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Resumo

Análise de imagens é o campo de pesquisa preocupado com a extração de informações
a partir de imagens. Esse campo é bastante importante para aplicações científicas e
comerciais.

O objetivo principal do trabalho apresentado nesta tese é permitir interatividade com
o usuário durante várias tarefas relacionadas à análise de imagens: segmentação, seleção
de atributos, e classificação.

Neste contexto, permitir interatividade com o usuário significa prover mecanismos
que tornem possível que humanos auxiliem computadores em tarefas que são de difícil
automação.

Com respeito à segmentação de imagens, propomos uma nova técnica interativa que
combina superpixels com a transformada imagem-floresta. A vantagem principal dessa
técnica é permitir rápida segmentação interativa de imagens grandes, além de permitir
extração de características potencialmente mais ricas. Os experimentos sugerem que nossa
técnica é tão eficaz quanto a alternativa baseada em pixels.

No contexto de seleção de atributos e classificação, propomos um novo sistema de
visualização interativa que combina exploração do espaço de atributos (baseada em redu-
ção de dimensionalidade) com avaliação automática de atributos. Esse sistema tem como
objetivo revelar informações que levem ao desenvolvimento de conjuntos de atributos efi-
cazes para classificação de imagens. O mesmo sistema também pode ser aplicado para
seleção de atributos para segmentação de imagens e para classificação de padrões, apesar
dessas tarefas não serem nosso foco. Apresentamos casos de uso que mostram como esse
sistema pode prover certos tipos de informação qualitativa sobre sistemas de classificação
de imagens que seriam difíceis de obter por outros métodos.

Também mostramos como o sistema interativo proposto pode ser adaptado para a
exploração de resultados computacionais intermediários de redes neurais artificiais. Essas
redes atualmente alcançam resultados no estado da arte em muitas aplicações de classifi-
cação de imagens. Através de casos de uso envolvendo conjuntos de dados de referência,
mostramos que nosso sistema pode prover informações sobre como uma rede opera que
levam a melhorias em sistemas de classificação.

Já que os parâmetros de uma rede neural artificial são tipicamente adaptados ite-
rativamente, a visualização de seus resultados intermediários pode ser vista como uma
tarefa dependente de tempo. Com base nessa perspectiva, propomos uma nova técnica de
redução de dimensionalidade dependente de tempo que permite a redução de mudanças
desnecessárias nos resultados causadas por pequenas mudanças nos dados. Experimentos
preliminares mostram que essa técnica é eficaz em manter a coerência temporal desejada.



Abstract

We define image analysis as the field of study concerned with extracting information
from images. This field is immensely important for commercial and interdisciplinary
applications.

The overarching goal behind the work presented in this thesis is enabling user interac-
tion during several tasks related to image analysis: image segmentation, feature selection,
and image classification.

In this context, enabling user interaction refers to providing mechanisms that allow
humans to assist machines in tasks that are difficult to automate. Such tasks are very
common in image analysis.

Concerning image segmentation, we propose a new interactive technique that combines
superpixels with the image foresting transform. The main advantage of our proposed
technique is enabling faster interactive segmentation of large images, although it also
enables potentially richer feature extraction. Our experiments show that our technique is
at least as effective as its pixel-based counterpart.

In the context of feature selection and image classification, we propose a new interac-
tive visualization system that combines feature space exploration (based on dimensionality
reduction) with automatic feature scoring. This visualization system aims to provide in-
sights that lead to the development of effective feature sets for image classification. The
same system can also be applied to select features for image segmentation and (general)
pattern classification, although these tasks are not our focus. We present use cases that
show how this system may provide a kind of qualitative feedback about image classifica-
tion systems that would be very difficult to obtain by other (non-visual) means.

We also show how our proposed interactive visualization system can be adapted to ex-
plore intermediary computational results of artificial neural networks. Such networks cur-
rently achieve state-of-the-art results in many image classification applications. Through
use cases involving traditional benchmark datasets, we show that our system may enable
insights about how a network operates that lead to improvements along the classification
pipeline.

Because the parameters of an artificial neural network are typically adapted itera-
tively, visualizing its intermediary computational results can be seen as a time-dependent
task. Motivated by this, we propose a new time-dependent dimensionality reduction
technique that enables the reduction of apparently unnecessary changes in results due to
small changes in the data (temporal coherence). Preliminary experiments show that this
technique is effective in enforcing temporal coherence.



Samenvatting

Wij definiëren beeldanalyse als het extraheren van informatie uit beelden. Dit veld is
extreem belangrijk voor een scala aan commerciële en interdisciplinaire toepassingen.

Gegeven dit veld, het hoofddoel van het werk in dit proefschrift dekt de toepassing
van gebruikersinteractie tijdens verschillende beeldanalyse taken zoals beeldsegmentatie,
featureselectie en beeldclassificatie. In dit context refereert gebruikersinteractie naar me-
chanismes die mensen stelt in staat om machines te dienen voor moeilijk automatiseerbare
taken, zoals het vaak gebeurt in beeldanalyse.

Voor beeldsegmentatie stellen wij voor een nieuwe interactieve techniek die superpixels
combineert met de zogenaamde image foresting transform. Het voordeel van onze techniek
is dat het segmenteren van grote beelden sneller gaat, met als extra waarde het extraheren
van potentieel rijkere features. Onze experimenten tonen dat onze techniek tenminste zo
efficient is als haar pixel-gebaseerde alternatief.

Voor featureselectie en beeldclassificatie stellen wij een nieuwe interactieve visualisa-
tiemethode voor die de exploratie van featurespaces, gebaseerd op dimensionaliteitsreduc-
tie, combineert met automatische feature-scoring. Ons systeem verstrekt inzichten die de
ontwikkeling van effectieve featureverzamelingen voor beeldclassificatie mogelijk maakt.
Naarnaast kan ons systeem toegepast worden om featureselectie te doen voor beeldseg-
mentatie en algemene patroonclassificatie. Wij demonstreren ons systeem door middel
van use-cases die laten zien hoe kwalitatief feedback over beeldclassificatie te verkrijgen
is dat zeer moeilijk te verkrijgen is via andere (non-visuele) middelen.

Ons voorstel tot interactieve visuele exploratie kan ook aangepast worden om interme-
diaire rekenresultaten van artificiële neuraalnetwerken te ontdekken, die state-of-the-art
resultaten bereiken ten opzichte van beeldclassificatie. Wij gebruiken traditionele bench-
marks om te laten zien hoe ons systeem inzichten verzamelt over de operatie van een
dergelijk netwerk, die leiden tot verbeteringen van een classificatiesysteem.

Gegeven dat de parameters van een artificieel neuraalnetwerk typisch aangepast wor-
den op een iteratieve wijze kan het visualiseren van dergelijke intermediaire resultaten
gezien worden als een tijdsafhankelijk proces. Dit leidt ons tot het voorstellen van een
nieuwe dimensionaliteitsreductietechniek voor tijdsafhankelijke datasets die onnodige ve-
randeringen in haar resultaten, veroorzaakt door kleine veranderingen in haar inputs,
minimaliseert (temporale coherentie). Experimenten laten zien hoe deze techniek effectief
is in het creëren van temporale coherentie voor dergelijke multidimensionale datasets.
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Chapter 1

Introduction

We define image analysis as the field of study concerned with extracting information from
images. According to this definition, image analysis is highly related to other large fields
of study, such as image processing [53], computer vision [140], and pattern recognition
[108].

Image analysis is immensely important for commercial and interdisciplinary applica-
tions [53, 31]. Physics, engineering, and biology have all benefited from its advancements.

In the last decades, significant advancements have been made in several image analysis
tasks, such as image segmentation (Sec. 1.1) and image classification (Sec. 1.2). Despite
these advancements, humans still outperform machines in many seemingly simple tasks
that require high flexibility [140]. In general, if intelligence is defined as a measure of the
ability of an agent to achieve goals in a wide range of environments [89], then cooperation
between machines and users will remain relevant for as long as machines lack human-level
intelligence.

The overarching goal behind the work presented in this thesis is enabling user in-
teraction in image analysis tasks. In this context, enabling user interaction refers to
providing mechanisms that allow humans to assist machines in tasks that are difficult to
fully automate.

In particular, we advocate the use of visual analytics to incorporate user expertise into
the design and operation of image analysis methods. In simple terms, visual analytics is
a field of study concerned with the application of interactive visualization techniques to
assist in data analysis [78]. This field has recently been advocated as an effective solution
for analyzing black-box methods [107], which include many methods employed in image
analysis.

This thesis focuses mainly on three tasks in image analysis: image segmentation,
feature selection, and image classification. Such focus is justified by the importance of
these tasks, and relatively high complexity of the corresponding solutions. However, it
should be clear that visual analytics is not limited to these tasks.

This chapter is organized as follows. Sections 1.1, 1.2, and 1.3 introduce the tasks
that we address using visual analytics. Section 1.4 describes the task of visualizing time-
dependent data, which is highly related to the task introduced in Sec. 1.3. Section 1.5
presents the main research question that unifies our work. Finally, Section 1.6 describes
how this thesis is organized, and details our contributions towards the tasks introduced

12
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in the previous sections.

1.1 Image segmentation

In simple terms, image segmentation is the task of partitioning an image into objects of
interest [53]. This task may be an ultimate goal (e.g., segmenting a person to be copied
onto another image), or part of a larger image analysis pipeline (e.g., segmenting a skin
lesion to be automatically classified as benign or malignant [73]).

Image segmentation is extremely difficult to automate [53], particularly because ob-
jects of interest are generally ill-defined. This leads to an ideal application for interactive
methods.

In interactive image segmentation, the user indicates the approximate localization of an
object of interest (e.g., by placing markers), while the machine performs careful delineation
of this object based on image characteristics or pre-defined models [43, 41, 19, 120, 32].
Such delineation is typically the most error-prone and time-consuming step in manual
segmentation.

As we detail in Sec. 1.6, in this context, we are interested in enabling effective and
efficient interactive segmentation.

1.2 Image classification and feature selection

Image classification is the task of assigning a class label to an image based on gener-
alization from examples (available in a so-called training set). The typical solution to
this task involves representing each image by an observation (real vector), whose features
(elements) correspond to measured characteristics related to colors, textures, and shapes
[33].

Feature selection is crucial for effective image classification. In broad terms, feature
selection is the task of finding a subset of candidate features that is small and sufficient
for a particular purpose. While using too few features can lead to poor generalization,
using too many features can be prohibitively expensive to compute, or even introduce
confounding information into the training data [60, 93].

Human experts generally evaluate choices involved in designing classification systems
using cross-validation [108]. However, this approach is typically limited by the feedback
that numeric classification efficacy measures can provide. As a consequence, when sub-
optimal results are obtained, these experts are often left unaware of which aspects limit
classification system efficacy, and what can be done to improve these systems. This and
other issues have been referred to as the “black art” of machine learning [35].

As we detail in Sec. 1.6, in this context, we are interested in enabling interactive
feature selection for image classification system design, and, most importantly, providing
insights that lead to the improvement of such systems.
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1.3 Image classification by artificial neural networks

Although the traditional features mentioned in the previous section are still widely em-
ployed in image classification, particularly when large training sets are unavailable, ar-
tificial neural networks recently became able to achieve extraordinary results in raw (or
pre-processed) image classification, bypassing traditional feature selection [130].

However, choosing appropriate pre-processing steps, architectures, and hyperparam-
eters for these networks is a challenging task. This is confirmed by the vast literature
on the subject [113, 12], and the widespread use of heuristics that are poorly understood
according to their own proponents (e.g., DropConnect [152]).

The difficulty in designing effective artificial neural networks is arguably related to the
difficulty in interpreting how such networks arrive at decisions for a given input image. As
an extreme example, it is easy to create images of unrecognizable objects that a particular
network classifies with absolute certainty [111].

As we detail in Sec. 1.6, in this context, we are interested in enabling the inspection
of artificial neural networks using visual analytics, and, most importantly, once again
providing insights that lead to improvements along the image classification pipeline.

1.4 Time-dependent data visualization

Our visual analytics approach towards the tasks described in Secs. 1.2 and 1.3 is highly
dependent on visualizing datasets composed of high-dimensional vectors (observations).

Our approach also depends on representing such a dataset, seen as a sequence of
observations, by a two-dimensional projection obtained through dimensionality reduction.
In this context, we define a two-dimensional projection as a sequence of points in the plane,
which correspond to the observations in a dataset. Although dimensionality reduction
techniques vary in specific goals, they all attempt to represent some aspect of the so-
called structure of a dataset in its projection. This structure is characterized by distances
between observations, presence of clusters, and overall spatial data distribution [95, 88].
In comparison to other high-dimensional data visualization alternatives, dimensionality
reduction is remarkably scalable with respect to the number of observations and features.

As will become clear, because the parameters of an artificial neural network are
typically adapted iteratively, our visual analytics approach towards these models be-
comes time-dependent. Such time-dependent process can be represented by a sequence of
datasets, where each dataset corresponds to a particular time step, and each observation
has a corresponding observation across time.

Unfortunately, visualizing a sequence of datasets using traditional dimensionality re-
duction techniques is not always straightforward. For instance, although it is possible
to create a projection independently for each dataset in such a sequence, this strategy
(and similar alternatives) often leads to temporal incoherence: significant variability in
the resulting sequence of projections that does not reflect significant variability in the
sequence of datasets. This is mostly due to the fact that many dimensionality reduction
techniques are highly sensitive to small changes in their inputs [49]. This issue affects
a state-of-the-art dimensionality reduction technique called t-SNE [148], which is widely
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employed in our work. Therefore, temporal incoherence compromises one of our funda-
mental contributions by potentially leading to incorrect insights.

As we detail in Sec. 1.6, in this context, we are interested in enabling the reliable
visualization of time-dependent high-dimensional data.

1.5 Research question

Considering the tasks outlined in Secs. 1.1-1.4, we can state our central research question
as follows:

How can we provide actionable insights about the design and operation of image anal-
ysis methods through visual analytics?

In this context, actionable insight refers to information that enables a user to improve
a process.

The next section describes how this thesis is organized, and details contributions that
aim to address our central research question.

1.6 Thesis structure

This thesis is organized as follows.
Chapter 2 provides an overview of related work in image segmentation, pattern

classification, feature selection, and high-dimensional data visualization. This overview is
complemented by more specific descriptions of related work within each following chapter.

Chapter 2 also thoroughly details the techniques that are employed in our work. With
exceptions that are clearly mentioned, the reader is welcome to skip the highly technical
sections, and refer back on the basis of necessity, since the following chapters are mostly
self-contained in a higher abstraction level.

As an implicit goal, Chapter 2 shows that many widely used techniques demand non-
trivial choices that require significant expertise, which is important to motivate our ap-
plication of visual analytics.

Chapter 3 proposes a new interactive segmentation technique based on the successful
image foresting transform (IFT) [42]. The IFT algorithm can be applied to segment
multiple objects of interest in linear or linearithmic time on the number of pixels in
an image. Notably, segmenting multiple objects simultaneously is NP-hard using other
widespread segmentation approaches that find optimum cuts in graphs [26, 81].

Our contribution to IFT-based interactive segmentation is the introduction of super-
pixels. A superpixel is typically a small region within an image, whose pixels are uniform
with respect to some criteria (e.g., color, texture). In this context, the main benefit of
using superpixels (as atomic units instead of pixels) is reducing the computational time
required by interactive segmentation. Although superpixels require significant upfront
computational time, which can be allocated before user involvement, such cost is amor-
tized during interactive segmentation. Our experiments also suggest that superpixels are
capable of achieving at least comparable efficacy to pixels.
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Another potential advantage of superpixels is enabling richer feature extraction [143,
155, 100]. In this context, feature extraction refers to the task of representing each super-
pixel by an observation (real vector). Each element in such an observation corresponds
to a feature, and represents a characteristic measured from the corresponding superpixel
(e.g., mean red color component). Because our segmentation approach relies on distances
between observations, the choice of features is crucial to its success. We return to the
problem of feature selection in the context of image classification in Ch. 4.

Conducting significant user studies to evaluate interactive methods is generally a diffi-
cult and costly process. However, the evaluation of interactive image segmentation meth-
ods is a very particular exception, because automated experimentation is straightforward.
Concretely, consider a set of images whose segmentation (ground truth) is known. In this
case, it is possible to simulate interactive segmentation by having the machine act as a so-
called robot user. In Chapter 3, we also propose novel robot users that employ distinctive
strategies to evaluate interactive segmentation methods.

Chapter 4 proposes a system that enables interactive feature selection for image
classification. The system integrates feature space exploration with automatic feature
evaluation, and attempts to provide insights that lead to the development of effective
feature sets. The same system can also be employed to select features for other tasks,
such as image segmentation or (general) pattern classification.

The proposed interactive system employs dimensionality reduction to visually repre-
sent a dataset (sequence of observations) by a two-dimensional projection. As we already
mentioned, a projection attempts to represent some aspect of the so-called structure of
a dataset, and is remarkably scalable with respect to the number of observations and
features.

The experiments presented in Chapter 4 indicate that projections may provide a kind
of qualitative feedback about classification systems that would be very difficult to obtain
by other (non-visual) means. Although there is no guarantee that a projection will provide
insightful feedback about a particular dataset, as we also exemplify in Ch. 4, the proposed
approach requires only a small upfront user effort investment.

Chapter 5 shows how the approach originally proposed to visualize inputs to an image
classification system can be adapted to visualize intermediary computational results of
an artificial neural network. Fortunately, the computations carried by artificial neural
networks produce convenient intermediary results. Concretely, each layer of artificial
neurons transforms an input vector (or image) into an output vector (or image). The
parameters that control these transformations are adjusted to obtain correct classifications
in a training set. Therefore, in broad terms, the output of a given layer for an input
image can be interpreted as an alternative representation learned by a network. Since
these learned representations (also called activations) can be represented by real vectors,
they can be explored using the approach proposed in Chapter 4.

Chapter 5 also presents experiments performed in established artificial neural network
benchmark datasets. The results indicate that our interactive approach may enable in-
sights about how a network operates that lead to improvements along the classification
pipeline.

Chapter 6 describes a new time-dependent dimensionality reduction technique that
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allows a controllable trade-off between temporal coherence and spatial coherence (defined
as preservation of structure at a particular time step).

As we alluded to in Sec. 1.4, in a broad sense, the activations of an artificial neural net-
work for a given a set of inputs represent a particular stage of a time-dependent process,
since the parameters of a network are typically adapted iteratively. This time-dependent
process can be represented by a sequence of datasets, such that each dataset corresponds
to a particular time step, and each observation (activation) has a corresponding observa-
tion (activation) across time. As we also mentioned in Sec. 1.4, visualizing a sequence
of datasets using traditional dimensionality reduction techniques may lead to temporal
incoherence: significant variability in the resulting sequence of projections that does not
reflect significant variability in the sequence of datasets.

Therefore, although temporal incoherence is not strictly related to visual analytics,
it impairs our proposed visual analytics approach to explore artificial neural networks
applied to image classification.

The preliminary experiments presented in Chapter 6 suggest that our new technique
is successful in enforcing temporal coherence and encouraging smooth changes between
projections.

Chapter 7 summarizes our contributions and suggests future work.



Chapter 2

Related work

This chapter summarizes related work, and organizes it into four categories: image seg-
mentation (Sec. 2.2), pattern classification (Sec. 2.3), feature selection (Sec. 2.4), and
high-dimensional data visualization (Secs. 2.5 and 2.6). This chapter also serves an-
other important purpose: describing in detail the techniques that are used to a significant
extent in the next chapters, or that are highly related to the tasks that we address. Under-
standing some of these techniques is not strictly required for reading the next chapters,
which are mostly self-contained. Therefore, the reader is encouraged to refer back to
the technical sections in this chapter based on demand. Our goal is to provide a com-
plete and contextualized description that allows discussing the assumptions underlying the
well-known techniques. Such description also allows a concrete presentation of the lesser
known techniques, which often requires the provided background. An additional goal of
this chapter is to show that many widely used techniques demand non-trivial choices that
require significant expertise, which will help motivate our application of visual analytics.

2.1 Preliminaries

In this text, we distinguish between real vectors and real column matrices. We denote
vectors by lower case bold letters, and matrices by upper case bold letters. Exceptionally,
we let xT denote the row matrix corresponding to the vector x.

The inner product between vectors u and v is denoted by uv =
∑

i uivi, where ui is the
i-th element of vector u. The typical operations between matrices and vectors (addition,
multiplication) treat vectors as if they were column matrices, and result in matrices.

The gradient function ∇f : RD → RD of a differentiable function f : RD → R of
multiple variables x1, . . . , xD is given by

∇f(a) =
( ∂

∂x1

f(a), . . . ,
∂

∂xD
f(a)

)
, (2.1)

for every a ∈ RD. When ambiguity is impossible, we also let ∇f(x) denote the gradient
of f at point x = (x1, . . . , xD), which overloads variable names with their corresponding
values.

We denote random variables by upper case letters, and random vectors by upper case

18
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bold letters. We let X ∼ pX denote that the random variable X is distributed according
to the probability density (or mass) function pX . The set of valid assignments to the
random variable X is denoted by Val(X). The expected value of random variable X is
a scalar denoted by E[X], and its standard deviation is the scalar std[X]. The expected
value of a random vector X = (X1, . . . , XD) is a vector denoted by E[X], whose elements
correspond to the expected value of each random variable in X.

The covariance cov[X, Y ] between random variables X and Y is given by cov[X, Y ] =

E[(X−E[X])(Y −E[Y ])]. The (Pearson) correlation coefficient corr[X, Y ] between random
variables X and Y is given by

corr[X, Y ] =
cov[X, Y ]

std[X] std[Y ]
, (2.2)

when std[X] std[Y ] > 0, and is always between −1 and 1. A high correlation coefficient
(in absolute value) indicates a highly linear relationship between X and Y , and the sign
indicates whether the variables are proportional or inversely proportional. In particular,
| corr[X, Y ]| = 1 implies Y = aX + b for some a, b ∈ R, where a 6= 0. If X is independent
of Y , denoted by X ⊥⊥ Y , then corr[X, Y ] = 0. However, the converse is not generally
true, and therefore the correlation coefficient is not an appropriate measure of dependence
between random variables [108].

The covariance matrix of a random vector X = (X1, . . . , XD) is given by cov[X] =

E[(X − E[X])(X − E[X])T ], where ZT denotes the random row matrix corresponding to
a random vector Z. In other words, cov[X]i,j = cov[Xi, Xj]. The correlation matrix is
analogous.

We will employ a widespread abuse of notation that vastly simplifies the presentation
in the next sections [108, 15]: probability functions will sometimes omit the subscripts
that relate them to variables. For instance, the probability density associated to the joint
assignment X = x and Y = y given Z = z will be written as either pX,Y |Z(x, y, z) or
p(x, y | z). This implies that the same letter may denote different probability functions
depending on arguments, although we are always careful to avoid excessive ambiguity.

The concept of an independent, identically distributed (iid) dataset will be useful in
the next sections, and is reviewed next. It is worth noting that we represent unknown
parameters using random variables, which is typical in Bayesian statistics [81, 108, 15].

Consider a non-empty sequence of random vectors D = X1, . . . ,XN , and a random
(parameter) vector Θ. Let X−i denote the set of all random vectors in D excluding
random vector Xi. Furthermore, suppose that each of the random vectors in the sequence
D is distributed according to the same probability function, which is conditional on a
particular assignment to Θ. Concretely, if we let θ∗ ∈ Val(Θ) denote the (possibly
unknown) true parameter vector, then Xi ∼ p(· | θ∗), for all i, for some conditional
probability function p(· | θ∗). If Xi ⊥⊥ X−i | Θ for all i, then D is an independent,
identically distributed sample according to p(· | θ∗).

Intuitively, a sample D is iid if any parameter vector θ determines the probability
function associated to each random vector in D completely, such that knowledge about
the other random vectors becomes irrelevant.

A dataset D = x1, . . . ,xN is iid according to p(· | θ∗) if it corresponds to a sequence
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of assignments to the sequence of random vectors in the sample D, as defined above. For
our purposes, the likelihood of the dataset D given the parameter θ (traditionally called
the likelihood of the parameter θ) is defined as the probability/density p(D | θ) of the
dataset D given θ. In other words, the likelihood is the probability/density of the dataset
D assuming that θ∗ = θ, which is given by

p(D | θ) =
N∏
i=1

p(xi | x1, . . . ,xi−1,θ) =
N∏
i=1

p(xi | θ), (2.3)

where the first equality follows from the chain rule of probability (with no further as-
sumptions), and the second from our assumption that Xi ⊥⊥ X−i | Θ, for all i. Notice the
abuse of notation, since p represents distinct probability functions in the equation above
(except if N = 1).

Consider an iid dataset D = x1, . . . , xN distributed according to p. If X ∼ p and its
expected value E[X] exists and is finite, the law of large numbers [153] guarantees that
N−1

∑
i xi → E[X] as N → ∞. In other words, the mean of a (very large) iid dataset is

probably a good approximation to the expected value of X. This is a particular case of
Monte Carlo approximation, which can be used to approximate the expected value of any
function of random variables (which is always itself a random variable).

For instance, if x̄ is a Monte Carlo approximation of E[X] considering the dataset D,
the variance var[X] of X can be approximated by N−1

∑
i(xi− x̄)2. It can be shown that

this approximation underestimates var[X] on average (in a very precise sense, particularly
when N is small), precisely because it also requires an estimate of E[X] [15, 153]. It can
also be shown that this bias is corrected through multiplying the approximation by N

N−1
.

Considering an iid dataset D = x1, . . . ,xN distributed according to p, a Monte Carlo
approximation to the covariance matrix is given by

Σ̂ =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T , (2.4)

where x̄ is the empirical mean (Monte Carlo approximation of the expected value of
a random vector X ∼ p). The bias in this approximation is also corrected through
multiplication by N

N−1
[153].

2.2 Image segmentation

Image segmentation is the task of partitioning an image into objects of interest (see Fig.
2.1). The concept of object of interest is highly dependent on context. Precisely for this
reason, user interaction still is essential for effective segmentation.

Image segmentation can be further divided into two tasks: recognition and delineation
[44]. Recognition corresponds to establishing the approximate localization of the objects
of interest, while delineation corresponds to discovering precisely which pixels belong to
each of these objects.

Since recognition is very dependent on context, humans usually outperform machines,
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Figure 2.1: Segmented image. Different hues represent different segments.

but the latter have great potential for the minutiae involved in delineation. Accordingly,
several approaches have explored a combination of user and machine effort [43, 41, 19,
120, 32]. A common strategy in several of these approaches is called operator-assisted
synergistic segmentation. This strategy consists in the creation of seeds (sets of pixels
corresponding to the same object of interest) by the user, and automatic delineation by the
machine. Such delineation can be corrected interactively with the addition (or removal)
of seeds. Thus, the final accuracy depends on the quality of the delineation and on the
effort devoted by the user to the task.

It is useful to categorize segmentation methods into three groups [26]: purely image-
based, appearance model-based, and hybrid.
Purely image-based: These methods delineate objects based on information that can
be entirely obtained from the image and/or user input. Such methods include level sets,
active boundaries, fuzzy connectedness, graph cuts, watersheds, clustering and Markov
random fields [26]. Perhaps the most widespread family of methods are graph cuts based
on the maximum flow algorithm. However, this algorithm has severe limitations. For
instance, the cost function minimized by some graph cut variants tends to favor smaller
boundaries [26]. More importantly, simultaneously segmenting more than two objects
using graph cut methods is an NP-hard problem [26, 81]. While it is possible to segment
each object individually, merging the resulting segmentation is not trivial. In contrast,
segmentation algorithms based on the image foresting transform (IFT) are capable of
segmenting multiple objects in linear time, and do not favor smaller boundaries [42, 26].
This transform is a tool for the design of operators based on optimum connectivity, and
has been successfully applied to the development of algorithms for image processing [42],
pattern classification [115], data clustering [127], and active learning [129]. It is interesting
to note that fuzzy connectedness methods, which can be efficiently implemented using the
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IFT algorithm, also define an optimum cut in a graph given a particular energy function
[26]. We will present the image foresting transform together with a new segmentation
approach in Chapter 3.
Model-based: These methods use information about objects encoded into models to
perform the segmentation. These methods include active shape models [28] and atlas-
based models [48], which have been applied to segmentation of anatomic structures of the
brain given magnetic resonance images [37, 56].
Hybrid: As the name implies, hybrid methods combine these two previous approaches,
attempting to overcome their individual weaknesses [94]. The clouds model [104] is an
example of such approach, which was applied to segment magnetic resonance images.
Both model-based and hybrid methods, however, are less generally applicable than the
purely image-based segmentation methods, which are most benefited by user interaction.

2.3 Pattern classification

In supervised learning, a subfield of machine learning, the important task of pattern
classification consists on assigning a class label to a high-dimensional vector based on
generalization from previous examples [108]. In broad terms, this task is typically solved
by finding parameters for a classification model that maximize a measure of efficacy.

More concretely, consider an iid datasetD = (x1, y1), . . . , (xN , yN). Every pair (xi, yi) ∈
D is composed of an observation xi ∈ RD, and a class yi ∈ {1, . . . , C}, where C is the
number of classes. The j-th element of xi corresponds to feature j. For instance, the ob-
servations may correspond to images of animals, and the classes to the C distinct species
present in the images.

The typical goal is to find a classifier f : RD → {1, . . . , C} that maps observations to
classes based on the (training) set D, and generalizes well to new observations. Although
generalization can be defined precisely in the context of Bayesian decision theory [108], it
is typically evaluated by the efficacy on a so-called test set. A test set D′ is a dataset that
was not considered to find the classifier f , and is iid according to the same distribution
as the training set D.

A common measure of efficacy is the accuracy of the classifier f on the test set D′,
which is given by

1

N ′

∑
(x,y)∈D′

I(f(x) = y), (2.5)

where N ′ is the number of observations in D′, and I is the indicator function, which is 1

if its argument is true, and 0 otherwise. In words, the accuracy is the fraction of correct
classifications on the test set.

Alternatively, it is also possible to model the conditional probability p(y | x) of class
y given the observation x, for every (x, y) ∈ RD × {1, . . . , C}. The advantage is that
this approach provides a measure of uncertainty about classifications [15, 108]. The
corresponding classifier f may be given by f(x) = arg maxy p(y | x).

Pattern classification is a challenging task, partly due to its extremely large design
space. For our purposes, this task can be divided into representation and learning, as
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follows.
The representation task is concerned with how objects of interest are modeled as ob-

servations. In general, elements of these vectors correspond to measurable characteristics
(features) of the objects. Usually, many different features can be considered, and it is
unclear which of them are valuable for generalization. For example, consider the task of
image classification. A wide variety of color, texture, shape, and local features can be
extracted from images [33]. Using too few features can lead to poor generalization; while
using too many features can be prohibitively expensive to compute, or even introduce
confounding information into the training data [60, 93]. Deep neural networks recently
became able to bypass feature design by dealing directly with raw images [84, 11]. How-
ever, such networks require very large amounts of labeled (training) data, which are not
always available, and pose additional design challenges of their own [12]. Therefore, fea-
ture selection for classification system design still is a very important problem. We return
to this issue in Section 2.4.

Once a representation is available, the learning task consists on selecting, applying,
fine-tuning, and testing learning algorithms. A huge number of such algorithms exists,
based on a wide variety of principles, and no single algorithm is the best for every situa-
tion [154]. Learning algorithms such as k-nearest neighbors, naive Bayes, support vector
machines, decision trees, artificial neural networks, and their ensembles, have been applied
in a wide variety of practical problems [108].

