD 

(32°41'54.77", 

117°07'33.86") 
180m — — 3.6m 

Building 2 
3/25/201

4 
LA 

(33°53'20.98", 

118°09'33.87") 
104m — — 4m 

Building 3 
3/16/201

5 
LV 

(36°06'19.96", 

115°06'31.95") 
108m — — 3.2m 

Building 4 
10/19/20

16 
LV 

(36°06'09.19", 

115°07'14.10") 
93m — — 5.5m 

LV*: Las Vegas.  

LA**: Los Angeles. 

SD***: San Diego.  

 

From the Google street view photos, I found the precise prediction of the height 

of buildings lower than five floors to be difficult. Moreover, the building wall or the line 

segment BO2 was generally invisible from the VHR image. Thus, I only provided the 

results of building height estimation with shadow area extraction. As shown in Table 3, 

the errors produced by the first approach were mainly from the position of the line 

segment selected from Google Earth Pro. A tiny offset in the line selection would lead to 

a great difference in the result of building height estimation. Conversely, imprecise 

shadow area extraction mainly resulted in the errors observed in the results generated by 

the second approach. Moreover, the objects touching a shadow with similar intensity 

accounted for the major challenge in precise shadow area extraction. However, the offset 
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of the shadow area had less influence on the final product of building height estimation, 

as pixel length was relatively small in the VHR image. 

As shown in Table 3, the results of building height estimation were close to the 

ground truth values. Without the support of elevation products (e.g., LiDAR, DTM, etc.), 

the shadow in both oblique and orthorectified VHR images could support the height 

prediction for low-, mid-, and high-floor buildings. The results in Table 3 also justify the 

conclusion that shadow-based building height estimation has good transferability in 

predicting the height of various types of buildings, such as apartments, houses, stores, 

tank, and skyscrapers. The results in Table 2 and the illustrations in Figure 10 confirm the 

practicality of the shadow patterns defined in ShadowClass in dealing with a variety of 

shadows of different shapes, orientations, scales, and sizes to calculate their length for 

building height prediction. 

2.5 Conclusions 

Shadows visible in a VHR image have been discovered to offer an economic 

solution to support large-scale building height estimation. Previous work proposed a 

number of approaches to represent the geometrical relationship between building 

positions, shadow shapes, and the sun and solar positions. Given the overpriced VHR 

imagery products used for large-scale urban areas, open VHR images available from 

Google Earth Pro can provide a potential data resource for investigating shadow-based 

building height estimation. Moreover, previous methods that use shadow to support 

building height estimation performed well only in specific data sources and image 

conditions. The information required by these  approaches, such as the sensor and solar 

azimuth, may not be available in some VHR images. Therefore, a methodological 
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framework that provides various solutions according to the availability of data sources is 

essential to promote shadow-based building height estimation. 

This study provides two approaches for shadow-based building height estimation: 

building height estimation using Google Earth Pro and building height estimation using 

shadow area extraction. The approach using Google Earth Pro focuses on the use of open 

data when metadata (e.g., spatial resolution) are not available. This approach is a low-

cost, quick strategy for updating building height attributes in a large urban area. However, 

the precision of prediction results may vary. By contrast, the approach using shadow area 

extraction focuses on using commercial VHR imagery to produce precise building height 

information. However, this strategy is expensive and time consuming for a very large 

urban area. 

This study also proposes a classification system called ShadowClass to categorize 

building shadow patterns. The patterns defined in ShadowClass are valuable in 

determining the shadow length useful for building height estimation. In the future, efforts 

in accurate shadow extraction from VHR images can be valuable. Moreover, the 

framework that integrates state-of-the-art CNNs into the process of shadow extraction 

and building height estimation is worthy of considerable attention. 
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CHAPTER 3                                                                                             

INTEGRATING DEEP LEARNING AND SEMANTIC ANALYSIS TO SUPPORT 

HUMAN-LEVEL DIGITAL MAP RECOGNITION 

3.1 Introduction 

A map is an essential medium for providing symbolic representation and 

geographical information about the characteristics of a place in terms of georeferenced 

location, distribution of patterns over space, the configuration of cultural and natural 

elements, and the relationships between a variety of objects, areas, and phenomena. In 

comparison with other georeferenced data—including remote sensing imagery and 

LiDAR data, which have been gaining popularity—the benefits of maps have been 

identified in many geospatial interpretations, analyses, visualizations, and 

communications (Crampton, 2001; Perkins, 2003a; Monmonier, 2006; Konecny, 2011). 

Over the last two decades, the progress of surveying, mapping, and web-service 

techniques have facilitated a significant portion of the efficiency of map generation and 

map sharing. Many digital maps are available from miscellaneous sources, such as 

scanned paper maps, online map services (e.g., Google Earth and Google Maps) (Li, 

2007; Kobayashi, et al., 2010), data repositories of volunteered geographical information 

(e.g., OpenStreetMap) (Neis and Zielstra, 2014), and georeferenced cyberinfrastructures 

(Wright and Wang, 2011). The huge number of maps currently available have 

encouraged researchers to focus on the efficiency of map retrieval and discovery, which 

are significant aspects of the productivity and efficiency of digital maps. A foremost 

challenge associated with critical techniques for map discovery is how to conduct 

automatic interpretations of map content, since the capabilities of labor and traditional 
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interactive tools for map interpretation cannot meet the qualifications for processing the 

massive quantity and diverse nature of digital maps currently available.  

An approach that supports automatic raster-map interpretation must consider 

several challenges. First, in comparison to the traditional viewpoint that users’ needs are 

the most important factor in improving map design, many researchers have found that 

exactly defining user needs is close to impossible (Carter, 2005; Perkins, 2013b). 

Currently, cyber technology has led maps servers—such as Google Maps and Bing 

Maps—to evolve into an essential part of a person’s daily routine. This means that the 

same map might be used in different ways according to specific objectives and 

backgrounds (White, 2006; Foody, 2007). Second, maps are never the product used and 

created by professional agents alone. Maps with similar configurations and themes might 

be designed and depicted in various ways. Third, the emergence of web services, 

volunteered geographical information, and cyberinfrastructure provide comfortable 

platforms on which people can publish, edit, and share their maps that they created with 

web resources, making it impossible to establish a unified standard for map design. 

Today, the roles and distinctions between map producers and map users are much vaguer 

in the era of big data, volunteered geographical information and spatial 

cyberinfrastructure. For example, a person who seeks maps that regard specific interests 

could also publish individually designed map creations (Hurst and Clough, 2013). 

 In the context of supporting on-demand and historical map discovery, a number 

of methods based on metadata or annotations have been reported (Li, Yang and Yang, 

2010; Li, et al., 2011). Though these methods incorporate cutting-edge techniques in 

terms of semantic analyses, data mining, and machine learning, metadata- and 



  50 

annotation-based map interpretation cannot support map understanding because of three 

limitations. First, most of the map resources available on the Internet lack fundamental 

map elements, including map content like map titles, legends, and descriptive text. 

Moreover, the degree of detail in the metadata and annotation methods has a considerable 

influence on results generated with metadata- and annotation-based raster-map 

interpretation. However, the quality of the metadata and annotation always varies 

considerably for maps with a similar theme that are available from web map services 

(WMS), map repositories, and map services (Wu et al., 2011; Gui et al., 2013). For 

example, a map annotated as a road map might be a map that depicts only linear street 

networks or instead illustrates detailed information, including street levels and street 

names. Finally, map metadata and annotation are generated on the basis of individual 

viewpoints and understanding, meaning that the theme and content of similar maps might 

be annotated differently. Thus, metadata and annotation are not useful for explicitly 

representing the content of a map, nor do they support automatic map content 

understanding (ref).  

To address the limits of metadata and annotation-based approaches for map 

interpretation, map content-based approaches have become a primary area of 

investigation over the last couple decades (Chiang et al., 2013). Since the layouts and 

configurations of maps are varied and complicated, not all features derived from a map 

are useful. In addition to metadata, map annotation, and map elements, the features useful 

for obtaining map content include map text, map symbols, and map type (Pezeshk and 

Tutwiler, 2013; Chiang, et al, 2016; Li, Liu and Zhou, 2018). Map symbols provide key 

graphical features for map object identification. Though the principles of cognition are 
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significant in map symbol design, the configuration of map symbols for a similar 

geographical object might still be different in maps that are accessible from widely 

available resources. Thus, map symbols are not used as a fundamental map feature in the 

proposed method. Map-text recognition is a branch of optical character recognition (OCR) 

(Mithe, Indalkar and Divekar, 2013) in cartography and GIS data mapping, which 

attempts to convert the map text within a variety of printed media likescanned papers, 

PDF files, and images into a machine-readable format. Chiang et al. (2016) evaluated the 

state-of-the-art method for map-text recognition on the basis of a variety of criteria. 

Because of the distinction of map fonts, styles of map characters, printing quality, map 

resolution, and map complexity, the previous approaches for map-text recognition, which 

apply techniques from image processing, clustering analysis, object-based image analysis 

(OBIA), and machine learning, had limitations in automatic map-text recognition in high-

resolution maps. Meanwhile, few works have reported investigations into automatically 

classifying map type; however, these investigations are valuable for people trying to 

understand the content of a map. For example, DEMs and topographic maps, rather than 

orthophoto maps, are useful to a querythat retrieves maps regarding elevation information 

(Zhou, et al., 2012). The state-of-the-art approaches to map-text recognition and map-

type classification are discussed in the next section. Considering the power of deep-

learning techniques for scene classification and object recognition (Bengio, Courville and 

Vincent, 2013; LeCun, Bengio and Hinton, 2015), the first section of the proposed 

method describes a methodological framework for implementing a convolutional neural 

network (CNN) that supports map-text recognition and map-type classification. 
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However, the machine-readable information obtained via map-text recognition 

and map-type classification falls far short of supporting human-level map understanding 

(Li, Liu and Zhou, 2018). In addition to map-text recognition and map-type classification, 

the transformation from map information into explicit knowledge, which enables 

explicitly conceptualizing and semantically organizing the content of a map, is another 

critical stage in realizing automatic map discovery. Up to now, no literature has 

comprehensively reported studies to convert map information into map knowledge. At 

the same time, the conversion of georeferenced information into geosemantics and spatial 

knowledge has been a primary research focus in the community of geographical 

information science (Janowicz et al., 2012). The relevant technologies—including geo-

ontologies (Fonseca, et al., 2002), geosemantic queries (Battle and Kolas, 2012), and the 

geospatial semantic web (Becker and Bizer, 2009)—have been developed to facilitate 

georeferenced data interoperation, spatio-temporal pattern discovery, geospatial 

knowledge discovery, and so on. In regard to the potential of geospatial semantic 

analyses to facilitate georeferenced information analyses, the second section of the 

proposed method focuses on advancing the transformation from plentiful map 

information into explicit map knowledge. 

This chapter reports an integrated framework to support automatic human-level 

map understanding and map discovery, and the framework includes map-text recognition 

and map-type classification with deep-learning techniques, as well as the discovery of 

map semantics via the techniques of semantic analyses. The remainder of this chapter is 

organized as follows. Section 2 reviews the literature on map-text localization, map-text 

recognition, and map-type classification. Section 3 sketches the framework of the 
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proposed method, and then introduces the technical details of each part of the proposed 

method. Section 4 describes and discusses the experimental results of map discovery with 

the proposed method. Section 5 summarizes the proposed method, highlights of the 

proposed method, and prospective work in map-content recognition. 

3.2 Methodology 

3.2.1 Map-text Recognition. 

Map-text recognition attempts to detect the location of text units in a digital map 

and then converts the detected map text into machine-encoded documents. The 

architecture of the methodological framework for map-text recognition comprises three 

parts: map-text detection, map-text unit separation, and map-text classification (see 

Figure 11). Three independent CNN models were developed for each part. A fine-tuned 

and Faster R-CNN is used for map-text detection, a fine-tuned DeepLab V3+ is used for 

map-text segmentation, and the Tesseract OCR engine (Smith, 2007) is used for map-text 

classification. The following subsections introduce the details of each part. In particular, 

an approach for map-text straightening was developed to further process the raw 

segmentation result. 
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Figure 11. Methodological framework of map-text recognition. 

3.2.2 Map-text Detection. 

The CNN for object recognition can effectively deal with the tasks in terms of optical 

character recognition-OCR (Liao, et al., 2017; Liu and Jin, 2017). Thus, the proposed 

method conducts text detection with the CNN for object detection, viewing text units as 

objects in a digital map. Faster R-CNN is a state-of-the-art CNN, which was developed 

on the basis of the architecture of Fast R-CNN. The main component of the conventional 

Faster R-CNN comprises the region proposal network (PRN) for generating region 

proposals from an image, as well as a network architecture of Fast R-CNN (Girshick, 

2015) for classifying the region proposals into a predefined category. To further improve 

the power of the conventional Faster R-CNN for object recognition, the following 

methods exploited strategies to increase the classification accuracy and to reduce the 

overlap areas between a bounding box and the detected object. The attempt to gain 

classification accuracy involves replacing resnet (He, Zhang, Ren et al., 2016) with the 
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cutting-edge CNN models for classification, such as the Inception series (Szegedy, Ioffe 

and Vanhoucke, et al., 2017), Mobilenet (Howard, Zhu and Chen et al., 2017), NASNet 

(Zoph, Vasudevan and Shlens, 2017), and PNASNet (Liu, Zoph and Shlens, et al., 2017). 

