10,135 research outputs found

    Service-oriented Approach Supporting Dynamic Manufacturing Networks Operations

    Full text link
    [EN] In the current economic crisis, also the manufacturing sector is asked to evolve towards more dynamic organizational structures within which, composing manufacturing processes, almost in real time, will become a need. This work aims at introducing flexibility and dynamisms to current manufacturing processes by separating its tasks from its final performers. With the proposed approach, the performers replacement can be done almost seamlessly. Additionally, the approach shows how dynamic negotiation and contracting, either for a whole process or a single activity, can be smoother if the task specification is based on a standard service interface defined at the ecosystem level. At the end, a prototype implementation is briefly described.Franco Pereyra, RD.; Ortiz Bas, Á.; Gómez-Gasquet, P. (2013). Service-oriented Approach Supporting Dynamic Manufacturing Networks Operations. IFIP Advances in Information and Communication Technology. 408:345-354. doi:10.1007/978-3-642-40543-3_37S345354408Osório, A.L., Afsarmanesh, H., Camarinha-Matos, L.M.: Open Services Ecosystem Supporting Collaborative Networks. In: Ortiz, Á., Franco, R.D., Gómez Gasquet, P. (eds.) BASYS 2010. IFIP AICT, vol. 322, pp. 80–91. Springer, Heidelberg (2010)Afsarmanesh, H., Camarinha-Matos, L., Msanjila, S.: On management of 2nd generation Virtual Organizations Breeding Environments. Annual Reviews in Control 33(2), 209–219 (2009)Afsarmanesh, H., Camarinha-Matos, L.: A Framework for Management of Virtual Organization Breeding Environments. In: Camarinha-Matos, L.M., Afsarmanesh, H., Ortiz, A. (eds.) Collaborative Networks and Their Breeding Environments. IFIP, vol. 186, pp. 35–48. Springer, Boston (2005)Franco, R.D., Ortiz Bas, A., Gómez-Gasquet, P., Rodriguez Rodriguez, R.: Open Ecosystems, Collaborative Networks and Service Entities Integrated Modeling Approach. In: Camarinha-Matos, L.M., Xu, L., Afsarmanesh, H. (eds.) Collaborative Networks in the Internet of Services. IFIP AICT, vol. 380, pp. 74–83. Springer, Heidelberg (2012)Minguez, J., Zor, S., Reimann, P.: Event-driven business process management in Engineer-to-Order supply chains. In: 2011 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 624–631 (2011)Wang, X., Cai, H., Xu, B.: An Extended Petri-Net Based Approach for Supply Chain Process Modeling and Web Service Transformation. In: International Conference on Management and Service Science, MASS 2009, pp. 1–5 (2009)Mowshowitz, A.: The switching principle in Virtual Organization. eJOV 1(1), 7–18 (1999)Franco, Ortiz Bas, Lario Esteban, F.C.: Modeling extended manufacturing processes with service-oriented entities. Service Business 3(1), 31–50 (2009)Vallejos, R.V., Lima, C., Varvakis, G.: A Framework To Create A Virtual Organization Breeding Environment In The Mould And Die Sector. In: Camarinha-Matos, L.M., Afsarmanesh, H., OIlus, M. (eds.) Network-Centric Collaboration and Supporting Frameworks. IFIP, vol. 224, pp. 599–608. Springer, Boston (2006)Bocchi, L., Fiadeiro, J., Rajper, N., Reiff-Marganiec, S.: Structure and Behaviour of Virtual Organisation Breeding Environments (January 2010)Romero, D., Molina, A.: VO breeding environments & virtual organizations integral business process management framework. Information Systems Frontiers 11(5), 569–597 (2009)Ulieru, M., Grobbelaar, S.: Engineering Industrial Ecosystems in a Networked World. In: 5th IEEE International Conference on Industrial Informatics, vol. 1, pp. 1–7 (2007)Rajini, S.N.S., Bhuvaneswari, D.T.: Service Based Architecture for Manufacturing Sector (2010)Lobov, A., Puttonen, J., Herrera, V.V., Andiappan, R., Lastra, J.L.M.: Service oriented architecture in developing of loosely-coupled manufacturing systems. In: 6th IEEE International Conference on Industrial Informatics, INDIN 2008, pp. 791–796 (2008)Jammes, F., Smit, H., Lastra, J.L.M., Delamer, I.M.: Orchestration of service-oriented manufacturing processes. In: 10th IEEE Conference on Emerging Technologies and Factory Automation, ETFA 2005, vol. 1, pp. 617–624 (2005)Zor, S., Görlach, K., Leymann, F.: Using BPMN for Modeling Manufacturing Processes. Neuer Wissenschaftlicher Verlag, Wien (2010