Since the objective of pattern classifiers is to generalize from previous experience, hy-
perparameter search and efficacy estimation are usually performed using cross-validation
[108, 79], which we introduce in Sec. 2.3.1. However, this approach is bounded by the
limited feedback that numerical (classification) efficacy measures can provide. As a con-
sequence, when suboptimal results are obtained, designers are often left unaware of which
aspects limit classification system efficacy, and what can be done to improve these systems.
This and other issues have been referred to as the “black art” of machine learning [35].

Diagnosing the cause of poor generalization in classification systems is a hard prob-
lem. Options include using cross-validation to compute efficacy indicators (e.g., accuracy,
precision and recall, area under the ROC curve), and learning curves, which show gen-
eralization performance for an increasing training set. In multi-class problems, confusion
matrices can also be used to diagnose mistakes between classes [45]. Information visual-
ization systems can also be helpful in this diagnostic process, as we discuss in Chapter
4.

The following sections describe five supervised learning techniques in detail: k-nearest
neighbors (KNN), logistic regression (LR), support vector machines (SVM), decision trees
(DT, including random forest classifiers and extremely randomized trees), and artificial
neural networks (ANN, including multilayer perceptrons and convolutional neural net-
works). Some of these techniques will be directly used in Chapter 4 (KNN, SVM, DT),
while others are pre-requisites for understanding feature selection techniques that we em-
ploy (LR, SVM, DT). Artificial neural networks are the main subject of Chapter 5.

As noted previously, understanding the details behind these techniques is not strictly
required for the next chapters, which are self-contained. Therefore, the reader is welcome
to the skip technical details, and refer back to these sections whenever necessary. One
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exception is Section 2.3.1, which is used to introduce important concepts in supervised
learning, including hyperparameters, the curse of dimensionality, and model selection.

2.3.1 K-nearest neighbors

K-nearest neighbors is arguably the simplest widespread classification technique [108].
Given a dataset D, this technique assumes that the probability p(y | x) of class y given
observation x is given by

p(y | x) =
1

K

∑
(xi,yi)∈N(x,D,K)

I(yi = y), (2.6)

where I is once again the indicator function, and N(x,D, K) is a subset of D whose
observations are the K closest to x (ties broken arbitrarily), according to a distance
function on RD (e.g., Euclidean distance). In other words, p(y | x) is the fraction of the
K nearest neighbors of x in D that belong to class y. For an illustrative example, see Fig.
2.2.

Figure 2.2: K-nearest neighbors (K = 3) decision boundary for a 2D dataset. Each
point corresponds to an observation, and is colored according to its class. The region
in orange/blue contains points that would be assigned to the orange/blue class during
testing.

Clearly, a 1-nearest neighbor classifier achieves perfect accuracy on the training set
(assuming there are contradictory observation-class pairs). However, this does not imply
that the classifier generalizes well. Although K-nearest neighbors can generalize well given
an appropriate distance function and sufficient data, it can also suffer from the curse of
dimensionality, a difficulty that may arise in high-dimensional spaces [15]. As an example
of this curse, consider a hypercube with unit volume. A hypercube with side l ≤ 1 inside
such unit hypercube occupies a fraction F (l) = lD of the unit volume. Thus, to occupy a
fraction r of the volume of the unit hypercube, a hypercube must have side L(r) = D

√
r.
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In the case of D = 100, to occupy r = 1% of the volume of the unit hypercube, the
smaller hypercube must have sides larger than 0.95. This example aids the intuition
that a technique like K-nearest neighbors may base its decisions on neighbors that are
considerably distant in the high dimensional space (depending on the dataset). Other
techniques may achieve better generalization by making particular assumptions about
the dataset. For the same reason, there is no single best learning algorithm for every
practical situation [154, 108].

Notice that K-nearest neighbors requires fixing K before the classifier f can be ob-
tained from the training set, which makes K a hyperparameter. The general task of
choosing hyperparameters that generalize well is called model selection [108]. As already
mentioned, generalization cannot be evaluated on the training set. Hyperparameters
should not be chosen based on performance on the test set either, because doing so would
introduce an optimistic bias. In short, it would not be clear how hyperparameters chosen
for a particular test set would generalize for other test sets.

A typical solution to the problem of model selection is to partition the training set
into a validation set and an effective training set. For each choice of hyperparameters,
the classifier is fitted to the effective training set, and evaluated in the validation set.
This procedure is called cross-validation. In F-fold cross-validation, the training set is
partitioned into F subsets (folds). Each fold is used as a validation set while the others
are used as effective training sets, and the hyperparameters that achieve best (average)
efficacy results over each validation fold are selected. The selected hyperparameters are
used to fit a classifier to the whole training set, which can be finally evaluated on the test
set.

In summary, K-nearest neighbors is a simple classification technique, which requires
choosing a number of neighbors K and an appropriate distance function. This section
also introduced important concepts in machine learning: hyperparameters, curse of di-
mensionality, model selection, and cross-validation.

2.3.2 Logistic regression

Consider a dataset D = (x1, y1), . . . , (xN , yN), which is iid according to p(· | θ∗) for some
unknown parameter vector θ∗. Furthermore, suppose yi ∈ {0, 1}, for all i. Consider
the task of binary classification, which corresponds to predicting binary targets from
observations based on generalization from D.

Logistic regression [108] is a technique that assumes that the probability p(y | x,w)

of class y ∈ {0, 1} given observation x and weight vector w is given by

p(y | x,w) = σ(wx)y(1− σ(wx))1−y, (2.7)

where σ is the sigmoid function given by

σ(t) =
1

1 + e−t
, (2.8)

for all t ∈ R.
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Intuitively, a logistic regression model assigns more probability to class 1 whenever
wx > 0, and each element wj of w indicates how much feature j contributes (or detracts)
to the detection of class 1. Because the probability of the distinct classes given x is the
same if and only if wx = 0, the so-called decision boundary of this classification technique
is the hyperplane S = {x ∈ RD | wx = 0}. For an illustrative example, see Fig. 2.3.

Figure 2.3: Logistic regression (λ = 1) decision boundary for a 2D dataset.

Although the assumptions made by logistic regression appear very restrictive, an input
observation x can be transformed by a pre-defined feature map φ : RD → RD′ before the
technique is applied. In that case, we say the probability p(y | x,w) is given by

p(y | x,w) = σ(wφ(x))y(1− σ(wφ(x)))1−y. (2.9)

Therefore, the decision boundary is no longer (necessarily) a hyperplane on the original
space.

In what follows, we assume that the observations were already transformed by a feature
map. It is advisable to at least prefix each original observation x by the constant 1,
leading to a transformed observation x′ = (1,x). In this case, the decision boundary on
the original space becomes an affine hyperplane S = {x ∈ RD | w0 + w1:Dx = 0}.

The (conditional) likelihood p(D | w) of the weight vector w given the dataset D is
given by

p(D | w) =
N∏
i=1

p(yi | xi,w) =
N∏
i=1

σ(wxi)
yi(1− σ(wxi))

1−yi . (2.10)

Notice that this likelihood is not based on the joint density over observations and
classes, which is irrelevant for our purposes. Instead, p(D | w) is the probability associated
to the particular assignment y = (y1, . . . , yN) when the observations x1, . . . ,xN are seen
as constants (according to D), and Yi ⊥⊥ X−i, Y−i | Xi,W.
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The log-likelihood `(w) = log p(D | w) is given by

`(w) = log
N∏
i=1

σ(wxi)
yi(1− σ(wxi))

1−yi (2.11)

=
N∑
i=1

log
[
σ(wxi)

yi
]

+ log
[
(1− σ(wxi))

1−yi
]

(2.12)

=
N∑
i=1

yi log σ(wxi) + (1− yi) log(1− σ(wxi)). (2.13)

It can be shown that there is no analytical expression for the maximum (log-)likelihood
estimate ŵ for a logistic regression model [108]. However, the log-likelihood ` is concave,
and so there is at most one local (and global) maximum. Maximization of ` can be
attempted by gradient ascent, although there are more elaborate alternatives based on
the Hessian matrix [108]. Gradient ascent iteratively updates an estimate w by the rule
w← w + η∇w`(w), where η is the learning rate.

For any k, the partial derivative ∂`(w)/∂wk of ` at w with respect to the variable wk
is given by

∂`(w)

∂wk
=

N∑
i=1

yi
∂

∂wk

[
log σ(wxi)

]
+ (1− yi)

∂

∂wk

[
log(1− σ(wxi))

]
(2.14)

=
N∑
i=1

yi

∂
∂wk

[
σ(wxi)

]
σ(wxi)

+ (1− yi)
∂
∂wk

[
1− σ(wxi)

]
1− σ(wxi)

(2.15)

=
N∑
i=1

yi(1− σ(wxi))xi,k − (1− yi)σ(wxi)xi,k (2.16)

=
N∑
i=1

(yi − σ(wxi))xi,k, (2.17)

using the fact that σ′(t) = σ(t)(1− σ(t)).
Thus, the gradient of ` with respect to w is given by

∇w`(w) = XT (y − σ(Xw)), (2.18)

where the sigmoid function σ is applied element-wise, X is the design matrix (where
each observation corresponds to a row), and y = (y1, . . . , yN). This completes the de-
scription of logistic regression.

However, the formulation of logistic regression presented above can lead to extremely
large coefficients in the resulting parameter estimate ŵ, particularly when the data is
linearly separable, which may cause overfitting. It is possible to penalize large coefficients
by a hyperparameter λ, leading to the task of maximizing the regularized log-likelihood
`λ given by

`λ(w) = `(w)− λ||w||2. (2.19)
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(a) (b)

Figure 2.4: Soft-margin support vector machine (C = 1) decision boundary for a 2D
dataset. (a) Linear kernel. (b) RBF kernel (γ = 0.5).

This objective function also has a (Bayesian) probabilistic interpretation (under a
particular prior density function for W), although we refer to [108] for details. If each
observation was prefixed by the constant 1, the corresponding weight should not be pe-
nalized, since it does not make the classifier more sensitive to small changes in its inputs.
Logistic regression can also be generalized to deal with multi-class problems [108].

In summary, logistic regression is appropriate for binary classification when there is a
hyperplane that separates observations from distinct classes. In such cases, the data is
considered linearly separable. Regularization is commonly employed to discourage large
coefficients that may cause overfitting, which introduces a hyperparameter λ. Given an
appropriate choice of feature map φ, logistic regression may also be applied when the
data is not linearly separable.

In Section 2.4.2, we discuss how logistic regression may be applied to feature selection.

2.3.3 Support vector machines

Consider the iid dataset D = (x1, y1), . . . , (xN , yN), where yi ∈ {−1, 1}, and the task of
binary classification. A hard-margin support vector machine (SVM) is a classification
technique that assumes that there is a hyperplane that separates the observations in such
dataset by class [15]. Furthermore, the technique finds the separating hyperplane such
that its distance to the nearest observation is maximum, a choice motivated by statistical
learning theory [15]. For an illustrative example, see Fig. 2.4a.

Any (affine) hyperplane S in RD can be written as S = {x ∈ RD | wx + b = 0},
for some nonzero weight vector w ∈ RD, and intercept b ∈ R. Consider any x,x′ ∈ S.
Clearly, wx + b = wx′ + b, which implies w(x − x′) = 0. Intuitively, w is orthogonal to
any vector pointing between vectors in S.

Consider any vector x ∈ RD, and let x⊥ denote its closest vector in S. Recall that x
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can be written as [8]
x = x⊥ + r

w

||w||
, (2.20)

where r ∈ R is the so-called signed distance between x and S. By introducing w and b
into the equation above,

wx + b = wx⊥ + b+ r
||w||2

||w||
(2.21)

wx + b

||w||
= r, (2.22)

since wx⊥ + b = 0. Notice that the signed distance between S and the origin is given
by b

||w|| .
Consider again the dataset D, and the task of finding the parameters w and b of a

separating hyperplane S such that wxi + b > 0 if yi = 1 and wxi + b < 0 if yi = −1, for
all i, assuming that such hyperplane exists. This task is equivalent to finding parameters
that satisfy the constraint yi(wxi + b) > 0, for all i.

The margin m(w, b) of a hyperplane S = {x ∈ RD | wx + b = 0} that satisfies the
constraints is defined as

m(w, b) = min
i

yi(wxi + b)

||w||
=

1

||w||
min
i
yi(wxi + b). (2.23)

Because we assumed that the hyperplane S satisfies the constraints, the margin corre-
sponds to the (unsigned) distance between the hyperplane S and the closest observation
in D.

Notice that if the hyperplane S defined by w and b satisfies the constraints, then the
hyperplane S ′ defined by κw and κb also satisfies the constraints, for any κ > 0. Both S
and S ′ also have the same margin, since

m(κw, κb) = min
i

yi(κwxi + κb)

||κw||
=

κ

κ||w||
min
i
yi(wxi + b). (2.24)

Consider the task of finding the parameters w∗ and b∗ of a separating hyperplane with
maximum margin. In other words, maximizing m(w, b) with respect to w and b subject
to yi(wxi + b) > 0, for all i. The margin m(w∗, b∗) of such a hyperplane is given by

m(w∗, b∗) =
1

||w∗||
min
i
yi(w

∗xi + b∗) = max
w

max
b

1

||w||
min
i
yi(wxi + b). (2.25)

Consider also the task of maximizing m(w, b) with respect to w and b subject to
mini yi(wxi+b) = 1. This constraint is clearly stronger than the constraint that yi(wxi+

b) > 0, for all i. Suppose that a hyperplane S defined by w and b satisfies the weaker
constraints, and let κ = 1/mini yi(wxi + b), where the denominator is certainly positive.
Consider the hyperplane S ′ defined by κw and κb. As shown previously, m(w, b) =
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m(κw, κb). Since

min
i
κyi(wxi + b) = min

i

yi(wxi + b)

minj yj(wxj + b)
= 1, (2.26)

any hyperplane S that satisfies the weaker constraints has a corresponding hyperplane
S ′ with the same margin that satisfies the stronger constraint. Thus, we can maximize
m(w, b) with respect to w and b subject to the stronger constraint without loss of gener-
ality.

The constraint mini yi(wxi + b) = 1 implies that the maximum margin hyperplane
defined by w∗ and b∗ is given by

m(w∗, b∗) = max
w

max
b

1

||w||
min
i
yi(wxi + b) = max

w

1

||w||
. (2.27)

Instead, we consider the equivalent, and more convenient, task of minimizing 1
2
||w||2 with

respect to w and b subject to the same constraint.
We will change constraints one last time. Consider minimizing 1

2
||w||2 with respect to

w and b subject to yi(wxi+b) ≥ 1, for all i. These constraints are apparently weaker than
the previous. However, suppose that w and b minimize 1

2
||w||2, and yi(wxi + b) > 1, for

all i. Let κ = 1/mini yi(wxi + b). A hyperplane defined by κw and κb satisfies the new
constraints, since yi(κwxi+κb) = κyi(wxi+b) ≥ 1, for all i. However, 1

2
||kw||2 < 1

2
||w||2,

since 0 < κ < 1, which is a contradiction because we assumed w and b corresponded to
a minimum. Therefore, a minimum that satisfies the new constraints also satisfies the
previous constraint.

In summary, the parameters of the separating hyperplane with maximum margin are
given by minimizing 1

2
||w||2 with respect to w and b subject to yi(wxi + b) ≥ 1, for all i.

Given the optimum w and b, a new observation x can be classified as 1 if wx + b > 0,
and as −1 otherwise.

The optimization task stated above is a convex quadratic programming problem [15],
a class of widely studied optimization problems. However, an important aspect of support
vector machines requires restating this optimization task using the Lagrangian dual, which
we cover next.

Let the generalized Lagrangian L corresponding to our problem be given by

L(w, b, a) =
1

2
||w||2 −

N∑
i=1

ai
[
yi(wxi + b)− 1

]
. (2.28)

The Karush-Kuhn-Tucker conditions state that if w and b correspond to a local minimum
subject to the constraints, then ∇L(w, b, a) = 0 for some vector a whose elements are all
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nonnegative [14]. The relevant gradients are given by

∇wL(w, b, a) = w −
N∑
i=1

aiyixi (2.29)

∂

∂b
L(w, b, a) =

N∑
i=1

aiyi. (2.30)

Therefore, if w and b correspond to a local minimum subject to the constraints, then

w =
N∑
i=1

aiyixi (2.31)

0 =
N∑
i=1

aiyi, (2.32)

for some a whose elements are all nonnegative.The Lagrangian dual L̃ is obtained by
substituting the expressions above into the generalized Lagrangian L, and is given by

L̃(a) =
N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyjxixj. (2.33)

It can be shown that if a maximizes L̃ subject to ai ≥ 0, for all i, and
∑

i aiyi = 0, then
the corresponding w =

∑
i aiyixi is the desired local minimum subject to constraints, and

thus represents the maximum margin separating hyperplane [15].
The support vectors are the observations in D that are closest to the maximum margin

separating hyperplane. It can be shown that only the coefficients ai associated to these
vectors are nonzero [15]. Therefore, given the expression for w in terms of a, only the
support vectors directly affect classification. Intuitively, the other observations in D can
move freely as long as they do not affect the margin, resulting in the same maximum
margin separating hyperplane. The intercept b can be obtained by noting that yi(wxi +

b) = 1, for any support vector xi.
Although maximizing the Lagrangian dual is also a quadratic programming problem,

it has a highly valuable characteristic. As with logistic regression, it would be possible
to transform each input observation x by a pre-defined feature map φ : RD → RD′ . In
that case, the maximum margin separating hyperplane in the transformed space would
not necessarily be a hyperplane in the original space.

However, notice that the observations in D only affect the Lagrangian dual through
inner products. Let a kernel k : RD×RD → R be a function given by k(x,x′) = φ(x)φ(x′),
for a pre-defined feature map φ, and any x,x′ ∈ RD. Clearly, as long as the kernel k is
known, it is possible to find the desired maximum margin separating hyperplane in the
transformed space without ever evaluating φ directly. This is the so-called kernel trick,
which vastly extends the applicability of support vector machines (and other techniques)
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[15]. The same trick can be applied for classifying new observations, since

wφ(x) + b =
∑
i

aiyiφ(xi)φ(x) + b =
∑
i

aiyik(xi,x) + b, (2.34)

for any x ∈ RD.
There are many known sufficient conditions for defining valid kernels disregarding φ

[15]. A common choice is the radial basis function kernel k given by

k(x,x′) = exp(−γ||x− x′||2), (2.35)

where γ is a hyperparameter. For an illustrative example, see Fig. 2.4b. A support vector
machine whose kernel corresponds to the inner product in the original feature space is
said to be linear.

There are two very simple strategies to adapt support vector machines for classification
problems with C > 2 classes. One of them is to train C one-vs-rest classifiers, and to
classify a new observation by the class for which the observation is further away from the
corresponding maximum margin separating hyperplane (on the correct side). Another
heuristic is to train C(C − 1)/2 one-vs-one classifiers, and to classify a new observation
according to the class that receives more votes. Both strategies offer few guarantees in
the general case [15].

A soft-margin support vector machine is a technique that finds a separating hyperplane
that may leave some observations on the wrong side, as long as doing so increases the
margin. The trade-off is controlled by a penalty hyperparameter (typically denoted by
C). Intuitively, this alternative formulation is more robust to outliers [15].

In summary, in its simplest formulation, a support vector machine is appropriate for
binary classification of linearly separable data. The introduction of feature maps through
the kernel trick easily allows binary classification of data that is not linearly separable, and
requires choosing a kernel function and its hyperparameters. Soft-margins make support
vector machines generally more robust to outliers, introducing yet another hyperparameter
C. Finally, support vector machines can be adapted to multi-class classification tasks
through simple heuristics.

In Section 2.4.3, we discuss how support vector machines can be applied to feature
selection.

2.3.4 Decision trees

A (classification) decision tree assigns observations to classes according to a sequence of
logical tests that involve their features. We focus on building classification trees that
perform inequality tests using the so-called CART (classification and regression trees)
approach [64].

A classification tree is a full rooted binary tree T = (V,E). By definition, T either
has a single vertex (root), or can be built by connecting (by two edges) a single vertex
(root) to the roots of two other binary trees.

Consider the task of classifying observations in RD. Each vertex u in the classification
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tree T is associated to a set Ru ⊆ RD. Suppose v and w are children of u. The vertex v is
associated to the set Rv = {x ∈ Ru | xj < τ}, and w is associated to the set Rw = {x ∈
Ru | xj ≥ τ}, for some feature j and constant threshold τ . The root r is associated to
the set Rr = RD. Therefore, the leaves of T partition RD into hyperrectangular regions.
If each leaf of T is also associated to a class, an observation x can be classified by finding
the leaf u such that x ∈ Ru, by following the appropriate branches starting from the root.
For an illustrative example, see Fig. 2.5.

Figure 2.5: Decision tree decision boundary for a 2D dataset.

Consider the iid datasetD, and the task of building a classification tree that is expected
to generalize well to new observations. A typical strategy is to find a pure classification
tree T , whose leaves are all pure. A leaf u is pure if Ru contains only observations from
D that belong to the same class [108].

Suppose a dataset has as many distinct classes as there are observations. In that case,
define the cost of a pure classification tree T for the dataset D as the cumulative number
of tests required to classify each observation in D using T . Determining whether there is
a classification tree with cost less or equal to k given D and pre-defined pairs of features
and thresholds is an NP-complete problem [72], among other related problems. The
computational burden of finding optimal trees is typically avoided by employing greedy
heuristic methods.

We now describe a common heuristic to choose the feature j∗ and threshold τ ∗ for the
root of a classification tree given the dataset D.

For each feature j and threshold τ , define the cost C(j, τ) of partitioning a dataset D
into non-empty datasets Dv = {(x, y) ∈ D | xj < τ} and Dw = D − Dv = {(x, y) ∈ D |
xj ≥ τ} as

C(j, τ) = c(Dv) + c(Dw), (2.36)

where c is a pre-defined cost function, which we discuss later. We choose by exhaustive
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search a feature j∗ and threshold τ ∗ such that

C(j∗, τ ∗) = min
j

min
τ
C(j, τ). (2.37)

Notice that the cost C of at most D(N − 1) pairs of features and thresholds needs to
be computed to find j∗ and τ ∗, even if the features are real-valued (since at most N − 1

distinct thresholds would affect the partitioning of D into non-empty Dv and Dw, for each
feature).

A typical choice of cost function c is the entropy of the empirical distribution of classes
in D, given by [108, 64]

c(D) = −
∑
y

πy log πy, (2.38)

where πy is the fraction of observations in D that belongs to class y, and 0 log 0 is substi-
tuted by 0. Intuitively, such entropy is minimized whenever all observations in D belong
to the same class. We discuss entropy in more detail in Section 2.4.1.

After choosing j∗ and τ ∗ for the root vertex, its children u and w can be seen as roots of
two distinct classification trees. By restricting each children v to its corresponding dataset
Dv ⊂ Rv, the procedure described above can be applied recursively. The procedure should
not create children for a root when the dataset is already pure, since that would not affect
future classifications. This completes a recursive algorithm for building a classification
tree.

It is also possible to stop creating children whenever a pre-defined tree depth is
achieved, or whenever the remaining dataset contains few observations [64]. In such
cases, a new observation x is classified according to the class majority in the leaf u such
that x ∈ Ru. The objective of these stop criteria is to make the classifier more robust to
small changes in the training data. Another way to prevent overfitting is to prune the
resulting classification tree, by eliminating branches according to their effect on training
set accuracy [64]. In all of these cases, the associated hyperparameters may be chosen by
cross-validation.

Classification trees have some highly desirable properties. For instance, they are insen-
sitive to monotonic transformation of features, since they are based on thresholds. More
importantly, classification trees are more interpretable than many other classifiers, whose
outputs cannot be easily understood in terms of the original features [64].

Consider sampling N elements (with replacement) from the elements in the dataset
D to create each dataset in a sequence D1, . . . ,DS, and training a distinct classification
tree for each dataset in this sequence. Suppose also that any observation x ∈ RD is
classified according to the class that receives more votes from the S independent classifiers.
This strategy is called bagging, and the meta-classifier is a type of ensemble. Intuitively,
aggregating votes from classification trees trained using distinct datasets is typically more
robust than depending on a classification tree that learned rules that may be overly specific
for a particular dataset [23].

A random forest classifier (RFC) is an ensemble of classification trees based on bagging
[23]. Each classification tree in the ensemble also considers only a random subset of d < D

features in each step of finding a (locally) optimum pair of feature j∗ and threshold τ ∗.
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As before, the goal is to create robust meta-classifiers.
Similarly to a random forest classifier, an extremely randomized tree classifier is an

ensemble classifier that introduces randomness into the learning process in an attempt
to reduce overfitting [51]. However, extremely randomized trees typically do not perform
bagging. Instead, the technique fits S distinct classification trees to the entire dataset.
In each step that requires choosing a feature j∗ and a threshold τ ∗ to split the remaining
dataset D, only a random subset F ⊆ {1, . . . , D} containing d ≤ D features is considered.
Furthermore, for each feature j ∈ F , a single threshold τ is chosen uniformly at random
in the range of j (in the remaining dataset D). From these candidates, the feature j∗ and
threshold τ ∗ with the lowest cost C(j∗, τ ∗) are chosen, as usual.

Both random forests and extremely randomized trees have shown remarkable empirical
efficacy results [23, 51].

In summary, although building pure classification trees requires few choices, such as
the cost function c, it is generally important to introduce hyperparameters that control
tree complexity. Ensembles of classification trees are particularly effective, and introduce
even more choices.

In Section 2.4.4, we discuss how extremely randomized trees can be applied to feature
selection.

2.3.5 Artificial neural networks

Advances in computational power and techniques for building and training artificial neural
networks have allowed these models to achieve state-of-the-art results in many applica-
tions related to pattern recognition [130]. We will present two models of feedforward
neural networks: multilayer perceptrons (due to their simplicity), and convolutional neu-
ral networks (due to their state-of-the-art image classification results). These models are
the focus of Chapter 5.

Multilayer perceptrons

Multilayer perceptrons compose the most widely known class of artificial neural networks
[15, 112].

Consider an iid dataset D = (x1,y1), . . . , (xN ,yN), where xi ∈ RD, and yi ∈ {0, 1}C .
In this context, given a pair (x,y) ∈ D, we assume yj = 1 if and only if observation x

belongs to class j. As usual, we also assume that each observation belongs to a single
class.

Let L represent the number of layers in the network, and N (l) represent the number
of neurons in layer l, with N (L) = C. These hyperparameters determine the so-called
network architecture. We will refer to a neuron in layer l by a corresponding number
between 1 and N (l). The neurons in the first layer are also called input units, the neurons
in the output (last) layer called output units, and the other neurons called hidden units.
Networks with more than 3 layers are called deep networks.

Let w(l)
j,k ∈ R represent the weight reaching neuron j in layer l from neuron k in layer

(l − 1). The order of the indices is counterintuitive, but makes the presentation simpler.
Furthermore, let b(l)

j ∈ R represent the bias for neuron j in layer l.
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Consider a layer l, for 1 < l ≤ L, and neuron j, for 1 ≤ j ≤ N (l). The weighted input
to neuron j in layer l is defined as

z
(l)
j = b

(l)
j +

N(l−1)∑
k=1

w
(l)
j,ka

(l−1)
k , (2.39)

where the activation a(l)
j of neuron j in layer 1 < l < L is defined as

a
(l)
j = σ(z

(l)
j ), (2.40)

for some differentiable activation function σ. We consider the sigmoid activation function
defined by σ(z) = 1

1+e−z .
We will also consider a so-called softmax output layer, where the activation a

(L)
j of

neuron j is given by

a
(L)
j =

ez
(L)
j∑C

k=1 e
z
(L)
k

. (2.41)

It will be useful to define some vectors and matrices that represent quantities associated
to each neuron in a given layer. The weighted input for layer l > 1 is defined as z(l) =

(z
(l)
1 , . . . , z

(l)

N(l)), and the activation vector for layer l is defined as a(l) = (a
(l)
1 , . . . , a

(l)

N(l)).
Furthermore, we define the bias vectors as b(l) = (b

(l)
1 , . . . , b

(l)

N(l)), and the N (l) × N (l−1)

weight matrices W(l) such that W
(l)
j,k = w

(l)
j,k.

Using these definitions, the output of each layer 1 < l < L can be written as

a(l) = σ(W(l)a(l−1) + b(l)), (2.42)

where the activation function is applied element-wise (see Fig. 2.6).
The output of a multilayer perceptron when a(1) = x is defined as the activation vector

a(L) of the output layer. Notice how a(L) is implicitly dependent on x.
This completes the definition of the model. We now focus on learning parameters for

classification given a dataset.
Suppose the dataset D is iid according to p(· | θ∗), for an unknown parameter vector

θ∗. Furthermore, suppose the probability of any class y given any observation x is given
by the corresponding output neuron of a particular multilayer perceptron with a fixed
architecture when a(1) = x. More concretely, suppose

p(y | x,θ∗) = a(L)
y , (2.43)

such that the unknown θ∗ defines the parameters (weights and biases) of a multilayer
perceptron (among the prior probabilities of observations, which are irrelevant for our
purposes). It is important to notice that a softmax output layer would yield a valid
probability mass function for any choice of observation, weights and biases.

The (conditional) likelihood p(D | θ) of the parameter vector θ given the dataset D
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Figure 2.6: Schema of multilayer perceptron with three layers and three neurons per layer.

may be written as

p(D | θ) =
N∏
i=1

p(yi | xi,θ), (2.44)

by ignoring for a moment that we encoded the target classes using vectors. Once again,
this likelihood is not based on the joint density over observations and classes, which is
irrelevant for our purposes.

A natural goal is to find the weights and biases that minimize the (average) negative
log-likelihood J , which is given by

J = − 1

N
log p(D | θ) = − 1

N

∑
(x,y)∈D

C∑
k=1

yk log a
(L)
k , (2.45)

where a(L) is the output activation when the network parameterized according to θ receives
x as input. Notice that a single yk is nonzero inside the second summation. Furthermore,
notice that −yk ln a

(L)
k →∞ when yk = 1 and a(L)

k → 0, which characterizes a prediction
error (a(L)

k > 0 due to the softmax output layer).
If we let E = −

∑
k yk log a

(L)
k be a cost variable implicitly associated to a pair (x,y) ∈

D, then J = N−1
∑

(x,y) E. The fact that the cost J can be written as an average of costs
E for each element of the dataset will be crucial to the proposed optimization procedure.
The procedure requires the computation of partial derivatives of the cost with respect to
weights and biases, which are usually computed by a technique called backpropagation .
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Let the error1 of neuron j in layer l for a given (x,y) ∈ D be defined as

δ
(l)
j =

∂E

∂z
(l)
j

. (2.46)

Similarly, the error for the neurons in layer l is denoted by δ(l) =
(
δ

(l)
1 , . . . , δ

(l)

N(l)

)
.

Backpropagation is a method for computing the partial derivatives of the cost function
of a multilayer perceptron with respect to its parameters [112]. Given our choice of
activation functions, the method is based solely on the following six equalities:

δ(L) = a(L) − y, (2.47)

δ(l) = ((W(l+1))Tδ(l+1))� σ′(z(l)), (2.48)
∂E

∂b
(l)
j

= δ
(l)
j , (2.49)

∂E

∂w
(l)
j,k

= a
(l−1)
k δ

(l)
j , (2.50)

∂J

∂b
(l)
j

=
1

N

∑
(x,y)∈D

∂E

∂b
(l)
j

, (2.51)

∂J

∂w
(l)
j,k

=
1

N

∑
(x,y)∈D

∂E

∂w
(l)
j,k

, (2.52)

where � denotes element-wise multiplication. Notice how every quantity on the right
side can be computed easily from our definitions, by starting with the errors in the output
layer for every pair (x,y) ∈ D. This originates the term backpropagation.