Atrous convolution is the strategy for adapting the field of view to control the overlap 

between a bounding box and the detected object. Thus, the present study uses the Faster 

R-CNN incorporated with Atrous convolution and PNASNet to detect the bounding box 

of the map-text unit. 

Though the accuracy of map-text detection remains stable to a high degree within 

the Faster R-CNN, a challenge is commonly reported in the process of recognizing every 

character in the detected map text (ref). Unlike the characters in a photo, the orientation 

of characters in a map-text string might vary because of the map configuration and 

generalization. Moreover, map-text units might be overlapped with other map features or 

a complicated map background, which poses a significant challenge for an OCR engine 

to efficiently recognize and convert the text in a digital map into machine readable format 

(Pezeshk and Tutwiler, 2011; Li, Liu and Zhou, 2018). As mentioned in Subsection 2.2, 

the operation for setting map text upright plays a key role in map-text classification, and 

an operation for oblique map-text straightening is always required in advance. 

3.2.3 Map-text Unit Separation and Classification. 

Using the results of map-text detection, the form of which includes the boxes that 

contain map-text units, map-text unit separation next extracts map-text units from its 

context and other overlapping features. Considering the potential of the semantic 

segmentation technique on the image analysis reported previously (Chen et al., 2017), the 

proposed method develops a CNN for semantic segmentation for map-text unit separation. 
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Semantic segmentation studies the object and scene in an image at a pixel-level 

resolution, depending on the contextual information around each pixel. Thus, semantic 

segmentation can effectively avoid the limitations of pixel-level image-analysis 

techniques while extracting the precise shape of an object at the pixel level. As a cutting-

edge technique for pixel-wise semantic segmentation, DeepLab V3+ (Chen, Papandreou 

and Schroff, et al., 2017) was implemented as the CNN for semantic segmentation to 

segment the detected map feature into various map characters or to separate map 

characters from a detected bounding box. 

In regard to the loss of spatial details during the end-to-end learning process, 

including an encoder module and a decoder module, DeepLab 3+ proposes a new 

approach called Residual Block for fine-feature learning over multiple scales. The 

strategies associated with this approach include two substantial components: atrous 

convolution and atrous spatial pyramid pooling (ASPP). 

After map-text unit separation, the method for straightening the map text that was 

available in the previous version of Intelligent Map Reader was improved (Li, Liu and 

Zhou, 2017), which might have limitations in dealing with upright, curved text strings. 

The proposed method provides two separate strategies for processing aligned and curved 

map-text strings; the workflow of the two strategies are shown in Figure 12.  
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Figure 12. (A) Aligned map-text string straightening and (B) curved map-text string 

straightening. 

In Figure 12, the blue and the green rectangles refer to the minimal bounding box 

(MBB) and the rotated MBB for a map-text string, respectively. The purple and the 

orange rectangles refer to the MBB and the rotated MBB for a single map-text character, 

respectively. Both of these strategies employ similar operations during the first two steps, 

which are shown in Figure 12(A-1 and A-2) and Figure 12(B-1 and B-2). First, the MBB 

and the rotated MBB for an oblique map-text string are created, respectively. If this map-

text string is upright, the MBB and the rotated MBB overlay each other overall. 

Otherwise, an intensity histogram of the cross-profile section of the rotated MBB, which 

is shown as the red line in Figure 12(A-2) and Figure 12(B-2), is calculated. The intensity 

histogram of the curved map-text string is significantly different from this aligned map-

text string: a floor is seen in the middle of the histogram, because no map text exists in 

the middle section of the red line. Thus, the result of the histogram determines which 

strategy is applied in the following steps. The aligned map-text string is directly 

straightened by rotating the intersection angle between the rotated MBB and the MBB—

namely, the green box and the blue box in Figure 12(A-1). Alternatively, a MBB and a 
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rotated MBB are created for each character in the curved map-text string. Next, every 

character is straightened individually by rotating the intersection angle between its 

rotated MBB and MBB—namely, the orange box and the purple box in Figure 12(B-3). 

Intelligent Map Reader exploits the Tesseract OCR engine (Smith, 2007; Patel, 

Patel, and Patel, 2012) to recognize the text obtained via the map-text unit separation. 

Tesseract OCR is an open-source OCR engine that supports 116 languages in the newest 

version, and  is available at this link: https://github.com/tesseract-ocr. The previous 

version of Intelligent Map Reader (Li, Liu, and Zhou, 2018) reports that the accuracy of 

text recognition with Tesseract OCR reached 100% for the map texts, which were 

extracted well and without noise. 

3.2.4 Map-type Classification. 

A methodical classification system of map category is challenging because of 

established bias. Moreover, classification systems of map category are difficult to unify 

because of the diversity in map theme and map visualization. However, map types might 

have essential effects on map-content understanding. For example, though the place name 

“Phoenix” can be seen in a street map and a topographic map, elevation information 

involving contour lines, spot elevation, and terrain features are only available in the 

topographic map. In this case, map-type information is integral to effectively conducting 

an example search request: “a map depicting the topographical features in Phoenix.” 

Moreover, place names printed in diverse digital maps differ because of varying topics, 

scales, readership, and visualization. For example, school building names depicted in a 

campus map might not be printed on a topographical map. This means that a search 

https://github.com/tesseract-ocr
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request like “a map including detailed campus information” might overlook the maps 

with respect to topography, terrain, or elevation. 

Considering the power of CNNs for image-scene classification and remote-

sensing imagery (LeCun, Yoshua and Hinton, 2015; Szegedy, et al., 2017), this research 

attempts to exploit the techniques of CNN for image classification to conduct map-type 

classification. Zhou et al. (2018) reported a comprehensive evaluation of the performance 

of a variety of CNNs in map-type classification. The results showed that with the support 

of a systematically prepared training data set, the state-of-the-art CNNs for scene 

classification could produce a satisfactory result for map-type classification within the 

accuracy range of 93% to 99%. The proposed method applies PNASNet to conduct map-

type classification, with a reported efficiency in image-scene classification based on a 

variety of benchmark data sets. 

3.3 Human-level Map Understanding. 

Machine-readable map-text and map-type are fragmentary, unsystematic, and 

disconnected, and such qualities hinders users from understanding the contents of maps. 

For example, because Arizona State University (ASU) is located in the city of Tempe, 

both the Tempe city map and ASU campus map contain map names such as Arizona 

State University and Tempe Downtown Lake. These map names produce unreliable 

results that render them useless to determine which is the true ASU campus map. Thus, 

the proposed method uses a framework that integrates ontology, semantic queries, and 

semantic reasoning to transform extracted map text and the confirmed map type into 

explicitly meaningful descriptions of map content.  
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The varied techniques of geo-semantic analyses facilitate the systematic 

organization of the relationships between - and explicitly represents the knowledge of -

objects, events, and phenomena.  Georeferenced semantic analysis has been exploited 

into four parts: (1) relevant and valuable information discovery (Yue, et al., 2011), (2) 

inherent meaning mining (Bogorny et al., 2011), (3) heterogeneous data interpretation 

(Fonseca et al, 2002), and (4) reasoning-driven automatic semantic query (Battle and 

Kolas, 2012). These four parts are useful in the proposed method to establish an 

integrated ontology for map information organization, developing a GeoSPARQL-

enabled geosemantic reasoning system, and building a semantic query to facilitate the 

representation of map characteristics. 

Figure 13 illustrates the methodological framework for supporting human-level 

map understanding. USTopographic (Tambassi, 2018) and GeoNames (Ballatore, 

Bertolotto and Wilson, 2014) are the ontology and taxonomy already established. In 

addition to these two ontologies, the proposed method uses a MapType Ontology to 

semantically organize the description of each map type accessed from online dictionaries 

and Wikipedia. Next, a GeoSPARQL-enabled semantic query is used to access the 

hidden information. 



  61 

 

Figure 13. From extracted map features to map content with semantic analysis. 

3.3.1 Ontology Development and Integration. 

Ontology is a systematic model that includes the formal definitions, semantic 

categories, properties, and relationships among various classes, entities, and data. In 

terms of georeferenced information, the ontological model has been viewed as an 

important tool for dealing with geodata interoperation (Fonseca et al., 2002). This paper 

exploits a state-of-the-art ontology and a geospatial taxonomy for map information—

GeoNames Ontology (Wick, Vatant and Christophe, 2015) and USTopographic ( Usery 

and Varanka, 2012)—to semantically organize the conceptual hierarchy of map names. 

GeoNames Ontology provides a fully organized conceptual hierarchy that includes all 

map feature classes available in the OpenStreet Map products. USTopographic ontology 

is for semantically organizing the names available in the National Map products, and it 

includes six subcategories: Built-Up Area, Division, Ecological Regime, Surface Water, 
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and Terrain. In addition, an ontology is developed for the formal representation of map-

type information: MapType ontology. MapType ontology was created with an ontology-

editing framework called Protege that supports Ontology Web Language (OWL) and 

Resource Description Framework (RDF) languages. 

Considering the heterogeneity of terminology in these three ontologies, an 

integrated ontology that merges these three ontologies is integral to effectively supporting 

semantic query. First, based on the categorical system in USTopographic, Geonames 

ontology and GNIS gazetteer two ontologies were integrated depending on their similar 

classes. Next, the terminology of MapType ontology was joined to the ontology 

integrating Geonames ontology and USTopographic as a new category called “Map type.” 

However, a number of classes were still not fused into the preliminary integration result 

because of the polysemy and synonymy. For example, the “Administrative area” class in 

GeoNames ontology and the “Division” class in USTopographic ontology are 

semantically similar but literally different. Thus, a further integration aims at fusing the 

remaining classes on the basis of the synonym list and geographical knowledge. 

Moreover, as shown in Figure 4(A), individuals are missing in the ontology 

integrating GeoNames and USTopographic ontologies. Classes alone cannot support to 

map content identification, since place names and other names shown in a digital map are 

individual features of a class. As shown in Figure 4(B), both classes and their individuals 

were essential to supporting an efficient semantic query. The proposed method uses the 

GeoNames gazetteer and the GNIS gazetteer to enrich the individuals in the ontological 

model integrated into the GeoName and USTopographic ontologies. Figure 14 shows an 
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example solution to add individual instances to an integrated Arizona State University 

ontology. 

 

Figure 14. Adding individual instances to an integrated Arizona State University ontology. 

3.3.2 Semantic Query and Reasoning. 

Semantic query attempts to automatically provide answers to a question with 

logical reasoning using an existing knowledge graph. In comparison to an information 

query, a semantic query can mine the hidden meaning by discovering the architecture of 

knowledge graphs. For example, it is easy to literally deduce which state Arizona State 

University is located in. However, determining which city Arizona State University is 

located in, as well as the neighboring cities, requires a knowledge graph on the spatial 

and topological relationships between Arizona cities and Arizona State University. 

This research exploits the conceptual class hierarchy integrating GeoNames ontology 

and USTopographic ontology, conceptual hierarchy of classes, and the individual 

instances of each class to support the semantic query. The semantic query was conducted 

on the basis of a GeoSPARQL framework (Li, et al., 2016). Query conditions and goals 

were defined in the form of a semantic triple: Subject—Property/Predicate—Object, 
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where Property/Predicate denote a relationship between the subject and object. The 

semantic triple supports the explicit representation of the relationship between two 

objects or between an entity and an attribute in a machine-readable way. Because the 

relationship is modeled in an explicit and unambiguous manner, the semantic query 

enables a precise result to be produced via processing and inferring the semantic 

relationships represented by the semantic triples. For example, the unstructured text 

description “Arizona State University is located in Tempe” could be organized as two 

structured triples: “Arizona State University—isIn—Tempe” and “Tempe—encloses—

Arizona State University.” In addition to the document-based semantic triple, 

GeoSPARQL enables the use of geographical coordinates to create a geometry-based 

semantic triple that represents the topographic relationship “contained” between Tempe 

and Arizona State University. 

The semantic query available in the proposed method was developed according to 

the semantic triple, which supports queries with a subject, a predicate, and an object. 

Example queries based on the semantic triple “Arizona State University—isIn—Tempe” 

are listed in Table 4. 

Table 4.  

Comparison of the previous version of Intelligent Map Reader and the proposed method. 

 Query codes Query result 

 Query type 1 

Query form ?who/?what/?which/?where Predicate Object Subject 

Practice ?what isIn Tempe Arizona State University 

 Query type 2 

Query form Subject ?relationship Object Predicate 

Practice Arizona State University ?how Tempe isIn 
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 Query type 3 

Query form Subject Predicate ?whom/?what/?where Object 

Practice Arizona State University isIn ?where Tempe 

 

3.4 Experiments 

3.4.1 deepMap: A Benchmark Data Set for Map-text Recognition. 

