11,531 research outputs found

    Genomic variant sharing: a position statement.

    Get PDF
    Sharing de-identified genetic variant data is essential for the practice of genomic medicine and is demonstrably beneficial to patients. Robust genetic diagnoses that inform medical management cannot be made accurately without reference to genetic test results from other patients, as well as population controls. Errors in this process can result in delayed, missed or erroneous diagnoses, leading to inappropriate or missed medical interventions for the patient and their family. The benefits of sharing individual genetic variants, and the harms of not sharing them, are numerous and well-established. Databases and mechanisms already exist to facilitate deposition and sharing of pseudonomised genetic variants, but clarity and transparency around best practice is needed to encourage widespread use, prevent inconsistencies between different communities, maximise individual privacy and ensure public trust. We therefore recommend that widespread sharing of a small number of individual genetic variants associated with limited clinical information should become standard practice in genomic medicine. Information robustly linking genetic variants with specific conditions is fundamental biological knowledge, not personal information, and therefore should not require consent to share. For additional case-level detail about individual patients or more extensive genomic information, which is often essential for clinical interpretation, it may be more appropriate to use a controlled-access model for data sharing, with the ultimate aim of making as much information as open and de-identified as possible with appropriate consent

    The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    Get PDF
    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line

    Federating distributed and heterogeneous information sources in neuroimaging: the NeuroBase Project.

    Get PDF
    The NeuroBase project aims at studying the requirements for federating, through the Internet, information sources in neuroimaging. These sources are distributed in different experimental sites, hospitals or research centers in cognitive neurosciences, and contain heterogeneous data and image processing programs. More precisely, this project consists in creating of a shared ontology, suitable for supporting various neuroimaging applications, and a computer architecture for accessing and sharing relevant distributed information. We briefly describe the semantic model and report in more details the architecture we chose, based on a media-tor/wrapper approach. To give a flavor of the future deployment of our architecture, we de-scribe a demonstrator that implements the comparison of distributed image processing tools applied to distributed neuroimaging data

    Distributed Information Retrieval using Keyword Auctions

    Get PDF
    This report motivates the need for large-scale distributed approaches to information retrieval, and proposes solutions based on keyword auctions

    Emerging and Established Trends to Support Secure Health Information Exchange

    Get PDF
    This work aims to provide information, guidelines, established practices and standards, and an extensive evaluation on new and promising technologies for the implementation of a secure information sharing platform for health-related data. We focus strictly on the technical aspects and specifically on the sharing of health information, studying innovative techniques for secure information sharing within the health-care domain, and we describe our solution and evaluate the use of blockchain methodologically for integrating within our implementation. To do so, we analyze health information sharing within the concept of the PANACEA project that facilitates the design, implementation, and deployment of a relevant platform. The research presented in this paper provides evidence and argumentation toward advanced and novel implementation strategies for a state-of-the-art information sharing environment; a description of high-level requirements for the transfer of data between different health-care organizations or cross-border; technologies to support the secure interconnectivity and trust between information technology (IT) systems participating in a sharing-data “community”; standards, guidelines, and interoperability specifications for implementing a common understanding and integration in the sharing of clinical information; and the use of cloud computing and prospectively more advanced technologies such as blockchain. The technologies described and the possible implementation approaches are presented in the design of an innovative secure information sharing platform in the health-care domain

    Data as a Service (DaaS) for sharing and processing of large data collections in the cloud

    Get PDF
    Data as a Service (DaaS) is among the latest kind of services being investigated in the Cloud computing community. The main aim of DaaS is to overcome limitations of state-of-the-art approaches in data technologies, according to which data is stored and accessed from repositories whose location is known and is relevant for sharing and processing. Besides limitations for the data sharing, current approaches also do not achieve to fully separate/decouple software services from data and thus impose limitations in inter-operability. In this paper we propose a DaaS approach for intelligent sharing and processing of large data collections with the aim of abstracting the data location (by making it relevant to the needs of sharing and accessing) and to fully decouple the data and its processing. The aim of our approach is to build a Cloud computing platform, offering DaaS to support large communities of users that need to share, access, and process the data for collectively building knowledge from data. We exemplify the approach from large data collections from health and biology domains.Peer ReviewedPostprint (author's final draft
    • …
    corecore