As an illustration, we will demonstrate Eq. 2.48, which states that

δ
(l)
j = σ′(z

(l)
j )

N(l+1)∑
k=1

w
(l+1)
k,j δ

(l+1)
k , (2.53)

for 1 < l < L and 1 ≤ j ≤ N (l). Since layer l < L only affects the output through the
next layer, and z(l+1)

k is a differentiable function of z(l)
1 , . . . , z

(l)

N(l) , and E is a differentiable
function of z(l+1)

1 , . . . , z
(l+1)

N(l+1) ,

δ
(l)
j =

∂E

∂z
(l)
j

=
N(l+1)∑
k=1

∂E

∂z
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

=
N(l+1)∑
k=1

δ
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

. (2.54)

By definition,

z
(l+1)
k = b

(l+1)
k +

N(l)∑
i=1

w
(l+1)
k,i a

(l)
i , (2.55)

1This arguably misleading term is widely employed [112].
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therefore,
∂z

(l+1)
k

∂z
(l)
j

=
∂

∂z
(l)
j

[
w

(l+1)
k,j a

(l)
j

]
= w

(l+1)
k,j σ′(z

(l)
j ). (2.56)

This gives

δ
(l)
j =

N(l+1)∑
k=1

δ
(l+1)
k w

(l+1)
k,j σ′(z

(l)
j ) = σ′(z

(l)
j )

N(l+1)∑
k=1

w
(l+1)
k,j δ

(l+1)
k , (2.57)

as we wanted to show.
Intuitively, for each observation, backpropagation considers the effect of a small in-

crease of ∆w on a parameter w in the network. This change affects every subsequent
neuron on a path to the output, and ultimately changes the cost J by a small ∆J .

Gradient descent can be used as a heuristic to find the parameters that minimize the
cost J . More concretely, if we let ∇θJ(θ) denote the gradient (direction of maximum
local increase) of J given the parameter vector θ (which represents weights and biases),
the technique starts at a parameter vector θ0 chosen arbitrarily, and visits the sequence
of parameter vectors given by

θt+1 = θt − η∇θJ(θt), (2.58)

where the learning rate η ∈ R+ is a small constant. Gradient descent is not guaranteed
to converge. Even if it converges, the point at convergence may be a saddle point or a
poor local minima. The choice of η considerably affects the success of gradient descent.

In a given iteration t of gradient descent, instead of computing ∂J

∂w
(l)
j,k

and ∂J

∂b
(l)
j

as

averages derived from a computation involving all (x,y) ∈ D, it is also possible to consider
only a subset D′ ⊆ D of randomly chosen observations. The dataset D may also be
partitioned randomly into subsets called batches, which are considered in sequence. In this
case, another random partition is considered once every subset is used. This procedure,
called mini-batches stochastic gradient descent, is widely used due to its efficiency [112].
Intuitively, the procedure makes faster decisions based on sampling. Regardless of these
choices, a sequence of iterations that considers all observations in the dataset is called an
epoch.

The basic choices involved in learning the parameters for a multilayer perceptron using
mini-batches include at least the number of hidden layers, the number of neurons in each
hidden layer, size of the mini-batches, the number of epochs, and the learning rate η.

The momentum technique is a common heuristic for training deep artificial neural
networks [112]. In momentum-based stochastic gradient descent, each parameter w in the
network (weight or bias) has a corresponding velocity v. The velocity is defined by v0 = 0

and

vt+1 = µvt − η

[
∂J

∂wt

]
, (2.59)

where vt and wt correspond, respectively, to v and w at iteration t of stochastic gradient
descent. At each iteration, the parameter w is updated by the rule wt+1 = wt + vt+1.
Intuitively, the momentum technique remembers the velocity of each parameter, allowing
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larger updates when the direction of decrease in cost is consistent over many iterations.
The parameter 0 ≤ µ ≤ 1 controls the effect of the previous velocity on the next velocity,
and 1 − µ is commonly interpreted as a coefficient of friction. If µ = 0, the technique is
equivalent to gradient descent.

Dropout [137] is another common heuristic for training deep artificial neural networks.
At every iteration of stochastic gradient descent, half the hidden neurons are removed
at random. In most implementations, this can be accomplished by forcing the outputs
of the corresponding neurons to be zero. The modified network is applied as usual to
the observations in a mini-batch, and backpropagation follows, as if the network were
not changed. The resulting partial derivatives are used to update the parameters of the
neurons that were not removed. After training is finished, the weights incoming from
hidden neurons are halved. This heuristic is believed to make the network robust to
the absence of particular features, which might be particular to the training data [137].
Dropout is considered related to regularization for trying to reduce overfitting [137].

There are many more heuristics for implementing multilayer perceptrons that will not
be described in detail in this text [112]. Although we focused most of the discussion
on sigmoid neurons, rectified linear neurons have achieved superior results in important
benchmarks [52].

In summary, training a multilayer perceptron involves a large number of hyperparam-
eters, such as number of layers, number of neurons per layer, learning rate, momentum
coefficient, mini-batch size, and number of epochs. The success of multilayer percep-
trons is highly dependent on these hyperparameters, and their choice requires significant
expertise [12]. We return to this issue in Chapter 5.

Convolutional neural networks

Convolutional neural networks were first developed for image classification, which is the
focus of this section, although they have also been successfully applied to other tasks
[130, 112].

A two-dimensional image may be represented by a function f : Z2 → Rc. An element
a ∈ Z2 is called a pixel, and f(a) is the value of pixel a. If f(a) = (f1(a), . . . , fc(a)), then
fi is called channel i.

A window W ⊂ Z2 is a finite set W = [s1, S1]× [s2, S2] that corresponds to a rectangle
in the image domain. The size of this windowW is denoted by w×h, where w = S1−s1+1

and h = S2 − s2 + 1. Because the domain Z of images of interest is usually a window, it
is possible to flatten an image f into a vector x ∈ Rc|Z|. In this vector, there is a scalar
value fi(a) corresponding to the value of each channel i of each pixel a ∈ Z.

Consider an iid dataset D = (x1,y1), . . . , (xN ,yN), such that xi ∈ RD, and yi ∈
{0, 1}C , where each vector xi corresponds to a distinct image Z2 7→ Rc. Also, suppose
that all images are defined on the same window Z, such that D = c|Z|. The task of image
classification consists on assigning a class label for a given image based on generalization
from D.

A convolutional neural network is particularly well suited for image classification,
because it explores the spatial relationships between pixels (organization in Z2) [112].
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Similarly to multilayer perceptrons, a convolutional neural network is also a parameterized
function, and the parameters are usually learned by stochastic gradient descent on a cost
function defined on the training set. In contrast to multilayer perceptrons, there are three
main types of layers in a convolutional neural network: convolutional layers, pooling layers
and fully connected layers (see Fig. 2.7) [112].

Figure 2.7: Schema of convolutional neural network including convolutional layers, pooling
(sub-sampling) layers, and fully connected layers. Source: [85].

A convolutional layer receives an input image f and outputs an image o. A con-
volutional layer is composed solely of artificial neurons. Each artificial neuron h in a
convolutional layer l receives as input the values in a window W = [s1, S1]× [s2, S2] ⊂ Z

of size w × h, where Z is the domain of f . The weighted output z(l)
h of that neuron is

given by

z
(l)
h = b

(l)
h +

c∑
i=1

S1∑
j=s1

S2∑
k=s2

w
(l)
h,i,j,ka

(l−1)
i,j,k . (2.60)

In the equation above, a(l−1)
i,j,k = fi(j, k) is the value of pixel (j, k) in channel i of the

input image. Also, b(l)
h is the bias of neuron h and w(l)

h,i,j,k is the weight that neuron h in
layer l associates to fi(j, k). The activation function for a convolutional layer is typically
rectified linear [112], so a(l)

h = max(0, z
(l)
h ). The definition of z(l)

h is similar to the definition
of the weighted input for a neuron in a multilayer perceptron. The only difference is that
a neuron in a convolutional layer is not necessarily connected to the activations of all
neurons in the previous layer, but only to the activations in a particular w × h window
W . Each neuron in a convolutional layer has cwh weights and a single bias.

A neuron in a convolutional layer is replicated (through parameter sharing) for all
windows of size w × h in the domain Z whose centers are offset by pre-defined steps.
These steps are the horizontal and vertical strides. The activations corresponding to a
neuron replicated in this way correspond to the values in a single channel of the output
image o (appropriately arranged in Z2). Thus, an output image o : Z2 → Rn is obtained
by replicating n neurons over the whole domain of the input image. The total number
of free parameters in a convolutional layer is only n(cwh + 1). If the parameters in a
convolutional layer were not shared by replicated neurons, the number of parameters
would be mn(cwh + 1), where m is the number of windows of size w × h that fit into f
(for the given strides).
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The weighted outputs (minus the bias) of replicated neurons correspond to an output
channel that is analogous to the discrete (multichannel) convolution of the input f with
a particular image g. The values of g correspond to the (shared) weights of the replicated
neurons (appropriately arranged in Z2). This assumes that the horizontal and vertical
strides are 1 and that the domain of the resulting image is always restricted to the window
domain of f . In other words, each channel ou in the output o of a convolutional layer
corresponds to a (multichannel) convolution with an image gu, which is also called a
filter. This is the origin of the name convolutional network [112]. Therefore, to define a
convolutional layer, it is enough to specify the size of the filters (window size), the number
of filters (number of channels in the output image), horizontal and vertical strides (which
are usually 1).

Each channel in the output of a convolutional layer can also be seen as the response of
the input image to a particular (learned) filter. Based on this interpretation, each channel
in the output image is also called an activation map.

Backpropagation can be adapted to compute the partial derivative of the cost with
respect to every parameter in a convolutional layer [130, 112]. The fact that a single
weight affects the output of several neurons must be taken into account. We omit the
details of backpropagation for convolutional neural networks in this text.

A pooling layer receives an input image f : Z2 → Rc and outputs an image o : Z2 → Rc.
A pooling layer reduces the size of the window domain Z of f by an operation that
acts independently on each channel. A typical pooling technique is called max-pooling
[112]. In max-pooling, the maximum value of channel fi in a particular window of size
w × h corresponds to an output value in channel oi. To define a max-pooling layer,
it is enough to specify the size of these windows and the strides (which usually match
the window dimensions). The objective of reducing the spatial domain of the image is
to achieve similar results to using comparatively larger convolutional filters in the next
layers [112]. This supposedly allows the detection of higher-level features in the input
image with a reduced number of parameters [112]. It is also believed that max-pooling
improves the invariance of the classification to translations of the original image [112].
In practice, a sequence of alternating convolutional and max-pooling layers has obtained
excellent results in many image classification tasks [130, 135]. Backpropagation can also
be performed through max-pooling layers.

In summary, a max-pooling layer receives an input image f : Z2 → Rc and outputs an
image o : Z2 → Rc defined by

oi(j, k) = max
a∈Wj,k

fi(a), (2.61)

where i ∈ {1, . . . , c}, (j, k) ∈ Z2, Z is the window domain of f , and Wj,k ⊆ Z is the
input window corresponding to output pixel (j, k).

A fully connected layer receives an input image f : Z2 → Rc or an input vector x

and outputs a vector o. A fully connected layer is precisely analogous to a layer in a
multilayer perceptron [112], and can only be succeeded by other fully connected layers.
The final layer in a convolutional neural network is always a fully connected layer with C
neurons, which is responsible for representing the classification. Backpropagation in fully
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connected layers is analogous to backpropagation in multilayer perceptrons.
Deep convolutional neural networks are usually trained in large labeled datasets, re-

quiring (non-trivial) efficient implementations, which include all the improvements men-
tioned in the previous section [130]. After training a convolutional neural network for a
particular dataset, it is possible to re-use the parameters of the network (up to its last
fully connected layer) as a starting point for another classification task. This technique
decouples representation learning from a specific image classification problem, and has
been very successful in practice [130].

In summary, convolutional neural networks are highly specialized models that were
originally conceived for image classification. The choice of hyperparameters (including
types of layers, number of layers, filters per layer, filter sizes, strides, and the usual
training procedure hyperparameters) is crucial for efficacy [130, 112, 135]. We return to
this issue in Chapter 5.

2.4 Feature selection

As already mentioned, extracting appropriate features from the objects of interest is
crucial to the success of pattern classification. Using too few features can lead to poor
generalization, while using too many features can be computationally prohibitive, or even
introduce confounding information into the training data [60, 93].

Because there are 2D− 1 distinct non-empty subsets of a set of D features, evaluating
the efficacy of every feature subset using cross-validation is generally infeasible. Instead,
feature selection is typically performed by heuristic methods. Feature selection techniques
are typically divided into wrappers, which are based on learning algorithms, and filters,
which rely on simpler metrics derived from the relationships between features and class
labels. We refer to [93] for an extensive list of techniques.

The next sections introduce feature selection techniques (wrappers) that will be em-
ployed in Chapters 4 and 5. These methods were chosen for being sufficiently inexpensive
(computationally) to aid in interactive feature selection.

One exception is Section 2.4.1, which introduces the concept of mutual information.
Although mutual information is ideal to select (discrete) features individually, it fails to
take into account whether features are important when considered together with others
(unless feature subsets are considered, which becomes intractable). However, Sec. 2.4.1
is also used to introduce important concepts in information theory, which will be useful
again in Sec. 2.6.4.

2.4.1 Mutual information

The entropy (in bits) H[X] of a discrete random variable X ∼ p is given by [98]

H[X] = E[− log2 p(X)] = −
∑
k

p(k) log2 p(k), (2.62)

where p(k) > 0 for every k. If p(k) = 0 for some k, 0 log2 0 is conventionally replaced
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by 0, which is justified by the fact that lima→0 a log2 a = 0. It is also common to denote
H[X] by H[p].

Consider the task of transmitting an iid dataset D = x1, . . . , xN distributed according
to a probability mass function p. Shannon’s source coding theorem states that, asN →∞,
the entropy H[p] is a lower bound on the average number of bits required to transmit each
observation (after the encoding is established) [98].

The cross-entropy H[p, q] between two probability mass functions p and q is defined
as H[p, q] = −

∑
k p(k) log2 q(k), where 0 log2 0 is again replaced by 0. Considering the

transmission task mentioned above, the cross-entropy H[p, q] can be interpreted as the
average number of bits required to transmit an observation when the encoding is ideal for
q (instead of p) [108, 98].

The Kullback-Leibler divergence KL(p||q) between two probability mass functions p
and q is defined as

KL(p||q) =
∑
k

p(k) log2

p(k)

q(k)
= H[p, q]−H[p], (2.63)

where p(k), q(k) > 0 for every k. If either p(k) or q(k) are 0, the corresponding term
in the summation is again replaced by 0. Considering again the transmission task, the
Kullback-Leibler divergence KL(p||q) can be interpreted as the increase in the average
number of bits required to transmit an observation when the encoding is ideal for q
(instead of p) [108, 98].

Consider two discrete random variables X ∼ pX and Y ∼ pY . The conditional entropy
H[X | Y ] of X given Y is defined as

H[X | Y ] = −
∑
y

pY (y)
∑
x

p(x | y) log2 p(x | y) =
∑
y

pY (y)H[X | Y = y], (2.64)

where 0 log2 0 is replaced by 0. It is possible to show that H[X | Y ] ≤ H[X] for any
X and Y [108].

The mutual information I(X;Y ) between X and Y is defined as

I(X;Y ) = KL(pX,Y ||pXpY ) =
∑
x

∑
y

pX,Y (x, y) log2

pX,Y (x, y)

pX(x)pY (y)
, (2.65)

where pX(x), pY (y) and pX,Y (x, y) are non-zero for all x, y. If any of them is zero, the
corresponding term inside the summation is again replaced by 0. It is easy to show that
[108]

I(X;Y ) = H[X]−H[X | Y ] = H[Y ]−H[Y | X]. (2.66)

Intuitively, the mutual information I(X;Y ) between X and Y measures the amount of
information that Y has about X (dependence between X and Y ). Clearly, I(X;Y ) =

I(Y ;X), and I(X;Y ) ≥ 0 [108, 81]. It is also possible to show that I(X;Y ) = 0 if and
only if X and Y are independent [108, 81].

In the context of feature selection for classification tasks, the mutual information
I(Xj;Y ) can be used to measure how much information a discrete feature variable Xj ∼
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pXj
has about the class variable Y ∼ pY . This requires approximating the (typically

unknown) probability mass functions pXj
, pY and pXj ,Y by their corresponding empirical

distributions given an iid dataset D. However, these approximations may be unreliable,
particularly when the number of observations in D is small. Furthermore, notice that this
approach does not take into account whether a feature is important when taken together
with other features.

2.4.2 Randomized logistic regression

Recall that logistic regression is a binary classification technique that assumes that the
probability p(y | x,w) of class y ∈ {0, 1} given observation x and weight vector w is given
by

p(y | x,w) = σ(wx)y(1− σ(wx))1−y, (2.67)

where σ is the sigmoid function.
Given an iid dataset D, we have also shown how an appropriate weight vector w∗

can be found by maximizing the log-likelihood `(w) = log p(D | w) with respect to w.
We also mentioned that this maximization objective can lead to a weight vector w∗ with
very large coefficients. This leads to a classifier that is very sensitive to small changes in
the input observations, which may be overfitted to the training data. This issue can be
circumvented by maximizing the l2-regularized log-likelihood given by `(w)− λ||w||2, for
some penalty λ > 0.

Another alternative is to maximize the l1-regularized log-likelihood given by `(w) −
λ
∑

j |wj|. In comparison to the l2-regularized log-likelihood, this alternative objective
favors a sparse solution w∗ (where many elements are zero) [64].

Randomized logistic regression is a feature scoring heuristic based on the idea that
if w∗ is the weight vector that maximizes the l1-regularized log-likelihood, and w∗j = 0,
then feature j is not relevant for classification [103]. Notice that this heuristic takes into
consideration that a feature may be discriminative when combined with others even if it
is not discriminative by itself.

However, notice that w∗j = 0 does not necessarily imply that a feature is not relevant
for classification. For instance, a feature k that is always identical to feature j could
exist, and w∗k could be nonzero. Clearly, this example generalizes to groups of features.
Although this behavior is appropriate for selecting subsets of features, it is not appropriate
for scoring features individually.

Randomized logistic regression deals with this issue by introducing randomness into
the learning process. We discuss one possible implementation of the original approach,
which is based on stability selection [103].

Consider a sequence of datasets D1, . . . ,DS, each obtained by randomly choosing sub-
sets composed of N ′ < N elements from an original iid dataset D = (x1, y1), . . . , (xN , yN).
Suppose a logistic regression classifier is fitted independently for each of these datasets,
resulting in a sequence of weight vectors w∗1, . . . ,w

∗
S. This approach is similar (but not

equivalent) to bagging, which we already introduced in Sec. 2.3.4.
The score sj of feature j is defined as the fraction of classifiers where feature j was
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associated to a significant coefficient, and is given by

sj =
1

S

S∑
i=1

I(|w∗i,j| ≥ ε), (2.68)

where I is the indicator function, and ε ≥ 0 is a small constant. Intuitively, the variability
introduced by subsampling is likely to affect which features are used by each classifier,
avoiding the issue involving related features [103].

So far, we have omitted the main idea in stability selection applied to logistic regres-
sion, which is penalizing each feature differently when considering each dataset. This idea
can be implemented by maximizing, for each dataset Di, the l1-regularized log-likelihood
with respect to w considering randomized penalties, which is given by

l(w)− λ
∑
j

|wj|
ωj

, (2.69)

where λ is the usual penalty hyperparameter, but each ωj is chosen uniformly at random
from the set {r, 1}, where 0 < r < 1 is a hyperparameter of the feature selection method.
Intuitively, this introduces even more variability in the set of features that is likely to be
used by each classifier [103].

2.4.3 Recursive feature elimination

Recursive feature elimination (RFE) is a simple greedy heuristic method that attempts
to rank features according to their discriminative capacities. The method consists on
training a classifier on a dataset D, eliminating the feature(s) with lowest importance
according to some criteria, and repeating the process recursively until all features have
been eliminated [62]. RFE is an instance of the traditional backward feature selection
strategy [62].

In (linear) support vector machine RFE [62], which is a common implementation, the
parameters w∗ and b∗ of a maximum margin separating hyperplane for the dataset D
are obtained as usual, and the feature j with lowest absolute weight coefficient |w∗j | is
eliminated. The procedure continues recursively without feature j. The score (inverse
rank) sj of feature j is simply the iteration at which it was eliminated.

Similarly to randomized logistic regression, this method assumes that features with
small associated coefficients are unimportant for classification. However, SVM RFE does
not address the fact that a relevant feature might have been replaced (by the classifier)
by a highly related feature (or group of features), as detailed in the previous section.
Therefore, it is not appropriate for scoring features individually.

2.4.4 Random forest scoring

A simple heuristic method can be employed to compute the importance of each feature
given a classification tree fitted to a dataset [22].

Recall that any vertex u in a classification tree T = (V,E) fitted to a dataset D is
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associated to a region Ru. Define the weighted decrease in cost ∆u at a non-leaf vertex u
as

∆u = |Du|c(Du)−
[
|Dv|c(Dv) + |Dw|c(Dw)

]
, (2.70)

where v and w are the children of u in T , c(Dz) is the cost (impurity) associated to
dataset Dz, and Dz = {(x, y) ∈ D | x ∈ Rz}, for z ∈ {u, v, w}. In other words, ∆u is
the difference between the cost associated to vertex u, and the combined costs of its two
children u and w. Each cost is also weighted by the size of the dataset that reaches the
particular vertex during the procedure that builds the tree.

The unnormalized score ŝj of feature j given a classification tree T fitted to a dataset
D is defined as

ŝj =
∑
u∈Uj

∆u, (2.71)

where Uj ⊆ V is the subset of (non-leaf) vertices in the classification tree T that partition
the remaining dataset considering feature j during the procedure that builds the tree.
In other words, for any u ∈ Uj with children v and w, Rv = {x ∈ Ru | xj < τ}, and
Rw = {x ∈ Ru | xj ≥ τ}, for some threshold τ .

Intuitively, features with high unnormalized scores contributed significantly to the
decrease in impurity, possibly while the procedure that builds the tree was still considering
a large remaining dataset.

It is usually more convenient to consider the normalized score sj of feature j, which
is given by

sj =
ŝj∑
k ŝk

. (2.72)

A random forest classifier [23] or extremely randomized tree [51] may compute feature
scores by averaging the normalized scores given by the individual trees that comprise the
ensemble. As in randomized logistic regression, this heuristic attempts to avoid associating
a high score to a single important feature in detriment of other highly related features.

Notice that these feature scoring methods based on classification trees are naturally
capable of dealing with any number of classes, and do not suppose that the decision
boundary is an affine hyperplane, in contrast to both randomized logistic regression and
SVM recursive feature elimination.

2.5 High-dimensional data visualization

High-dimensional data visualization is a subarea of data visualization that is concerned
with creating visual depictions of high-dimensional datasets. For an extensive overview
of the field, we refer to the recent survey by Liu et al. [96].

There are many alternatives for visual exploration of high-dimensional data, such as
parallel coordinate plots [67], radial layouts [69, 77, 90], table lenses [121], and scatterplot
matrices [10]. A common challenge for these methods is scalability to datasets with
relatively modest numbers of observations and dimensions, as will become clear in the
next sections. We introduce dimensionality reduction as an alternative to these methods
in Sec. 2.6.
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2.5.1 Table lenses

Consider a datasetD = x1, . . . ,xN , such that xi ∈ RD, and its correspondingN×D design
matrix X, where each observation corresponds to a row. A natural way to visualize such
dataset is to represent the design matrix by a traditional numeric table.

The effectiveness of a simple numeric table can be greatly enhanced by basic interac-
tivity, such as allowing the user to sort groups of observations (rows) by a specific feature
(column). Instead of representing the feature values using numbers, it is also possible
to use a visual metaphor, such as an appropriately scaled (and possibly colored) bar.
Through zoom and panning, the user becomes able to visualize a larger number of ob-
servations at once, at an appropriate level of detail. A combination of these and related
improvements leads to an interactive visualization method called table lens [121, 142] (see
Fig. 2.8).

Figure 2.8: Table lens showing baseball player statistics. Source: [121].

Although this method is scalable with respect to the number of observations, it pro-
vides limited insight about complex structures that involve several features, such as clus-
ters (groups of similar observations). In this sense, it has limited scalability with respect
to the number of features. Its effectiveness is also highly dependent on the ordering of
the columns. For instance, even simple relationships (e.g., linear correlation) between
features can be obscured when the corresponding columns are placed far apart.

2.5.2 Scatterplot matrices

Consider a dataset D = x1, . . . ,xN , such that xi ∈ RD. A scatterplot matrix is a D ×D
table T composed of scatterplots. Each scatterplot Ti,j shows each observation in D
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restricted to a pair of features i, j ∈ {1, . . . , D} in Cartesian coordinates [10] (see Fig.
2.9). The scatterplots in the diagonal of T are often substituted by feature histograms.

Figure 2.9: Scatterplot matrix showing a three-dimensional dataset. Source: [10].

This visualization method allows detecting some types of clusters and dependence
between features. However, it is incapable of (directly) representing relationships between
more than two features, and its scalability with respect to the number of features is
severely limited.

2.5.3 Parallel coordinate plots

Consider a dataset D = x1, . . . ,xN , such that xi ∈ RD. A parallel coordinate plot is com-
posed of D parallel line segments (axes), typically positioned vertically and equally spaced
[67] (see Fig. 2.10). Each of these axes represents the range of values of a single feature.
Furthermore, each observation xi is represented by a polyline (sequence of connected line
segments) whose vertex j intersects the axis corresponding to feature j precisely at the
position that represents the value xi,j.

A parallel coordinate plot is useful to detect the presence of clusters or outliers, and also
to detect dependence between features. However, the effectiveness of a parallel coordinate
plot is highly dependent on the (visual) order of the features, and the method does not
scale well to more than a few dozen features.
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Figure 2.10: Parallel coordinates showing three different orderings of features. Source:
[66] (adapted).

2.6 Dimensionality reduction for visualization

Dimensionality reduction (DR) techniques effectively address the scalability issues of the
previously discussed high-dimensional data visualization techniques by finding a low-
dimensional representation of the data that retains structure, which is defined by re-
lationships between points, presence of clusters, or overall spatial data distribution [95,
96, 88, 148]. In this text, we refer to the representation obtained by DR by the term
projection. For the purposes of visualization, DR techniques typically reduce the number
of dimensions to two or three.

More concretely, dimensionality reduction techniques typically address the task of rep-
resenting an iid dataset D = x1, . . . ,xN , where xi ∈ RD, by a projection P = p1, . . . ,pN ,
where pi ∈ Rd, d < D, and each point pi corresponds to observation xi. Different
techniques attempt to preserve different aspects of the dataset D in the projection P .

The resulting projections can be represented as scatterplots, which allow reasoning
about clusters, outliers, and trends by direct visual exploration. These and other tasks
addressed by DR-based visualizations are detailed by Brehmer et al. [21]. Visual explo-
ration of high-dimensional datasets via projections has been widely applied to many types
of data, such as text documents [116], multimedia collections [75], gene expressions [24],
and networks [25].

DR techniques are typically divided into linear (e.g., PCA, LDA, classical MDS) and
non-linear (e.g., Isomap, LLE, t-SNE) [30, 88, 148], based on the properties of the mapping
from RD to Rd. Although many traditional DR techniques are computationally expensive,
highly scalable techniques have also been proposed (e.g., LSP [116], LAMP [75], LoCH
[40]). These techniques are currently capable of dealing with hundreds of thousands of
high-dimensional observations (or more), although visual clutter eventually becomes a
problem. Guidelines for choosing suitable DR methods for a particular task are outlined
by Sedlmair et al. [133]. In Chapter 4, we will introduce several visualization techniques
that have been proposed to help the interactive exploration of projections.
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The next sections describe four widespread dimensionality reduction techniques in
detail: principal component analysis (PCA), linear discriminant analysis (LDA), multidi-
mensional scaling (MDS), and t-distributed stochastic neighbor embedding (t-SNE). Al-
though PCA and LDA are not employed in the next chapters, presenting these techniques
is justified by their popularity. LDA is particularly interesting as the only supervised
dimensionality reduction technique that we discuss. MDS and t-SNE will be employed in
Chapters 4 and 5.

Finally, consider the task of visualizing a sequence of datasets that represents a time-
dependent process using dimensionality reduction. If a DR technique is applied indepen-
dently for each time step, the resulting sequence of projections may present variability
that does not reflect significant changes in the structure of the data. We refer to this issue
as temporal incoherence, which significantly impairs the visualization of temporal trends.
Temporal incoherence will affect any DR technique that is sensitive to relatively small
changes in their inputs [49]. We address this issue in Chapter 6, focusing on t-SNE.

2.6.1 Principal component analysis

Principal component analysis (PCA) is a widely used dimensionality reduction technique
[30, 15]. Consider a dataset D = x1, . . . ,xN . Firstly, notice that the mean projection
onto the vector u1 ∈ RD of the observations in D can be written as

1

N

N∑
i=1

u1xi = u1
1

N

N∑
i=1

xi = u1x̄, (2.73)

where x̄ is the empirical mean. Consider the task of finding an unit vector u1 such
that the variance

v(u1) =
1

N

N∑
i=1

(u1xi − u1x̄)2 (2.74)

of the projections onto u1 of the observations in D is maximum. It can be easily shown
that v(u1) can also be written as

v(u1) =
1

N

N∑
i=1

[
(u1xi)

2 − 2(u1xi)(u1x̄) + (u1x̄)2
]

= uT1 Σu1, (2.75)

where Σ = 1
N

∑N
i=1(xi − x̄)(xi − x̄)T is the empirical covariance matrix of the dataset

D.
The maximization task outlined above corresponds to finding the maxima of v re-

stricted to the D-dimensional unit sphere S = {u1 ∈ RD | g(u1) = 0}, where g(u1) =

1 − u1u1. The Lagrange multiplier theorem states that if u1 is a local maximum of v
restricted to S, and ∇g(u1) 6= 0, then

∇v(u1) + λ1∇g(u1) = 0, (2.76)
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(a) (b)

Figure 2.11: (a) Original 2D dataset. (b) 1D PCA projection represented by one semi-
transparent histogram per class. Notice the poor separation between observations from
distinct classes in the projection.

for some λ1 ∈ R. Thus,

0 = ∇u1

[
uT1 Σu1

]
+ λ1∇u1

[
1− u1u1

]
(2.77)

= (Σ + ΣT )u1 − 2λ1u1 = 2Σu1 − 2λ1u1, (2.78)

where (Σ + ΣT ) = 2Σ because Σ is symmetric. Therefore, if u1 is a local maximum of v
restricted to S, then Σu1 = λ1u1 for some λ1. In other words, u1 is an eigenvector of Σ

with eigenvalue λ1. Because the variance v(u1) corresponding to such an eigenvector u1

is the corresponding eigenvalue λ1 = uT1 Σu1, the eigenvector with maximum associated
eigenvalue is the desired global maximum restricted to S, although we will not show that
this condition is indeed sufficient.