    A survey of approaches to Virtual Enterprise Architecture: modeling languages, reference models, and architecture frameworks

    Get PDF
    As the theory and practice of enterprise architecture became mature, researchers and practitioners have started applying similar concepts and approaches to virtual enterprises. The virtual enterprise is a temporary coalition of enterprises joining hands to exploit a particular opportunity. Virtual Enterprise Architecture addresses a Virtual Enterprise holistically at a strategic level. This article provides a definition of Enterprise Architecture, Virtual Enterprise, and Virtual Enterprise Architecture and presents results from a study of six approaches to virtual enterprise architecture for virtual enterprises (NEML, CAML, AVERM, VERAM, BM VEARM, and ARCON)

    Fostering Distributed Business Logic in Open Collaborative Networks: an integrated approach based on semantic and swarm coordination

    Get PDF
    Given the great opportunities provided by Open Collaborative Networks (OCNs), their success depends on the effective integration of composite business logic at all stages. However, a dilemma between cooperation and competition is often found in environments where the access to business knowledge can provide absolute advantages over the competition. Indeed, although it is apparent that business logic should be automated for an effective integration, chain participants at all segments are often highly protective of their own knowledge. In this paper, we propose a solution to this problem by outlining a novel approach with a supporting architectural view. In our approach, business rules are modeled via semantic web and their execution is coordinated by a workflow model. Each company’s rule can be kept as private, and the business rules can be combined together to achieve goals with defined interdependencies and responsibilities in the workflow. The use of a workflow model allows assembling business facts together while protecting data source. We propose a privacy-preserving perturbation technique which is based on digital stigmergy. Stigmergy is a processing schema based on the principle of self-aggregation of marks produced by data. Stigmergy allows protecting data privacy, because only marks are involved in aggregation, in place of actual data values, without explicit data modeling. This paper discusses the proposed approach and examines its characteristics through actual scenarios

    Enterprise Modeling in the context of Enterprise Engineering: State of the art and outlook