It is critical to prepare large-scale, well-labeled data to feed a neural network to 

enhance its capability of distinguishing different classes (Bengio, Courville and Vincent, 

2012). Thus, a benchmark data set was created for map-type classification (Zhou, et al, 

2018). The dataset includes data collected from online ArcGIS maps, Google Maps, the 

USGS’ US Topo and historical DRGs, and Bing Maps. Figure 14 shows three types of 

data available in deepMap: map characters, labeled map text, and map samples that belong 

to various types of map.  

• The map character dataset was used to fine-tune the CNNs for map-character 

classification and semantic segmentation. There were 43 categories in the map-

character data set, because the capital case and lower case of “C,” “U,” “V,” “W,” 

and “Z” are similar in the majority of maps. Each category had 100 samples, and the 

dimensionality of each image that included a map character varied from 10×10×3 to 

40×40×3.  

• The dataset of labeled map text was used for fine tuning the CNN for map-text 

detection, the dimensionality of which was 64×64×3. There were 300 maps labeled 

with text, and around 1,000 were labeled as map-text samples.  

• The map-type data set was used for map-type classification with CNN, and the data 

set included 10 categories: topographical map, transportation map, 3-D map, 
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nighttime imagery map, ortho imagery map, land cover map, DEM, boundary map, 

comic map, and sketch map. Figure 15 illustrates the selected maps in terms of the 10 

categories. Each category had 250 map samples, and the dimensionality of each map 

sample was 256×256×3. 

 

Figure 15. Illustration of selected samples from the deepMap benchmark data set. 
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3.4.2 Experimental Design. 

Two hundred maps for each category were downloaded from Google search 

engine via a crawler called Google Image Downloader. The keywords used for the search 

were “Arizona State University map,” “Yellowstone National Park map,” “Gulf of 

Mexico map,” “San Francisco map,” and “Newark Airport map.” These five themes 

denoted the maps in terms of small-scale urban areas, popular areas of interest (AOI), 

large-scale natural regions, large-scale urban regions, and landmarks, respectively, 

covering a variety of aspects possibly seen by people in their daily lives. However, the 

quality and reliability of data resources on the Internet were not evaluated 

comprehensively. Each map category included some maps that were useless because of 

unrecognizable file formats and irrelevant map content. Thus, valid maps were manually 

selected from the results generated by Google Image Downloader. Moreover, true and 

incorrect samples were manually selected and labeled in the valid maps. Table 5 lists the 

numbers of downloaded maps, valid maps, and useful maps in terms of each category. 

The dimensionality of the collected maps varied from around 300×300×3 to around 

3000×3000×3. 

Table 5.  

Statistics of the experiment. 

Map theme Total number of 

downloaded maps 

Total number of 

readable maps 

Total number of 

useful maps 

Arizona State 

University 

250 182 65 

Yellowstone 250 226 132 

Gulf of Mexico 250 231 98 

San Francisco 250 222 140 
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Newark Airport 250 210 85 

 

The significant difference between the number of useful maps and the number of 

downloaded maps shows that a majority of digital maps accessed from web sources were 

irrelevant and useless. Many downloaded maps are not useful were due to four main 

reasons:  

• First, two maps that had approximate themes might be classified as a similar 

category, such as Arizona State University and University of Arizona. 

• Second, two maps might cover neighboring locations, such as Yellowstone 

National Park and Grand Teton National Park. Yellowstone National Park and 

Grand Teton National Park are neighboring areas. Thus, some maps titled 

Yellowstone National Park also covers Grand Teton National Park. Otherwise, 

some maps titled Grand Teton National Park may also cover Yellowstone 

National Park. 

• Third, two maps might have incomplete, semantically confusing annotations, such 

as Yellowstone National Park and Grand Canyon National Park maps. 

Yellowstone National Park and Grand Teton National Park are neighboring areas. 

Thus, some maps titled Yellowstone National Park are the map about Grand 

Teton National Park. 

• Fourth, the theme or spatial coverage of one map might contain the theme or 

spatial coverage of another map—for example, a Yellowstone National Park map 

and a US state map that highlights the location of Yellowstone National Park. 
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Moreover, the significant difference between the number of useful maps and the 

number of downloaded maps also indicated that an additional operation should be 

included to support accurate and efficient map discovery from web sources. 

Figure 16 displays map samples collected via the Google search engine. The maps 

accessed from web sources were created with varied themes, styles, configurations, scales, 

and readership orientations. Many maps lacked fundamental map elements, such as map 

titles, legends, and scales. 
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Figure 16. The selected maps accessed via Google image search. 

To select the appropriate and representative maps, the following three approaches 

were evaluated: a metadata/annotation-based approach, a map element–based approach, 

and the proposed method. The metadata/annotation-based approach used the file name 
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and metadata of a digital map accessed via the Google search engine to determine 

whether it it met the criteria. The map element–based approach discovered maps based on 

the fundamental map elements of map title, map legend, and citations. The proposed 

method attempted to discover the useful maps via a sequence of steps mentioned in the 

proposed method based on a NVidia 1070 GPU-enabled computer. 

The workflow of the proposed method comprised four steps. The first step finely 

tuned the architecture of an imagenet-pretrained Faster RCNN with atrous convolution, a 

COCO-pretrained DeepLab V3+, and an imagenet-pretrained PNASNet. To objectively 

evaluate the performance of the CNNs for map-type classification, map-text detection, 

and map-character segmentation, the proposed method used the Faster R-CNN default 

value for the learning rate, patch size, and anchor ratio, and the default kernel size, stride, 

pad, and rate of DeepLab 3+. The results of the first step included the bounding boxes 

that enclosed map-text units. 

In the second step, map-text detection was conducted with the fine-tuned Faster 

R-CNN, and then the fine-tuned DeepLab V3+ was used to segment the map-text units 

from the bounding boxes generated by detection. Next, the separated map units were 

straightened using the proposed method presented in Subsection 3.3.1.2, and it was 

recognized with the Tesseract OCR engine. The results of the second step contained a list 

of machine-readable map texts. 

The third step applied the fine-tuned PNASNet to classify the maps collected 

from web resources. Because it was impossible for the nighttime categories shown in 

Figure 15 to cover all map types, a new category called “unclassified” was added, in case 

a map could not be assigned to any predefined category. If the classification scores of all 
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night categories were low for a map, this map was viewed as unclassified. The results of 

the third step were machine-readable map-type information. 

In the last step, the map-type information and map-text information were 

integrated to conduct the semantic query, with the main goal of gaining the implicit 

semantics and hidden content of every map. As mentioned in Subsection 3.3.3.2, a 

semantic query was implemented on the basis of the platform developed with Protege. 

All triples potentially used for semantic reasoning and query were organized according to 

an ontology integrating the GeoNames, USTopographic, and MapType ontologies, and 

the triples were correspondingly derived from the GNIS gazetteer and the GeoNames 

gazetteer. In the last step, a conceptual graph of the content of every map was generated. 

3.4.3 Demonstrative Results. 

Table 6 lists the precision and recall of the map recognition for each category, 

according to the metadata/annotation-based approach, map element–based approach, and 

the proposed method. Few maps were retrieved by the map element–based approach, 

meaning that a majority of maps already on the Internet and web sources were created 

with no professional standards. In addition, this result indicates that map elements might 

not be the ideal features for the representation of map content. 

Table 6.  

Evaluation of map recognition. 

 Precision Recall F-scores 

 1* 2* 3* 1* 2* 3* 1* 2* 3* 

ASU 0.6735 0.28 0.9184 0.5893 0.3214 0.8036 0.3143 0.1497 0.4286 

Yellowstone 0.7179 0.9333 0.8980 0.6364 0.3182 0.6818 0.3374 0.2372 0.3876 

Gulf of 0.4048 0.2727 0.84 0.5102 0.1633 0.4286 0.2257 0.1021 0.2838 
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Mexico 

San 

Francisco 
0.3590 0.2643 0.9756 0.5357 0.9487 0.5857 0.2149 0.2067 0.366 

Newark 

Airport 
0.4264 0.1882 0.9516 0.8706 1 0.7294 0.2862 0.1584 0.4129 

*1: Metadata/annotation-based approach 

*2: Map element-based approach 

*3: The proposed method 

 

Figure 17 illustrates an example semantic query of an Arizona State University 

campus map and a Gulf of Mexico map, as well as the conceptual graph developed for 

maps of Arizona State University and the Gulf of Mexico. Figure 17(A) lists the entities 

that belong to Arizona State University, as well as those located in the Tempe campus or 

near the Tempe campus. Figure 17(B) lists the entities that were near the Gulf of Mexico. 

Figure 17(C) shows classes in the conceptual hierarchy and their corresponding 

individuals, which were developed on the basis of the first five maps accessed via the 

Google search engine in terms of “Arizona State University map” and “Gulf of Mexico 

map.” 
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Figure 17. Illustration of the selected semantic query. 

3.4.4 Discussions. 

The results of the metadata/annotation-based approach were generated by the 

‘ideal condition’ in natural language processing. For example, “sf” and “ewr” were tacitly 

accepted as San Francisco and Newark Airport, respectively. Thus, the results generated 

by the metadata/annotation-based approach might be poor to some degree in practice. 

The number of maps successfully retrieved by the metadata/annotation-based approach 

varied significantly among these five themes of maps, which indicates that the maps 

accessed from web sources could not guarantee their reliability and quality. Meanwhile, 

the metadata/annotation-based approach was deficient in terms of recall, which means 

that this method always selected a high number of irrelevant maps. The decreased recall 
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occurred because of a semantic heterogeneity (Lutz et al., 2009) in map decryption and 

annotation, including polysemy, homophony, and word context. 

Similar to the metadata/annotation-based approach, the results of the map 

element–based approach were generated assuming that all map elements in a map were 

recognizable. However, the map element–based approach retrieved few useful maps. The 

results of the map element–based approach showed that a majority of maps accessible 

from multiple sources were not created with professional standards. 

The proposed method generated the results shown in Table 6 without setting the 

IoU parameter, because the result of the map-text detection was true only when the whole 

body of map text was included in a bounding box. For example, the IoU of straight map 

text should be close to 100%, but the IoU of oblique map text might be 60%. The 

precision shown in Table 6 was influenced by the precision of the map-text detection, the 

precision of the map-text segmentation, the precision of the map-text unit straightening, 

and the precision of the map-text classification. 

• The precision of map-text detection was heavily affected by the spatial resolution 

of a map.  

• Few losses were seen in the results of the map-text segmentation and map-text 

unit straightening. Moreover, it was found that the results of the conventional 

object-based segmentation (Achanta, et al., 2012) were similar to those produced 

by semantic segmentation. This might have occurred because the color and 

texture features of the map text were clean and uncomplicated.  
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• If the text in an image was relatively straight and without noise, the precision of 

the map-text classification reached 100% via Google Tesseract OCR, which was 

reported in the previous version of the proposed method. 

Although the proposed method performed well in map-text recognition for 

topographical maps, the variation and complexity of digital maps from web sources are 

much more critical, which poses substantial challenges for state-of-the-art CNNs. Three 

main issues affected the performance of the proposed method in map text recognition. 

First, some maps lacked map text, making it impossible for Intelligent Map ReaderV2 to 

recognize the content of these maps. Second, the resolution of the maps significantly 

influenced the effectiveness of CNNs for text detection. The size of map text beyond the 

limit of field of receptive view (FoV) poses a great challenge for a CNN to generate 

precise region proposals. Last, more training samples in terms of different types of map 

text were needed to further improve the CNNs for map text recognition. 

As indicated by the results listed in Table 6, the traditional approaches for 

studying metadata, annotations, and map elements have limitations in terms of supporting 

efficient map recognition, because of numerous factors—such as unstructured map data, 

limited map quality, diverse map configurations, and unprofessional map generation. The 

insufficient performance of the metadata/annotation-based approach confirmed the 

importance of using map recognition within content-based map analyses, which is similar 

to the standpoint substantiated by content-based image retrieval (Smeulders, et al, 2000; 

Liu, 2007). Moreover, the results generated by the proposed method indicate that it would 

be valid and feasible to develop efficient map recognition utilizing the advantages of 

deep-learning techniques. 
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In map-type classification, the previous version of the deepLab benchmark data 

set was updated to increase intraclass variations and decrease interclass dissimilarities. 

The-state-of-the-art CNNs for classification, including Inception_Resnet and PNASNet, 

can obtain accuracies higher than 90% in the top two classification. In the new version of 

the deepMap benchmark dataset, the same configuration of CNNs obtained accuracies 

ranging from 88% to 97%. Moreover, the accuracies varied on the basis of different types 

of maps, which are summarized as follows, 

• The classification accuracies of topographic maps and orthophoto maps remained 

high. These two types of maps were clearly distinguishable from other types of 

maps. 