Consider an orthonormal list Li = (u1, . . .ui) containing the largest eigenvectors (with
respect to their corresponding eigenvalues) of an empirical covariance matrix Σ, sorted
in non-increasing order, for some 1 ≤ i ≤ D. It can be shown by induction that uj is
a vector with maximum variance v(uj) among all unit vectors that are orthogonal to all
the vectors in the list (u1, . . . ,uj−1) [15].

Using such a list of eigenvectors Ld, any point xi ∈ RD can be represented by a point
pi = (u1xi, . . . ,udxi) in Rd. Therefore, PCA performs a linear mapping between RD and
Rd. For an illustrative example, see Fig. 2.11.

In practice, it is essential to transform an original dataset D′ into a dataset D with
empirical mean x̄ = 0 before applying principal component analysis, since the increase in
variance along a direction due to translations is usually irrelevant. In that case, principal
component analysis also finds the linear map with minimum reconstruction error [30]. In
many applications, the dataset D should also have the same empirical variance across
each feature (i.e., the dataset D′ should be standardized) to minimize the effect of the
choice of units.
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Projections obtained by principal component analysis may fail to preserve structures of
interest. For instance, Fig. 2.11 presents a case where two evident clusters are merged in a
1D projection. Analogously to pattern classification, because each technique is concerned
with preserving different aspects of a dataset in its projection, there is no single best
dimensionality reduction technique.

2.6.2 Linear discriminant analysis

Linear discriminant analysis can be used as a dimensionality reduction technique that
takes class information into account [108, 64]. This may result in projections where the
classes are better separated when compared to projections obtained by techniques that
ignore such information.

We present linear discriminant analysis from a slightly unusual perspective, which is
mostly based on [108] and [64]. Although the technique was originally proposed as the
solution to finding a linear map that maximizes inter-class variance while minimizing
intra-class variance, our presentation explicits its underlying assumptions. We refer to
[64] for further details.

The multivariate Gaussian joint probability density function N (· | µ,Σ) is defined on
RD as

N (x | µ,Σ) =
1√

(2π)D|Σ|
e−

1
2

(x−µ)T Σ−1(x−µ), (2.79)

where µ ∈ RD is the mean vector and Σ is the D×D (positive definite) covariance matrix.
Indeed, if X ∼ N (· | µ,Σ), then E[X] = µ and cov[X] = Σ.

Consider the task of creating a classifier given the dataset D = (x1, y1), . . . , (xN , yN),
which is iid according to p(· | θ∗), for an unknown θ∗. Consider also that xi ∈ RD, and
yi ∈ {1, . . . C}.

Gaussian discriminant analysis assumes that the density p(x | y,θ) associated to
observation x given the class y and the parameter vector θ is given by [108]

p(x | y,θ) = N (x | µy,Σy). (2.80)

Note that µy and Σy are represented in θ, for every y. In words, the technique assumes
that the observations in each class are distributed according to distinct multivariate Gaus-
sian distributions.

For a particular estimate θ̂ of the parameters (maximum likelihood, for instance),
classification uses the fact that

p(y | x, θ̂) =
p(x | y, θ̂)p(y | θ̂)

p(x | θ̂)
∝y p(x | y, θ̂)p(y | θ̂) = N (x | µ̂y, Σ̂y)π̂y, (2.81)

for all x and y. Note that π̂y = p(y | θ̂) is also represented in θ̂, for every y. The symbol
∝y denotes proportionality with respect to variable y.

Consider the task of finding the maximum (log-)likelihood estimate for Gaussian dis-
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criminant analysis. By definition, the log-likelihood log p(D | θ) of θ given D is

log
N∏
i=1

p(xi | yi,θ)p(yi | θ) =
C∑
y=1

N∑
i=1|yi=y

logN (xi | µy,Σy) +
C∑
y=1

Ny log πy. (2.82)

Because the first summation can be maximized (with respect to the mean vectors and
covariance matrices) independently for each class, the maximum likelihood estimates are
simply given by [108]

µ̂y =
1

Ny

N∑
i=1|yi=y

xi (2.83)

Σ̂y =
1

Ny

N∑
i=1|yi=y

(xi − µ̂y)(xi − µ̂y)T (2.84)

π̂y =
Ny

N
, (2.85)

where Ny is the number of observations in D that belong to class y. We say µ̂y is the
class y centroid. If there are insufficient observations in class y, the covariance matrix
estimate Σ̂y may be non-invertible, and thus invalid as a covariance matrix. Even if Σ̂y

is invertible, it may overfit the data.
Linear discriminant analysis (LDA) addresses this issue by assuming that the covari-

ance matrix is the same for all classes [64, 108]. Thus, for a particular estimate θ̂,

p(y | x, θ̂) ∝y π̂yN (x | µ̂y, Σ̂) ∝y π̂y exp

[
− 1

2
(x− µ̂y)T Σ̂−1(x− µ̂y)

]
, (2.86)

for all x and y. Using the distributivity of matrix multiplication over addition,

p(y | x, θ̂) ∝y π̂y exp

[
µ̂Ty Σ̂−1x− 1

2
µ̂Ty Σ̂−1µ̂y −

1

2
xT Σ̂−1x

]
(2.87)

= elog π̂y exp

[
µ̂Ty Σ̂−1x− 1

2
µ̂Ty Σ̂−1µ̂y

]
exp

[
− 1

2
xT Σ̂−1x

]
(2.88)

∝y exp

[
µ̂Ty Σ̂−1x− 1

2
µ̂Ty Σ̂−1µ̂y + log π̂y

]
. (2.89)

Letting βy = µ̂Ty Σ̂−1 and γy = −1
2
µ̂Ty Σ̂−1µ̂y + log π̂y,

p(y | x, θ̂) =
eβyx+γy∑C

y′=1 e
βy′x+γy′

, (2.90)

since
∑

y p(y | x, θ̂) = 1, for any x and θ̂.
Consider the set S composed of all x such that p(y | x, θ̂) = p(y′ | x, θ̂), for a

particular choice of y 6= y′ and θ̂. Clearly, eβyx+γy = eβy′x+γy′ , and βyx + γy = βy′x + γy′ .
Rearranging the terms, (βy − βy′)x = γy′ − γy. Thus, the decision boundary S between
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any such y and y′ is an affine hyperplane, which originates the term linear discriminant
analysis [64].

An appropriate covariance matrix estimate Σ̂ is given by [64]

Σ̂ =
1

N − C

N∑
i=1

(xi − µ̂yi)(xi − µ̂yi)T . (2.91)

Suppose such covariance matrix estimate Σ̂ obtained from a dataset D is the identity
matrix I. In this case, because Σ̂ = Σ̂−1 = I,

p(y | x, θ̂) ∝y exp

[
µ̂yx−

1

2
||µ̂y||2 + log π̂y

]
. (2.92)

Recall that the squared Euclidean distance between the centroid µ̂y and observation
x is given by ||µ̂y − x||2 = ||µ̂y||2 + ||x||2 − 2µ̂yx. Therefore, maximizing µ̂yx− 1

2
||µ̂y||2

with respect to y corresponds to minimizing ||µ̂y − x||2. In other words, in the case of an
identity covariance matrix and uniform prior class probabilities, classifying an observation
by linear discriminant analysis corresponds to finding the class with the closest centroid
[64].

The idea outlined in the previous paragraph is at the core of dimensionality reduc-
tion based on linear discriminant analysis [108, 64]. Next, we introduce the whitening
transform, which will be required to obtain a dataset with the desired identity covariance
matrix.

Let X be a D-dimensional random vector such that Σ = cov[X] is positive definite
and E[X] = 0. Consider the eigendecomposition Σ = UΛUT , where each column j of the
D×D matrix U is an eigenvector uj of Σ, and Λ is a diagonal matrix such that Λj,j = λj
is the eigenvalue that corresponds to uj. Furthermore, U is chosen so that UTU = I,
which means that (u1, . . . ,uD) is an orthonormal basis for RD. Let Λ−

1
2 denote the

diagonal matrix such that Λ
− 1

2
j,j = 1/

√
λj. It can be shown that if W = Λ−

1
2UTX, then

E[W] = 0 and cov[W] = I [64]. In other words, the so-called whitening matrix Λ−
1
2UT

maps a random vector X to a column matrix W (which may be seen as a random vector)
whose covariance matrix is the identity.

Consider a centered iid dataset D = (x1, y1), . . . , (xN , yN), such that
∑

i xi = 0. Let
Σ̂ = UΛUT denote the eigendecomposition of the covariance matrix estimate given by
linear discriminant analysis (Eq. 2.91). If we suppose such estimate is correct, then the
corresponding covariance matrix estimate for the whitened dataset D′ = {(Λ− 1

2UTx, y) |
(x, y) ∈ D} should be the identity matrix [64]. As a consequence, a transformed obser-
vation can be classified according to the closest transformed centroid (assuming uniform
prior class probabilities).

Let D′µ = µ′1, . . . ,µ
′
C denote a dataset composed of the transformed centroids. Note

that this sequence of vectors is not linearly independent, since
∑

y ayµ
′
y = 0, for some

ay > 0, which follows from the fact that D is centered. As a consequence, they span a
subspace of dimension at most C − 1.

The main step in dimensionality reduction based on linear discriminant analysis is to
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(a) (b)

Figure 2.12: (a) Original 2D dataset. (b) 1D LDA projection represented by one semi-
transparent histogram per class. Notice the good separation between observations from
distinct classes in the projection.

perform principal component analysis on the transformed centroids D′µ, which results in
an orthonormal list LC′ = (u1, . . .uC′) composed of C ′ < C vectors [64]. Projecting the
transformed centroids onto these directions leads to maximum variance in a very specific
sense, as already explained in the previous section. Intuitively, projecting the transformed
observations onto these directions may preserve class separation better than unsupervised
dimensionality reduction. For an illustrative example, see Fig. 2.12.

Finally, each observation xi ∈ RD in the original (centered) dataset D can be repre-
sented by the point pi ∈ RC′ given by

pi = (uT1 Λ−
1
2UTxi, . . . ,u

T
C′Λ

− 1
2UTxi), (2.93)

where C ′ < C. If C > 2, the first d = 2 elements of pi are typically chosen for the purposes
of visualization [64]. Notice that dimensionality reduction by linear discriminant analysis
is also a linear mapping from RD to RC′ .

In contrast to PCA (Fig. 2.11), a 1D projection obtained by LDA is capable of
preserving the clusters in the example illustrated by Fig. 2.12 (using cluster information).
However, it should be clear that such separation between clusters is not guaranteed in the
general case.

2.6.3 Multidimensional scaling

Multidimensional scaling (MDS) methods attempt to represent dissimilarities between
pairs of objects of interest by distances between points placed in a low-dimensional space
[17].

Consider a dataset D = x1, . . . ,xN composed of D-dimensional observations. The
goal of absolute (metric) multidimensional scaling [17] is to compute a projection P =

p1, . . . ,pN where the distances between observations in D are preserved, considering that
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each pi ∈ Rd corresponds to an observation xi ∈ RD.
Let di,j = ||xi − xj|| denote the Euclidean distance between observations xi and xj.

Analogously, let ri,j = ||pi − pj||.
The goal of absolute multidimensional scaling may be achieved by minimizing the

so-called (raw) stress cost C with respect to the projection P , which is given by [17]

C =
N−1∑
i=1

N∑
j=i+1

(di,j − ri,j)2. (2.94)

Intuitively, mismatch between the corresponding distances in the two spaces is penalized.
Highly specialized methods have been applied to optimize this and other multidimen-

sional scaling objectives [17], which are out of our scope. Many MDS variants also admit
dissimilarities between objects of interest, in contrast to distances in the strict sense [17].

2.6.4 T-distributed stochastic neighbor embedding

The goal of t-distributed stochastic neighbor embedding (t-SNE) is to compute a projec-
tion P = p1, . . . ,pN where the neighborhoods from a dataset D = x1, . . . ,xN are preserved
[148], considering that each pi ∈ Rd corresponds to xi ∈ RD.

Once again, we will let di,j = ||xi−xj|| denote the Euclidean distance between xi and
xj. Analogously, ri,j = ||pi − pj||.

Firstly, consider a random process where observations are visited in sequence. Fur-
thermore, let the probability P (X ′ = j | X = i) of choosing the next observation xj given
the current observation xi be given by

P (X ′ = j | X = i) =
exp

(
− d2i,j

2σ2
i

)
∑

k 6=i exp
(
− d2i,k

2σ2
i

) , (2.95)

except for i = j, when P (X ′ = j | X = i) = 0.
Each parameter σi > 0 is chosen in such a way that the (conditional) perplexity

κ = 2H[X′|X=i] matches a pre-defined value, where H[X] denotes the entropy of X. This
is typically accomplished by binary search [148]. As an intuitive aid, notice that an
uniformly distributed discrete random variable X that admits K distinct assignments has
perplexity 2H[X] = K. In simplified terms, P (X ′ = j | X = i) is high whenever xj is near
xi relative to the observation density near xi.

Consider also a distinct random process where the probability P (X ′ = i,X = j) of
choosing a pair (xi,xj) ∈ D ×D is given by

P (X ′ = i,X = j) =
P (X ′ = j | X = i) + P (X ′ = i | X = j)

2N
. (2.96)

Intuitively, P (X ′ = i,X = j) is high whenever P (X ′ = j | X = i) or P (X ′ = i | X = j)

is high.
In Rd, the probability P (Y ′ = i, Y = j) of choosing a pair (pi,pj) ∈ P × P in yet
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another random process is given by

P (Y ′ = i, Y = j) =
(1 + r2

i,j)
−1∑

k

∑
l 6=k(1 + r2

k,l)
−1
, (2.97)

except for i = j, when P (Y ′ = i, Y = j) = 0. Clearly, P (Y ′ = i, Y = j) is high whenever
pi and pj are close.

T-SNE aims at minimizing the Kullback-Leibler divergence C between P (X ′, X) and
P (Y ′, Y ) with respect to P , which is given by

C =
∑
i

∑
j 6=i

P (X ′ = i,X = j) log

[
P (X ′ = i,X = j)

P (Y ′ = i, Y = j)

]
. (2.98)

Recall from Section 2.4.1 that such Kullback-Leibler divergence can be interpreted, in
a very specific setting, as the increase in the average number of bits required to transmit
an assignment to X ′ and X when the encoding is ideal for P (Y ′, Y ) instead of P (X ′, X).
For our purposes, it suffices to notice that C heavily penalizes P (X ′ = i,X = j) �
P (Y ′ = i, Y = j) for some i and j, which corresponds to placing neighbors in D far apart
in P . In analogy with data compression, this corresponds to associating long codes to
frequently occurring symbols. For the converse, notice that associating short codes to
infrequent symbols is only an issue insofar as it prevents frequent symbols from having
even shorter codes.

The cost C is usually minimized with respect to P by (momentum-based) gradient
descent [148]: from an arbitrary initial P , for a number of iterations, each pi ∈ P is
moved in the direction −∇pi

C.
The gradient ∇pi

C of C with respect to a point pi ∈ P is given by

∇pi
C = 4

∑
j

(pi − pj)
P (X ′ = i,X = j)− P (Y ′ = i, Y = j)

1 + r2
i,j

. (2.99)

Geometrically, ∇pi
C is a combination of vectors pointing in the direction pi − pj, for

every j. Each vector pi−pj is also weighted by whether pj should be moved closer to pi
to preserve neighborhoods from D, and by whether pj is close to pi.

T-SNE can be considered a state-of-the-art dimensionality reduction technique [148,
146], and is widely employed in following chapters. As a technique that attempts to pre-
serve neighborhoods, it benefits from not having to preserve (large) distances particularly
well, while still being appropriate for reasoning about groups of similar observations (clus-
ters). However, as we already mentioned, there is no single best dimensionality reduction
technique, and our work involving projections is mostly independent of choosing t-SNE.

2.6.5 Visualizing projections

The previous sections described several ways to obtain a d-dimensional projection P =

p1, . . . ,pN , where pi ∈ Rd, to represent a dataset D = x1, . . . ,xN , where xi ∈ RD. This
section discusses how such projections may be visually represented.
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Many dimensionality reduction techniques allow an arbitrary target dimension d ≤ D.
For d > 3, a d-dimensional projection may be visualized using typical high-dimensional
data visualization techniques (discussed in Sec. 2.5), which is recommended by some
authors [133]. However, notice that the elements of pi are generally difficult to interpret,
in contrast to the elements of xi, which often correspond to meaningful features.

Two-dimensional projections are arguably the most widespread alternative [133]. Such
projections are typically represented by scatterplots in Cartesian coordinates. This rep-
resentation is illustrated by Fig. 2.13, where each point pi is also colored according to a
pre-defined category yi assigned to its corresponding observation xi.

Figure 2.13: Projection represented by a scatterplot.

Notice how Fig. 2.13 allows assessing the relationships between points, presence of
(visual) clusters, and overall data distribution. Naturally, because dimensionality reduc-
tion techniques generally provide few quality guarantees, projections must be interpreted
cautiously.

A three-dimensional projection can be represented by an interactive two-dimensional
scatterplot where the user chooses the viewpoint (see Fig. 2.14). This alternative has
been heavily criticized [133], mostly because some viewpoints may lead to severely mis-
leading representations. This issue has motivated the development of specific visual aids
for explaining such projections [27]. However, such visual aids still have interpretation
challenges, which justifies our focus on two-dimensional projections.

Instead of coloring each point pi according to its category yi, it is also common to color
each point pi according to xi,k, the value of feature k in observation xi. As an example,
this allows assessing whether a (visual) cluster is uniform with respect to a particular
feature. In interactive scatterplots, the user is also commonly able to select (brush) sets
of points to inspect the corresponding observations.
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Examples of visualizations commonly integrated with projection scatterplots include
biplot axes [47, 27], which generally attempt to represent the direction of increase in each
feature, and axis legends, which attempt to explain the relationship between each feature
and the Cartesian coordinate axes [27] (see Fig. 2.14).

Figure 2.14: Three-dimensional projection represented by an interactive two-dimensional
scatterplot, including biplot axes and axis legends. Source: Coimbra et al. [27].

Several visualizations are also dedicated to explaining the semantics associated to
(visual) neighborhoods. For instance, the visualization proposed by Silva et al. [134]
attempts to represent which features are most responsible for the neighborhoods observed
in a projection (see Fig. 2.15).

In its simplest definition, clustering is the task of partitioning the observations in
a dataset into clusters (sets of observations), such that similar observations belong to
the same cluster [108]. In some cases, it may also be useful to cluster a projection
(rather than a dataset). For instance, Paulovich et al. [117] cluster projections of text-
document datasets, and represent each (visual) cluster by a word cloud obtained from the
corresponding observations, as illustrated by Fig. 2.16. This representation also aims to
provide an intuitive overview of the semantics associated to each visual cluster.

As we already mentioned, dimensionality reduction techniques generally offer very few
guarantees with respect to preserving the data structure in a projection. Therefore, the
task of assessing projection quality is highly important. If a projection was created using
a technique that is based on minimizing a cost function, a possibility is to inspect the
resulting cost. However, this offers only a very coarse summary of projection quality,
which may be very hard to interpret. Alternatively, several works have proposed metrics
that evaluate a projection in a finer level of detail [131, 7, 101, 102].

For instance, Martins et al. [101, 102] propose views that highlight missing and false
projection neighbors. Figure 2.17 illustrates the missing neighbors view. This view con-
nects a selected point pi to its missing neighbors, which are defined as points that should
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Figure 2.15: Projection represented by a scatterplot. The labels and colors indicate which
features are most responsible for the neighborhoods. Source: Silva et al. [134].

Figure 2.16: Projection of a text document dataset. Each visual cluster is replaced by a
word cloud. Source: Paulovich et al. [117].

be placed closer to pi according to some criteria based on the original dataset D.
It is important to emphasize that such projection error visualizations address a very

different task in comparison to the previous examples, which were mostly concerned with
explaining projections.
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Figure 2.17: Projection represented by a scatterplot. The bundled trails connect a selected
point to its missing neighbors. Source: Martins et al. [101].



Chapter 3

Interactive image segmentation using
superpixels

As already mentioned in Sec. 2.2, user interaction is essential for effective image segmenta-
tion. We will focus on purely image-based segmentation, where the user aids the machine
mostly in recognition (as opposed to delineation). Recall that we defined recognition as
establishing the approximate localization of the objects of interest, and delineation as
discovering precisely which pixels belong to each of these objects.

This chapter presents a new interactive segmentation technique based on the image
foresting transform (IFT, introduced in Sec. 3.1).

Our interest on the image foresting transform for segmentation stems from several
advantages that the IFT algorithm has over other techniques that find optimum cuts
in graphs [26]. For instance, some graph cut variants tend to require more seeds, since
they tend to favor smaller boundaries [26]. Most importantly, IFT-based segmentation
methods are capable of segmenting multiple objects in linear or linearithmic time [42],
while simultaneously segmenting more than two objects using graph cut methods based
on the maximum flow algorithm is an NP-hard problem [42, 26].

Our technique extends existing IFT-based segmentation techniques by employing su-
perpixels as atomic units (as opposed to pixels). Superpixels are small, cohesive regions
within an image, which are expected to belong to a single object of interest [143, 155, 100].

This new technique has two main advantages over its pixel-based counterparts. Firstly,
it enables faster graph-based interactive segmentation of very large images. Secondly, it
potentially enables extracting better features than those extracted from fixed-size windows
around pixels [143, 155, 100]. However, finding appropriate superpixel features for image
segmentation has proved a challenging task in preliminary experiments, and partially
motivates our interest in feature space exploration (Ch. 4).

Our proposed segmentation technique can be summarized as follows. Firstly, the
input image is oversegmented into superpixels. Seed pixels defined by the user associate

This chapter is based on the following publication:
Paulo E. Rauber, Alexandre X. Falcão, Thiago V. Spina, and Pedro J. de Rezende. Interactive segmen-
tation by image foresting transform on superpixel graphs. In Proceedings of the 2013 XXVI Conference
on Graphics, Patterns and Images, SIBGRAPI ’13, pages 131–138, Washington, DC, USA, 2013. IEEE
Computer Society.
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a label to some of these superpixels. A superpixel graph is created to represent the
oversegmentation: each superpixel corresponds to a vertex, and edges connect superpixels
that are adjacent in the input image. An image foresting transform is then applied to
associate a label to each superpixel, exploring the affinity between labeled and unlabeled
superpixels.

We have compared our new technique to a pixel-based counterpart, already established
in the literature [32], and found it very promising. Our proposal can be enhanced in several
ways, which are noted in the appropriate sections, and can be explored by future works.

Another contribution described in this chapter is the development of novel robot users
to facilitate the evaluation of interactive segmentation methods. The idea of robot users
has already been explored in the literature [80], with the main objective of avoiding the
costs and biases involved in evaluation by real users. These robots work by creating seeds
from the segmentation ground truth, and simulate interactive segmentation by real users.
We have developed two robot users that attempt to mimic the behavior of users with
expertise on the presented techniques. We also implemented one of the robots described
in [80], which uses a strategy that may be more similar to that of non-expert users.

This chapter is organized as follows. Section 3.1 explains the image foresting transform,
and is essential to understanding the segmentation techniques described in Section 3.2.
Section 3.3 details the robot users, and the results obtained by our technique. Finally,
Section 3.4 summarizes our findings.

3.1 Image foresting transform

The image foresting transform (IFT) is a method employed by several techniques based
on graph connectivity. These techniques have been successfully applied to solve problems
in diverse areas, such as image processing [42], image analysis [42], pattern classification
[115], and data clustering [127]. Given a graph and a suitable path cost function, the IFT
algorithm finds an optimum-path forest, which represents the path with the lowest cost
ending at each vertex [42]. Section 3.2 describes how graphs may be created from images,
while this section details the general IFT algorithm, which can be seen as a generalization
of Dijkstras’s algorithm [34].

Consider the finite graph G = (V,E), and let v ∈ V be a vertex. We denote a path πv
ending at v by a sequence of (consecutively adjacent) vertices. We denote by πu · (u, v)

the extension of a path πu ending at u ∈ V by an edge (u, v) ∈ E. A path πv = v is said
to be trivial.

Let f be a real-valued path cost function that assigns a cost f(πv) to any path πv in
G. For our purposes, a path πv ending at v is said to be optimum if f(πv) ≤ f(τv) for
any other path τv ending at v in G. In other words, a path ending at v is optimum if no
other path ending at v has lower cost. Since paths may have completely arbitrary costs,
the optimum paths are not necessarily trivial.

If we let Πv(G) denote the set of all paths in G ending at v, the cost C(v) of an
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optimum path ending at v is given by

C(v) = min
πv∈Πv(G)

f(πv). (3.1)

As long as the path cost function f is smooth, as defined in [42], the IFT algorithm
may be used to find a solution to this minimization problem. In such cases, any solution
may be represented by a corresponding directed acyclic graph called optimum-path forest
(OPF). Examples of smooth functions include those used in the next sections, and the
typical sum of non-negative edge weights in Dijkstra’s algorithm.

The OPF may be represented by a predecessor function P , which assigns each vertex
v ∈ V to its predecessor P (v) ∈ V in an optimum path. Exceptionally, if P (v) = ∅, then
the trivial path πv = v is optimum, and v is said to be a root of the forest.

The IFT algorithm is presented in Alg. 1. The root R(v) associated to each vertex
v could be obtained using the predecessor function P . However, it is more efficient to
obtain this information during the procedure that finds the OPF. In lines 12 and 18, πu
denotes the (optimum) path from R(u) to u given by the current predecessor function P .

Algorithm 1 General IFT Algorithm
Input: Graph (V,E), path cost function f , empty priority queue Q.
Output: Predecessor function P , optimum cost function C, root function R.
1: for each v ∈ V do
2: P (v)← ∅
3: R(v)← v
4: C(v)← f(v)
5: if C(v) 6= +∞ then
6: Insert v into Q
7: end if
8: end for
9: while Q 6= ∅ do
10: Remove u from Q such that C(u) is minimum
11: for each v such that (u, v) ∈ E and C(u) < C(v) do
12: if f(πu · (u, v)) < C(v) then
13: if C(v) 6= +∞ then
14: Remove v from Q
15: end if
16: P (v)← u
17: R(v)← R(u)
18: C(v)← f(πu · (u, v))
19: Insert v into Q.
20: end if
21: end for
22: end while

Lines 1–8 initialize estimates to consider trivial paths. The vertices with finite costs
are inserted into Q, as root candidates. The vertices with optimum trivial paths will
become roots of the forest. The main loop (lines 9–22) finds an optimum path from the
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eventual roots to each vertex u, in non-decreasing order of cost. At each iteration, a path
of minimum cost C(u) is obtained, for some vertex u, and u is removed from the priority
queue Q. Importantly, ties in minimum cost in Q are typically broken using a first-in-
first-out policy. The remaining lines evaluate whether the path that reaches a vertex v
through u has lower cost than the current estimate for optimum path ending at v, and
update Q, C(v), R(v) and P (v) accordingly.

We refer to [42] for further considerations about the performance and correctness of
the IFT algorithm.

3.2 Segmentation techniques

This section presents our segmentation technique based on superpixels (Sec. 3.2.1), and
the technique based on pixels (Sec. 3.2.2) that we used as baseline for comparison. These
techniques receive an image and a set of labeled pixels (seeds) for each object of interest,
which can be drawn by the users using brushes of different colors (see Fig. 3.4).

We let a d-dimensional image I be a function I : DI → Rc, where DI ⊆ Zd is the
image domain, and c is the number of channels. An element u ∈ DI is called a pixel, and
I(u) ∈ Rc is the value of pixel u. If we let I(u) = (I1(u), . . . , Ic(u)), then Ij : DI → R is
called channel j.

In this chapter, we are mostly concerned with two-dimensional (d = 2) color images
(c = 3). We employ the YCbCr color space, although any other color space may be
equally appropriate. In case c = 1, we also denote an image I simply by I.

We represent a segmentation by an image L : DI → {1, . . . , C} that maps every pixel
of I to one of the C objects of interest.

3.2.1 Superpixel-based segmentation

The first step in our method is to generate an oversegmentation of the input image (see
Fig. 3.1). Any method may be used for this purpose. We describe here an approach based
on the IFT-watershed from grayscale markers [97].

Firstly, we compute a so-called gradient magnitude image F ′ : DI → R that highlights
the edges in the input image I : DI → R3 (see Fig. 3.2). The image F ′ is given by

F ′(u) =
∑

v∈E(u)

[ c∑
j=1

αj(Ij(u)− Ij(v))2

] 1
2

, (3.2)

where E(u) is the set of 8-neighbors of pixel u in the image domain DI . The scalars αi ∈
[0, 1] can be used to attribute different weights to each color component. In YCbCr, for
instance, they may assign less weight to the intensity component Y, making F ′ more robust
to changes in illumination. Based on previous experience with IFT-based segmentation
methods, we chose α1 = 1/5 and α2 = α3 = 1. Next, we obtain an image F by rescaling
F ′ into a pre-defined discrete range of values, which is required for the next step.

The next step is an IFT-watershed from grayscale markers. A classical watershed
transform on F can be imagined as a process where the image surface is flooded by water
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Figure 3.1: Oversegmentation superimposed on input image.

originating at each local minima. The water from each source reaches several level sets
until it contacts water from other sources, at locations that correspond to the ridges of
F . These ridges define boundaries between regions (superpixels).

The sizes of these superpixels may be (indirectly) controlled by building a component
tree and removing basins with volume below a certain threshold τ [109], resulting in an
image H : DI → R such that H(u) ≥ F (u) for all u ∈ DI . The threshold τ is a
hyperparameter of our new method.

After the unwanted basins are removed, the IFT-watershed from grayscale markers
considers a graph G = (V,E), where V = DI is the set of pixels, and (u,v) ∈ E if and
only if u is a 8-neighbor of v. The path cost function f for this transform is given by

f(u) =

{
H(u) if u ∈ R
H(u) + 1 if u /∈ R

f(πu · (u,v)) = max{f(πu), F (v)}. (3.3)

The set R = {u /∈ Q | P (u) = ∅} contains the definitive roots of the optimum-path
forest, and is updated on-the-fly during the algorithm. This detail enables a single root
to conquer its entire plateau in the image surface [97].

The IFT algorithm results in a root map R that partitions the original domain DI
into a set of superpixels (regions) S, such that each superpixel su ∈ S is given by su =

{v ∈ V | R(v) = u}, for some root u ∈ R. Intuitively, the root map R maps each pixel to
the flooding source that conquered it. If R is seen as an image, its connected components
correspond to the superpixels.
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Figure 3.2: Gradient magnitude image corresponding to Fig. 3.1.

Regardless of the method employed to oversegment the image into a set of superpixels
S, the next step is to associate a feature vector (or observation) xi to each superpixel
si ∈ S. For simplicity, we consider the mean color of the superpixel si as its feature vector
xi, which is given by

xi =
1

|si|
∑
u∈si

I(u). (3.4)

However, superpixels enable extracting features from cohesive regions, which may be
better than those extracted from fixed-size windows around pixels [143, 155, 100]. As
we already mentioned, finding such features has proved a challenging task in preliminary
experiments, and partially motivates the work presented in the next chapters.

The next step in our segmentation method requires another image foresting transform.
We will redefine some mathematical objects to keep the notation succinct and consistent
with Alg. 1.

In this step, we consider a graph G = (V,E), where V = S is the set of superpixels,
and (u, v) ∈ E if and only if a pixel in u is 4-neighbor of a pixel in v. Denoting by L(u)

the label given by the user to the superpixel u, and letting L(u) = 0 when the superpixel
u is not labeled, the connectivity function f is given by

f(u) =

{
0 if L(u) 6= 0

+∞ if L(u) = 0

f(πu · (u, v)) = max{f(πu), w(u, v)}, (3.5)
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where w(si, sj) is the (weighted) Euclidean distance between the corresponding superpixel
feature vectors xi and xj. We employ the same weights αk used in Equation 3.2.

