85,018 research outputs found

    A formal verification framework and associated tools for enterprise modeling : application to UEML

    Get PDF
    The aim of this paper is to propose and apply a verification and validation approach to Enterprise Modeling that enables the user to improve the relevance and correctness, the suitability and coherence of a model by using properties specification and formal proof of properties

    What is the method in applying formal methods to PLC applications?

    Get PDF
    The question we investigate is how to obtain PLC applications with confidence in their proper functioning. Especially, we are interested in the contribution that formal methods can provide for their development. Our maxim is that the place of a particular formal method in the total picture of system development should be made very clear. Developers and customers ought to understand very well what they can rely on or not, and we see our task in trying to make this explicit. Therefore, for us the answer to the question above leads to the following questions: Which parts of the system can be treated formally? What formal methods and tools can be applied? What does their successful application tell (or does not) about the proper functioning of the whole system

    AsmetaF: A Flattener for the ASMETA Framework

    Get PDF
    Abstract State Machines (ASMs) have shown to be a suitable high-level specification method for complex, even industrial, systems; the ASMETA framework, supporting several validation and verification activities on ASM models, is an example of a formal integrated development environment. Although ASMs allow modeling complex systems in a rather concise way -and this is advantageous for specification purposes-, such concise notation is in general a problem for verification activities as model checking and theorem proving that rely on tools accepting simpler notations. In this paper, we propose a flattener tool integrated in the ASMETA framework that transforms a general ASM model in a flattened model constituted only of update, parallel, and conditional rules; such model is easier to map to notations of verification tools. Experiments show the effect of applying the tool to some representative case studies of the ASMETA repository.Comment: In Proceedings F-IDE 2018, arXiv:1811.09014. The first two authors are supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST. Funding Reference number: 10.13039/501100009024 ERAT

    Combining SysML and AADL for the design, validation and implementation of critical systems

    Get PDF
    The realization of critical systems goes through multiple phases of specification, design, integration, validation, and testing. It starts from high-level sketches down to the final product. Model-Based Design has been acknowledged as a good conveyor to capture these steps. Yet, there is no universal solution to represent all activities. Two candidates are the OMG-based SysML to perform high-level modeling tasks, and the SAE AADL to perform lower-level ones, down to the implementation. The paper shares an experience on the seamless use of SysML and the AADL to model, validate/verify and implement a flight management system

    Discovery and Selection of Certified Web Services Through Registry-Based Testing and Verification

    Get PDF
    Reliability and trust are fundamental prerequisites for the establishment of functional relationships among peers in a Collaborative Networked Organisation (CNO), especially in the context of Virtual Enterprises where economic benefits can be directly at stake. This paper presents a novel approach towards effective service discovery and selection that is no longer based on informal, ambiguous and potentially unreliable service descriptions, but on formal specifications that can be used to verify and certify the actual Web service implementations. We propose the use of Stream X-machines (SXMs) as a powerful modelling formalism for constructing the behavioural specification of a Web service, for performing verification through the generation of exhaustive test cases, and for performing validation through animation or model checking during service selection

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines
    corecore