• The classification accuracy of transportation maps remained high for urban scene 

maps and large-scale natural scene maps. 

• 3-D maps were likely to be misclassified into comic maps. 

• There were no nighttime maps, DEMs, or sketch maps accessed via the Google 

image search engine. 

• Land cover maps were easily confused with boundary maps. 

3.5 Conclusions 

Maps are significant in terms of representing the natural characteristics and 

human-made components of a place. Because of the rapid development of earth 

observation systems and cyberinfrastructure and the spread of Internet techniques, 

considerable amounts of digital maps can now be accessed from multifarious sources. 

This new phenomenon not only reforms the traditional manner and viewpoint of map 

generation and map usage but also poses two major data-associated challenges. First, a 
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number of maps that people access are not created well, nor do they precisely fit the 

relevant demands and criteria. Moreover, the number of available maps far exceeds the 

capability of map storage, retrieval, and analysis. Thus, though countless digital maps are 

available and generated by a variety of sources, automatic map retrieval, map discovery, 

and map content understanding still face difficulties. 

Traditional ways of map creation—including metadata-based approaches, map 

element–based approaches, and OGC standard–based approaches—have limitations that 

hinder efficient access, discovery, and comprehension of map content. To address these 

challenges, the techniques that enable the extraction of map content–based map 

information has been reported in the previous two decades, ranging from image 

processing techniques to machine-learning algorithms. Today, the potential power of 

deep-learning techniques in image analysis is attracting much attention from the 

cartography and GIS communities. The proposed method was founded on the strategy of 

exploring digital map content with deep-learning techniques, and it employs state-of-the-

art CNNs to facilitate map-text and map-type recognition.  

Moreover, the proposed method focuses on not only the results of map-feature 

extraction, but also the implicit meaning of each map feature and the relationship among 

various map features. Recently, the conversion of map-feature information into map 

semantics and knowledge has been an unexplored research area. The second part of the 

proposed method provided a framework for map semantics and knowledge discovery, in 

an attempt to bridge the gap between map-feature recognition and map-knowledge 

discovery. 
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Several areas are still worthy of further investigation. First, useful input data are 

the essence of machine learning and AI techniques. In addition to map text and map type, 

it would be beneficial to explore other features that could be developed to help computers 

learn the representation of a map. Moreover, it has been reported that reinforcing learning 

techniques helps the cutting-edge CNNs to be more efficient in scene classification, 

object recognition, and semantic segmentation. Last, spatial knowledge and models are 

integral to geospatial analyses and applications, so developing an approach that 

incorporates spatial thoughts into machine-learning and AI techniques would be a 

worthwhile topic for future research. 
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CHAPTER 4                                                                                                         

DOMAIN KNOWLEDGE-ENHANCED LAND-COVER/LAND-USE 

CLASSIFICATION WITH IMAGE-SEMANTIC MODEL  

4.1 Introduction 

Land-cover display characteristics of Earth’s surface that include the physical 

appearance of natural materials and the places where artificial activities occur. Mapping 

and analyzing land cover are processes aimed at efficiently identifying specific objects or 

events on Earth’s surface over a specific period of time. However, field investigation for 

land-use/land-cover (LULC) classification in a large-scale area is laborious and time 

consuming. Frequently, updated remote sensing images provide the potential to support 

large-scale LULC classification and reinforce researchers’ competence in understanding, 

estimating, and predicting the influences of natural forces and artificial activities. A brief 

workflow of approaches for land-cover classification mainly includes extracting land-

cover features on global and local scales and designing an integrated classifier to label 

land-cover classes revealed in a remote sensing image. Traditional approaches to land-

cover classification, such as spatio-contextual approaches (Li et al., 2014), geographical 

object-based image analysis (GEOBIA) approaches (Blaschke, 2010), machine learning 

approaches (Maxwell, Warner and Fang, 2018), and rules-based approaches (Zhang and 

Zhu, 2011), present several limitations for land-cover feature learning and classification 

(Zhang, Zhang and Du, 2016; Cheng, Han and Lu, 2017). Many approaches might 

require a great amount of manual effort for thresholding, setting a representative scale of 

segmentation, and selecting the representative training samples and features. Robustness 

is another major concern because these approaches possess restrictions in dealing with 



  81 

noise and diversely complicated patterns in LULC scenarios. Lastly, and most 

importantly, traditional approaches are insufficient for handling the hyper-dimensional 

data feature space being derived from high numbers of remote-sensing images available 

today.  

The rapid progress of convolutional neural networks (CNNs) provides a 

significant opportunity to extract high-level abstract features from a remote sensing 

image for characterization of complicated LULC types. In other words, a CNN model 

supports to discover the high-level features of remote sensing images, which is useful for 

understanding the nature of various LULC types (Bengio, Courville and Vincent, 2013; 

LeCun, Bengio and Hinton, 2015). In the remote sensing community, the earliest 

attempts at using deep learning to facilitate land-cover classification might be traced back 

to Dai and Yang’s work (2011), wherein they designed a two-layer sparse coding system 

to detect the features useful for representing the image content. Some deep learning-

based approaches include stacked sparse autoencoder (Li et al., 2016; Li et al., 2016; 

Zhang et al., 2017), deep belief net (Zou et al., 2015), CNNs (Zhang, Zhang and Du, 

2016; Zhu et al., 2017), and the derivative models within a deep neural network 

architecture. Considering the extensive computing power required for creating a 

completely fresh CNN model, fine-tuned CNN models, such as classical CNNs (Scott et 

al., 2017; Wang, 2017), ImageNet, and COCO pretrained CNNs models (Marmanis et al., 

2016), have been widely used for land-cover classification. These efforts deduced that the 

CNN models—pretrained with digital photos—remain effective in land-cover 

classification from remote-sensing imagery. However, the representation of LULC 
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scenarios in a remote sensing image is different from those of objects and phenomena 

depicted in a normal photograph. 

Some studies paid attention to the improvement of the architecture of CNN 

models designed to represent the content in photos. In these studies, robust classifiers 

(Weng et al., 2017) and feature post-processing mainly attempted to reduce the 

dimensionality of the extracted features before applying them into a classification layer 

(Wang, 2017; Xiao et al., 2017; Zeggada et al., 2017). Although creating an extra step for 

processing features and replacing the classifier seemed to improve the results of land-

cover classification, these strategies did not significantly influence the feature extraction 

process, which is the critical component of a CNN model.  

The next efforts concentrated on improving CNN models by two strategies: re-

designing the architecture of convolution and pooling layers, and appending additional 

processing to the workflow to generate a high-level feature map (Zhao, Du and Emery, 

2016; Fu et al., 2017; Geng et al., 2017; Zhou et al., 2017). From the ideas proposed by 

random forest and adaptive boosting, Zhang, Du, and Zhang (2016) reported the strategy 

associated with assembling multiple CNN models. Taking advantage of the integration of 

multiple CNN models, a resultant CNN model, with a similar architecture, was expected 

to outperform a single CNN model in land-cover classification. However, Bergstra and 

Bengio (2012) and Liu et al. (2018) reported that the integration of different CNN 

architectures might be challenging and involve intensive computing. 

Although previous work using CNNs has demonstrated a powerful capability to 

perform land-cover classification, further research is needed to support LULC 

classification based on the results of land-cover scene mapping. Land-cover is the 
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representation of physical land types while land-use indicates the interaction between 

natural elements and human activities. Thus, LULC type attributes derived from remote 

sensing images are insufficient for directly predicting the functionality and organization 

of different land parcels. 

Benchmark datasets and land-cover classification systems provide a solution for 

incorporating the representation of different land-cover categories into a CNN model to 

support LULC classification. A number of benchmark remote-sensing datasets have been 

developed in recent years (Cheng, Han and Lu, 2017; Xia et al., 2017; Zhou, et al., 2018; 

Shen et al., 2018). These benchmark datasets have organized and labeled aerial and 

satellite images as land-cover classes associated with LULC properties. Aside from the 

development of benchmark datasets, several techniques, such as data augmentation (Yu 

et al., 2017; Scott et al., 2017), stochastic large-patch sampling (Zhong, Fei and Zhang, 

2016), and land-cover feature refinement (Zhong et al., 2017), have been reported to 

effectively generate the training samples that fit the representation of different LULC 

scenarios. 

However, several limits are still observed in those labeled samples. First, the 

classification systems of LULC types are defined differently for specific departments, 

organizations, and institutes (Tchuenté, Roujean and De Jong, 2011; Shen et al., 2018). 

Considering the complexity of LULC shown in the remote sensing image, it is difficult to 

create a unified taxonomy associated with LULC. Moreover, semantic heterogeneity, 

including polysemy and synonymy, are commonly observed in different versions of land-

cover classification systems. For example, the residential area in the UC Merced system 

(Yang and Newsam, 2010) may correspond to low-density residence, medium-density 
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residence, and high-density residence in the US. Geological Survey (USGS) land-cover 

classification system. Lastly, but most importantly, data labeling is always a time-

consuming process (Zhou, 2018); it is tough and expensive to update and manage a large-

scale benchmark dataset constructed for all possible LULC scenarios. 

Recently, discovering how to convert from “big data, small task” to “small data, 

big task” has become a major concern in deep learning investigations. A number of 

papers have reported efforts to raise the transferability of high-level features generated by 

CNNs to moderate the need for tremendous amounts of labeled data (Nogueira, Penatti 

and dos Santos, 2015; Gu et al., 2018). The concept of these algorithms (e.g., zero-shot 

learning and one-shot-learning, among others) motivated the development of weakly 

supervised and rule-enhanced deep learning algorithms. In the remote sensing community, 

few investigations have combined a CNN model with semantic analysis to support 

unknown LULC classification. Jean et al. (2016) used poverty survey data to guide a 

CNN model to quantitatively predict a ‘poor’ class from land-cover classification. Yao et 

al. (2016) proposed a unified annotation system to assign concepts to the content of a 

remote sensing image. Cheng et al. (2017) created a visual bag model called Bag of 

Visual Words (BoVW) to semantically organize convolutional features in support of 

LULC classification. BoVW is a technique for image classification based on middle-level 

features. In BoVW, visual words refer to the vector of local image features derived from 

an image. Chai et al. (2017) proposed a new model called “visual geometry group 

network” (VGG-Net) to extract the representative features from various geographical 

scenes, and then performed a discriminant correlation analysis to fuse the extracted 

features for unknown LULC classification. 
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This chapter proposes an integrated framework called “image-semantic model” to 

identify LULC types from remote sensing images using a CNN-powered multi-label 

classification system with spatial weights, and then to convert the land-cover categories 

into an overall interpretation of the target LULC scenarios via the vector space model 

(VSM). The proposed framework comprises three sections: (1) building a benchmark 

remote sensing dataset within limited LULC categories, (2) performing multi-label 

LULC classification with a pretrained CNN based on the training images available in the 

benchmark remote sensing dataset, and (3) recognizing target LULC types by organizing 

the classified LULC categories and measuring the similarity between different images 

with the VSM.  

The remainder of this chapter is organized as follows. Section 4.2 presents the 

benchmark data used for target LULC classification in coastline territories. Section 4.3 

presents the details of the proposed image-semantic model, which include data 

preparation, multi-label land-cover classification, and semantically aware target LULC 

understanding. Section 4.4 reports the experimental results using the coastlines in 

California as the study area, while Section 4.5 summarizes the contributions of this 

chapter and provides related perspectives. 

4.2 Benchmark Dataset for Coastal Scene Recognition 

This research developed the benchmark remote-sensing dataset based on two 

stages: it creates a land-cover classification system, and then collects images 

corresponding to each land-cover category in the classification system. In the last three 

decades, the pattern recognition community witnessed a variety of algorithms designed 

for classification using low-level features, mid-level features, and high-level abstract 
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features (Schmidhuber, 2015; Guo et al., 2016). Meanwhile, it is commonly 

acknowledged that the content included in an image places a considerable influence on 

the performance of cutting-edge algorithms for image classification (Fei-Fei, Fergus and 

Perona, 2006; Russakovsky et al., 2015). If the training data may not reflect a landscape 

scene’s characteristics, well-designed or fully fine-tuned models that densely rely on 

training data would be insufficient for precise classification (Shen et al., 2018). Thus, 

large-scale benchmark datasets such as Caltech (Fei-Fei, Fergus and Perona, 2006), 

(Everingham et al., 2010), ImageNet (Russakovsky et al., 2015), and Visual Genome 

(Krishna et al., 2017) have been established to organize these datasets to facilitate visual 

recognition, including classification, object detection, three-dimensional pose recognition, 

and semantic segmentation.  