Intuitively, the path cost function f makes large differences between adjacent super-
pixels act as barriers in paths that go through them.

The desired segmentation can be obtained from the root map R that results from the
IFT algorithm. Each unlabeled superpixel s is associated to the label L(R(s)) associated
to its root R(s), which is always labeled. See Figure 3.3 for an illustrative example.

Figure 3.3: Illustrative optimum-path forest with two roots (top left and center). Super-
pixels are larger than usual.

Note that a user could potentially label a single superpixel with multiple labels using
brushes. However, this should be infrequent, since the oversegmentation should respect
the borders of the correct segmentation. We do not address this issue in our experiments,
and arbitrarily choose one of the labels associated to each superpixel. This could be
addressed by applying an oversegmentation on a finer scale in ambiguous superpixels.

Our method allows multi-object segmentation in time O(|V | log |V |) [42], and this
time complexity could be further improved by discretizing the edge weights given by the
function w. This is a remarkable advantage in comparison to graph-cut methods that
are based on the maximum-flow algorithm [26]. Figures 3.4 and 3.5 present multi-object
segmentation results based on our method.

Further efficiency gains can be obtained by a differential IFT, which is capable of
adapting an optimum-path forest to label changes between iterations [41].

Although our presentation focuses on two-dimensional image segmentation, we have
also implemented volumetric segmentation based on supervoxels (see Fig. 3.6).



CHAPTER 3. INTERACTIVE IMAGE SEGMENTATION 70

Figure 3.4: Seeds drawn by a user for multi-object segmentation.

3.2.2 Pixel-based segmentation

The pixel-based segmentation method is very similar to the method based on superpixels,
and may be seen as its counterpart. Given an image I : DI → R3, this method is based
on a graph G = (V,E), where V = DI is the set of pixels, and (u,v) ∈ E if and only if
pixel u is a 4-neighbor of pixel v.

The path cost function f for the corresponding image foresting transform is analogous
to the one in the previous section. The feature vector x for pixel u is simply given by its
color x = I(u).

It is important to note that the graph G has considerably more vertices than its
superpixel counterpart. This is a major disadvantage with respect to time complexity.
Although creating the superpixel graph also requires time, this step can be conducted
before the interactive segmentation procedure begins.

Both pixel and superpixel techniques can be enhanced by the combination of super-
vised and unsupervised learning described in [32].

3.3 Experiments

This section describes the experiments conducted to evaluate our new technique. Seeking
to reduce costs and biases associated with evaluation by real users, we have developed
robot users that, given the segmentation ground truth, attempt to simulate expert and
non-expert users. These robots are described in Section 3.3.1, and the experimental results
are described in Section 3.3.2.
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Figure 3.5: Resulting superpixel-based multi-object segmentation. Different hues repre-
sent different segments.

3.3.1 Robot Users

We have implemented three robot users that employ different strategies to label pixels.
Two of them are original contributions. A comparison between the behavior and efficacy
of our robots and real users could be explored in future works.

Although both segmentation techniques that we consider can be used for multi-object
segmentation, we have compared them in the context of binary segmentation (labeling
pixels as either object of interest or background), since this is the scenario most often used
to evaluate segmentation techniques. In these evaluations, the segmentation is compared
to a ground-truth image, and a measure is used to quantify the efficacy of the particular
segmentation technique.

Each robot user creates an ordered list P of seed candidates (pixels). The order defines
the priority for labeling a given candidate. This list can be used in several ways, one of
which is described in Section 3.3.2.

Geodesic robot

The geodesic robot was introduced by [80], and is the simplest that we consider (see Fig.
3.7). We employ this robot as an attempt to mimic the behavior of an untrained user
trying to segment an image employing very little effort. Differently from [80], we do not
start from pixels labeled by real users, making our method completely automatic.

In the first iteration of interactive segmentation, this robot creates a list P that con-
tains the geodesic center of every region of interest (in our case, object and background),
computed from the ground truth.

In the next iterations, this robot computes an image E, such that E(u) = 0 if pixel u
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Figure 3.6: Rendering of supervoxel-based volumetric segmentation of teeth images. Dif-
ferent hues represent different segments.

was correctly labeled by the previous segmentation, and E(u) = λ if the correct label for
u is λ. The goal is to create a list P containing the geodesic center of every (incorrectly
labeled) connected component in the image E in decreasing order of minimum distance
between such center and the border of its component. In other words, larger error regions
should have higher priority for labeling.

The robot accomplishes this last step by using E to find every connected component
with the same label through a breadth-first search. Using the Euclidean distance trans-
form (EDT), which can be efficiently implemented by the IFT [42], the robot finds the
geodesic center for every component and sorts them into the list P .

Superpixel robot

The superpixel robot attempts to mimic an expert in superpixel-based segmentation (see
Fig. 3.8).

Firstly, the robot oversegments the input image into superpixels. The robot then
finds superpixels on the borders of the ground truth (i.e., adjacent to superpixels with
a different correct label). These superpixels are sorted in increasing order of minimum
distance between their feature vectors and the feature vector of some adjacent superpixel
with a different label. The idea behind this heuristic is that larger similarity between
adjacent superpixels with different labels indicates a higher risk of mislabeling by our
segmentation technique based on superpixels. Finally, the robot creates the ordered list
P containing the geodesic centers of these superpixels.

Pixel robot

The pixel robot attempts to mimic an expert in pixel-based segmentation (see Fig. 3.9).
Its objective is to create seed pixels near pixels on a ground truth border that have low
gradient magnitude considering the original image (weak edges). This heuristic is based
on the idea that labeling these places avoids leakages.

The robot begins by computing a gradient magnitude image F from an original image
I : DI → R3, as in Section 3.2.1. Then, a binary image B : DI → {0, 1} is created,
such that B(u) = 1 if and only if ||u − v|| ≤ α, for a pixel u ∈ DI , a pixel v ∈ DI on
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Figure 3.7: Discs centered on seed pixels generated by the geodesic robot. At each
iteration, indicated by the numbers, the error components are found, and a number (up
to a fixed limit) of seeds is chosen in their geodesic centers.

a ground truth border, and a parameter α. Intuitively, every pixel located on a ground
truth border is the center of a disc of radius α in B.

For every pixel u such that B(u) = 1, and u has some neighbor v such that B(v) = 0,
the robot associates the gradient magnitude F (w), where w is the nearest pixel to u that
is on a ground truth border. Intuitively, each pixel on a border of B is associated to
the gradient magnitude of its nearest pixel on the border of the ground truth. This is
analogous to eroding/dilating the ground truth and associating the gradient magnitude of
the original pixels on the ground truth border to the corresponding eroded/dilated pixels.

The robot then creates a list P of pixels on the border of B, sorted in increasing order
of gradients from their associated pixels on the ground truth border.

3.3.2 Results

We have chosen three widespread datasets to compare the techniques that we presented:
grabcut [128, 16], geodesic star [59] and Weizmann (single object, first human subject) [4].
These datasets contain, respectively, 50, 151, and 100 photographies and ground truths.

The experiments were conducted as follows. For a total of T iterations, given the
list P created by a robot and a parameter n, we chose the first n/2 seeds inside an error
component from the object and n/2 seeds inside an error component from the background.
We correctly label a disk (marker) of a given radius around these seeds, which are used in
the next iteration of interactive segmentation. Note that the seed candidates are generated
only once by the pixel and superpixel robots, while the geodesic robot needs to compute
the geodesic centers of the error components at each iteration.



CHAPTER 3. INTERACTIVE IMAGE SEGMENTATION 74

Figure 3.8: Discs centered on seed pixels generated by the superpixel robot. Similar
superpixels with different labels have higher priority for labeling. The numbers indicate
iterations.

Moreover, we consider some constraining details when placing markers: if the marker
is too near a ground truth border (as defined by a parameter), its size is reduced. This is
done since the ground truth images are often imperfect, and including markers too near
the ground truth border could create artificial leakages that would not be created by
real users. We also chose not to draw a marker centered on seed pixels that are already
labeled, since that would disproportionately reduce the total area labeled by the pixel
robot.

As in [4], we have chosen the f-score as a measure of efficacy. For a given image,
the precision can be understood as the proportion of pixels labeled as belonging to the
object (as opposed to the background) that were correctly labeled, while the recall can
be understood as the proportion of object pixels that were correctly labeled. The f -score
is the harmonic mean between these two quantities, which combines them into a single
scalar that balances the different types of errors. Naturally, the f -score lies in the interval
[0, 1] and higher values are desirable.

We have chosen the following parameters for our experiments: for each technique,
using each robot, we ran T = 8 iterations, choosing up to n = 8 pixels at each iteration.
The radius of the discs centered on the seeds was 5 pixels, and could be reduced to 1

whenever the seed was too near a ground-truth border (2 pixels from a ground truth
border was considered a safe distance). The superpixel robot had a volume threshold of
τ = 15000. For the pixel robot, we chose α = 15 (erosion/dilation radius). We removed
a total of five images from the datasets, since they had objects of interest too small for
the pixel robot. Figures 3.7, 3.8 and 3.9 illustrate some markers created by the robots
(for the superpixel segmentation method) until the fifth iteration. Note that, for that
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Figure 3.9: Discs centered on seed pixels generated by the pixel robot. Each seed is
associated to the gradient magnitude of its nearest pixel in the ground truth border.
Lower gradient magnitude indicates higher priority for labeling. The numbers indicate
iterations.

particular image, markers created by the pixel and superpixel robots were chosen only up
to the second iteration, at which point there were no longer seed candidates inside error
components.

The volume threshold for our superpixel segmentation technique, which controls su-
perpixel size, was chosen as τ = 150. However, different image categories may benefit
from different choices.

The small number of seeds per iteration allows us to see the quality of the general-
izations made by each method. The seeds created by the superpixel and pixel robots are
purposefully far from the ground truth border to highlight differences in delineation. The
parameters were also chosen to enable for good convergence and to create interactions
(subjectively) similar to what would be expected from real users. As noted earlier, em-
pirically establishing these parameters to match real users could be explored by future
works.

Our results are summarized in Figures 3.10, 3.11 and 3.12. The graphs display the
mean f -score obtained by the two techniques for every combination of dataset and robot.
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Figure 3.10: Mean f -score for images in the Weizmann dataset (a) Superpixel Robot (b)
Pixel Robot (c) Geodesic Robot
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Figure 3.11: Mean f -score for images in the geostar dataset (a) Superpixel Robot (b)
Pixel Robot (c) Geodesic Robot

Our superpixel-based technique achieved higher efficacy (with respect to mean f-score)
in the majority of cases, most notably on the Weizmann dataset, and in the first iterations.
In the few cases where the mean f -score was lower at some iteration, its results were not
considerably inferior. Although these efficacy results are certainly positive, we only intend
to claim that our superpixel-based technique is promising. For the sake of perspective,
Figures 3.13 and 3.14 illustrate a difference of 9.5% in f -score.

We also timed a single (manually seeded) iteration of interactive segmentation consid-
ering a reasonably large image composed of 4096×4096 pixels, using the same parameters
employed in the previous experiments (which consider smaller images). On a typical desk-
top computer (Intel i7-2600 at 3.4 GHz), the superpixel-based technique requires approx-
imately 16417ms (milliseconds) for setup (including volume filtering, IFT-watershed from
grayscale markers, and superpixel graph creation), but only approximately 128ms per iter-
ation (averaged over three runs). The pixel-based technique requires only 817ms for setup,
but 7958ms per iteration (approx. 62 times the time required by its superpixel counter-
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Figure 3.12: Mean f -score for images in the grabcut dataset (a) Superpixel Robot (b)
Pixel Robot (c) Geodesic Robot

part). This makes our superpixel-based technique particularly attractive for interactive
segmentation of large images, since its setup may be conducted before user involvement,
and generally several iterations are required to achieve satisfactory results. Reducing the
number of superpixels would increase even more the advantage of our method.

3.4 Conclusion

In this chapter, we presented a new interactive segmentation technique based on superpix-
els, and compared it to its pixel-based counterpart. The experimental evaluation shows
that our new technique is promising, particularly due to its advantages on efficiency and
potential for use in conjunction with more powerful feature descriptors.

We have also presented novel robot users that can be employed to evaluate interactive
segmentation methods. Empirically establishing the similarities between these robots and
real users could be explored by future works.

As future works, we also suggest comparing our new technique with other estab-
lished techniques, the study of superpixel descriptors, multiscale oversegmentation, and
superpixel-based differential IFT [41].
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Figure 3.13: Superpixel-based segmentation, f -score: 0.985.

Figure 3.14: Pixel-based segmentation, f -score: 0.89. The seeds are the same as the ones
used in Figure 3.13.



Chapter 4

Interactive feature selection assisted by
projections

This chapter focuses on the task of pattern classification, which we introduced in Sec.
2.3. Recall that we divided pattern classification into two subtasks: representation and
learning.

The representation task consists on representing objects of interest as observations
(high-dimensional real vectors). In this context, selecting features that are valuable for
generalization is a very important problem. For instance, consider image classification.
Using too few features can lead to poor generalization; while using too many features
can be prohibitively expensive to compute, or even introduce confounding information
into the training data [60, 93]. Although deep neural networks recently became able to
bypass feature design by dealing directly with raw images, these models pose their own
challenges, as we will discuss in Chapter 5. As we have mentioned, feature selection is
also challenging in image analysis tasks that are typically considered outside the scope of
machine learning, such as image segmentation.

The learning task consists on selecting and fine-tuning learning algorithms once the
observations are available. As we have seen in Sec. 2.3, no single algorithm is the best
for every situation. Practitioners usually compare algorithms and hyperparameter choices
using cross-validation [108]. However, this approach is bounded by the limited feedback
that numerical (classification) efficacy measures can provide. As a consequence, when
suboptimal results are obtained, designers are often left unaware of which aspects limit
classification system efficacy, and what can be done to improve these systems. This and
other issues have been referred to as the “black art” of machine learning [35], and motivate
our interest in interactive techniques for classification system design.

In the context of high-dimensional data visualization, dimensionality reduction is an
important class of highly scalable techniques, which we introduced in Section 2.6. These
techniques find a projection that attempts to preserve the so-called structure of a high-
dimensional dataset. This structure is characterized by distances between observations,
presence of clusters, and overall spatial data distribution [95, 88]. For the purposes of visu-

This chapter is based on the following publication:
Paulo E. Rauber, Alexandre X. Falcão, and Alexandru C Telea. Projections as visual aids for classification
system design, 2016. Submitted to Information Visualization (IVI).
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alization, dimensionality reduction techniques typically reduce the number of dimensions
to two or three. The resulting projections can be visually represented by scatterplots, and
enable insight into the structure of the original data [148].

Many types of data have been explored using projections, such as text documents [116],
multimedia collections [75], gene expressions [24], and networks [25]. However, projections
are rarely used for the task of classification system design. In this context, we propose
an interactive visual analytics approach based on dimensionality reduction that supports
two (highly interrelated) tasks: predicting classification system efficacy, and improving
classification systems through feature space exploration.

This chapter is organized as follows. Section 4.1 reviews our notation and definitions.
Section 4.2 places our effort in the contexts of information visualization and machine
learning. Section 4.3 summarizes and compares our approach to related works. Section 4.4
details our first contribution: showing how projections can be used as insightful predictors
of classification system efficacy. Section 4.5 details our second contribution: showing
how the visual feedback given by projections can be integrated into an interactive and
iterative workflow for improving system efficacy through qualitative and quantitative data
exploration. Section 4.6 provides a critical analysis of the experiments, limitations, and
weaknesses of our approach. Importantly, it outlines cases where projections are known
to fail as predictors of classification system efficacy, and why such cases do not contradict
our proposal. Finally, Section 4.7 summarizes our findings and suggests directions for
future work.

4.1 Preliminaries

The following is a concise review of definitions introduced in Ch. 2.
A (supervised) dataset D is a sequence D = (x1, y1), . . . , (xN , yN). Every pair (xi, yi) ∈

D is composed of an observation xi ∈ RD, and a class label yi ∈ {1, . . . , C}, where C is
the number of classes. The j-th element of xi corresponds to feature j, and is typically
measured from an object of interest.

We denote the set of all features under consideration by F = {1, . . . , D}. For any
F ′ ⊆ F , having D′ ≤ D features, we denote by DF ′ the dataset corresponding to D with
features restricted to F ′.

A learning algorithm finds a function, called classifier, that maps observations to
classes based on generalization from a training (data)set D. Generalization is usually
evaluated by cross-validation, which consists on partitioning the available data into a set
for model learning and a set for model evaluation. Feature selection aims at finding a
small feature subset F ′ ⊆ F such that the restricted training set DF ′ is sufficient for
generalization.

Dimensionality reduction finds a projection P = p1, . . . ,pN , where pi ∈ Rd, that at-
tempts to preserve the structure of an original (unsupervised) dataset D = x1, . . . ,xN ,
considering that each observation xi corresponds to point pi. For the purposes of visual-
ization, d is usually 2 or 3.
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4.2 Related work

Our focus on high-dimensional data visualization based on dimensionality reduction is
justified by the scalability of projections with respect to the number of observations and
features, which we already discussed in Sections 2.5 and 2.6.

Several visualization techniques have been proposed to help the interactive exploration
of projections. Most notably, Tatu et al. [141] propose a process for finding interesting
subsets of features, and displaying the results of dimensionality reduction restricted to
these features, with the goal of aiding qualitative exploration. Yuan et al. [158] present
an interactive tool to visualize projections of observations restricted to selected subsets of
features. Additionally, in their tool, features are placed in a scatterplot based on pairwise
similarities. This is analogous to the representation we propose in Section 4.5. However,
clear differences exist: Yuan et al. [158] aim at subspace cluster exploration, while our goal
is to provide support for classification system design. This difference is manifested by our
additional mechanisms, which include feedback from automatic feature scoring techniques
and classification results. The work of Turkay et al. [144] also combines scatterplots of
observations and features for high-dimensional data exploration, and is also concerned
with tasks that are unrelated to classification system design.

Pattern classification is one of the most widely studied problems in machine learning.
Since the objective of pattern classifiers is to generalize from previous experience, hyper-
parameter search and efficacy estimation are usually performed using cross-validation, as
we already discussed in Sec. 2.3. Diagnosing the cause of poor generalization in classifica-
tion systems is very difficult. Options include using cross-validation to compute efficacy
indicators (e.g., accuracy, precision and recall, area under the ROC curve), and learning
curves, which show generalization performance for an increasing training set. In multi-
class problems, confusion matrices can also be used to diagnose mistakes between classes
[45].

In this context, Talbot et al. propose the visual comparison of confusion matrices to
help users understand the relative merits of various classifiers, with the goal of combining
them into better ensemble classifiers. In contrast to their work, we offer finer-grained in-
sight into a single classification system by using projections as a visualization technique.
Other visualization systems also aim at integrating human knowledge into the classifica-
tion system design process. Decision trees are particularly suitable for this goal, as they
are one of the few easily interpretable classification models [145]. In contrast, Schulz et
al. [132] propose a framework that can be used to visualize (in a projection) the decision
boundary of a support vector machine, a model which is usually hard to interpret. Other
works also propose visualizations that consider classification systems as black-boxes. They
usually provide an interface to study the behavior of such systems under different com-
binations of data and parameterizations. In this context, Paiva et al. [114] present a
visualization methodology that supports tasks related to classification based on similarity
trees. Similarly to projections, similarity trees are a high-dimensional data visualization
technique that maps observations to points in a 2D space, and connects them by edges
to represent similarity relationships. In contrast to our methodology for system improve-
ment, their methodology focuses on visualization of classification results and observation
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labeling. Finally, the use of visualization techniques to “open the black box” of general
algorithm design, including (but not limited to) classification systems, is advocated by
Mühlbacher et al. [107].

Active learning refers to a process where the learning algorithm iteratively suggests
informative observations for labeling. The objective of this process is to minimize the effort
in labeling a dataset. Because this is an iterative and interactive process, visualization
systems have been proposed to aid in the task, and sometimes include a representation
of the data based on projections [65, 68]. However, in these examples, projections do not
have a role in improving classification system efficacy.

Feature selection is another widely researched problem in machine learning, because
the success of supervised learning is highly dependent on the predictive power of features,
as we discussed in Sec. 2.4. The work of Krause et al. [82] is an example of visualiza-
tion system that aids feature selection tasks by displaying aggregated feature relevance
information, which is computed based on feature selection algorithms and classifiers.

4.3 Proposed approach

Our visualization approach aims to support two tasks (T1 and T2), which we introduce
in the following sections.

4.3.1 T1: predicting system efficacy

Consider the works presented in Sec. 4.2 that use projections to represent observations in
classification tasks (e.g., [65, 68]), or the projections of traditional pattern classification
datasets (e.g., [148]). If a projection shows good visual separation between the classes in
the training data, and if this is expected to generalize to test data, it is natural to suppose
that building a good classifier will be easier than when such separation is absent.

However, there is little evidence in the literature to defend the use of projections as
predictors of classification system efficacy. As a consequence, it is unclear whether and,
even more importantly, how insights given by projections complement existing methods
of prognosticating and diagnosing issues in the classification pipeline. In Section 4.4, we
present a study that focuses precisely on these questions. It is important to emphasize the
term predictor : we aim at obtaining insights on the ease of building a good classification
system by using projections before actually building the entire system.

We are aware of a single previous work that studies how projections relate to classifier
efficacy [20], which provides evidence that projections showing well-separated classes (as
measured by the so-called silhouette coefficient) correlate with higher classification accu-
racies. However, that study has significant limitations. Firstly, characterizing a projection
by a single numerical value (the silhouette coefficient) is coarse and uninsightful. To sup-
port understanding how a classification system relates to what a projection shows on a
finer scale, we perform and present our analyses at the observation level. Secondly, the
silhouette coefficient used in [20] can be severely misleading, since it may be poor (low)
even when good visual separation between classes exists. This happens, for instance, when
the same class is spread over several compact groups in a projection. Thirdly, we present
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a way to improve classification system efficacy (T2), whereas [20] only conjectures this
possibility.

Consider simple alternatives to visualize classification system issues, such as confusion
matrices [45], or listing misclassified observations together with their k-nearest neighbors.
While simple to use, these mechanisms have significant limitations: confusion matrices
become hard to inspect for a moderate number of classes, while listing does not scale well
to hundreds (or even tens) of observations. Most importantly, these alternatives do not
encode spatial information about observations in confusion zones, which we define in Sec.
4.4.

4.3.2 T2: improving system efficacy

In Section 4.5, we propose a projection-based methodology for interactive feature space
exploration that allows selecting features to improve the efficacy of a classification system
(T2). This methodology is highly dependent on the use of projections as predictors of
classification system efficacy (T1).

We implement this methodology in a visual analytics tool that links views of projec-
tions, representations of feature relationships, feature scoring, and classifier evaluation, in
an attempt to provide a cost-effective and easy-to-use way to select features for arbitrary
(“black-box”) learning algorithms. The visual analytics workflow supported by our system,
detailed in Sec. 4.5, is different from those enabled by previously mentioned feature-space
exploration systems [158, 144, 126].

4.3.3 Visual analytics workflow

Figure 4.1 illustrates how our approaches towards addressing T1 and T2 interact in a
(simplified) visual analytics workflow that supports the overall goal of building better
classification systems. The entire process can be summarized by a 10-step flowchart. We
start our workflow by considering a set of objects of interest (images, for instance). Next,
we extract a number of features from these images, transforming them into observations
(1). These observations are projected into a 2D view (2). To asses whether we can trust the
projection, we may evaluate the various projection error metrics proposed in [101, 102].
If the errors are too high, we repeat step 2 using a different dimensionality reduction
technique or parameter settings. Upon obtaining a good quality projection, we assess the
visual separation between the classes using our proposed visual tools. If the separation
is poor (4), we use our iterative feature exploration/selection tools (T2) to prune the
feature set under consideration (5). If visual separation is satisfactory (3), we proceed in
building and testing a classifier, using the traditional machine learning protocol (6). If
testing yields good performance (7), the pipeline ends with a good classification system
that can be used in production. If testing reveals poor performance (8), we apply again
the visual exploration tool to study what has gone wrong (9), and proceed to designing
new features, repeating the process from the beginning (10).
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4.4 T1: Predicting system efficacy

As outlined in Sec. 4.3, we start by studying how projections can be used to predict
classification system efficacy (T1). For this purpose, we conducted experiments on several
datasets, which are presented in Secs. 4.4.2 - 4.4.5. Section 4.4.1 details the aspects of
the experimental protocol that hold for every dataset under consideration.

4.4.1 Experimental protocol

The first step in our protocol is to randomly partition a dataset into training and test
sets (one third of the observations). Following good practice in machine learning, the
partitioning is stratified [50], i.e., the ratio of observations belonging to each class is
preserved in the test set.

Projections can be created independently for the training and for the test data. These
projections can be represented by scatterplots, where each point is colored according to
its class label. When displaying classification results for a test set in a scatterplot, we
will use triangular glyphs to represent misclassified observations, colored based on their
(incorrect) classifications, and rendered slightly darker (for emphasis).

In addition to showing these scatterplots, we also display a metric called neighborhood
hit (NH) [116]. For a given number of neighbors k (in our experiments, k = 6), the NH
for a point pi ∈ P is defined as the ratio of its k-nearest neighbors (except pi itself) that
belong to the same class as the corresponding observation xi. The NH for a projection
is defined as the average NH over all its points. Intuitively, a high NH corresponds to a
projection where the real classes (ground truth) are visually well separated. Therefore,
the NH metric is a good quantitative characterization of a projection for our purposes.

The DR technique that we employ in this work is a fast approximate implementation
of t-distributed stochastic neighbor embedding (t-SNE, described in Sec. 2.6.4), using
default parameters. We chose t-SNE due to its widespread popularity, and demonstrated
capacity to preserve neighborhoods in projections [148]. However, our proposal does
not depend on this particular technique, and other DR techniques can be used with no
additional burden. For instance, we employed LSP [116] in our early work, but decided
in favor of t-SNE due to its ability to preserve clusters in projections.

Our workflow requires a projection that preserves well neighborhoods from RD in R2.
This can be assessed through the projection quality metrics described in [101, 102]. If
a projection shows poor quality, it should be discarded (Fig. 4.1, step 2) and not used
further in the workflow. Instead, the measures outlined in [101, 102] should be used to
improve projection quality. Conversely, if a projection shows good quality, it becomes an
excellent candidate for assessing the visual separation between groups, an can be used
further in the workflow (steps 3 and 4).

Feature selection will be performed in many of our experiments. We will select a
subset of features F ′ ⊆ F to investigate the effect of restricting the input of the DR
technique to these features – that is, we will compare the projections of both D and DF ′ .
We perform feature selection/scoring using extremely randomized trees [51], using the
method described in Sec. 2.4.4 with 1000 trees in the ensemble. Scores are assigned to
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features based on their power to discriminate between two given sets of observations. As
will become clear in the next sections, the choice of feature selection technique does not
affect our proposal. Feature selection is always performed considering only the training
set, as this allows assessing the generalization of the selection to the test set.

Learning algorithms will be used to evaluate whether good projections (with respect
to perceived class separation) correspond to good classification systems. We consider three
distinct algorithms: k-nearest neighbors (KNN, Sec. 2.3.1, using Euclidean distances),
soft-margin support vector machines (SVM, Sec. 2.3.3, using radial basis function kernel)
[18] and random forest classifiers (RFC, Sec. 2.3.4) [23]. These techniques were chosen
for being both widely used in machine learning and representative of distinct classes of
algorithms. Note that any other classification technique can be used together with our
approach, since the techniques are treated as black-boxes, i.e., we assume no knowledge
of their inner workings.

Hyperparameter search is conducted by grid search on a subset of the hyperpa-
rameter space for each learning algorithm. Concretely, we choose the hyperparameters
with highest average accuracy on 5-fold cross-validation on the training set. For KNNs,
the hyperparameter is the number of neighbors k (from 1 to 21, in steps of 2). For SVMs,
the hyperparameters are the penalty C and the kernel parameter γ (both from 10−10 to
1010, in multiplicative steps of 10). For RFCs, the hyperparameters are the number of
trees (10 to 500, in steps of 50) and maximum tree depth (from 1 to 21, in steps of 5).
In the next sections, we use the term classifier to refer exclusively to a particular combi-
nation of learning algorithm and hyperparameters trained on the entire training set. The
hyperparameters are always found by the procedure outlined in the previous paragraph.
In summary, following good machine learning practice, the test set does not affect the
choice of hyperparameters.

Classification results are always quantified, in this chapter, by the accuracy (AC,
ratio between correct classifications and total classifications) on the test set.

Presentation of experiments is uniform across datasets. For each experiment, a high-
level claim is first stated. This claim is followed by supportive images, showing projections
and classification results. In several cases, some aspect of the problem is altered (e.g.,
features or observations under consideration), and we show how our projections reflect
the expected outcome.

Limitations of our study are discussed in Section 4.6.

4.4.2 Madelon dataset

Data: Madelon is a synthetic dataset created by Guyon et al. [61], which contains
500 features and 2 class labels. We split the Madelon training set into training (1332

observations) and test (668 observations) sets, following our experimental protocol. The
number of observations in each class is balanced. This artificial dataset was created
specifically for the NIPS 2003 feature selection challenge. Only 20 of the 500 features are
informative, i.e., useful for predicting the class label. According to its authors, this dataset
was designed to evaluate feature selection techniques when features are informative only
when considered in groups [61].
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Goal 1: Our first goal is to show that, for this dataset, poor separation between classes in
the projection corresponds to poor classification accuracy. While this correspondence may
appear obvious, it is easy to show that it does not always hold (see Sec. 4.6). Therefore,
analyzing the link between visual separation and classification accuracy is worthwhile.

Consider the projection of the training data shown in Fig. 4.2a. The two class labels,
represented by distinct colors, are not visually separated in the projection, as also shown
by the low neighborhood hit of 53.9%.
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Figure 4.2: Madelon dataset. (a) Training set (NH: 53.9%). (b) Test set (NH: 50.97%).
(c) Training set, feature subset (NH: 83.56%). (d) Test set, feature subset (NH: 74.15%).

If our projection is representative of the distances in the high-dimensional space, it is
natural to interpret Fig. 4.2a as evidence that the classification problem is hard, at least
if the learning algorithm being used is based on distances. We will show that, for this
example, this observation holds even for learning algorithms that do not directly work
with distances in the high-dimensional space. This characteristic is crucial if we want to
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use projections as visual feedback about the quality of classification systems that use such
algorithms.

Figure 4.2b shows the projection of the test data, which also has a low neighborhood hit
(NH) and poor separation. Following the experimental protocol outlined in the previous
section for hyperparameter search, consider the best (in terms of average cross-validation
accuracy) classifier for each learning algorithm. If the hypothesis about the difficulty of
this classification task is true, the expected result would be a low accuracy on the test
data.

Figures 4.3a and 4.3b show the classification results for KNN (54.94% accuracy) and
RFC (66.17%). The SVM classifier achieved 55.84% accuracy (not shown for brevity).
Triangles in the scatterplots show misclassified observations, colored based on their mis-
classification. The accuracies on the test set are considerably low, and both KNN and
SVM perform close to random guessing.