    Full text link
    [EN] Enterprise Modeling is a central activity in Enterprise Engineering and can facilitate Production Management activities. This state-of-the-art paper first recalls definitions and fundamental principles of enterprise modelling, which goes far beyond process modeling. The CIMOSA modeling framework, which is based on an event-driven process-based modeling language suitable for enterprise system analysis and model enactment, is used as a reference conceptual framework because of its generality. Next, the focus is on new features of enterprise modeling languages including risk, value, competency modeling and service orientation. Extensions for modeling collaborative aspects of networked organizations are suggested as research outlook. Major approaches used in enterprise modeling are recalled before concluding.Vernadat, F. (2014). Enterprise Modeling in the context of Enterprise Engineering: State of the art and outlook. International Journal of Production Management and Engineering. 2(2):57-73. doi:10.4995/ijpme.2014.2326SWORD577322AMICE. (1993). CIMOSA: Open System Architecture for CIM, 2nd revised and extended edition. Berlin: Springer-Verlag. 234 pages.Camarinha-Matos, L. M., & Afsarmanesh, H. (2007). A comprehensive modeling framework for collaborative networked organizations. Journal of Intelligent Manufacturing, 18(5), 529-542. doi:10.1007/s10845-007-0063-3Camarinha-Matos, L. M., Afsarmanesh, H., Galeano, N., & Molina, A. (2009). Collaborative networked organizations – Concepts and practice in manufacturing enterprises. Computers & Industrial Engineering, 57(1), 46-60. doi:10.1016/j.cie.2008.11.024Chakravarthy, S. (1989). Rule management and evaluation: an active DBMS perspective. ACM SIGMOD Record, 18(3), 20-28. doi:10.1145/71031.71034Chen, H. (2010). Editorial. ACM Transactions on Management Information Systems, 1(1), 1-5. doi:10.1145/1877725.1877726Clivillé, V., Berrah, L., & Mauris, G. (2007). Quantitative expression and aggregation of performance measurements based on the MACBETH multi-criteria method. International Journal of Production Economics, 105(1), 171-189. doi:10.1016/j.ijpe.2006.03.002Curtis, B., Kellner, M. I., & Over, J. (1992). Process modeling. Communications of the ACM, 35(9), 75-90. doi:10.1145/130994.130998Dalal, N. P., Kamath, M., Kolarik, W. J., & Sivaraman, E. (2004). Toward an integrated framework for modeling enterprise processes. Communications of the ACM, 47(3), 83-87. doi:10.1145/971617.971620Doumeingts, G., & Vallespir, B. (1995). A methodology supporting design and implementation of CIM systems including economic evaluation. In P. Brandimarte & A. Villa, Eds. Optimization Models and Concepts in Produc-tion Management (pp. 307-331). New-York, NY: Gordon and Breach Science Publishers.Doumeingts, G., & Ducq, Y. (2001). Enterprise modelling techniques to improve efficiency of enterprises. Production Planning & Control, 12(2), 146-163. doi:10.1080/09537280150501257Harzallah, M., Berio, G., & Vernadat, F. (2006). Analysis and modeling of individual competencies: toward better management of human resources. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 36(1), 187-207. doi:10.1109/tsmca.2005.859093Jagdev, H. S., & Thoben, K.-D. (2001). Anatomy of enterprise collaborations. Production Planning & Control, 12(5), 437-451. doi:10.1080/09537280110042675JORYSZ, H. R., & VERNADAT, F. B. (1990). CIM-OSA Part 1: total enterprise modelling and function view. International Journal of Computer Integrated Manufacturing, 3(3-4), 144-156. doi:10.1080/09511929008944444Khalaf, R., Curbera, F., Nagy, W.A., Mukhi, N., Tai, S., & Duftler, M. (2005). Understanding Web Services. In M. Singh, Ed. Practical Handbook of Internet Computing (Chap. 27). Boca Raton, FL: Chapman & Hall/CRC Press.Kosanke, K., & Nell, J. G. (Eds.). (1997). Enterprise Engineering and Integration. doi:10.1007/978-3-642-60889-6Kosanke, K., Vernadat, F.B., & Zelm, M. (2014). Means to enable Enterprise Interoperation: CIMOSA Object Capa-bility Profiles and CIMOSA Collaboration View, Proc. of the 19th World Congress of the IFAC, Cape Town, South Africa, 24-19 August 2014.Larson, N., & Kusiak, A. (1996). Managing design processes: a risk assessment approach. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 26(6), 749-759. doi:10.1109/3468.541335Li, Q., Wang, Z., Li, W., Li, J., Wang, C., & Du, R. (2013). Applications integration in a hybrid cloud computing environment: modelling and platform. Enterprise Information Systems, 7(3), 237-271. doi:10.1080/17517575.2012.677479Owen, S., & Walker, Z. (2013). Enterprise Modelling and Architecture. New Dehli, India: Ocean Media Pvt. Ltd.Roboam, M., Zanettin, M., & Pun, L. (1989). GRAI-IDEF0-Merise (GIM): Integrated methodology to analyse and design manufacturing systems. Computer Integrated Manufacturing Systems, 2(2), 82-98. doi:10.1016/0951-5240(89)90021-9Ross, D. T., & Schoman, K. E. (1977). Structured Analysis for Requirements Definition. IEEE Transactions on Software Engineering, SE-3(1), 6-15. doi:10.1109/tse.1977.229899Shah, L.A., Etienne, A., Siadat, A., & Vernadat, F. (2014). Decision-making in the manufacturing environment using a value-risk graph. Journal of Intelligent Manufacturing, 25, 2.Scheer, A.-W. (1992). Architecture of Integrated Information Systems. doi:10.1007/978-3-642-97389-5Scheer, A.-W. (1999). ARIS — Business Process Modeling. doi:10.1007/978-3-642-97998-9Vernadat, F.B. (1996). Enterprise Modeling and Integration: Principles and Applications. London: Chapman & Hall. 528 pages.Vernadat, F. B. (2007). Interoperable enterprise systems: Principles, concepts, and methods. Annual Reviews in Control, 31(1), 137-145. doi:10.1016/j.arcontrol.2007.03.00