However, photos in these popular benchmark datasets are insufficient for land-

cover classification. The taxonomies of these benchmark datasets were created from daily 

activities, a majority of which are irrelevant to the characteristics of land cover. A 

benchmark remote sensing dataset concerning specific LULC needs a new taxonomy that 

enables the description of land-cover systems. Moreover, scale is a significant attribute in 

both remote-sensing data processing and the definitions of LULC systems. The scale of 

similar LULC scenarios might vary significantly in the remote sensing image. For 

example, a place might be defined as downtown at one scale, but commercial area at a 

different scale. Lastly, although most importantly, the earth observation system has 

always confronted mediocre imaging conditions, resulting in noise such as clouds, fog, 

and abnormal contrast. 
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Considering the significant differences between photos and remote-sensing 

images, a number of influential benchmark datasets were developed to focus on land-

cover classification, including UC Merced (Yang and Newsam, 2010), SAT-4/SAT-6 

(Basu et al., 2015), SIRI-WHU (Zhao et al., 2016), RSSCN7 (Zou et al, 2015), RSC11 

(Zhao, Tang and Huo, 2016), RSI-CB (Li et al., 2017), WHU-RS19 (Shao, Yang and Xia, 

2013), AID (Xia et al., 2017), PatternNet (Zhou, et al., 2018), and NWPU-RESISC45 

(Cheng, Han and Lu, 2017). Shen et al. (2018) provide a detailed table describing these 

benchmark datasets.  

Table 7 

Brief information on remote-sensing datasets’ existing benchmarks (Shen et al., 2018). 

Benchmark 

name 

Total 

images 

Total 

class 

Average 

images 

per 

class 

Image 

size 

Spatial 

resoluti

on 

Sources 

Scale 

variatio

n 

Compl

ex 

scene 

SOC 

UC Merced 

dataset 
2100 21 100 

256*25

6 
0.3m 

U.S. 

Geological 

Survey 

No Yes No 

SAT-

4/SAT-6 
405000 6  28*28  

USDA 

Farm 

Service 

Agency 

No No No 

SIRI-WHU 2400 12 200 
200*20

0 
2m 

Google 

Earth 
No No No 

RSSCN7 

dataset 
2800 7 400 

400*40

0 
 

Google 

Earth 
No No No 

RSC11 

dataset 
1232 11 100 

512*51

2 
0.2m 

Google 

Earth 
No No No 

RSI-CB 
36707 

24747 

45 

35 

800 

690 

128*12

8 

256*25

6 

0.22m-

3m 

Google 

Earth 
No No No 

WHU-RS19 

dataset 
1005 19  52 

600*60

0 
0.5m 

Google 

Earth 
No Yes No 

AID 10000 30 220~420 
600*60

0 

0.5m-

8m 

Google 

Earth 
No Yes No 

PatternNet 30400 38 800 
256*25

6 

0. 

062m-

4.69m 

Google 

Earth 
No Yes No 

NWPU-

RESISC45 

dataset 

31500 45 700 
256*25

6 

0.2m-

30m 

Google 

Earth 
No Yes No 

CSRS-

SIAT 
70000 70 1000 

512*51

2 
Varied 

Google 

Earth 
Yes Yes Yes 
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*SOC: Semantically-organized category 

 

To support target LULC classification in coastal areas, I reports the development 

of a new land-cover classification system for coastal scenes by unifying both the existing 

land-cover classification systems, including the USGS Land Use and Land Cover 

Classification System and the NOAA Coastal Change Analysis Program (C-CAP), as 

well as geo-spatial query interface and gazetteers including USTopographic, USGS (U.S. 

Geological Survey) Geographical Name Information System (GNIS). The land-cover 

categories selected in the benchmark dataset include airport, beach, circular farmland, 

cloud, commercial area, dense residential area, desert, forest, freeway, golf course, 

running track, harbor, industrial area, transportation intersection, island, meadow, 

mountain, palace, parking lot, pier, railway, rectangular farmland, river, runway, sea ice, 

ship, iceberg, sparse residential area, stadium, storage tank, tennis court, terrace, thermal 

power station, wharf, water, and wetland. Accordingly, the research collected 700 images 

for each land-cover category from the benchmarks listed in Table 1. These 700 images 

represent the wave land-cover type from Google Earth Pro because wave might affect the 

recognition of water. Figure 18 illustrates selected image samples for each land-cover 

category in the new benchmark dataset. 
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Figure 18. Illustration of selected image samples in the benchmark dataset. 

 

4.3 CNNs-enhanced Image-semantic Model 

4.3.1 Multi-label Land-cover/land-use Classification. 

Multi-label LULC classification aims to label multiple LULC classes to a remote 

sensing image. In this chapter, I propose several steps to conduct multi-label LULC 

classification 

Numerous flat or planar surface assessments demonstrate the consequences of the 

composition and configuration of urban land-cover (i.e., land system architecture [Turner, 

2017]) on land surface temperature (LST) and above-ground air temperature for Phoenix, 

Arizona (Li et al., 2016; Myint et al., 2013; Kamarianakis et al., 2017). For the most part, 

these works demonstrate that the compactness of individual land-cover patch and the 

clustering of the same patch type can increase or decrease diurnal temperatures, 

depending on the land-cover type. The built urban environment, however, is repeat with 

vertical structures (i.e., buildings, trees) that affect climate within the canopy layer in 

various ways, such as shading, wind tunnels, and sky view. This vertical dimension is 



  90 

central to research on turbulence and flux dynamics as undertaken in urban climatology 

(Unger, 2004, 2009; Coseo & Larsen, 2014).  

4.3.1.1 Multi-label classification 

 

Figure 19. Comparison of binary classification, multi-class classification, multi-label 

classification, and multi-label classification with spatial weights. 

Figure 19 illustrates four types of land-cover classification, including binary 

classification, multi-class classification, multi-label classification, and multi-output 

classification assuming I have 𝐶 total land-cover classes and 𝐿 total labels (or variables) 

assigned to the content of a remote-sensing image. These four classifications are 

discussed below. 

Binary classification addresses the classification problem when 𝐶 = 2 and 𝐿 = 1. 

For example, the sample image in Figure 2 is labeled merely as either coastline or non-

coastline. Multi-class classification deals with the classification problem when 𝐶 ≥ 2 and 

𝐿 = 1. For example, the sample image in Figure 2 is classified into one of four land-

cover types.  
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Multi-label classification supports the assignment of the content of a remote-

sensing image to multiple classes with no restrictions on the total number of land-cover 

classes to which it can be assigned. Multi-label classification addresses the classification 

problem when 𝐶 ≥ 2 and 𝐿 ≥ 1; in other words, both land-cover classes are recognized 

in the image. Multi-label classification with spatial weights addresses the classification 

problem when 𝐶 ≥ 2 and 𝐿 ≥ 1 and each 𝐿 is weighted. In Figure 19, all generated land-

cover types are quantitatively normalized as scores within the interval 0~1.  

An improvement in spatial resolution increases the number of LULC types visible 

in one remote-sensing image. For example, sand might be the only land-cover type 

recognizable along the coastline in a medium-resolution image, whereas, in a high-

resolution version of the same image, a variety of LULC types (e.g., roads, piers, and 

buildings) may be visible, meaning neither binary classification nor multi-class 

classification is fitting for the high-resolution remote-sensing image. Binary classification 

and multi-class classification can only generate one LULC type for a remote sensing 

image, the scene in which may contain multiple LULC classes. Additionally, LULC 

might vary according to different portions of similar land-cover types. For example, a 

coastline with few palms would be different from another coastline scene that contains 

mangrove would be different although these two coastline scenes contain other similar 

LULC elements, including forest, sand, and water. Thus, compared with the multi-label 

classification that equally weights every land-cover element, multi-label classification 

with spatial weights becomes a decisive strategy for studying complicated target LULC 

scenarios in a high-resolution remote-sensing image. 
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4.3.1.2 Data augmentation 

Data augmentation is an important strategy for enhancing the robustness and 

transferability of a CNN model for feature extraction and classification (Taylor and 

Nitschke, 2017; Hernández-García and König, 2018). However, some data augmentation 

methods might not be helpful for land-cover classification. Considering the 

characteristics of LULC in remote-sensing imagery, this chapter applies six data 

augmentation methods: rotation, flip, scale, contrast, brightness, and the introduction of 

cloud and fog noise, the details of which are listed in Table 3. 

Table 8 

Brief information on data augmentation. 

Data 

Augmentation 
Methods Demo 

Rotation 
Generating 36 new images through rotating 

the original image every 10 degree. 

 

Flip 

Generating 2 new images through flipping the 

original image over horizontal dimension and 

vertical dimension. 

 

Scale 
Generating 4 new images through scaling the 

original image by 1:4, 1:2, 2:1, and 4:1. 

 

Contrast 

Generating 4 new images through modifying 

the original image with separate weighting 

parameters of AGCWD*: 0.2, 0.4, 0.6, and 

0.8. 
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Brightness 

Generating 4 new images through randomly 

modifying the brightness of the original 

image. 

 

Cloud and fog 

noises 

Generating 4 new images through randomly 

adding different types of cloud and fog noise 

to the original image. 

 

Total number 

of images after 

augmentation 

36 rotated images × 4 scaled images × 4 contrast enhanced images × 4 brightness 

modified images × 4 noises incorporated images = 9,216 images 

 

2 flipped images × 4 scaled images × 4 contrast enhanced images × 4 brightness 

modified images × 4 noises incorporated images = 512 images 

 

Total images: 9,216 + 512 = 9,728 images 

*AGCWD: Adaptive Gamma Correction with Weighting Distribution (Huang, Cheng and Chiu, 2013) 

 

Classical visual feature descriptors such as scale-invariant feature transform 

(SIFT) (Lowe, 2004) and speeded-up robust features (SURF) (Bay, Tuytelaars and Van 

Gool, 2006) reported the significance of rotation and scale variation on visual recognition. 

Moreover, scale is a fundamental attribute in a remote-sensing data analysis. Thus, the 

research reported in this chapter generated new training samples though rotating, flipping, 

and scaling the original image. Atmospheric conditions and the distance between ground 

surfaces and satellite sensors may lead to some loss in the electromagnetic energy 

obtained by sensors. The loss of electromagnetic energy results in changes in the image 

contrast, brightness, and intensity distribution. Thus, this work generated new images 

through modifying the brightness and changing the contrast of each original image. 

Finally, to raise the robustness of a CNN model to deal with noise, the introduction of 

pepper noise, Gaussian noise, and mosaics is commonly used for data augmentation. 

However, these types of noise are rarely observed in the rectified remote-sensing images 
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sent to end-users, whereas clouds and fog are. Thus, cloud noise and fog noise, rather 

than signal noise and mosaics, were randomly added to the original remote-sensing image.  

4.3.1.3 PNASNet 

This research applied a state-of-the-art CNN called Progressive Neural 

Architecture Search-PNAS (Liu et al., 2018) to conduct land-cover classification. 

Advanced CNNs such as Inception-ResNet and DenseNet are inefficient to automate 

hyperparameters (e.g. learning rate, the number of filter, convolutional size, etc.) during 

neural network architecture optimization (Liu et al., 2018; Liu, Simonyan and Yang, 

2018). Hyperparameters, which were manually designed with expert experiences, heavily 

influenced the learning rate scheduling as well as determining and optimizing the neural 

network architecture. To save the labor and time required to design a complex neural 

network architecture, the AutoML project proposed a new strategy (PNAS Progressive) 

to automatically generate an optimized neural network architecture. The architecture 

search space designed in PNAS works similar to that proposed in Neural Architecture 

Search-NAS (Zoph and Le, 2016).  
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Figure 20. Illustration of NAS strategy (Zoph and Le, 2016). 

Figure 20 illustrates the general structure of the architecture search space that 

comprises networks, cells, and blocks. The network is a stacked layer that includes a 

normal cell and a reduction cell. Each cell possesses a different structure that includes 

five blocks, meaning a cell’s output integrates these five blocks’ outputs. The block is a 

box that comprises multiple inputs and their corresponding operators (e.g., filters), and a 

block’s input may be the outputs generated by a cell or a block. A block’s output 

combines outputs from multiple operators. Moreover, the operators in a block may be a 

convolution with predefined dimensions and dilation rates, a pooling designed with 

different downsampling strategies, or a classifier. In the process of feature learning, NAS 

automatically modifies the network architecture constructed by cells and blocks to 
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identify the one that produces the best-fitting results. The following are the available 

operators: 

• 3x3, 5x5, and 7x7 depth wise separable convolution (Chollet, 2017) 

• 1x7 followed by 7x1 convolution 

• 3x3 average pooling, max pooling, and dilated pooling 

The CNN architecture is optimized by architecture search space, and the NASNet 

outperforms humans’ ability to design CNN architecture. However, intensive 

computation is a major concern when extensively implementing these strategies for a 

variety of applications, and thus, PNASNet aims to speed up the computational load 

using a progressive and iterative solution. In detail, this solution’s workflow is described 

below. 