KNN classifier RFC classifier
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Figure 4.3: Madelon classification. (a) KNN (AC: 54.94%). (b) RFC (AC: 66.17%). (c)
KNN, feature subset (AC: 88.62%). (d) RFC, feature subset (AC: 88.92%).

Goal 2: Although these results show that the poor visual separation is correlated to a
low classification accuracy, nothing we have shown so far tells that good separation relates
to high accuracy. Let us investigate this next, specifically showing how we can select an
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appropriate subset of features to obtain good class separation.
Using extremely randomized trees as a feature scoring technique, consider a subset

containing 20 of the original 500 features, chosen based on their discriminative power in
the training set. In other words, we chose the best features F ′ ⊆ F to separate the two
classes in the high-dimensional space. Figure 4.2c shows the projection of the training
set restricted to these features. Compared to the previous projection of the training
set (Figure 4.2a), the NH has improved considerably, and the visual separation has also
improved. This visual feedback gives evidence that the classification task may become
easier using a feature subset.

Figure 4.2d shows that feature selection also enhances the visual separation of the test
set. Therefore, the visual separation after feature selection generalizes well to the test
data.

The final question is whether the good visual separation corresponds to higher accuracy
in the test set. Figures 4.3c and 4.3d confirm this hypothesis. Notice that, after feature
selection, both learning algorithms have greatly improved their results on the test set, with
an increase of nearly 34% for KNN and 22% for RFC. In comparison, the neighborhood
hit increased by almost 24% for the test set, and by almost 30% for the training set. A
similar increase happens in the case of the SVM, which goes from 55.84% to 86.68% test
accuracy after feature selection. In other words, as could be expected, removing irrelevant
features considerably enhances the generalization capacity of the learned model.

Even more interestingly, after feature selection, we see that the misclassified obser-
vations in the test set are often surrounded by points belonging to a different class (see
triangular glyphs in Figs. 4.3c and 4.3d). Thus, these observations could be interpreted
as outliers according to the projection. Such feedback is hard to obtain from a tradi-
tional machine learning pipeline, and is valuable for understanding classification system
malfunction. Manually inspecting misclassified observations and their neighbors without
the help of visualization would be very time-consuming, and would not convey nearly as
much insight about the structure of the data. Alternatives such as confusion matrices, for
example, are difficult to interpret even for a modest number of classes (a confusion matrix
for a 10-class problem has 45 independent values). The feedback presented by projections
can, for example, prompt the users to consider special cases in their feature extraction
pipeline.
Findings: In summary, the use case presented in this section shows how projections can
predict classification system efficacy. In this use case, poor visual separation matches low
classification accuracy, and good visual separation matches high classification accuracy.
Furthermore, points that appear as outliers in a projection are often difficult to classify
correctly.

4.4.3 Melanoma dataset

Data: Themelanoma dataset contains 369 features extracted from 753 skin lesion images,
which are part of the EDRA atlas of dermoscopy [5]. Class labels correspond to benign
skin lesions (485 images) and malignant skin lesions (268 images). Note the considerable
class unbalance in favor of the benign lesions.
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The feature extraction process is described by Feringa [46], and involves interactive
segmentation using the superpixel-based method introduced in Chapter 3. This dataset
was developed partially as a highly challenging application for the approach proposed in
this chapter.
Goals: The main goal of the experiments performed using this real-world dataset is to
show the type of feedback that can be obtained through projections when the classification
problem is difficult and the visual class separation is poor.

Figure 4.4a shows the projection of the training data. We see that the separation
between classes is poor, which is confirmed by a low NH. Consider the set of 20 best
features to discriminate between the two groups in the training set, according to extremely
randomized trees. The corresponding projection of the training data restricted to these
features is shown in Fig. 4.4c. Arguably, the separation is slightly improved, which is
confirmed by a higher NH value.
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Figure 4.4: Melanoma dataset. (a) Training set (NH: 64.87%). (b) Test set (NH: 62.35%).
(c) Training set, feature subset (NH: 72.38%). (d) Test set, feature subset (NH: 62.55%)

Figures 4.4b and 4.4d show the projections of the test data before and after feature
selection, respectively. The poor separation is confirmed in the test data. More impor-
tantly, the separation does not seem to be better in the test set after feature selection.
In other words, feature selection does not appear to have generalized particularly well to
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the unseen (test) data. From this evidence, we naturally suspect that classification accu-
racy is poor, and that feature selection will not enhance accuracy. Our next experiments
confirm this suspicion.

Figure 4.5a displays the classification results on the test set obtained by the most
effective learning algorithm (SVM, according to our protocol), using all the features. The
class unbalance of the data places the expected accuracy of always guessing the most
frequent class at 64%. Hence, an accuracy of 77.69% is not quite satisfactory. KNN also
performs poorly, achieving only 73.71% accuracy (Fig. 4.5b). This is evidence that the
classification task is hard.

SVM classifier KNN classifier
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Figure 4.5: Melanoma classification. (a) SVM (AC: 77.69%). (b) KNN (AC: 73.71%). (c)
SVM, feature subset (AC: 74.9%). (d) KNN, feature subset (AC: 77.69%). The uniformity
of blue classifications in the center of the projections shown in (c) and (d) confirms that
distances in the projection are good indicators of classifier behavior.

Figures 4.5c and 4.5d show the classification results obtained after feature selection.
As we see, feature selection improved the efficacy of the KNN classifier (from 73.71% to
77.69%) to the same level as an SVM using all features. On the other hand, the SVM
results deteriorated after feature selection.

Furthermore, notice the uniformity of blue classifications in the center of the projec-
tions shown in Figs. 4.5c and 4.5d. This confirms that distances in the projection are
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good indicators of classifier behavior in this case, even when the learning algorithm does
not directly use distances in the original high-dimensional feature space (Fig. 4.5c).

As anticipated, feature selection did not improve generalization efficacy. Even so, re-
ducing the number of features to approximately 5% of the original has benefits in compu-
tational efficiency and knowledge discovery. The reduced set of features contains valuable
information to the system designer, and indicates characteristics of the problem where
designers may decide to focus their efforts. In other words, the use of feature selection,
while not directly improving classification system accuracy, added value by reducing costs
through data reduction.

4.4.4 Corel dataset

Data: The Corel dataset contains 150 SIFT features extracted from 1000 images by
Li et al. [92]. Class labels correspond to 10 image types: Africa, beach, buildings,
buses, dinosaurs, elephants, flowers, horses, mountains, and food. The dataset is perfectly
balanced between classes.
Goals: This experiment shows that projections can give insight into class-specific behav-
ior, and also provides more evidence that projections can predict classification accuracy.

Figures 4.6a and 4.6b show projections of the training and test data, respectively.
Except for a confusion zone between the classes marked as green, orange, yellow and
brown, both projections show well-separated clusters. This separation is confirmed by a
high NH value in both cases.

These projections can be interpreted as evidence that the classification task is easy.
Confirming this hypothesis, Fig. 4.7a shows the classification results for the best classifier
(RFC). As expected, the accuracy obtained is very high (91.81%), considering that this is a
balanced 10-class problem. More interesting, however, is the fact that many classification
errors occur in the confusion zone observed in the projection of the test set. Thus,
conclusions drawn from the visual feedback about confusion zones in the training set
do generalize to unseen (test) data. Notice that the concept of confusion zone is only
possible because the data are spatially represented. It is, to our knowledge, not possible to
depict a confusion zone otherwise. This is another valuable characteristic of our proposed
projection-based representation.

We also use this dataset to consider an alternative scenario for predicting system
efficacy. This scenario shows, again, that projections are reliable predictors of classification
system behavior. Consider the best 10 features to discriminate class 4 (purple) from other
classes, according to extremely randomized trees. The projection of the data restricted
to this set of features is shown in Fig. 4.6c. As expected, note how class 4 is very well
separated (center left), while observations in the other classes are poorly separated from
each other. This is confirmed by low NH values (28.68%) and perfect binary NH values,
when class 4 is considered against the rest. Figure 4.6d confirms that this characterization
generalizes to the test data.

The poor separation between classes other than 4 leads us to expect poor accuracy
results. Figure 4.7b shows the classification results using the features selected to separate
class 4 from the rest, in the multi-class problem, which confirm this expectation. In
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Figure 4.6: Corel dataset. (a) Training set (NH: 85.7%). (b) Test set (NH: 82.73%).
(c) Training set, feature subset (NH: 28.68%, 4 vs rest NH: 100%). (d) Test set, feature
subset (NH: 22.18%, 4 vs rest NH: 99.34%).

contrast, the binary classification accuracy is almost perfect (99.7%, image omitted for
brevity). There is a single mistake in the binary classification, which is placed in the top
left corner of the projection (top left of Fig. 4.6d). The projection was also able to predict
the existence of this outlier.

4.4.5 Parasites dataset

Data: The parasites dataset contains 9568 observations and 260 classical image features
extracted from (pre-segmented) objects in microscopy images of fecal samples [138]. We
restricted ourselves to a subset of the original data that contains only the protozoan para-
sites and impurities (objects that should be ignored during analysis). Almost sixty percent
of the observations correspond to impurities, which gives a significant class unbalance.
Goal: We present here one last example of the predictive power of projections, using a
medium-sized realistic dataset. In this case, the projection reveals the presence of a large
number of confounding observations that, when removed, increase classification accuracy.
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class 4
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(except for class 4 vs rest)

class 4

Figure 4.7: Corel classification. (a) RFC (AC: 91.81%). (b) RFC, feature subset (AC:
34.55%, 4 vs rest AC: 99.7%).

Figure 4.8a displays the projection of the training set. We immediately see that
impurities (marked pink) spread over almost the entire projection space. This is also seen
in the projection of the test set (Fig. 4.8b). In other words, we have weak evidence that
the impurities may be confounded with almost every other class.

Figures 4.8c and 4.8d show the projections of the training and test data, respectively,
when the impurities are removed from the data. Therefore, the other classes be reasonably
well separated from each other when impurities are ignored.

Considering again all observations, Figure 4.9a shows classification results for the best
classifier (SVM, according to our protocol). Given the perceived poor visual separation,
this result may be considered surprisingly good, which shows that perceived confusion is
not definitive evidence. In Section 4.6, we will show an extreme example of this behavior.
In a number of cases, however, we have seen that the evidence is much stronger in the
other direction: when the perceived visual separation between classes in a projection is
good, the classification results are also good.

Consider next our dataset restricted to all the classes except impurities. Figure 4.9d
shows KNN classification results, which are improved from 82.29% to 89.49% accuracy.
However, SVM results are not significantly improved in this restricted task (approximately
2% accuracy increase). Once again, note how the confusion zones contain the majority
of misclassifications. Apparently, the SVM learning algorithm is able to deal better with
the confusion between impurities and parasites. In this case, the projection was better to
anticipate the behavior of the distance-based learning algorithm.

This is the largest dataset considered in our experiments. Note that the projections of
the training and test sets are somewhat similar (e.g., Figs. 4.8c and 4.8d). This highlights
the importance of using representative datasets to study a problem using projections.

The difficulty of separating impurities from other classes could also be diagnosed from
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a confusion matrix. In practice, this insight could be used by the designer to study the
classification of impurities as a separate problem. However, projections provide a more
compelling visual representation of the same phenomenon, allowing the designer to inspect
the observations in confusion zones. Such spatial information about relationships is lost
in a confusion matrix.

4.4.6 Conclusion

The experiments performed for the four datasets in this section support our claim that
projections provide useful visual feedback about the ease of designing a good classification
system. This visual feedback helps finding outliers, overall separation between observa-
tions in distinct classes, distribution of observations of a given class in the feature space,
and presence of neighborhoods with mixed class labels. Arguably, the first two tasks
have the most well-developed traditional feedback mechanisms: outlier detection, manual
misclassification inspection, efficacy measures, and confusion matrices. The qualitative
nature of the last two tasks makes them more difficult. This makes a strong case for the
use of projections, even if there is no hard guarantee that the visual feedback offered by
projections is definitely helpful for a given dataset.

4.5 T2: Improving system efficacy

The previous section showed how projections can be useful for predicting classification
system behavior. If a particular system performs well, there is no further effort required
from the system designer. Instead, consider a classification system that generalizes poorly
to unseen data. Because the design space (feature descriptors, learning algorithms and
hyperparameters) is immense, designers can benefit from insightful feedback about their
choices. In that case, we have also shown that qualitative feedback from projections can
be highly valuable.

Building on the use of projections for the first task (T1), this section focuses on the use
of projections for the task of improving classification system efficacy (T2). In section 4.5.1,
we present a visual feedback methodology that enables T2. In Sections 4.5.2 - 4.5.5, we
describe use cases that employ this methodology. Finally, Section 4.5.6 summarizes these
examples by presenting a workflow for our proposed classification system improvement
process.

4.5.1 Proposed methodology and tooling

Our methodology for classification system improvement through interactive projections
is implemented into a tool composed of six linked views (Fig. 4.10), as follows.

The observation view shows the image associated to each observation x in the
dataset D, if any, which are optionally sorted by a feature of choice. This provides an
easy way to verify if a feature corresponds to user expectations.

Available in http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-featured.
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The feature view shows all features F , optionally organized as a hierarchy based
on semantic relationships. Within this view, users can select a feature-subset F ′ ⊆ F to
further explore.

The group view allows the creation and management of observation groups by direct
selection in the observation view or in the observation projection view (discussed next).

The observation projection view shows a scatterplot of the projection of DF ′ , the
dataset composed of all observations restricted to the currently selected feature subset
F ′. Points can be colored by a user-selected characteristic (such as class label or feature
value), and are highlighted to show the selected set of observations.

Figure 4.10 also illustrates lensing, which optionally displays secondary characteristics
on a neighborhood. In this particular case, the secondary characteristic is classification
outcome (correct classifications in blue, incorrect in red).

The feature scoring chart ranks the features in F ′ by a relevance metric chosen
by the user. We provide a variety of feature scoring techniques, including extremely
randomized trees (Sec. 2.4.4, which we also employed in Section 4.4) [51], randomized
logistic regression (Sec. 2.4.2) [103], SVM recursive feature elimination (Sec. 2.4.3) [62],
and others. The feature scoring view also allows the user to select a subset of F ′ through
interactive rubber-banding.

The feature projection view presents one point for each feature in F . Features
are placed in 2D by a technique that tries to preserve the structural similarity between
features. For our purposes, we define the dissimilarity di,j between features i and j as
di,j = 1−|ri,j|, where ri,j is the (empirical) Pearson correlation coefficient between features
i and j. This dissimilarity metric captures both positive and negative linear correlations
between pairs of features, although it has shortcomings that we already discussed in
Sec. 2.1. The dissimilarity matrix, which contains the dissimilarity between all pairs of
features, can be represented in two dimensions by a projection, which is analogous to
the projection of observations. As already mentioned in Sec. 4.2, similar visualizations
already exist in the literature [158, 144]. However, we combine the feature projection view
with task-specific information in a novel manner, as shown in the next sections.

We chose (absolute metric) multidimensional scaling [17] to compute feature projec-
tions (Sec. 2.6.3). According to preliminary experiments, MDS presents more coherent
relationships between features and classes than t-SNE, which is important in the next
sections. This is probably due to the difference in goals between the two techniques:
absolute metric MDS attempts to preserve (global) pairwise dissimilarities [17], while t-
SNE is particularly concerned with preserving (local) neighborhoods [148]. Alternative
(dis)similarity metrics between features are also available in the tool, including mutual in-
formation (Sec. 2.4.1), distance correlation [139], and Spearman’s correlation coefficient
[29]. The feature projection view provides a counterpart to the observation projection
view, and enables several interactions that will be detailed in the next sections.

Our visual analysis tool is implemented in Python, and uses Numpy [149], Scipy [76],
pyqt, matplotlib [70], scikit-image [150], scikit-learn [118], pyqtgraph, and mlpy [2].

The next sections describe how our tool can be used to support the task of classification
system improvement based on visual feedback obtained from both observation and feature
projections. For an overview of tool usage, see Section 4.5.6.
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4.5.2 Madelon: relationship between relevant features

Goal: In this section, we illustrate how the feature projection view can be used to select
features by considering relationships between relevant features. As already mentioned,
feature selection is a major challenge in classification system design. In particular, insight
into the feature space can be very valuable when hand-engineered (off-the-shelf) features
are used.

Consider a selection of the 20 best features to discriminate between the two classes
of the Madelon dataset (Sec. 4.4.2) , performed using the feature scoring chart based on
extremely randomized trees. The corresponding projections of observations and features
are shown, respectively, in Figs. 4.11a and 4.11b. Each feature in the feature projection
view is colored according to its relevance score (darker colors represent higher relevance
according to extremely randomized trees). The 20 selected features are outlined in black.
Note that the most relevant selected features (darker colors) are placed near the center
of the feature projection, except for the least relevant one. This finding is notable, since
the feature projection is created without any information about feature scores. This
shows that relevant features are related (according to the feature dissimilary and relevance
scoring metrics) in this dataset. Note that, in general, relevant features are not necessarily
related. For instance, a feature can simply complement the discriminative role of other
features.

Showing the relationships between feature scoring and feature similarity is a main asset
of the feature projection view. Figures 4.11c and 4.11d show how such insight can be used:
by removing the outlier feature (i.e., the feature that is apparently unrelated to the rest
of the selection), visual separation is preserved. In other words, the feature projection
view let us prune the feature space while maintaining the desired visual separation (and
NH), thereby reducing the size of the data that needs to be considered next.
Improvement: Table 4.1 presents the results of each learning algorithm on the Madelon
test set, following the protocol described in Sec. 4.4.1, before and after removing the
outlier feature mentioned above. As conveniently anticipated by the observation projec-
tion of the training set (Fig. 4.11c), the classification efficacy is maintained (and perhaps
slightly improved). In summary, the feature removal suggested by the feature projection
view has reduced the data size, but maintained classification accuracy.

Table 4.1: Madelon test set accuracies, feature selection according to Fig 4.11.
Features/Algorithm KNN RFC SVM
20 features 88.62% 88.92% 86.68%
19 features 88.92% 88.92% 89.22%

4.5.3 Corel: class-specific relevant features

Goal: This section shows how the feature projection view can be used together with the
observation projection view to find class-specific relevant features, using the Corel dataset
(Sec. 4.4.4) as an example. When improving system efficacy, such information is useful
both for feature selection and for understanding classification system behavior.
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We already showed (Sec. 4.4.4) that we can choose features that are good to dis-
criminate one of the classes in the Corel dataset (class 4, which corresponds to dinosaur
drawings), while making discrimination between the other classes very difficult. Figures
4.12a and 4.12b show the corresponding observation and feature projections. Once again,
we see that the discriminative features are highly related.

Consider an analogous feature selection aimed to discriminate class 3 (bus pictures)
from the other classes. Figures 4.12c and 4.12d show the corresponding projections.
Comparing the feature views (Figs. 4.12b and 4.12d), we easily see that the sets of
powerful discriminative features for the two classes are disjoint. This information could
not be easily obtained from the feature scoring bar chart mentioned in Section 4.5.1, since
features are generally difficult to locate in that visualization. As inspecting the precise
ranking of each feature is easier in the bar chart, the two views are complementary.
These interactions require very little effort from the user, who can inspect several feature
combinations in a few minutes.

If the user is interested in a rough estimate of classification efficacy, our tool can also
compute and display classification results (for a chosen learning algorithm) based on k-
fold cross-validation. This process partitions the current data into k disjoint validation
sets, and a classifier trained on the rest of the data is used to classify each validation-set.
Classification results for the distinct validation-sets are aggregated and displayed, leading
to images similar to Fig. 4.7. These representations do not replace proper evaluation in
a held-out test set (as in Sec. 4.4), but are useful feedback sources during the interactive
feature analysis process.
Improvement: Table 4.2 presents the result of each learning algorithm on the Corel test
set, following the protocol in Sec. 4.4.1, for the task of discriminating classes 3 and 4 from
the rest (i.e., classes 3 and 4 are treated as a single class in a binary classification task),
for all features and the subset of 26 features that were considered (separately) relevant
for classes 3 and 4. As predicted by the observation projections of the training set shown
in Figs. 4.12a and 4.12c, the classification efficacy is preserved. In summary, our visual
analysis methodology allowed us to prune the feature space from 150 to only 26 features,
and construct a binary classifier for classes 3 and 4 vs rest that has the same quality as
a classifier that uses all features.

Table 4.2: Corel test set accuracies, classes 3 and 4 vs rest, relevant features according to
Fig. 4.12.

Features/Algorithm KNN RFC SVM
All (150) features 98.18% 98.79% 98.48%
26 features 98.48% 98.79% 98.79%

4.5.4 Melanoma: alternative feature scores

Goal: The joint display of feature similarity and relevance is useful in other ways, as
shown next. Here, our representation enables comparing the results of different feature
scoring techniques. Since the techniques are based on distinct principles, comparing their
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results to find features that are consistently considered effective is a valuable task for
improving system efficacy.

Consider the feature projection view of the melanoma training set (Sec. 4.4.3) shown
in Fig. 4.13a. As usual, colors represent the relevance of each feature to discriminate
between the two classes present in the dataset (according to extremely randomized trees).
We see a concentration of relevant features between the center and the bottom right.
Again, the feature placement reinforces the feature scoring information. The presence of
zones of highly relevant features is highly suggestive for the exploration of the feature
space, as shown in Sec. 4.5.2.

Consider an alternative feature (relevance) scoring obtained by another technique –
in this case, randomized logistic regression [103] (Sec. 2.4.2) – shown in Fig. 4.13b. We
see that the distribution of relevancies is very different according to the second technique,
which places higher cumulative relevance into fewer features. However, note that the two
techniques agree on the irrelevance of the features in the bottom right and top left. This
visual metaphor, where similar features are placed near each other, is a natural way to
display such information.

The image features in this dataset have meaningful names, which can be inspected by
hovering over the points. Using this mechanism, we find that the irrelevant peripheral
points correspond mostly to histogram bins that have little (or even zero) variance across
all images in our dataset. As expected, these features have almost no predictive power.
Improvement: Table 4.3 presents the result of each learning algorithm on the Melanoma
test set, following the protocol in Sec. 4.4.1, for all 369 features and the 58 (mostly)
relevant features shown in Fig. 4.13a and 4.13b. Although the KNN and SVM results
deteriorated slightly, the RFC result improved. Also, our method allowed us to discard a
significant number of hand-engineered features. Besides saving significant time in feature
extraction, the insight provided by our visual analysis of the feature space helps in deciding
which types of features are most relevant for classification.

Table 4.3: Melanoma test set accuracies, relevant features according to Fig. 4.13
Features/Algorithm KNN RFC SVM
All (369) features 73.71% 76.49% 77.69%
58 features 73.31% 77.29% 76.10%

4.5.5 Parasites: importance of projection error measures

Goal: In this section, we use the observation projection view to focus on a different kind
of visual feedback. Our tool also presents the aggregate projection error, a per-point metric
of distance preservation after DR [101]. Intuitively, a point has a high aggregate error
when its corresponding high-dimensional distances to the other observations are poorly
represented by the low-dimensional distances in the projection. This feedback about the
quality of a given projection is key to our methodology. We illustrate this by a simple use
case, where an interesting observation is highlighted by its projection error.

Consider once again the parasites dataset restricted to non-impurities (Sec. 4.4.5).
Figure 4.14a shows the aggregate error for the test set (higher errors in darker colors).
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We see a point near the center of the projection with a relatively high aggregate error
(square in Fig. 4.14a). As colors map relative errors, this does not necessarily mean that
the absolute aggregate error is high. Yet, this point is clearly an outlier in aggregate error
when compared to its low-dimensional neighbors. In Fig. 4.14b, we see that the point
is surrounded by points belonging to other classes. By our definition, this point is an
outlier with respect to its positioning given its class label. Note that the aggregate error
is computed without any information about class labels, and also draws attention to this
particular observation.

One possible explanation for a high aggregate error is that the projection placed a point
in a poor manner. The corresponding observation might not even be an outlier. In fact,
the point is correctly classified by RFC and SVM, which weakly supports this hypothesis.
However, KNN classified the point incorrectly (see inset in Fig. 4.14b). Therefore, it is
still unclear whether this point is a true outlier. The aggregate error view was successful
in focusing attention into an interesting observation, which warrants further inspection
of its characteristics and features.

To enable similar feedback, our tool could potentially use several other error met-
rics and visual depictions of projection quality (e.g., [101, 7]). As already mentioned in
Sec. 4.4.1, such depictions are highly important for assessing how to interpret the visual
feedback.

4.5.6 Proposed workflow

We now summarize the value added by the insights described in Sections 4.4 and 4.5 by
revisiting the high-level workflow outlined in Fig. 4.1.

Our workflow begins when the user loads the data into our analysis tool and considers
the observation projection. If the perceived class separation in this projection is good, the
classification task is likely quite simple (as discussed in Sec. 4.4). As an extreme example,
consider the projection of the Corel dataset, where even a 1-nearest neighbor algorithm
in the 2D projection space would achieve good results. In such cases, the user can follow
the traditional machine learning pipeline, with a high expectation that the system will
perform well.

A more interesting scenario occurs when the perceived class separation in the projec-
tion is poor. In this case, the next step is to use the mechanisms provided by our tool
to find a feature subset that brings separation. This may require several iterations of
feature scoring, analysis, and backtracking. If no separation improvement can be found,
there are two possible scenarios: classification efficacy is satisfactory (the projection is
misleading with respect to classifier behavior) or unsatisfactory. The first case is easy to
diagnose, and consists on conducting experiments following the traditional machine learn-
ing pipeline. The second case is the most complicated. In this case, we have shown that
the qualitative aspects of our proposed visualizations are crucial in enabling the designer
to diagnose the system. For this purpose, our tool provides mechanisms to detect the
presence of outliers and confusion zones, and also to inspect classification results based
on a visual metaphor that represents observations in a consistent way. By inspecting the
observation projection, the designer receives visual feedback about which features are im-
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portant to eliminate confusion between classes. Furthermore, using the feature projection
view and feature scoring methods, the designer can reason about the discriminative power
of features, and focus effort on related (or complementary) feature descriptors. The new
alternatives devised during this analytic process can be fed back into the tool, closing the
cycle.

4.6 Discussion

This section discusses several important aspects of our proposed methodology and exper-
iments.
Coverage: As any experimental study, many conclusions are limited to the datasets that
we presented. The particular random choice of training and test data also affects the
results, although the amount of data we considered diminishes this concern. Importantly,
the extent of our validation (i.e., experimental protocol, number of datasets and learning
algorithms) is in line with comparable works in visual analytics and machine learning.

While we have conducted less organized experiments in additional datasets, the four
datasets discussed in this chapter illustrate well all types of feedback that can be obtained
from projections. We also experimented with other dimensionality reduction techniques
(namely, LSP [116] and LAMP [75]), but obtained the best predictive feedback from t-
SNE [146]. Finally, our choice of learning algorithms for validation (KNN, RFC, SVM)
considers their widespread popularity, and aims to make our approach appealing to a
large number of practitioners. The positive results obtained with these highly distinct
algorithms suggest that our approach is valuable for other learning algorithms.
Limitations: It is easy and instructive to construct a synthetic example where projections
do not provide valuable visual feedback for classification system design, which we describe
next.

Consider the task of classifying observations sampled from two 10-dimensional parallel
(affine) hyperplanes that correspond to distinct classes. Consider also that the distance
between these hyperplanes is small when compared to the expected distance between any
pair of neighboring observations from the same hyperplane. By construction, this clas-
sification task is very easy for a linear SVM, which consistently obtains 100% accuracy
following the experimental protocol detailed in Sec. 4.4.1. At the same time, a DR tech-
nique that tries to preserve the original distances in the high-dimensional space will not
show a clear separation between the two classes, as shown in Fig. 4.15. In simple terms,
the visual feedback is misleading, because the classification task is easy, but there is no
apparent visual separation between classes. It is important to note that other learning
algorithms did not perform well on this test set (KNN: 51.20%, RFC: 54.94%). However,
we believe it is also possible to construct examples where the visual feedback is unhelpful
for those algorithms.

Despite this worst-case behavior, we argue that the results presented in Secs. 4.4 and
4.5 support our claims that our proposed approach is highly valuable, particularly con-
sidering the very low investment necessary to explore data by our proposed methodology
and tooling.
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Scalability: Our feature space exploration approach benefits from the visual scalability
of projections to thousands of high-dimensional observations and features, although visual
clutter eventually becomes an issue for the quality of the visual feedback. The compu-
tational scalability limits are imposed by the requirement of interactive response times.
The scenarios presented here can be explored in interactive time using a typical desktop
computer. The main bottleneck consists on recomputing projections for different subsets
of features. For some dimensionality reduction techniques [148], this issue becomes sig-
nificant in datasets containing more than a few thousands of observations, while others
are able to deal with hundreds of thousands of observations at interactive paces [116, 75].

4.7 Conclusion

In this chapter, we have shown that projections are useful tools for predicting classifica-
tion system efficacy in several real and synthetic datasets. The visual feedback given by
projections is especially helpful in qualitative tasks. These tasks include inspecting the
presence of outliers, overall separation between observations in distinct classes, distribu-
tion of observations of a given class in the feature space, and presence of neighborhoods
with mixed class labels.

We also introduced a methodology that uses projections as a basis for an interactive
system designed to give insight into the feature space. This methodology, and associated
tooling, can aid a classification system designer in improving classification efficacy. In
particular, we showed how a projection representing observations can be integrated with
an interactive representation of feature similarity to aid in this task.

Future works may integrate specific capabilities of some dimensionality reduction tech-
niques into our methodology, such as control point positioning. Another worthwhile goal
is providing visual support to semi-supervised learning tasks, such as active learning.
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Figure 4.8: Parasites dataset. (a) Training set (NH: 74.35%). (b) Test set (NH: 68.49%).
(c) Training set, observation subset (NH: 87.22%). (d) Test set, observation subset (NH:
82.31%).
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Figure 4.9: Parasites classification. (a) SVM (AC: 92.7%). (b) KNN (AC: 82.29%). (c)
SVM, observation subset (AC: 94.55%). (d) KNN, observation subset (AC: 89.49%).
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Figure 4.10: Feature exploration tool, showing the Corel dataset. Shows the observation
view, feature view, group view, observation projection view (lensing observations, colored
by classification; yellow observations are selected), feature scoring chart (showing best
features to discriminate yellow class vs rest), and feature projection view (showing best
features to discriminate yellow class vs rest, using a heat colormap).
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Figure 4.11: Madelon training set. (a,b) Observation and feature projections, 20 features
selected (NH: 83.56%). (c,d) Observation and features projections, one less feature (NH:
84.55%).
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Figure 4.12: Corel training set. (a,b) Observation and feature projections, feature subset
(4 vs rest, Binary NH: 99.73%). (c,d) Observation and feature projections, feature subset
(3 vs rest, Binary NH: 99.25%).
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Figure 4.13: Feature projection for melanoma training set. (a) Feature scoring by ran-
domized decision trees. (b) Feature scoring by randomized logistic regression
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Figure 4.14: Parasites test set, observation subset. (a) Aggregate error. (b) Original
classes, inset showing KNN classification.
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Figure 4.15: Planes classification, Linear SVM (AC: 100%).



Chapter 5

Visualizing artificial neural networks
using projections

In Section 2.3.5, we mentioned that advances in computational power and techniques
for building and training artificial neural networks (ANNs) have allowed these models to
achieve state-of-the-art results in many applications related to pattern recognition [130].
However, successfully training ANNs is generally time-consuming, and requires significant
expertise [12].