    Meta-Governance Framework to Guide the Establishment of Mass Collaborative Learning Communities

    Get PDF
    UIDB/00066/2020 ERASMUS +619130-EPP-1-2020-1-FR-EPPKA2-CBHE-JPThe application of mass collaboration in different areas of study and work has been increasing over the last few decades. For example, in the education context, this emerging paradigm has opened new opportunities for participatory learning, namely, “mass collaborative learning (MCL)”. The development of such an innovative and complementary method of learning, which can lead to the creation of knowledge-based communities, has helped to reap the benefits of diversity and inclusion in the creation and development of knowledge. In other words, MCL allows for enhanced connectivity among the people involved, providing them with the opportunity to practice learning collectively. Despite recent advances, this area still faces many challenges, such as a lack of common agreement about the main concepts, components, applicable structures, relationships among the participants, as well as applicable assessment systems. From this perspective, this study proposes a meta-governance framework that benefits from various other related ideas, models, and methods that together can better support the implementation, execution, and development of mass collaborative learning communities. The proposed framework was applied to two case-study projects in which vocational education and training respond to the needs of collaborative education–enterprise approaches. It was also further used in an illustration of the MCL community called the “community of cooks”. Results from these application cases are discussed.publishersversionpublishe

    Collaborative Networks as a Mechanism for Strengthening Competitiveness: Small and Medium Enterprises and Non-state Actors in Tanzania as Cases

    Get PDF
    Industrial organizations are increasingly facing more challenges in the market and society. These challenges include the scarcity of resources, short delivery time requirement, frequent emergence of new technologies, demand for wide variety of competencies, and limited availability of up-to-date experts. Coping with these challenges requires continuous restructuring and managing changes in organizations. However, only large organizations can afford to institute these changes. It also requires continuous innovation in deployment of emerging technologies and management concepts. Thus, due to their small size, lack of competitive capital and inability to acquire complex opportunities, majority of SMEs and non state actors (NSA) find it difficult to cope with the required speed of change. However, both research and practice have shown that dynamic time/cost-effective and fluid creation of temporary collaborative networks wrought by ICTs is an enabler for the small and medium enterprises (SMEs) and NSAs in quest of enhancing competitiveness in the marketplace. This article contributes to the understanding of the challenges related to the establishment of collaborative networks of organizations in developing economies and proposes a customizable model for establishing those networks.   Key Terms: Collaborative networks, developing economies, ICTs, SMEs, non state actors, collaborative capital &#160

    Managing Changes in Collaborative Networks: A Conceptual Approach

    Get PDF
    Collaborative Networks represent organizational forms that became omnipresent in today’s way of making business. Such organizational forms are often established in order to satisfy a complex customer need, which one company could not satisfy on its own. This means that the participating companies are to a certain degree dependent on each other. Managing inter-firm relationships by means of inter-organizational interdependencies represents an important Business-IT Alignment issue. In this paper, we present the Dependency-based Alignment Framework, which represents a conceptual approach for managing changes in Collaborative Networks from a holistic perspective. A detailed and methodologically well-founded approach in the definition and design of our framework is accompanied by a detailed investigation of relevant properties of this design artifact. To demonstrate the applicability of our framework in practice, we introduce a case study, which uses Semantic Media Wiki and the SPARQL query language. Finally, we evaluate our results in an argumentative and deductively descriptive way
    corecore