Step 1. Train all 𝑁 cells that only include one block and select the most promising 

𝑁1(𝑁1 ≤ 𝑁) cells based on their training scores; 

Step 2. Expand the 𝑁1 selected cells into two-block cells; 

Step 3. Train all 𝑁1 two-block cells and select the most promising 𝑁2(𝑁2 ≤ 𝑁1) 

cells based on their training scores; 

Step 4. Expand the 𝑁2 selected cells into three-block cells; 

Step 5. Training all 𝑁2 three-block cells and selecting the most promising 

𝑁3(𝑁3 ≤ 𝑁2) cells based on their training scores; 

Step 6. Expanding the 𝑁3 selected cells into four-block cells; 

Step 7. Train all 𝑁3 four-block cells and select the most promising 𝑁4(𝑁4 ≤ 𝑁3) 

cells based on their training scores; 

Step 8. Expand the 𝑁4 selected cells into five-block cells; 
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Step 9. Train all 𝑁4 five-block cells, selecting the best five-block 𝑁5(𝑁5 ≤ 𝑁4) 

cells, and then increase the number of cells in the stacked normal cell. 

Compared to five-block cell training, the initiation of one-block cell training 

proposed by PNASNet gradually removes the valueless cells to more significantly 

decrease the computing complexity. Moreover, a number of efforts reported the 

classification performance of PNASNet based on two well-known, large-scale benchmark 

datasets: CIFAR-10 and ImageNet. Their experimental results acknowledge the 

significance of PNASNet in maintaining state-of-the-art classification accuracy while 

decreasing five to eight computational times the cost of feature learning. PNASNet can 

remain a tradeoff between computational load and classification accuracy. 

4.3.1.4 Image gridding 

Before performing land-cover classification with PNASNet, the research applied 

image gridding to preprocess the remote sensing image because of two major reasons. 

First, varied portions of different land-cover in a remote-sensing image may considerably 

affect land-classification results. Recently, the techniques of semantic segmentation and 

instance segmentation have dealt with the variations of position and portion of every 

object included in an image (Long, Shelhamer and Darrell, 2015; Dai, He and Sun, 2016). 

However, a well-developed benchmark dataset that supports land-cover semantic 

segmentation has not yet been made available. Thus, the limitation of datasets labeled at 

the pixel level inspired adoption of the classical strategy for classification, which 

involves dividing the whole image into multiple sub-regions (segmentation) and then 

classifying each sub-region. Figure 4 displays our proposed image gridding strategy, 

which follows the workflow detailed below. 



  98 

Assuming an original image is 𝐼𝑚𝑔(𝑠,
𝑥

2𝑘
,
𝑦

2𝑘
), 𝑥 and 𝑦 refer to the horizontal and 

vertical dimensions, 𝑠 refers to the index of an image sub-region, and 𝑘 refers to the 

image gridding scale; the original image has 𝑠 = 0 and 𝑘 = 0. 

Step 1. Classify 𝐼𝑚𝑔(𝑠,
𝑥

2𝑘
,
𝑦

2𝑘
) and select all promising categories that have a 

classification score higher than 𝜃, where 𝜃 = 0.6; 

Step 2. If the number of selected categories is greater than 1, skip to Step 3; 

otherwise, skip to Step 4. 

Step 3. Divide the previous image region into four sub-regions: 

𝐼𝑚𝑔(1,
𝑥

2𝑘+1
,
𝑦

2𝑘+1
), 𝐼𝑚𝑔(2,

𝑥

2𝑘+1
,
𝑦

2𝑘+1
), 𝐼𝑚𝑔(3,

𝑥

2𝑘+1
,
𝑦

2𝑘+1
), and 𝐼𝑚𝑔(4,

𝑥

2𝑘+1
,
𝑦

2𝑘+1
); for 

each sub-region, return to Step 1. 

Step 4. Combine the categories generated from the whole image with those 

generated from the multiple sub-regions. 
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Figure 21. Image gridding.  

In the example shown in Figure 21, the method first performs multi-label 

classification on the original image, 𝐼𝑚𝑔(0, 𝑥, 𝑦). If the amount of promising categories 

equals 1, it becomes the land-cover class assigned to the image 𝐼𝑚𝑔(0, 𝑥, 𝑦); otherwise, 

the research divides the original image into four parts: 𝐼𝑚𝑔(1,
𝑥

2
,
𝑦

2
), 𝐼𝑚𝑔(2,

𝑥

2
,
𝑦

2
), 

𝐼𝑚𝑔(3,
𝑥

2
,
𝑦

2
), and 𝐼𝑚𝑔(4,

𝑥

2
,
𝑦

2
). For the second part, 𝐼𝑚𝑔(2,

𝑥

2
,
𝑦

2
), the process performs 

multi-label classification and selects all promising categories. Then, the research 

classifies the second sub-region, 𝐼𝑚𝑔 (2,
𝑥

4
,
𝑦

4
), into various promising categories. If the 

amount of promising category equals 1, it becomes the land-cover class assigned to sub-

region 𝐼𝑚𝑔(4,
𝑥

4
,
𝑦

4
); otherwise, the research divides this sub-region into four sub-regions, 

and so on. In the end, the research compiles all promising categories into a land-cover 
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scene feature vector. The details for processing this feature vector are presented in the 

following section.  

4.3.2 Image-semantic Model. 

A semantic analysis in this research studies and discovers the meaning of textual 

information. In a remote-sensing image that contains multiple LULC types, an image’s 

content or land-use might be hidden in the LULC classification. For example, land-cover 

that includes land uses like buildings and piers may be classified as an industrial harbor 

or an entertainment beach. 

4.3.2.1 Land-cover category frequency and inverse image frequency 

To answer the question about target LULC in a remote-sensing image, this section 

focuses on transforming the land-cover categories derived from the remote-sensing image 

into a feature vector space to support a context-based semantic analysis model. 

A VSM identifies each text term or individual as a vector in a multi-dimensional 

space and then measures the similarity between each set of two terms or individuals 

(Turney and Pantel, 2010; Mikolov, Yih and Zweig, 2013). The multi-dimensional space 

comprises a set of linearly independent vectors, and each vector denotes one dimension in 

the vector space. State-of-the-art VSMs were designed differently according to three 

representations of text information: term-document, word-context, and pair-pattern. 

Typically, the term-document model detects the meaning of each document, the term-

context model evaluates the meaning of each term, and the pair-pattern model assesses 

the similarity between two complicated patterns. In this chapter, the research focuses on 

the content (or target land-cover/land-use) of a remote sensing image. The hypothesis is 

that the relationship between land-cover categories and target LULC type is analogous to 
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that of the term and document in a term-document VSM. Figure 22(A) illustrates this 

mapping between the term-document VSM and the image land-cover category-image. 

 

Figure 22. Matrix of VSM; (A) land-cover category frequency and inverse image 

frequency; (B) matrix structure; (C) an example of a VSM matrix.  

The land-cover category and the image sub-regions are analogous to the term and 

document in the term-frequency and inverse document frequency model, which are 

depicted in Figure 22(A). Based on the image gridding results, for remote-sensing image 

𝐼𝑖, the xth (land-cover) category frequency (𝑐𝑓𝑖,𝑥) is calculated by the following equation:  

𝑐𝑓𝑖,𝑥 = {
1, 𝑘 = 0

∑
𝑓𝑟𝑒𝑞𝑐(𝑤𝑖,𝑥)

2𝑐+1
𝑘
𝑐=1 , 𝑘 ≥ 1

 (1) 

 

where 𝑘 is the image gridding scale shown in Figure 21. 𝑓𝑟𝑒𝑞𝑐(𝑤𝑖,𝑥) denotes the number 

of land-cover classes, while 𝑤𝑖,𝑥 appears in the sub-regions of scaled image 𝑐. 

Specifically, the category frequency produced by Equation (1) is locally normalized. 
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Then, the process converts the category frequency to 𝑐𝑓𝑖,𝑥 × 2
𝑘𝑚𝑎𝑥×2, with 𝑘𝑚𝑎𝑥 being 

the largest image gridding scale.  

Inverse image frequency is calculated by the following equation: 

𝑖𝑚𝑓𝑖,𝑥 = log (
𝑁

𝑐𝑓𝑖,𝑥×2
𝑘𝑚𝑎𝑥×2

) , 𝑁 = {
1, 𝑘𝑚𝑎𝑥 = 0

2𝑘𝑚𝑎𝑥×2⁡, 𝑘𝑚𝑎𝑥 ≥ 1
 (2) 

where 𝑁 is the total number of sub-regions in remote-sensing image 𝐼𝑖. Then, to 

quantitatively weight the importance of each category (𝑤𝑖,𝑥) in remote-sensing image 𝐼𝑖, 

the approach calculates the category frequency and inverse image frequency. 

𝑤𝑖,𝑥 = 𝑐𝑓𝑖,𝑥 × 𝑖𝑚𝑓𝑖,𝑥 (3) 

 

4.3.2.2 Semantically aware land-use similarity analysis 

Assuming the 𝑛-dimension vector space of classification categories and images 

are 𝑉 ⊆ {𝑣1, 𝑣2, … , 𝑣𝑚} and 𝐼𝑖 = (𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑚), respectively, the category (term)-

image (document) model creates a matrix that represents land-cover categories and 

images as rows and columns (see Figure 22(B)). The similarity among LULC scenarios 

in two images, 𝐼𝑖 and 𝐼𝑗, is computed by the following five methods: Euclidean distance, 

inner product, cosine similarity, dice similarity, and Jaccard similarity. The similarity 

measured by Euclidean distance (and inner product) is expressed by the following 

equation: 

{
𝑠𝑖𝑚(𝐼𝑖, 𝐼𝑗) = √∑ (𝑤𝑖,𝑥 − 𝑤𝑗,𝑥)

2𝑚
𝑥=1

𝑠𝑖𝑚(𝐼𝑖, 𝐼𝑗) = |𝐼𝑖 ∩ 𝐼𝑗| = 𝐼𝑖 × 𝐼𝑗 = ∑ 𝑤𝑖,𝑥 ×𝑤𝑗,𝑥
𝑚
𝑥=1

 (4) 
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Neither Euclidean distance nor inner product consider the number of the number 

of category, nor the total number of land-cover categories included in a remote sensing 

image. For example, inner product may measure a five-category image that contains three 

common classes equal to a ten-category image that contains three common classes. 

Therefore, cosine similarity, Jaccard similarity, and dice similarity were proposed to 

supportively measure the similarity between two images while considering the total 

number of classes embodied in an image. 

Cosine similarity is computed as follows, 

𝑠𝑖𝑚(𝐼𝑖 , 𝐼𝑗) =
|𝐼𝑖∩𝐼𝑗|

|𝐼𝑖|×|𝐼𝑗|
=

∑ 𝑤𝑖,𝑥×𝑤𝑗,𝑥
𝑚
𝑥=1

√∑ (𝑤𝑖,𝑥)
2
⁡𝑚

𝑥=1 ×√∑ (𝑤𝑗,𝑥)
2
⁡𝑚

𝑥=1

 (5) 

Jaccard similarity is computed as follows,  

𝑠𝑖𝑚(𝐼𝑖 , 𝐼𝑗) =
|𝐼𝑖∩𝐼𝑗|

|𝐼𝑖∪𝐼𝑗|
=

∑ 𝑤𝑖,𝑥×𝑤𝑗,𝑥
𝑘
𝑥=1

∑ (𝑤𝑖,𝑥)
2
⁡𝑘

𝑥=1 +∑ (𝑤𝑗,𝑥)
2
⁡𝑘

𝑥=1 −∑ 𝑤𝑖,𝑥×𝑤𝑗,𝑥
𝑘
𝑥=1

 (6) 

Dice similarity is computed as follows, 

𝑠𝑖𝑚(𝐼𝑖 , 𝐼𝑗) = 2
|𝐼𝑖∩𝐼𝑗|

|𝐼𝑖|+|𝐼𝑗|
= 2

∑ 𝑤𝑖,𝑥×𝑤𝑗,𝑥
𝑘
𝑥=1

√∑ (𝑤𝑖,𝑥)
2
⁡𝑘

𝑥=1 +√∑ (𝑤𝑗,𝑥)
2
⁡𝑘

𝑥=1

 (7) 

The similarity between two LULC classifications in remote-sensing images is 

measured differently from the similarity between two documents. If two remote-sensing 

images contain different LULC, their land scenarios are distinct. Thus, the cosine, 

Jaccard, and dice similarity methods cannot distinctly, adaptively identify two images 

when they have different LULC types—in other words, when 𝑤𝑗,𝑥 ≠ 0 and 𝑤𝑗,𝑥 = 0. 