In this chapter, we demonstrate the potential of dimensionality reduction techniques to
provide insightful visual feedback about ANNs. Specifically, we employ the visualization
approach proposed in the previous chapter to the following two tasks:

• T1: Exploring the relationships between alternative representations of observations
learned by ANNs.

• T2: Exploring the relationships between artificial neurons.

Although we focus on multilayer perceptrons and convolutional neural networks, our
approach is extensible to other types of networks (e.g., LSTM or Elman networks [58]).

The projection-based visualization approach that we propose forT1 is (sparsely) found
in the machine learning literature. However, such projections are typically used for il-
lustrative purposes. In contrast, we show how projections can aid existing approaches
for understanding and improving ANNs (Sec. 5.4). Specifically, using three widely stud-
ied benchmark image classification datasets, we show how our visualization approach is
able to confirm facts that are already known about ANNs, and reveal previously unseen
relationships between learned representations. In this context, we also propose a novel
visualization of the evolution of such learned representations (Sec. 5.4.4).

Our approach towards T2 is completely new in the context of ANNs, although it is
related to techniques developed for feature-space exploration discussed in the previous
chapter (see also Sec. 5.2). Similarly to our approach for T1, we use projections to repre-
sent similarities between artificial neurons (given a particular set of input observations).

This chapter is based on the following publication:
Paulo E. Rauber, Samuel G. Fadel, Alexandre X. Falcão, and Alexandru C Telea. Visualizing the hid-
den activity of artificial neural networks. IEEE Transactions on Visualization and Computer Graphics
(Proceedings of the Visual Analytics Science and Technology 2016), 23(01), January 2017.
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We also propose a novel visualization of the relationships between artificial neurons and
classes (Sec. 5.5.2). Although being presented separately, our visualization approaches for
T1 and T2 should be seen as complementary for understanding ANNs, as we exemplify
in Sec. 5.5.2.

This chapter is organized as follows. Section 5.1 briefly reviews our notation and
definitions. Section 5.2 relates our work to previous work in machine learning, informa-
tion visualization, and visual analytics. Section 5.3 details the protocol followed by our
experiments. Section 5.4 presents the results of our projection-based visualizations of
the relationships between learned representations for different datasets (T1), highlight-
ing valuable insights gained from visualization. Section 5.5 presents our projection-based
visualizations of relationships between artificial neurons (T2). Section 5.6 discusses the
limitations of our work. Section 5.7 summarizes our findings and suggests future work.

5.1 Preliminaries

The following is a concise review of definitions introduced in Ch. 2 (specially Sec. 2.3.5).
A dataset D = (x1,y1), . . . , (xN ,yN) is a sequence where xi ∈ RD is an observation,

and yi ∈ {0, 1}C is a target class assignment. If yi,c = 1, observation xi belongs to class
c. In this chapter, each observation corresponds to a raw 2D image (flattened into a real
vector, as described in Sec. 2.3.5) and belongs to a single class, although these are not
limitations of our proposal.

We consider two kinds of ANNs: multilayer perceptrons (MLPs) and convolutional
neural networks (CNNs). Such networks represent parameterized functions f : RD →
(0, 1)C , which usually attempt to generalize class assignments from the examples in D.
Computation in these networks is performed by artificial neurons, which are typically
organized into layers, as detailed next.
Multilayer perceptrons: In these models, the weighted input to neuron j in layer l is
defined as z(l)

j = b
(l)
j +

∑
k w

(l)
j,ka

(l−1)
k , where w(l)

j,k, b
(l)
j ∈ R are free parameters, and a(l−1)

k is
the activation (output) of neuron k in layer l − 1 (Fig. 5.1). In other words, each neuron
computes a linear combination, plus a bias, of neuron activations from the previous layer.
The activation a(l)

j depends on the activation function chosen for layer l [12]. In a sigmoid
layer, a(l)

j = 1/(1 + exp(−z(l)
j )); in a rectified linear layer, a(l)

j = max(0, z
(l)
j ); in a softmax

layer, a(l)
j = exp(z

(l)
j )/

∑
k exp(z

(l)
k ).

The activation of layer l is defined as a(l) =
(
a

(l)
1 , . . . , a

(l)

N(l)

)
, where N (l) is the number

of neurons in layer l. Thus, if we let f denote the function computed by the network and
L denote its number of layers (including the input), we have f(x) = a(L) when a(1) = x.
Any layer between the first and the last is called a hidden layer. A network with more
than one hidden layer is called a deep neural network [11].

The activation of layer l > 1 can be seen as an alternative (learned) representation of
the input observation, since the activation of layer l depends only on learned parameters
and the activation of layer l − 1 (see Fig. 5.1). This fact is crucial to our approach. The
activations of a given layer for a set of observations (network inputs) is the focus of our
visualization.
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Figure 5.1: Schema of MLP with three layers and three neurons per layer.

Convolutional neural networks: These models typically consist of at least three types
of layers: convolutional, (max-)pooling, and fully connected. A convolutional layer re-
ceives as input a w × h image with c color channels, and connects each of its neurons
to a small window (all channels included) of the input. Neurons compute their weighted
inputs and activations as usual. However, each neuron is replicated (with parameter
sharing) for many input windows, given a pre-defined stride. When the output of all
corresponding replicas are organized into a single-channel image, the operation is anal-
ogous to multichannel image convolution [84, 112]. The output of a convolutional layer
is obtained by stacking the outputs of sets of replicated neurons into a single multichan-
nel image. The number of output channels can be seen as the number of convolutional
filters. A max-pooling layer reduces the spatial dimensions of a multi-channel image by
keeping the highest-value activation in a neighborhood (independently for each channel,
for a pre-defined stride), and also outputs a multichannel image. A fully connected layer
is analogous to an MLP layer, and is only followed by other fully connected layers. The
activation of such a layer can also be seen as a learned representation of the input.
Network training: The weights and biases θ of an ANN are adapted to minimize a cost
function J that penalizes prediction errors on the training set D. For example, a softmax
output layer is typically combined with the (average) negative log-likelihood cost function
J given by

J = − 1

N

∑
(x,y)∈D

C∑
k=1

yk ln a
(L)
k , (5.1)
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where a(L)
k is the activation of neuron k on the last layer L when the network receives x as

input, and N is the number of observations[11]. Note that −yk ln a
(L)
k →∞ when yk = 1

and a(L)
k → 0, which characterizes a prediction error.

The process of minimizing J with respect to θ is called training. As J is differentiable
with respect to every network parameter, minimization can be attempted by gradient
descent. This technique iteratively updates θ by the rule θ ← θ − η∇θJ , where η is
the learning rate. In our work, we use (momentum-based) mini-batch stochastic gradient
descent [12]. This technique partitions the dataset D into batches, and approximates
∇θJ by using a single batch for each parameter update. After each batch is considered,
training has completed one epoch. The hyperparameters (batch size, learning rate, number
of layers, number of neurons per layer, etc) are not affected by training, and are usually
chosen using previous experience and cross-validation.
Dimensionality reduction will be employed to create a projection P = p1, . . . ,pN ,
with pi ∈ R2, from a layer-l activation set A = a

(l)
1 , . . . , a

(l)
N , where each a

(l)
i ∈ RN(l) is the

layer-l activation vector corresponding to input observation xi ∈ RD (for a given ANN).
Such a projection P attempts to preserve the high-dimensional structure of the activation
set A, which is composed of learned representations.

5.2 Related work

Machine learning experts have developed many strategies to design and improve ANNs,
since the success of these models is highly impacted by the choice of preprocessing steps
and several (interacting) hyperparameters. During training, a common approach is com-
paring model accuracy on a validation set with accuracy on a training set [119]. This helps
diagnosing overfitting (low validation accuracy when compared to training accuracy) and
underfitting (low accuracy in both cases).

Manual choice of hyperparameters requires significant expertise and effort, and com-
prehensive guides have been written on the subject [113, 12]. The high dimensionality
of the data and large number of parameters make ANNs hard to interpret, and make
improving models a challenging task. Although automatic hyperparameter search is pos-
sible [136], it is generally (computationally) expensive.
Visual analytics and information visualization systems have been developed to in-
spect ANNs, since visual feedback is considered highly valuable by practitioners. For
instance, Zeiler and Fergus [159] show how insight gained from visualizing ANNs has
enabled them to outperform the state-of-the-art (at the time) on an major image classifi-
cation benchmark. Their work aims to reconstruct an input image (observation) given a
particular output channel of a convolutional layer (also called a feature map).

Reconstruction from activations is also investigated by Mahendran and Vedaldi [99].
Erhan et al. [39] search, through optimization, inputs that cause high activations in
particular neurons, with the goal of understanding their roles.

Yosinski et al. [157] visualize feature maps from CNNs trained for image recognition

The rectified linear activation function is not differentiable at 0, but that is usually irrelevant in
practice.
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as they receive an input video stream, which enables the visual search for filters that
detect a particular object. They also extend the work of Erhan et al. [39], showing how
regularization techniques can be used to generate more interpretable images that cause
high activations in a neuron. As will become clear, our approach is complementary to
these visualizations.
Dimensionality reduction has been previously applied to ANN visualization, due to its
scalability in number of dimensions and observations. For instance, Erhan et al. [38] use
projections of learning trajectories to study the effects of unsupervised pre-training. Each
point in such a trajectory corresponds to the concatenation of output layer activations
for a whole dataset at a given training stage. Closer to our work, projections of hidden
layer activations, the subject of Sec. 5.4, have been used as illustrative evidence of model
efficacy [36, 105, 137, 106, 63]. Aubry and Russell [6] visualize hidden layer activations
using PCA, aiming to understand their invariance with respect to several factors present
in real and synthetic images.

In contrast to these works, our work is the first to present a detailed analysis of the
insights on classification systems obtainable by projections of hidden layer activations.

Separately, in Sec. 5.5, we use projections to explore relationships between neurons in
a hidden layer. This visualization approach is completely new in the context of ANNs,
but related to previous work on feature space exploration that we already discussed in the
previous chapter [158, 144]. However, in contrast to such previous work, which explores
relationships between input features (dimensions) to a pattern classification technique, we
visualize relationships between features (neuron activations) learned by such a technique.

5.3 Experimental protocol

This section details the protocol followed by the experiments that evaluate our visual-
ization approach, which is based on hidden layer activations extracted from a network
trained for a given dataset. Our approach is divided into two parts: creating projections
from these activations (T1, Sec. 5.4), and depicting the relationships between the neurons
that originate these activations (T2, Sec. 5.5).
Datasets include three well-known image classification benchmarks: MNIST [86], SVHN
[110] and CIFAR-10 [83]. MNIST has 50×103 training images, 10×103 validation images,
and 10×103 test images (28 × 28 grayscale images of handwritten digits). SVHN has
63.2×103 training images, 10×103 validation images, and 26×103 test images (32×32 color
images of house number digits). CIFAR-10 has 30×103 training images, 10×103 validation
images and 10×103 test images (32×32 color photographs in ten object classes). Although
the images in SVHN and CIFAR-10 are quite small, which allows fast experimentation,
these are not toy datasets, and are widely used to evaluate state-of-the-art ANNs [152, 87].
Neural networks of two types are considered, as follows:

1. Multilayer perceptron (MLP): 3072 (784, for MNIST) input neurons, followed by
four rectified linear hidden layers of 1000 neurons each. The output layer is softmax
with 10 neurons. Dropout [137] is applied from the first hidden layer, growing from
0.2 to 0.5 in steps of 0.1 per layer.
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2. Convolutional neural network (CNN): 32 × 32 × 3 input image (28 × 28 × 1, for
MNIST), followed by a convolutional layer with 32 3 × 3 × 3 (or 3 × 3 × 1) filters,
a convolutional layer with 32 3× 3× 32 filters, a 2× 2 max-pooling layer (dropout
0.25), a convolutional layer with 64 3 × 3 × 32 filters, a convolutional layer with
64 3 × 3 × 64 filters, a 2 × 2 max-pooling layer (dropout 0.25), a fully connected
layer with 4096 (or 3136) neurons (dropout 0.5), a fully connected layer with 512

neurons, and a softmax output layer with 10 neurons. All convolutional and fully
connected layers (except the output) are rectified linear.

While larger models (in number of layers and parameters) are used for certain difficult
classification tasks, the architectures sketched above are fully realistic, typical for image
classification tasks, and sufficiently complex to warrant exploration.
Training is performed by momentum-based mini-batch stochastic gradient descent [12].
For MLPs, the batch size is 16, learning rate is 0.01, momentum coefficient is 0.9, and
learning decay is 10−9. For CNNs, the batch size is 32, learning rate is 0.01, momentum
coefficient is 0.9, and learning decay is 10−6. Initial weights for a neuron in layer l
are sampled from an uniform distribution on [−s, s], where s = [6/(N (l−1) + N (l+1))]1/2,
and biases start at 0. We manually chose these hyperparameters, together with the
aforementioned architectures, based on cross-validation using the pre-defined validation
sets. After the hyperparameters were chosen, we trained the models again using all data
except the pre-defined test sets.

Table 5.1 summarizes the test set accuracy (AC, fraction of correctly classified obser-
vations) of our networks, and compares it to state-of-the-art networks, some of which also
use preprocessing and data augmentation. Clearly, our networks achieve good accuracy
on benchmark datasets. As such, they should be seen as realistic from an application
perspective.

Table 5.1: Test set accuracies for our two architectures and three datasets.
Dataset/Model MLP CNN State of the art

MNIST 98.52% 99.62% 99.79% [152]
SVHN 77.38% 93.76% 98.08% [87]

CIFAR-10 52.91% 79.19% 91.78% [87]

Activations for a given layer, the subject of our analysis, are extracted for a random
subset of 2000 observations from the test sets, strictly to facilitate visual presentation.
This subset is always the same for a given dataset. In two cases, we also extract activations
from a random subset of a training set (Sec. 5.4.2). For CNNs, we only extract activations
from fully connected layers.
Projections are created using a fast (approximate) implementation of t-distributed
stochastic neighbor embedding (t-SNE, Sec. 2.6.4) [146], using default recommended
parameters. We chose this technique based on its widespread popularity, and proven
ability to preserve neighborhoods and clusters in projections [148].

As in the previous chapter, we visualize projections as scatterplots, with points colored
to show class assignment. We measure projection quality by the neighborhood hit (NH),
which indicates how well classes are visually separated [116]. For a given k (in our work,
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k = 6), the NH for a point pi is the ratio of its k-nearest neighbors that belong to the same
class as its corresponding observation xi. The NH for a whole projection is the average
NH over its points. When displaying classification results for a test set in a projection, we
use triangle glyphs to show misclassified observations (points), colored by their (incorrect)
classifications (e.g., inset in Fig. 5.3b).
Implementation of all our work is based on Python, Keras, Theano [9], NumPy [149],
and scikit-learn [118]. Our visual exploration was conducted using the feature space ex-
ploration tool presented in the previous chapter.

5.4 T1: relationships between activations

This section presents the results of the experiments conducted to evaluate our proposed
visualization of relationships between learned representations of observations (T1). For
brevity, we focus on the most distinctive results and insights obtained for each dataset
(Secs. 5.4.1 - 5.4.3). In Sec. 5.4.4, we present a novel visualization of the evolution of
learned representations.

5.4.1 MNIST: exploring effects of training

The MNIST dataset is known as a relatively easy classification benchmark. This is con-
firmed by the clear visual separation between classes in the (raw data) projection of a
subset of 2000 test observations (784-dimensional vectors), shown in Fig. 5.2. Points are
colored according to their classes.
What untrained ANNs see: As already mentioned, we aim to understand the rela-
tionships between the alternative representations learned by ANNs trained for pattern
classification. Firstly, consider an untrained MLP, whose parameters are randomly ini-
tialized according to Sec. 5.1. It is reasonable to hypothesize that a projection of the
hidden layer activations of this MLP would have a significantly poorer visual separation
between classes than the one shown in the projection in Fig. 5.2.

In Fig. 5.3a, we show the projection of the last MLP hidden layer activations before
training, for the same test subset used in Fig. 5.2. The hypothesis outlined in the previous
paragraph was contradicted, since both projections (Figs. 5.2 and 5.3a) show similar vi-
sual separation between classes. The good separation in Fig. 5.3a cannot be due to class
information, since class labels are not used by the dimensionality reduction technique.
Thus, there must be a clear structure in the hidden layer representations before training,
which leads to the reasonably good NH of 83.78%. We are unaware of previous visual-
izations showing this qualitative insight, which could be used to compare different ANN
initialization strategies. While it would be possible to use the hidden layer activations to
train a separate learning algorithm and evaluate its accuracy on a test set, such approach
would be more time-consuming, and would not convey the structure of the data in an
easily interpretable manner. For instance, see the relationship between the visual clusters
that correspond to (visually similar) classes 4 and 9 in Fig. 5.3a.

Available in http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-featured.
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Figure 5.2: Projection of observations, MNIST test subset (NH: 89.12%).

Training effects: A second natural hypothesis is that visual separation between classes
would become better after training. This is related to the commonly-held view that ANNs
learn to detect higher-level features that are useful for class discrimination [11]. To study
this hypothesis, consider the projection of the last MLP hidden layer activations after
100 training epochs (Fig. 5.3b). Compared to Figs. 5.2 and 5.3a, we see a dramatic im-
provement in the visual separation between classes. Hence, the learning process definitely
arrived at an alternative representation of the data that captures class structure, which
is reflected by the projection.
Understanding misclassifications: Figure 5.3b shows several visual outliers, i.e.,
points whose neighbors belong to a different class. Assuming the projection preserves
the high-dimensional data structure, we could suspect that such outliers would be mis-
classified by the ANN. To check this, we color all points by their classes, and mark
misclassifications by triangle glyphs. The inset in Fig. 5.3b shows several such misclassi-
fications. When inspected, the visual outliers often correspond to observations that even
humans would recognize as hard cases. For instance, Fig. 5.3b shows how an image of
the digit 3 is (understandably) mistaken for the digit 5, and placed near the visual cluster
corresponding to digit 5. This example shows that, despite the fact that projections may
sometimes not fully preserve the data structure, as we discuss in Sec. 5.6, they are often
predictive about class assignment. In other words, the similarities between hidden layer
activations (shown by the projection) are a good predictor of the final class assignment by
the ANN. This type of feedback is particularly useful when projections are combined with
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background knowledge and manual inspection of ANN inputs, as we continue to show in
the next section.
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Figure 5.3: Projection of the last MLP hidden layer activations, MNIST test subset. a)
Before training (NH: 83.78%). b) After training (NH: 98.36%, AC: 99.15%). Inset shows
classification of visual outliers.



CHAPTER 5. VISUALIZING ARTIFICIAL NEURAL NETWORKS 119

5.4.2 SVHN: interpreting visual clusters

This section presents a compelling case for the visualization of learned representations in
a second dataset (SVHN). Visualization provides a particular qualitative insight that is
not easily available by other means.

The SVHN dataset is much more challenging for classification than MNIST. This is
reflected, before training, in the visual separation between classes in the projection of the
last hidden layer activations of an MLP, which is considerably poorer for SVHN (Fig.
5.4) than for MNIST (Fig. 5.3a). This is also confirmed by the corresponding NHs. Just
as for MNIST, the visual separation is significantly improved after training, as shown by
Fig. 5.5b.

Figure 5.4: Projection of the last MLP hidden layer activations before training, SVHN
test subset (NH: 20.94%). Poor class separation is visible.

Comparing different layers: The projections presented so far showed activations of
last MLP hidden layers. However, our MLP architecture has four hidden layers. It is
often hypothesized (but not usually supported by evidence) that a properly trained deep
ANN has activations at later layers that correspond to discriminative higher-level features
of the original observations [11]. We can verify this by inspecting activations of earlier
layers which, in our case, have the same number of neurons. Consider the projection of
the activations of the first MLP hidden layer after training (Fig. 5.5a). Visual separation
between classes is clearly inferior to the one shown in the last hidden layer (Fig. 5.5b). We
saw this phenomenon for most of the ANNs trained in our study. This is a new finding,
which is not documented in the existing literature on ANNs. Note that there are no easy
alternatives to obtain such an insight. For instance, confusion matrices could be used to
diagnose the confusion between classes for a learning algorithm trained on the hidden layer
activations. However, a confusion matrix would not convey nearly as much information
about the structure of the data as a projection. Furthermore, a confusion matrix for a 10-
class problem (our case) has 45 independent scalar values (after considering symmetries),
which makes it quite difficult to inspect.

In comparison to the results obtained with the MLP (AC: 77.38%), the CNN obtains
considerably better classification results on the test set (AC: 93.76%). Figure 5.6 shows
the projection of the last CNN hidden layer activations after training. Clearly, visual
separation and classification results improved together (cf. Fig. 5.5b), which is another
example of the predictive power of projections.
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Improvement based on visual feedback: We now present a particularly salient exam-
ple of the value of the insight provided by projections. In Fig. 5.5b and (most notably)
in Fig. 5.6, we notice a very distinctive pattern: each class (color) seems to be split
into two visual clusters. Upon further inspection (brushing points), we found that one of
the same-colored visual clusters corresponds to dark digits on light backgrounds, and the
other to light digits on dark backgrounds (see examples in Fig. 5.6). We are unaware of
previous work that documents such a remarkable pattern (visual or otherwise) in learned
representations for the SVHN dataset, even though this dataset has been extensively
used to evaluate ANNs in hundreds of publications. This is an example of how qualitative
feedback can be hard to obtain by the typical quantitative approaches used to evaluate
ANNs.

Since the projection in Fig. 5.6 suggests that, for each class, there are two kinds of
images that have dissimilar internal representations, we naturally suppose that removing
such (apparently unnecessary) variability in the input images would improve classification
efficacy. To evaluate this, we preprocessed the images in SVHN in a simple manner:
we apply the Sobel operator, after a small Gaussian blur, to approximate the gradient
magnitude of the grayscale counterpart to each image. This yields grayscale images that
are bright on the edges between background and foreground, and avoids the task of
detecting if a digit is light or dark, which is not trivial given the high variability of the
images. Next, we use the experimental protocol in Sec. 5.3 to classify the preprocessed
test set. We obtain an increase in accuracy of 3.96% (1030 test observations) with the
MLP, and 0.65% (169 test observations) with the CNN. While the CNN gain is small,
we stress that it was obtained by exactly the same network architecture that was used
for the original images. In contrast, the MLP gain is quite significant. The difference
in gains for the two architectures can be explained by two facts. Firstly, it is easier to
obtain gains when a model is further away from ideal performance, as in the MLP case.
Secondly, our preprocessing is highly related to the operation of convolutional layers. This
can be sufficient to enable good generalization in the CNN case, given the large amount of
labeled data available for training. Finally, we also note that, in contrast to Figs. 5.6 and
5.5b, the corresponding projections of the preprocessed test subset (omitted for brevity)
do not show two distinct visual clusters for each class. The increase in neighborhood hit
(MLP 9.06%, CNN 1.43%) for those projections also mimics the increase in accuracy.
Overall, these facts corroborate our hypothesis about the semantics of the internal ANN
representations.

We note that it is already known in the literature that preprocessing this dataset (by
local contrast normalization) sometimes leads to better performance [54]. However, this
procedure was never justified by the foreground-background insight that we discovered.
In the general case, a practitioner might be unaware of important preprocessing steps for
a particular domain or dataset. In such situations, we claim that projections can provide
highly valuable qualitative information about the representations learned by ANNs. As
we already argued, such feedback is very hard to obtain by other (non-visual) means.
Explaining misclassifications: Consider the cyan point outlined in Fig. 5.6, which
corresponds to digit 9, but is placed near the green cluster corresponding to dark digits
2 on light backgrounds. Notice how the dark border to the right of the digit 9 could
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be interpreted as a malformed digit 2. Knowing the semantics behind the green cluster,
we can explain the misclassification more easily. While an experienced practitioner may
have guessed why the misclassification occurred without the visual feedback, the semantics
assigned to the visual clusters (found through visualization) provides extra evidence about
the misclassification. In the general case, misclassification causes may be less obvious, and
the visualization of learned representations becomes even more useful. Understanding the
causes of misclassifications is useful both for improving models and for deciding when a
model has achieved satisfactory performance.
Assessing training: All the projections presented so far were created from activations
from a subset of a test set. However, insight can also be gained by inspecting projections
of a subset of a training set. For training data, it is natural to expect that the visual
separation between classes will be even better than in test data. To verify this, we compare
the projection of a subset of the SVHN training set activations in the last MLP hidden
layer (Fig. 5.7) with that of the corresponding test set (Fig. 5.5b). Indeed, we see a better
visual class separation in the former, which is also reflected by a better NH (71.43% vs
67%). Comparing the two visual separations (training vs test data) supports several
assessments. Firstly, a badly separated training set projection may indicate a poorly
trained network, which has low chances of performing well on test data. A very well
separated training set projection and a poorly separated test set projection may indicate
poor generalization (caused, for example, by overfitting). Such assessments can also be
restricted to parts of a projection. In Fig. 5.7, for example, we see bad visual separation
in the center. This is also the area where most classification errors (marked by triangles)
are found.

In the CNN case, similar results are obtained by comparing Fig. 5.8 (projection of
last CNN hidden layer activations after training, for a training subset) with Fig. 5.6
(corresponding projection for the test subset). Comparing projections from different ar-
chitectures is also insightful: in our case, we see that the CNN performs considerably
better on the training set than the MLP, which matches the perceived visual separation
and NH for Figs. 5.7 and 5.8. In fact, the CNN yields only two training set misclassifi-
cations. By brushing them in the projection (Fig. 5.8), we discover that one of them is
incorrectly labeled (bottom right inset in Fig. 5.8).
Discovering potential overfitting: Figure 5.8 provides a final interesting insight. Con-
sider the two gray points placed near the orange visual cluster (top left). Although the
CNN assigns the correct class to these points (digit 7), the representation of the last
hidden layer places them near orange points (digit 1). This appears to be due to the fact
that the two images of the digit 7 actually resemble images of the digit 1. The placement
of these two points in the projection can be a sign that the last layer learned to work
around (overfit) the internal representation (recall that we are looking at training data).
This could mean that the network will not work well in similar cases, classifying digits 7

as digits 1. Naturally, care must be taken when drawing conclusions from the placement
of small sets of points, as we discuss in Sec. 5.6.
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5.4.3 CIFAR-10: interpreting confusion zones

The CIFAR-10 dataset is considerably more challenging for classification than the previous
two (Tab. 5.1). This dataset provides another example where poor visual separation
between classes predicts low classification accuracy. The projection of the last CNN
hidden layer activations after training shows significant overlap between visual clusters
(Fig. 5.9), matching the somewhat low classification accuracy (78.7%). Similarly to
Fig. 5.7, the area with poorest separation between classes, or confusion zone, predicts
well where most misclassifications occur (triangles in the center of Fig. 5.9).

As in Sec. 5.4.2, inspecting the visual outliers is also interesting. Consider the outlier in
the middle of the large cyan visual cluster in Fig. 5.9. Since the class in cyan corresponds
to truck images, and the outlier observation (automobile) looks very similar to members of
that class, it is not surprising that the corresponding point becomes a visual outlier given
the learned representation. Many other examples like this can be found in the projection.

5.4.4 Evolution of learned representations

The previous sections presented projections of learned representations (activations) for
combinations of datasets, training stages (epochs), and layers. However, a single pro-
jection does not show how these representations evolve. The goal of this section is to
introduce a compact visualization that summarizes two dimensions of evolution: inter-
epoch and inter-layer. Given an observation and a layer, inter-epoch evolution refers to
the changes to the activations of that layer that are consequence of learning (parameter
changes as epochs progress). Given an observation and an epoch, inter-layer evolution
refers to the changes in internal representation as the observation “flows” through the
layers of the network.

Let A[1], . . . ,A[T ] be a sequence of sets of (high-dimensional) activations, where each
activation a[t] ∈ A[t] originates from the same observation as a single activation a[t+1] ∈
A[t + 1]. One way to visualize the evolution in such sets of activations is dimensionality
reduction, applied in such a way that changes in the resulting projections will reflect
changes in the corresponding high-dimensional data. This can be done by creating a
projection P [t] for each activation set A[t]. When doing this, it is essential to eliminate
variability between projections that does not reflect changes in the high-dimensional data.
The (arguably) simplest way to do this is to compute P [t] independently for each t, and use
point-cloud registration [55] to align the resulting projections. However, dimensionality
reduction techniques, including t-SNE, often yield large changes in global visual cluster
placement for small data changes, which registration cannot eliminate [49]. For iterative
techniques such as t-SNE, another intuitive strategy is to initialize the positioning in
P [t+ 1] with the previously computed P [t]. We verified that this is a poor alternative, as
it significantly biases the sequence of projections to show the evolution due to initialization
in a (likely) better state with respect to the optimization goal.

In this section, we employed a simple strategy: computing a (randomly initialized)
projection P of A[1] using t-SNE, and using P to initialize each P [t]. In Chapter 6, we
propose a new technique to overcome the issues with this and the previous strategies,
which may be combined with the visualization approach that we propose next.
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The resulting sequence of projections can be visualized in several ways. We discard
animation, since it is hard to track the motion of a large number of colored points over
many frames. An alternative is to create a 2D trail for each sequence pi[1], . . . ,pi[T ] of
corresponding points. However, directly drawing these trails causes a large amount of
clutter and occlusion. We address this by using trail bundling. This is analogous to ear-
lier applications of bundling to visualize vehicle and eye-tracking trails [71]. We employ a
recent high-performance GPU-based bundling algorithm [151], which allows a high degree
of control in real time. The following examples show how the resulting bundled images
can be explored.

Inter-layer evolution: Figure 5.10 shows the inter-layer evolution of a MNIST test
subset (after training). The bundled image summarizes a sequence of four projections,
one per hidden layer, shown as thumbnails. Trail hues encode classes, and edge brightness
encodes layer number (depth). Thus, the brightness gradient shows how activation data
“flow” through the four network layers. The bundle shapes show that the visual clusters
are quite stable over all layers. Hence, the network arrives at a reasonably good separation
between classes already at early layers. The gradients also show that some visual clusters
become more compact in later layers (e.g., tight bright area in the green cluster, whose
evolution is indicated by the gray arrows in the figure), and that some clusters distance
themselves from the others (e.g., brightness pattern in the purple cluster). Thus, later
network layers strengthen the class coherence and separation achieved by the first layer.
We also see that there are only a few visual outliers (stray trails) that connect distinct
visual clusters. Therefore, only few observations change clusters as the activation data
flow through the network. In summary, we infer that the network layers after layer 1
mainly refine cluster coherence.
Inter-epoch evolution: We could employ the same ideas to visualize inter-epoch evo-
lution. However, our results (omitted for brevity) in this case show that the images are
significantly harder to interpret. This is due to a combination of large changes in the the
very first epochs, high intra-visual-cluster variance between epochs, and a much larger
number of frames (typically hundreds) to be summarized.

For this reason, we employed a different strategy to visualize inter-epoch evolution in
this case. Consider again the sequence A[1], . . . ,A[T ] of activation sets. For inter-epoch
evolution, A[t] ⊂ Rk for a fixed k, for all t. Hence, we can create a projection for the
set
⋃
tA[t], which contains activations for all epochs. As we compute a single projection,

there is no spurious inter-frame variation. However, as we will discuss in Chapter 6, this
strategy also has significant drawbacks.

Figure 5.11 shows the inter-epoch evolution for the last CNN hidden layer activa-
tions using this strategy, from epochs 0 to 100, in steps of 20 (12 × 103 points in total).
Hues indicate class, and brighter edge fragments correspond to later epochs. The thumb-
nails in Fig. 5.11 show points from three selected epochs. It is interesting to note how
the dimensionality reduction technique placed the points corresponding to earlier epochs
(darker) in the center of the projection, considering that it does not explicitly receive this
information. This phenomenon also happens for SVHN and CIFAR-10.