Thus, the approach modified Equation (5) to fit for image similarity: 
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𝑠𝑖𝑚(𝐼𝑖 , 𝐼𝑗) =

{
 
 

 
 

Θ𝑥×∑ 𝑤𝑖,𝑥×𝑤𝑗,𝑥
𝑚
𝑥=1

√∑ (𝑤𝑖,𝑥)
2
⁡𝑚

𝑥=1 ×√∑ (𝑤𝑗,𝑥)
2
⁡𝑚

𝑥=1

Θ𝑥 = {
1, 𝑤𝑖,𝑥 × 𝑤𝑗,𝑥 ≠ 0

0, 𝑤𝑖,𝑥 × 𝑤𝑗,𝑥 = 0

 (8) 

In the example shown in Figure 22(C), the image gridding scale is 2. Blue boxes 

denote the sub-region that contains the sand (land-cover) class, and the normalized sand 

category frequency (1/22+1+2/21+1=5/8). Assuming the 𝑘𝑚𝑎𝑥 is 2, the new sand category 

frequency (𝑐𝑓𝑖,𝑥) is 5/8×22×2=10; then, the inverse image frequency (𝑖𝑚𝑓𝑖,𝑥) for the sand 

class is log(22×2/10)=0.2041. Thus, the importance weight of category i,x (wi,x) equals 

10×0.2041, or 2.041. 

4.4 Experiments 

Human populations deform a coastline’s natural landscape, while artificially 

constructed barriers distributed along the coastline deposit an unnatural footprint on the 

coastal environment. Coastline pollution and the loss of biodiversity have increased 

alongside the rapid development of energy, commercial manufacturing, and 

transportation industries, among others. Coastal territories’ LULC is a key indicator for 

measuring economic values, biodiversity, and the ecosystem (Martínez et al., 2007; 

Murray et al., 2013). Thus, a number of studies report efforts to power coastline 

landscape analysis with GIS and remote-sensing imagery (Gens, 2010; Alexakis et al., 

2011). These studies might be insufficient to support a semantically aware coastline land-

use classification due to the limited spatial resolution of multispectral imagery and the 

lack of domain knowledge concerning LULC. This experiment evaluated the proposed 

image-semantic model for land-use image classification based on a high spatial-

resolution image. 
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4.4.1 Study Area. 

The red polyline in Figure 23(A) is the coastline in California—the study area 

used for evaluating the proposed methodology—which runs from the US-Mexico border 

to the California-Oregon border. The coastal images included a variety of urban, rural, 

and natural land-cover/land-use, such as downtown, sand, shore, pier, road, and so on. 

Figure 23(B) illustrates selected image samples from the 1,000 high-resolution images 

(around 5 meter) the research collected from Google Earth Pro. Although all the images 

contain the coastline, their content comprises different land-cover scenarios, meaning the 

land-use represented by each image might vary accordingly. 

As mentioned in Section 4.2, the benchmark dataset includes 37 land-cover 

categories. Moreover, a new category called waves were created to support land-cover 

classification along a coastline because waves were observed in a significant number of 

the collected images. Based on the training images in the benchmark dataset, the 

methodology extended the number of training images though the data augmentation 

methods introduced in sub-section 4.3.2. 
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Figure 23. Visualization of study area; (A) study area map; (B) samples of coastal LULC. 

Current research on fine-tuning deep neural networks report that a constant 

learning rate schedule may be tough to manually design for hyperparameter optimization 

since the performance of this schedule heavily relies on the representation of data and the 

classification problem itself (Hoffer, Hubara and Soudry, 2017). Adaptive learning rate 

methods schedule learning rates for each parameter to obtain a perfect tradeoff between 

feature loss and overfitting. This chapter reports the use of a state-of-the-art method 

called Adaptive Moment Estimation (Adam) to schedule adaptive learning rates because 

Adam outperformed other similar methods overall, including RMSprop, Adadelta, and 

Adagrad (Ruder 2016). 

Two separate CNN models were created for binary image classification and 

multi-image classification. In binary classification, the process fine-tuned the PNSANet 
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with the training images, solely to include the coast category in the benchmark dataset. 

Then, fine-tuned model classified each collected image into a binary result—coastline or 

non-coastline. 

Multi-image classification includes multi-class classification, multi-label 

classification, and multi-label classification with spatial weights. The method fine-tuned 

the PNSANet with all categories’ training images in the benchmark dataset. Then, I 

selected the top scoring class as the output of the multi-class classification; otherwise, the 

process selected the top-t scoring classes as the output of multi-label classification, and 

multi-label classification with spatial weights. Finally, the research used the proposed 

VSM to convert the output of the multi-label classification into a land-use classification. 

4.4.2 Coastline Land-use Similarity Analysis. 

This subsection describes the measurement of the similarity of LULC 

classifications between two collected images. The process selected 500 odd-numbered 

images from the total 1,000 collected images and sequentially combined each two images 

into a set, resulting in 200 sets, each containing two images. Then, the approach 

computed the similarity among those two images in every group using binary 

classification, multi-class classification, multi-label classification, and multi-label 

classification with spatial weights. Table 8 presents the comparison of the coastline scene 

similarity analysis by various PNASNet-enhanced classification strategies. The column 

Precision assessed how many of the 500 selected images were correctly recognized as 

coastlines by various classification strategies. The column Similarity evaluated the 

similarity analysis between two images included in each group. The process used the 
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modified cosine distances expressed in Equation (8) to measure the similarity between 

land-use classifications of two separate images.  

The similarity of these results between those generated by other classification 

strategies is expressed in the following equation: 

{

𝑠𝑖𝑚𝑏𝑖𝑛(𝐼𝑖, 𝐼𝑗) = 𝐿𝑏𝑖𝑛(𝐼𝑖) − 𝐿𝑏𝑖𝑛(𝐼𝑗)

𝑠𝑖𝑚𝑐𝑙𝑎(𝐼𝑖, 𝐼𝑗) = 𝐿𝑐𝑙𝑎(𝐼𝑖) − 𝐿𝑐𝑙𝑎(𝐼𝑗)

𝑠𝑖𝑚𝑙𝑎𝑏(𝐼𝑖, 𝐼𝑗) = ∑(𝐿𝑙𝑎𝑏(𝐼𝑖)𝑘 − 𝐿𝑙𝑎𝑏(𝐼𝑗)𝑘)

 (9) 

where 𝑠𝑖𝑚𝑏𝑖𝑛(𝐼𝑖, 𝐼𝑗), 𝑠𝑖𝑚𝑐𝑙𝑎(𝐼𝑖 , 𝐼𝑗), and 𝑠𝑖𝑚𝑙𝑎𝑏(𝐼𝑖, 𝐼𝑗) denote the similarity of two images, 

𝐼𝑖 and 𝐼𝑗, generated by binary classification, multi-class classification, and multi-label 

classification, respectively. 𝐿𝑏𝑖𝑛(𝐼𝑖) denotes the class number assigned to 𝐼𝑖 by binary 

classification, equaling either 1 or 0. 𝐿𝑐𝑙𝑎(𝐼𝑖) denotes the class number assigned to 𝐼𝑖 by 

multi-class classification, which ranges from 1 to 37 due to our total 37 land-cover 

categories. The technique recognized two images as similar when 𝑖𝑚𝑏𝑖𝑛(𝐼𝑖, 𝐼𝑗) = 0 or 

𝑠𝑖𝑚𝑐𝑙𝑎(𝐼𝑖, 𝐼𝑗) = 0. 

In Equation (9), 𝐿𝑙𝑎𝑏(𝐼𝑖)𝑘 denotes the kth (𝑘 ≤ 5) vector of the feature vector 

assigned to 𝐼𝑖 by multi-label classification. Similar to multi-label classification, the 

approach also ignored the distance of the coast class vector between two images.  

Table 9 

Comparison of coastline scene analysis by various PNASNet-enhanced classification 

strategies. 

 Precision Recall F-scores 

 1* 2* 3* 4* 1* 2* 3* 4* 1* 2* 3* 4* 

1-100 

group

s 

0.91 0.72 0.94 0.94 0.50 0.54 0.78 0.83 
0.32

27 

0.30

86 

0.42

63 

0.44

08 
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101-

200 

group

s 

0.93 0.76 0.93 0.93 0.48 0.57 0.88 0.92 
0.31

66 

0.32

57 

0.45

22 

0.46

25 

1-200 

group

s 

0.92 0.74 
0.93

5 

0.93

5 
0.49 

0.55

5 
0.83 

0.87

5 

0.31

97 

0.31

74 

0.43

97 

0.45

2 

1* Binary classification 

2* Multi-class classification 

3* Multi-label classification 

4* Multi-output classification (Proposed method) 
 

Binary classification can only determine whether an image’s content contains a 

coastline without considering the details of coastal scenes. PNASNet-powered binary 

classification reached 98% in the precision of coastline similarity measurement for the 

selected 200 groups. However, although the process discovered the components of each 

image, binary classification could not support the characterization of the intra-class 

diversity apparent in coastline images. For example, binary classification could not 

distinguish the image groups in Figure 24(B), although it correctly recognized that all 

images in these three groups contained coastlines. In Figure 24(B), each image group was 

enclosed by a purple box.  

As opposed to binary classification, multi-class classification assigned an image 

to one of the 37 land-cover categories in the benchmark dataset, thus leading to a 

significant decrease in the precision of the coastline image classification generated by 

multi-class classification. The difference in the precision generated by both binary and 

multi-class classification revealed some disadvantages of traditional CNNs. First, the 

features obtained by a CNN model designed for a small number of land-cover 

classifications could not transfer to a new classification task on a large number of land-

cover classes. In Table 8, the classification precision for coastlines alone is reduced by 
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multi-class classification. Second, semantic annotation becomes a critical challenge for 

data preparation. For example, binary classification identifies the images shown in Figure 

24(A) as the coast type. However, the multi-class classification classified these images 

from left to right as coast, pier, coast, dense residential, harbor, and harbor. 

The images in Figure 24(B) explain why the multi-label classification (or the 

proposed image-semantic model) was largely competent in supporting land-use 

recognition. In this experiment, 3 was set as the default image gridding scale. Although 

those two images in the left and middle groups have approximately similar land-

cover/land-uses on a global scale, they represent two separate land-use scenarios. In the 

left group, PNASNet recognized a sparse residential area in the right image that was not 

pictured in the left image. Thus, the LULC scenario in the left image is a purely natural 

landscape with no components of residential objects. Similarly, in the middle group, 

PNASNet recognized a bridge in the left image that was not included in the right one, 

meaning the land-use of the left image might contain some transportation functions. 

In Table 6, multi-label classification with spatial weights outperformed multi-

label classification to some extent because of the quantitative weighting of each land-

cover class with the proposed VSM. In the right group of Figure 24(B), multi-label 

classification recognized and equally weighted the impact of the sparse residential area 

and sand. Thus, multi-label classification identified these two images as mutually similar. 

The proposed image-semantic model used the VSM to quantitatively weight the impact 

of each LULC category and then differentiated these two images according to the LULC 

scenario.  
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Figure 24. Illustration of the selected image pairs used for scenic similarity evaluation. 

(A) Selected examples on different coastline LULC types. (B) Selected examples on 

coastline LULC type measurement. (C) Illustration on challenges for the proposed 

method.  

Moreover, the proposed image-semantic model presents several challenges that 

should be addressed. The first challenge is the limited capability of distinguishing an 

interclass that carries similar features. The left pair in Figure 24(C) illustrate that 

PNASNet generally could not effectively differentiate a bridge and pier when they 

comprise an incomplete structure. Noise accounted for the second reason, making the 

proposed method limited in terms of LULC classification. As depicted in the middle pair 

of Figure 24(C), PNASNet mistakenly recognized the abnormal water surface as sand. 

The last challenge is transferability; in the right pair of Figure 24(C), the land-cover type 
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in the left pair’s beaches was not defined in the benchmark data. Strategies for 

recognizing these unknown LULC types are a new topic worthy of future investigation. 

4.4.3 Coastline land-use scene retrieval. 

This subsection evaluates the proposed image-semantic model based on the 

application of image retrieval. Image retrieval aims to search and retrieve the needed 

images from a large-scale image dataset (Liu et al., 2007). Based on the remaining 500 

even-numbered images, twelve images were selected, and the rest were left as samples in 

the image database. For each selected image, the process retrieved all images relevant to 

its content based on binary classification, multi-class classification, multi-label 

classification, and the proposed image-semantic model.  

 

Figure 25. The selected images for image retrieval. 

Figure 25 displays the eleven images used in image retrieval-based evaluation. 

The target LULC scenarios portrayed in these eleven images are different, and each 

image represents an independent class. Table 9 lists the target LULC classes shown in 

each image. 
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Table 10 

Target LULC in the selected images.  

Images Target LULC type LULC annotations 
Amount of 

GTS* 

Image 1 
Natural sand coastline 

without vegetation 
Water, sand 90 

Image 2 Industrial harbor 
Commercial area (or industrial area), harbor, 

waters 
20 

Image 3 Entertainment harbor Waters, wharf 15 

Image 4 
Residential coastline 

with vegetation 

Waters, meadow, forest, sparse/dense 

residential area (or commercial area) 
40 

Image 5 Industrial coastline Waters, industrial area, parking lot 11 

Image 6 
Residential coastline 

without vegetation 

Waters, sand, meadow, forest, sparse/dense 

residential area 
35 

Image 7 
Residential coastline 

with a pier 

Waters, pier, sand, sparse/dense residential area 

(or commercial area) 
11 

Image 8 

Residential coastline 

without sand or 

vegetation 

Waters, sparse/dense residential area (or 

commercial area) 
6 

Image 9 
Natural coastline with 

a freeway 
Waters, sand, (or meadow/forest), freeway 56 

Image 10 
Natural sand coastline 

with vegetations 
Waters, sand, meadow (or forest) 58 

Image 11 
Natural coastline 

without sand 
Waters, meadow (or forest) 30 

 

*GTS: ground truth samples. 