Finally, we note that our choice of bundling algorithm provides a high degree of control
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over the level of trail simplification [151], which leads to a visualization that can also be
explored in different levels of abstraction.

5.5 T2: relationships between neurons

The projections shown in Sec. 5.4 help understanding the relationships between the
learned representations of observations. However, they do not represent relationships be-
tween the neurons in a given layer, or how neurons interact to fulfill their discriminative
tasks. For this, we complement the activation projections shown so far by neuron projec-
tions. In a neuron projection, each point depicts a neuron. Points are placed in 2D based
on the similarity between neurons. To our knowledge, this is the first time that artificial
neurons are visualized this way.

As in the previous chapter, we define the dissimilarity di,j between neurons i and j as
di,j = 1−|ri,j|, where ri,j is the (empirical) Pearson correlation coefficient between neurons
i and j on a given set of layer-l activations (recall that each element of an activation vector
is a neuron output). This metric captures both positive and negative linear correlations
between pairs of neurons. From the matrix of pairwise dissimilarities, we compute a
projection using (absolute metric) multidimensional scaling (MDS, Sec. 2.6.3) [17]. As we
confirmed through preliminary experiments, MDS presents more coherent relationships
between neurons that are discriminative for a particular class, which is important for a
neuron projection (see Secs. 5.5.1 - 5.5.2).

5.5.1 MNIST dataset

We use the MNIST dataset to introduce neuron projections. Figure 5.12c shows the
activation projection and Figure 5.12d the corresponding neuron projection for the last
CNN hidden layer activations, after training. Ignoring the colors for now, we see no clear
pattern in the neuron projection (Fig. 5.12d), except for some ill-defined visual clusters.
We next color each point (neuron) based on its ability to discriminate between class 8
(marked yellow in Fig. 5.12c) and all other classes, computed by a standard feature
selection technique, using extremely randomized trees [51] (Sec. 2.4.4). A very clear
pattern emerges: all discriminative neurons for class 8 are placed near each other in the
neuron projection. In contrast, consider the corresponding activation/neuron projections
for the same hidden layer before training (Figs. 5.12a,b): the discriminative neurons for
class 8 are scattered over the neuron projection. This shows that training creates sets
of highly related neurons, which work together in the classification task. An analogous
phenomenon can be observed for all other classes (omitted for brevity).

We can use feedback about the relationships between neurons and classes to diagnose
the absence of specialization for a particular class in a given layer. As a related example,
consider dropout, a widespread heuristic for training deep ANNs [137]. Dropout is often
justified by its hypothesized capacity to inhibit co-adaptation of artificial neurons [137].
We believe our approach could be applied to qualitatively investigate and compare this
and similar heuristics (e.g., DropConnect [152]), which still are poorly understood [152].
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5.5.2 SVHN dataset

Many feature selection methods provide a score that may be employed to measure the
importance of a given neuron (feature) to discriminate between a given class and other
classes (see Sec. 2.4). We show next how this information can be used to depict how each
neuron contributes to class discrimination.

For a given feature scoring technique (extremely randomized trees, in our example),
each neuron j receives a normalized score sc,j ∈ [0, 1], which measures the power of
neuron j, relative to other neurons, to discriminate between class c and all other classes.
We associate neuron j to the class c∗j = arg maxc′ sc′,j. We depict this by coloring point
j with the hue associated to class c∗j , and with a saturation given by sc∗j ,j. We call this
depiction a discriminative neuron map. Notice that the score sc,j is normalized over
neurons for each class, so a highly saturated point in the visualization may have a low
absolute discriminative power.

Figure 5.13 shows the discriminative neuron map for the SVHN test subset, last hidden
layer activations, after training. The presence of compact visual clusters shows how the
entire set of neurons can be (almost) partitioned into groups with related discriminative
roles (specializations), even though the neuron projection is created without any class
information.

The activation and neuron projections can be combined to elucidate the role of par-
ticular neurons. Consider neuron 460, which is highly associated to class 3 according to
Fig. 5.13. The activation of this neuron is encoded using colors in Fig. 5.14, for all inputs
in the test subset. According to that image, neuron 460 is responsible for finding one of
the two red visual clusters in the projection (see bottom left inset in Fig. 5.14), which
corresponds to images of the digit 3 on a light background (as we discovered through vi-
sualization in Sec. 5.4.2). It is also interesting to note that an observation that has a high
activation for that neuron, and belongs to another visual cluster, resembles a digit 3 upon
closer inspection (digit 5 on a light background, top left inset in Fig. 5.14). Obtaining
these informations by typical approaches employed in machine learning would be signif-
icantly more difficult and time-consuming, which is key to the importance of our visual
approach. Finally, as already mentioned in Sec. 5.1, understanding the role of particular
neurons in ANNs is considered a very important problem, for which the discriminative
neuron map is a novel approach.

5.6 Discussion

In this section, we discuss several important aspects of our proposed visualizations and
the experimental analysis conducted to evaluate them.
Scalability: Although dimensionality reduction is among the most scalable methods
for high-dimensional data visualization, it still has some issues. Firstly, visual clutter
occurs when visualizing a large number of activations or neurons. Secondly, considering
the activation projections, although our particular choice of technique (Barnes-Hut t-
SNE) is computationally scalable, it still requires approx. 10 minutes to compute a
projection containing 70×103 50-dimensional observations [146]. Fortunately, preliminary
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experiments with dimensionality reduction techniques that are able to deal with hundreds
of thousands of observations at interactive paces [116, 75] were also promising. Thirdly,
we use categorical color-coding to show class information. This creates well-known clutter
and color-distinguishing challenges in scatterplot visualization when the number of classes
is large.
Techniques: Our choice of (Barnes-Hut) t-SNE is justified by its widespread popularity
and well-known ability to preserve clusters and neighborhoods in projections [148]. Al-
though the latter property is very important to understand relationships between learned
representations, our proposal is not highly coupled to t-SNE. Similarly, neuron projections
are not coupled to absolute metric MDS. In both cases, other dimensionality reduction
techniques can be used, provided that they preserve neighborhoods and distances well,
respectively.
Coverage: As an experimental study that involves many free parameters, our conclusions
are limited to the datasets and networks that we presented. However, our findings for all
datasets and networks were consistent. In particular, there were no cases where projections
would not provide any useful feedback. Additionally, the extent of our validation (i.e.,
experimental protocol, number of datasets) is in line with comparable works in visual
analytics and machine learning.
Validity: We employed good practices to train artificial neural networks in well-known
benchmark datasets, and carefully detailed our experimental protocol to maximize repro-
ducibility.

It is extremely important to address a specific threat to the validity of our approach:
the fact that dimensionality reduction techniques provide few quality guarantees, and
may introduce misleading visual artifacts [101]. For instance, different initializations of
t-SNE may or may not yield the visual outliers presented in Sec. 5.4. To solve this issue,
users should primarily evaluate the quality of a given projection using existing metrics,
such as those presented in [101, 7], as already mentioned in the previous chapter. Such
metrics support both global assessment (overall quality of an entire projection) and local
assessment (i.e., whether a subset of points is placed well).

If a projection (or some of its parts) has poor quality, it should be discarded from
further use. Conversely, if a projection (or some of its parts) has high quality, the patterns
it shows are actually present in the data, an can be relied upon. As a side note, it should
be clear that most interesting phenomena observed in the projections in Secs. 5.4 and 5.5
would be extremely unlikely artifacts (e.g., visual cluster separation, partition of visual
clusters between light/dark digits on dark/light backgrounds, and partitioning of neurons
into specialties). Finally, we note that the feedback given by (activation) projections for
classification problems is, in a sense, asymmetric: clear visual separation between classes
surely implies an easy classification task, whereas unclear separation does not necessarily
imply a difficult task.
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5.7 Conclusion

In this chapter, we have shown how dimensionality reduction can be used to visualize the
relationships between learned representations (T1) and between neurons (T2) in artificial
neural networks. Concerning the first task, our visualizations support the identification
of confusion zones, outliers, and clusters in the internal representations computed by
such networks. Separately, we also show how to visually track inter-layer and inter-
epoch evolution of learned representations. Concerning the second task, we enable the
inspection of relationships between neurons and classes (specialization), and similarity
between neurons. In experiments on traditional benchmark datasets, we have shown that
both our contributions can provide valuable visual feedback for network designers. This
feedback may confirm the known, reveal the unknown, and prompt improvements along
the classification pipeline, as we have shown through concrete examples.

There are several possibilities for future work. They include visualizing representations
learned by recurrent networks, which currently achieve state-of-the-art results in many
sequence-related tasks [58, 57]. The sequential nature of these networks introduces yet
another challenge for visualization. Our approach for evolution visualization would also
benefit from dimensionality reduction techniques designed specifically for time-dependent
datasets. We address precisely this issue in the next chapter.
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Figure 5.5: Projection of the MLP hidden layer activations after training, SVHN test
subset. a) First hidden layer (NH: 52.78%). b) Last hidden layer (NH: 67%).
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Figure 5.6: Projection of the last CNN hidden layer activations after training, SVHN test
subset (NH: 85.02%). Insets show example observations (images) from the visual clusters.
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Figure 5.7: Projection of last MLP hidden layer activations after training, SVHN training
subset (NH: 71.43%, AC: 81.65%).
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Figure 5.8: Projection of last CNN hidden layer activations after training, SVHN training
subset (NH: 93.83%, AC: 99.9%).
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Figure 5.9: Projection of last CNN hidden layer activations after training, CIFAR-10 test
subset (NH: 53.43%, AC: 78.7%).

layer 1 layer 4

Figure 5.10: Inter-layer evolution, four MLP hidden layers after training, MNIST test
subset. Brighter trail parts show later layers.
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training epochs

Figure 5.11: Inter-epoch evolution, last CNN hidden layer, epochs 0-100, in steps of 20,
MNIST test subset. Brighter trail parts show later epochs.

Figure 5.12: Activation and neuron projections of last CNN hidden layer activations before
and after training, MNIST test subset. Neuron projection colors show the neurons’ power
to discriminate class 8 vs rest.
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Figure 5.13: Discriminative neuron map of last CNN hidden layer activations after train-
ing, SVHN test subset.
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Figure 5.14: Activation projection of the last CNN hidden layer after training, SVHN
test subset. Color shows the activation of neuron 460, highly associated to class 3 (see
also Fig. 5.13).



Chapter 6

Visualizing time-dependent data using
projections

In the previous chapter, we attempted to visualize evolving (in a broad sense, time-
dependent) high-dimensional data using a standard dimensionality reduction technique.
In this chapter, we will discuss the drawbacks of this approach in more detail, and propose
an alternative.

Time-oriented data visualization is a widely researched subject. According to Aigner
et al. [1], current techniques can be categorized as abstract or spatial, univariate or mul-
tivariate, linear or cyclic, instantaneous or interval-based, static or dynamic, and two or
three-dimensional. Our work is concerned with abstract, multivariate, and instantaneous
time-oriented visualization.

We define a time-dependent dataset as a sequence of datasets captured at particular
time steps. In such a sequence, each dataset is a sequence of observations, and each
observation has a corresponding observation across time steps. In simple terms, each
observation evolves with time (or any other discrete parameter).

Consider the task of visualizing a time-dependent dataset. If a dimensionality reduc-
tion (DR) technique is applied independently for each time step, the resulting sequence of
projections may present variability that does not reflect significant changes in the struc-
ture of the data. We refer to this issue as temporal incoherence, which significantly impairs
the visualization of temporal trends. In this chapter, we will show that this issue affects
t-SNE [148], a technique whose importance was already established in the previous chap-
ters. Furthermore, temporal incoherence will affect any DR technique that is sensitive to
relatively small changes in their inputs [49].

In this context, we also propose dynamic t-SNE: an adaptation of t-SNE that allows
a controllable trade-off between temporal coherence and spatial coherence (defined as
preservation of structure at a particular time step). Previous work on this trade-off has
been restricted to the context of dynamic graph drawing [156, 91], even though there are
many examples of time-dependent high-dimensional data visualizations based on DR [74,
13, 3]. As will become clear, our approach can be easily extended to other optimization-

This chapter is based on the following publication:
Paulo E. Rauber, Alexandre X. Falcão, and Alexandru C. Telea. Visualizing time-dependent data using
dynamic t-SNE. In EuroVis Short Papers, 2016.
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based DR techniques.
This chapter is organized as follows. Section 6.1 briefly reviews our notation and t-

SNE. Section 6.2 explains the necessity for a controllable bias towards temporal coherence,
and presents our proposed solution. Section 6.3 presents a preliminary evaluation of this
proposal. Finally, Section 6.4 summarizes our contributions and suggests future work.

6.1 T-SNE

A dataset D = x1, . . . ,xN is a sequence of observations, which are D-dimensional real
vectors. The goal of t-SNE is to compute a sequence of points (projection) P = p1, . . . ,pN
where the neighborhoods from D are preserved, considering that each pi ∈ Rd corresponds
to xi ∈ RD. Typically, d = 2 and D � d.

T-SNE aims at minimizing a particular cost C with respect to P . For our purposes, it
suffices to note that C heavily penalizes placing neighbors in D far apart in P . We refer
to Sec. 2.6.4 for more details.

The cost C is usually minimized with respect to P by (momentum-based) gradient
descent: from an arbitrary initial P , for a number of iterations, each pi ∈ P is moved in
the direction −∇pi

C.
As we explained in Sec. 2.6.4, the gradient ∇pi

C of C with respect to a point pi ∈ P
can be interpreted as a linear combination of vectors pointing in the direction pi−pj, for
every j. Each vector pi−pj is also weighted by whether pj should be moved closer to pi
to preserve neighborhoods from D, and by whether pj is currently close to pi.

6.2 Dynamic t-SNE

Consider the task of creating a sequence of projections P [1], . . . ,P [T ] for a (sequence
of datasets) time-dependent dataset D[1], . . . ,D[T ], where each xi[t] ∈ D[t] corresponds
to xi[t + 1] ∈ D[t + 1]. Although we will say that the sequence of datasets represents a
time-dependent process, this task is meaningful whenever there is correspondence between
observations at different steps.

We will let C[t] denote the usual t-SNE cost for dataset D[t] and projection P [t], as
defined in Sec. 2.6.4. It is possible to apply t-SNE individually for each dataset in a
sequence using at least four different strategies:

1. Initializing P [t] independently and randomly, for all t.

2. Initializing P [t] with the same random sequence, for all t.

3. Initializing P [1] randomly, and P [t+ 1] with the P [t] that results from minimizing
C[t], for all t > 1, or reversely.

4. Combining datasets from all time steps into a single dataset D, and computing a
single projection P .
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However, each of these strategies has significant drawbacks.
Strategies 1 and 2 often result in a sequence of projections with major changes

in positioning of corresponding points in adjacent time steps (temporal incoherence).
This issue cannot be corrected by rigid transformations (e.g., rotations, translations),
is misleading, and makes tracking the evolution of the data more challenging (see Sec.
6.3.1).

Strategy 3 is viable in some cases. However, it lacks a mechanism to enforce temporal
coherence after initialization. At the other extreme, the initial bias may be difficult for
gradient descent to overcome, because of the diminished effect on ∇pi[t]C[t] of a point
that is distant from pi[t]. These two issues also affect the (unlisted) strategy employed in
the previous chapter, where we initialized P [t] with a projection created for D[1], for all
t (including t = 1).

Furthermore, returning to strategy 3, because t-SNE usually takes many iterations to
converge, the optimization of C[t] starts at a likely advantaged state when compared to
the optimization of C[t′], for all t′ � t. In this case, the evolution due to the optimization
process can be mistaken for temporal evolution.

As an extreme example, consider a particular sequence of 100 identical datasets, each
with 2000 observations in R512. Figure 6.1 shows some projections that result from strat-
egy 3, which are clearly misleading. Notice how there is significant apparent evolution
between time steps 1 and 50 (103 and 5 × 104 gradient descent iterations, respectively).
In fact, the configuration still changes between 5 × 104 and 105 iterations, albeit more
slowly. Running t-SNE for this many iterations (for each projection) is impractical, and
tweaking the parameters to achieve faster convergence is not trivial. Although it suffices
to realize that there is no actual temporal evolution in this time-dependent dataset, the
experimental details are described in Sections 6.3 and 6.3.2.

In summary, the major issue with strategy 3 is the lack of control over how the
optimization is biased.

t = 1 t = 25 t = 50

Figure 6.1: Strategy 3 results on a sequence of identical datasets (last CNN hidden layer
fixed at epoch 1, MNIST test subset).

Strategy 4 can be dismissed in many cases. Firstly, when the distance matrix for
D and all σi are given as inputs, and the target dimension d is seen as a constant, t-
SNE has time complexity O(N2) for N observations. Thus, strategy 4 quickly becomes
intractable. Secondly, it also introduces significant clutter, which cannot be eliminated
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by filtering points per time step, since that introduces misleading void spaces. Finally,
depending on context, combining structures across different steps may be inappropriate.

Dynamic t-SNE, our proposal, is an alternative that overcomes the drawbacks of the
previous strategies. The dynamic t-SNE cost C tries to preserve the neighborhoods from
D[t] in P [t], for each t, but also penalizes each point for unnecessarily moving between
time steps. This new cost introduces a hyperparameter λ ≥ 0 that controls the bias for
temporal coherence, and is given by

C =
T∑
t=1

C[t] +
λ

2N

N∑
i=1

T−1∑
t=1

|| pi[t]− pi[t+ 1] ||2. (6.1)

Intuitively, each point is penalized in proportion to the total squared length of the line
segments formed by its movement through time. This penalty is similar to the one pro-
posed by Leydesdorff and Schank [91] for dynamic graph drawing using multidimensional
scaling (MDS).

Although it would be possible to penalize each movement in Rd in proportion to
the corresponding movement in RD, that would have undesirable consequences. Firstly,
supposing large variance in high-dimensional movement, it could make the choice of λ
considerably more difficult. Secondly, any transformation that moved observations signif-
icantly while preserving most pairwise distances would justify significant changes in the
projection. This is undesirable because the t-SNE cost depends solely on distances, which
makes a projection convey only relative positioning. Despite these issues, we believe that
such alternatives should be investigated in future work.

It is easy to show that the gradient ∇pi[t]C of C with respect to a point pi[t] ∈ P [t] is
given by

∇pi[t]C = ∇pi[t]C[t] +
λ

N
vi[t], (6.2)

where ∇pi[t]C[t] is the usual t-SNE cost gradient (with respect to pi[t]) when the dataset
D[t] is considered separately, and vi[t] is given by

vi[t] =


2pi[t]− (pi[t− 1] + pi[t+ 1]) if 1 < t < T ,

pi[t]− pi[t+ 1] if t = 1,

pi[t]− pi[t− 1] if t = T .

(6.3)

Just as∇pi[t]C[t], each vector vi[t] also has a geometrical interpretation. For 1 < t < T ,
the vector vi[t] has opposite direction to any vector that points from pi[t] to the midpoint
between pi[t − 1] and pi[t + 1]. Thus, in gradient descent, the parameter λ controls the
trade-off between moving each pi[t] in a direction that tries to preserve neighborhoods
from D, and moving each pi[t] in a direction that minimizes the total squared length of
line segments in the polyline (pi[t− 1],pi[t],pi[t+ 1]).
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6.3 Evaluation

We implemented t-SNE and dynamic t-SNE in Python, using Theano [9], Numpy [149],
and scikit-learn [118] . Theano allows writing mathematical expressions that can be
automatically translated into optimized (CPU or GPU) code and evaluated. Our im-
plementation uses automatic differentiation, which can be highly valuable for adapting
t-SNE to a particular application. For instance, altering the symbolic expression that
defines the cost does not require manually finding (possibly involved) partial derivatives
analytically, nor changing the optimization process. Dynamic t-SNE requires roughly the
same computational time as executing t-SNE independently for each time step (Strategies
1-3). Using an Intel i7-2600 at 3.4 GHz with a GeForce GTX 590, both (GPU) imple-
mentations require approx. 6 minutes per time step for the time-dependent dataset in
Sec. 6.3.1.

The remainder of this section presents our preliminary experimental evaluation of
dynamic t-SNE. The implementation details and hyperparameter choices are very similar
to those of publicly available implementations [147]. We use momentum-based gradient
descent for minimizing C, with a learning rate η = 2400 and momentum coefficient
µ = 0.5, which change to η = 250 and µ = 0.8 at iteration 250. The optimization is run
for 1000 iterations, with a perplexity κ = 70. We sample the initial coordinates of each
point from a Gaussian distribution with zero mean and standard deviation 10−4. The
binary search for each σi lasts 50 iterations. For dynamic t-SNE, every projection P [t] is
initialized equally.

6.3.1 Multivariate Gaussians

We created the multivariate Gaussians dataset specifically as a controlled experiment for
dynamic t-SNE. Firstly, we sample 200 observations from each of 10 distinct (isotropic)
100-dimensional multivariate Gaussian distributions with variance 0.1. We combine the
resulting 2000 observations into a single dataset D[1]. Each multivariate Gaussian has
a distinct mean, which is chosen uniformly between the standard basis vectors for R100.
Given D[t], the dataset D[t+ 1] is created as follows. Each observation x[t+ 1] ∈ D[t+ 1]

corresponds to an observation x[t] ∈ D[t] moved 10% of the remaining distance closer
to the mean of its corresponding multivariate Gaussian. In simple terms, each of the 10

clusters becomes more compact as t increases. We consider T = 10 datasets.
The sequence of images in Fig. 6.2a shows dynamic t-SNE results for λ = 0, which

corresponds to strategy 2 (as defined in Sec. 6.2). Each point pi[t] is colored, for illus-
tration purposes, according to the distribution from which xi[1] was sampled. Notice the
large variability in visual cluster positioning between time steps, even after the clusters
become well-defined. Because the process that originates the data simply makes the clus-
ters gradually more compact, this variability is misleading. We preserve the scatterplot
scale between time steps, which is also a significant source of variability.

In comparison, consider the results shown in Fig. 6.2b, for λ = 0.1. Notice how
each cluster stays at a similar relative position during all steps, and only becomes more

Available in https://github.com/paulorauber/thesne.
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compact in later steps. When the projections are inspected step by step, it becomes easier
to notice the movement of projection outliers, which is obscured when λ = 0.

Because each point is penalized for moving between projections, clear visual separation
between clusters in later projections is also able to induce better separation in earlier pro-
jections. In simple terms, given a similar spatial coherence in two alternative projections
for time step t, the projection that is more temporally coherent with the projection for
time t + 1 is preferred by the cost function. There is a trade-off: a large λ will induce
unwanted bias, whereas a small λ will cause misleading temporal incoherence. The major
benefit of dynamic t-SNE is precisely the control over this trade-off. Although the choice
of λ depends on context, we recommend first comparing λ = 0 with the results of an
arbitrary low value.

6.3.2 Hidden layer activations

The time-dependent dataset D[0], . . . ,D[T ] considered in this section is composed of neu-
ral network activation sets, which we introduced in the previous chapter. Recall that an
activation vector x[t] ∈ D[t] is a D-dimensional real vector that represents the outputs of
D neurons in a particular layer of an artificial neural network given a particular input.
Such activation vector can be seen as an alternative representation of the input, learned
by the network through an optimization process. As we have shown in the previous chap-
ter, visualizing activation vectors allows valuable insight into how a network learns and
operates, which is considered highly valuable by practitioners.

In this particular case, each network input belongs to a subset of 2000 test images from
the SVHN dataset [110], a traditional image classification benchmark, and is assigned to
one of ten classes (according to the digit seen in the image), which we use to color the
projections (see Secs. 5.3 and 5.4.2 for more details).

For each t, an activation x[t] ∈ D[t] is a 512-dimensional real vector, and corresponds
to the last hidden layer activation of a convolutional neural network (CNN) after t epochs
of training (given a particular input image). The time-dependent dataset represents the
evolution of the learned representations through 100 epochs. Earlier in the text, the
projections shown in Fig. 6.1 correspond to a similar dataset based on 2000 MNIST [86]
test images, and 100 copies of the same dataset after one training epoch.

Figures 6.3a and 6.3b compare the results of dynamic t-SNE for λ = 0 and λ = 0.1,
respectively. Notice that the projections for step t = 0, which correspond to network
activations before training, are noticeably different from those that follow. Clearly, the
early epochs of training have a significant effect on the learned representations, which
coincides with most of the increase in validation accuracy (not shown). Although both
sequences show significant variation between steps t = 25 and t = 100, the remarkable
distinction is that the projections change smoothly when λ = 0.1. For an example,
compare the transition between steps 24 and 25 in Figs. 6.3a and 6.3b. This phenomenon
can be seen consistently through the whole sequence. The visual separation between
clusters does not seem to improve considerably after the early epochs, although it is hard
to state whether there is significant variability in the structure of the data. Because
λ = 0.1 does not seem to introduce a misleading bias in comparison to λ = 0, more
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evidence could be obtained by increasing λ even further.

6.4 Conclusion

In this chapter, we have shown how dynamic t-SNE can be applied to create sequences
of projections with increased temporal coherence, which facilitates tracking the evolu-
tion of high-dimensional time-dependent data. The main advantage of dynamic t-SNE
over t-SNE is the control over the trade-off between temporal coherence (between succes-
sive projections) and spatial coherence (with respect to high-dimensional neighborhoods).
This control depends on a single hyperparameter λ, which has a simple interpretation,
and does not introduce a significant computational overhead. This approach can be easily
adapted for other optimization-based DR techniques. Our preliminary experiments show
promising results in eliminating unnecessary variability between projections.

Although we implemented dynamic t-SNE as an adaptation of traditional t-SNE, the
Barnes-Hut approximation is significantly more computationally efficient [146]. Future
works that employ dynamic t-SNE for large datasets should consider a similar optimiza-
tion. The current implementation has the advantage of being highly flexible with respect
to cost functions.
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Figure 6.2: Dynamic t-SNE results on Multivariate Gaussians.
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Figure 6.3: Dynamic t-SNE results on SVHN CNN.



Chapter 7

Conclusion

This thesis has explored several ways in which user interaction may assist important tasks
in image analysis: image segmentation, feature selection, and image classification.

Our contributions include a new interactive segmentation technique, a new interactive
visualization approach for feature selection and inspection of artificial neural networks,
and a new dimensionality reduction technique for time-dependent data. These contri-
butions are connected by the application of visual analytics, and by the prevalence of
high-dimensional datasets. In this last chapter, we summarize these and other contribu-
tions (Secs. 7.1-7.4).

Regarding our research question (Sec. 1.5), we successfully showed how visual analytics
can provide actionable insights about the design and operation of image analysis methods.
However, as we discuss in the next sections, there are plenty of opportunities for future
work.

7.1 Image segmentation

Image segmentation is a crucial task in many practical applications, and interactive meth-
ods remain indispensable when the objects of interest resist a rigorous definition.

Chapter 3 presents a new interactive segmentation technique based on superpixels
that employs the IFT algorithm. This technique is motivated by the advantages that
this algorithm has over other algorithms that find optimum cuts in graphs, such as linear
(or linearithmic) time multi-object segmentation [26]. In comparison to its pixel-based
counterpart, our new technique is significantly more (computationally) efficient for inter-
active segmentation. It also has the potential for exploring feature descriptors based on
superpixels. Finding appropriate superpixel descriptors remains an open problem, which
partially motivates our work in interactive feature selection.

Chapter 3 also introduces novel robot users, which serve as a testbed for new interactive
segmentation techniques, and attempt to avoid the costs and biases involved in evaluation
by real users. The relationship between these robots and real users could be studied by
future work.

We omitted the description of some implemented ideas that were not sufficiently evalu-
ated. They include supervoxel-based segmentation of volumetric images, multiscale over-

145



CHAPTER 7. CONCLUSION 146

segmentation, and superpixel-based differential IFT [41], all of which could be further
developed.

7.2 Image classification and feature selection

In pattern classification, representing objects of interest by observations (real vectors) is
generally a challenging task. In particular, selecting features that enable good general-
ization is arguably harder than choosing a learning algorithm that performs reasonably
well. Feature selection also affects tasks that are typically considered outside the scope
of machine learning, such as image segmentation.

At the same time, dimensionality reduction is considered one of the most scalable
alternatives for high-dimensional data visualization. This characteristic led us to consider
using projections to assist in the difficult task of (image) classification system development.

Chapter 4 shows that projections may be useful for predicting classification system
behavior. The qualitative visual feedback provided by projections allows inspecting the
presence of outliers, separation between classes, and distribution of observations in the
feature space. Such feedback is generally very difficult to obtain by other (non-visual)
means. Although there is no guarantee that a projection will provide insightful feed-
back about a particular dataset, our approach requires only a small upfront user effort
investment.

Chapter 4 also shows that such visual feedback may serve as a basis for a novel interac-
tive system that assists classification system development. Our proposed system combines
projections of observations and features with traditional feature selection techniques. In
several use cases, this system allows eliminating a large number of candidate features from
consideration, which is highly valuable for deciding where to focus effort in feature design.

One possibility for future work is employing projections as a basis to assist active
learning, a process where a learning algorithm iteratively suggests which observations
within a partially labeled dataset should be labeled to enable effective generalization
[65, 68]. This process fits perfectly into the typical visual analytics workflow.

7.3 Image classification by artificial neural networks

Although artificial neural networks recently became able to achieve excellent raw image
classification results [130], bypassing feature engineering and selection, building and train-
ing these networks generally requires significant amounts of time, expertise, and labeled
data.

Chapter 5 shows how the visualization approach proposed in Chapter 4 can be adapted
to visualize the relationships between learned representations of observations and between
neurons in artificial neural networks. From another perspective, while Chapter 4 is con-
cerned with inputs, Chapter 5 is concerned with intermediary computational results.

Chapter 5 shows how our approach supports the identification of confusion zones, out-
liers, and clusters in the learned representations of observations. It also shows how the
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evolution of learned representations may be tracked using a compact trail-based visual-
ization.

Additionally, Chapter 5 shows how our approach enables the inspection of relationships
between neurons and classes (specialization), and similarity between neurons. Concrete
examples show that these and the previous visualizations may prompt improvements along
the classification pipeline, besides providing insight into how a network operates.

A possible direction for future work is visualizing representations learned by recurrent
networks, which currently achieve state-of-the-art results in many sequence-related tasks
[58].

7.4 Time-dependent data visualization

Our approach towards visualizing representations of observations learned by artificial
neural networks naturally leads to our final contribution.

When a traditional dimensionality reduction technique is applied to visualize a se-
quence of datasets that represents a time-dependent process, the resulting sequence of
projections may present variability that does not reflect significant changes in the struc-
ture of the data. This temporal incoherence affects the visualization of temporal trends,
leads to incorrect insights, and will affect any traditional dimensionality reduction tech-
nique that is sensitive to relatively small changes to its inputs [49].

Chapter 6 presents dynamic t-SNE, our proposed solution to temporal incoherence in
t-SNE, a state-of-the-art dimensionality reduction technique that was widely employed in
Chapters 4 and 5. Our approach can also be easily adapted for other optimization-based
techniques.

Dynamic t-SNE enables a trade-off between temporal coherence (between successive
projections) and spatial coherence (with respect to high-dimensional neighborhoods).
This trade-off depends on a coherence hyperparameter, which has a simple interpreta-
tion, and does not introduce a significant computational overhead.

Possibilities for future work include studying alternative incoherence penalty functions,
and devising a principled way to choose the coherence hyperparameter.
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