Table 10 illustrates the retrieval results for the selected images shown in Figure 

25 with various classification strategies.  

Binary classification identified all images in the database as beach or non-beach 

classes. Thus, this classification strategy produced the same precision, recall, and 

accuracy among all twelve selected images. Above all, the results in Tables 8 and 10 

acknowledge that binary classification may not support the representation of the land-use 

scenario included in a remote-sensing image.  

 Multi-class classification has been commonly reported in previous works related 

to content-based image retrieval-CBIA (Liu et al., 2007). The top class generated by 

PNASNet categorized the selected eleven images into the following classes: beach, 
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harbor, harbor, beach, harbor, beach, pier, dense residential area, freeway, beach, and 

beach. Thus, the retrieval accuracy varied significantly for each image. For the first, 

fourth, tenth, and eleventh images displaying similar content, multi-class classification 

could not distinguish their detailed land-cover differences. Otherwise, although multi-

class image classification reached a relatively higher precision and recall on the ninth 

image, the classification strategy only recognized these images’ content as freeway rather 

than other LULC types.  

The results generated by binary classification and multi-class classification prove 

that merely one land-cover annotation or merely one land-cover class is not viable to 

characterize complicated land-cover in a remote sensing image—much less hidden land-

use. These results also justify the significance of semantics in LULC recognition from 

high-resolution remote-sensing images. 

During the image retrieval experiment, the multi-label classification—the 

proposed image-semantic model—collected the top five classes rather than the top class 

selected by multi-class classification. The beach class was included in the top-five class 

results generated by PNASNet for the selected eleven images. From the results shown in 

Tables 3 and 5, multi-label classification significantly outperformed the above two 

classification strategies in retrieving the required images. However, PNSANet’s 

performance in multi-label classification were much poorer than were those previously 

reported—a difference that might have two main causes. First, the LULC diversities were 

tiny among the collected images. For example, the first, ninth, tenth, and eleventh images 

were generally labeled as the same LULC type in the existing benchmark dataset. If the 

retrieved images related to these four images were grouped into one LULC category, the 
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precision of multi-label classification would reach 90±3%. Moreover, some LULC types 

occupied a small portion of the whole image, making them tough to be recognized by 

PNASNet based on the whole image. 

The multi-label classification with spatial weights, or the proposed image-

semantic model, outperformed multi-label classification, thus confirming the value of an 

operation that weighted different features based on image content. Moreover, the 

disparities in results generated by these two classification strategies varied significantly 

based on different LULC categories. Generally speaking, the proposed image-semantic 

model performed more effectively on images that contained more complicated LULC 

configurations. Finally, the process of semantic analysis in the proposed image-semantic 

model might have led to unwanted complexity when the LULC in a remote-sensing 

image was unmixed. For example, the proposed image-semantic model produced many 

false-negative results due to its overestimating the role of other non-freeway land-

cover/land-uses. In these images, although freeway was the critical element of the land-

use characteristics, its coverage seemed relatively more restricted compared to other land-

cover/land-uses. 

Table 11 

Comparison of coastline retrieval by various PNASNet-enhanced classification strategies. 

 
Precision Recall F-scores 

1* 2* 3* 4* 1* 2* 3* 4* 1* 2* 3* 4* 

Image 

1 

0.17

70 

0.43

65 

0.75

21 

0.80

73 

0.95

56 

0.95

56 

0.97

78 

0.97

78 

0.14

93 

0.29

96 

0.42

51 

0.44

22 

Image 

2 

0.04

11 

0.20

97 

0.46

88 

0.62

5 
1 0.65 0.75 0.75 

0.03

95 

0.15

85 

0.28

85 

0.34

09 

Image 

3 

0.03

09 

0.20

97 

0.73

68 

0.73

68 
1 

0.86

67 

0.93

33 

0.93

33 
0.03 

0.16

88 

0.41

18 

0.41

18 

Image 

4 

0.08

23 

0.17

26 

0.64

15 

0.78

26 
1 0.85 

0.87

5 
0.9 

0.07

6 

0.14

35 

0.37

01 

0.41

86 

Image 0.02 0.09 0.61 0.73 0.84 0.54 1 1 0.02 0.08 0.37 0.42
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5 26 68 11 33 62 55 2 22 93 3 

Image 

6 

0.06

79 

0.14

72 

0.56

36 

0.78

57 

0.94

29 

0.57

14 

0.88

57 

0.94

29 

0.06

3 

0.11

7 

0.34

44 

0.42

85 

Image 

7 

0.02

26 

0.66

67 

0.52

38 

0.68

75 
1 

0.36

36 
1 1 

0.02

21 

0.23

52 

0.34

37 

0.40

74 

Image 

8 

0.01

03 

0.06

17 
0.75 

0.70

56 

0.83

33 

0.83

33 
1 

0.83

33 

0.01

01 

0.05

74 

0.42

86 

0.38

2 

Image 

9 

0.11

52 

0.60

53 

0.86

44 
0.9 1 

0.82

14 

0.98

08 

0.96

43 

0.10

33 

0.34

84 

0.45

95 

0.46

55 

Image 

10 

0.11

11 

0.28

43 

0.82

81 

0.84

38 

0.93

1 

0.96

55 

0.91

38 

0.93

1 

0.09

92 

0.21

96 

0.43

44 

0.44

26 

Image 

11 

0.05

98 

0.14

72 

0.54

55 

0.74

29 

0.96

67 

0.96

67 
0.8 

0.86

67 

0.05

63 

0.12

770.

3243 

0.32

43 
0.4 

1* Binary classification 

2* Multi-class classification 

3* Multi-label classification 

4* Multi-output classification (Proposed method) 

 

The results generated by the proposed image-semantic model present several new 

phenomena and challenges that remain unsolved. The results exhibit the major 

disadvantages of deep learning models recently claimed in scene classification. CNN 

models rely heavily on the training features and data, which intensely restrict these 

models’ transferability. In the experiment, when fusing the harbor and wharf into one 

LULC class, the research saw a dramatic decrease in the precision of retrieving images 

relevant to the second and third images. Moreover, the results generated by multi-label 

classification suggest a pressing need to integrate semantics into the CNN-powered land-

use recognition process. 

4.5 Conclusions 

The availability of deep learning models and varied high-resolution remote-

sensing images significantly facilitates the mapping LULC scenarios within large-scale 

areas. However, a LULC classification map cannot help individuals understand an area’s 
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functionality and organization indicated by multiple LULC types. The conversion from a 

LULC classification map to a land-use classification map remains a major geospatial 

concern yet unsolved. A majority of previous work applied CNN models to a study case, 

for which the amount and term of LULC classes were fixed and generally defined. Here, 

when the study centered on coastal areas, which may possess greater LULC definition 

and detail, state-of-the-art CNNs were faced with a decline in classification accuracy. 

Specifically, it was difficult to prepare a useful massive training dataset when the 

distinction between two land-use classes was very limited. 

The cost of large-scale data preparation urges researchers to reinforce CNNs’ 

power in land-use image classification with a limited amount of data. This chapter 

presented an image-semantic model that integrates domain knowledge into the process of 

a CNN model for converting LULC attributes into meaningful land-use information. The 

research evaluated the proposed model after choosing coastal scenario in California to 

study. The results support the hypothesis that the CNN model might be insufficient at 

classifying land-use in remotely-sensed imagery without the support of domain 

knowledge. The proposed image-semantic model outperformed other CNN models that 

exclusively focus on the features derived from remote sensing images. 

The research performed an investigation on a semantic-aware deep learning 

approach for land-use classification, but there nevertheless remains room for 

improvement. The modified VSM created by this chapter might accurately weight the 

priority of the LULC that belongs to a critical element of the land-use scene. In the future, 

it may be valuable to explore how the semantics may be integrated into the features 

generated by the feature extraction layer in a CNN model. Furthermore, the techniques 



  118 

associated with transfer learning and reinforcement learning are fields worthy of 

considerable attention. 

Planar surface assessments acc`ount for a full array of land-covers (e.g., building, 

tree, and impervious and soil cover). Significantly, though, common vertical indicators 

often do not discriminate among different land-covers. Buildings and tree canopies affect 

temperature through different mechanisms, for example, but are not necessarily made 

distinct in vertical dimension assessments (Unger, 2009). Interestingly, Google Street 

View possesses an immense collection of street panoramas, providing information on 

surface properties that include the differences in the vertical dimension objects, the 

heterogeneity of which is large in an urban context (Carrasco-Hernandez, 2015, Middel et 

al., 2017; Li et al., 2018).  
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CHAPTER 5                                                                                             

CONCLUSIONS 

5.1 Conclusions 

The dissertation presents a variety of strategies that exploits various deep learning 

models to support geospatial applications, which are summarized as follows: 

Useful input data are significant to extend the power of a deep learning model in 

dealing with data classification problem. In case of building height estimation with 

shadows, this research develops a unified system that organizes a great number of 

shadow shapes into limited number of categories, and determines the shadow edge useful 

for building height estimation. The unified shadow pattern identifies the useful input data 

to promote deep learning to support efficient shadow-based building height estimation. 

The significance of open geospatial data and volunteered geographical 

information has been reported in previous decades. However, open geospatial data may 

contain neither incomplete metadata nor quality control, limiting their use. This research 

focused on big data stored in two data-rich platforms—Google Earth Pro and Openstreet 

Map. Chapter 2 proposed a methodological framework to effectively deal with building 

height estimation with metadata and remote sensing images in Google Earth Pro. 

Moreover, Chapter 3 collects place names and their attributes to develop a ontological 

model for semantic query, which supports discovery of hidden knowledge in the map text 

and map features derived from raw digital maps with the deep learning model. 

Optical character recognition is a key research focus of computer vision that aims 

to identify text information from various media, such as photos, videos, and digital 

documents. Map text is often rotated or curved relative to the map feature it represents, 
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which might limit state-of-the-art deep learning models for optical character recognition. 

The research proposed a methodological framework for detecting map text from digital 

maps, separating text units from the rotated or curved map text, and identifying every 

map unit with an advanced optical character recognition platform. 

Multi-label image classification aims to assign spatial weights to an image with 

multiple predefined labels. Compared to multi-class image classification, multi-label 

classification can derive more details from a remote sensing image. However, multi-label 

classification is limited when the research needs to describe the spatial coverage of each 

LULC class. Although semantic segmentation can deal with the variations of position and 

portion, a well-developed benchmark dataset that supports LULC semantic segmentation 

has not yet been made available. This research divided the image into multiple sub-

regions and then conducted multi-label classification on each sub-region. 

5.2 Future Works 

Although deep learning facilitates various dimensions of geography, several 

challenges remain unsolved. First, although substantial amount of data is generated, a 

majority of these data might be valueless for specific data analysis task. The value of 

geospatial data is much more important than the amount. Big geospatial data changes the 

way that researchers perform geospatial computing and analysis. However, big geospatial 

data cannot directly be connected to a “big task.” A number of papers propose concerns 

regarding the value of big data (L’heureux et al., 2017; Lv et al., 2017; Zhuang et al., 

2017; Zhou, 2018). In some geospatial applications, the value of similar geospatial data 

might be varied according to the goal of specific tasks. For example, although an RGB 

remote sensing image is significant to support build-up area changes, it is useless for a 
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CNN model to distinguish natural and man-made lawn. Thus, a strategy for selecting 

appropriate input data is important to implement varied GeoAI techniques.  

Moreover, although a variety of CNNs obtain promising results in computer 

vision, speech recognition, natural language processing, etc., these methods are 

challenged upon transferring their learning process into a new field. Thus, how to help 

the machine adaptively understand unknown or unlabeled input is a compelling task. The 

research in Chapter 5 proves that training data and samples cannot cover all phenomena, 

objects and events on the Earth’s surface. Although deep learning has been found to 

outperform humans in object detection from remote sensing images (Chen and Gong, 

2016), these state-of-the-art approaches can only identify a limited number of object 

classes. Training data cannot be prepared for all situations possible occurred in reality. 

For example, the accident involving a self-driving car that occurred in the last year 

revealed that crowdsourcing data collected and stored still could not lead to a safe driving 

task under complex and unlimited traffic conditions. Other techniques such as semantic 

analysis and heuristic reasoning have been reportedly useful to facilitate the power of 

deep leaning models in data processing and analysis (Pan and Yan, 2010; Lu et al., 2015). 

Geospatial domain knowledge are essential sources to promote the transferability of 

GeoAI techniques in dealing with new geospatial data analysis tasks. 
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