42 research outputs found

    On Cells and Agents : Geosimulation of Urban Sprawl in Western Germany by Integrating Spatial and Non-Spatial Dynamics

    Get PDF
    Urban sprawl is one of the most challenging land-use and land-cover changes in Germany implicating numerous consequences for the anthropogenic and geobiophysical spheres. While the population and job growth rates of most urban areas stagnate or even decrease, the morphological growth of cities is ubiquitous. Against this backdrop, the quantitative and qualitative modeling of urban dynamics proves to be of central importance. Geosimulation models like cellular automata (CA) and multi-agent systems (MAS) treat cities as complex urban systems. While CA focus on their spatial dynamics, MAS are well-suited for capturing autonomous individual decision making. Yet both models are complementary in terms of their focus, status change, mobility, and representations. Hence, the coupling of CA and MAS is a useful way of integrating spatial pattern and non-spatial processes into one modeling infrastructure. The thesis at hand aims at a holistic geosimulation of the future urban sprawl in the Ruhr. This region is particularly challenging as it is characterized by two seemingly antagonistic processes: urban growth and urban shrinkage. Accordingly, a hybrid modeling approach is to be developed as a means of integrating the simulation power of CA and MAS. A modified version of SLEUTH (short for Slope, Land-use, Exclusion, Urban, Transport, and Hillshade) will function as the CA component. SLEUTH makes use of historic urban land-use data sets and growth coefficients for the purpose of modeling physical urban expansion. In order to enhance the simulation performance of the CA and to incorporate important driving forces of urban sprawl, SLEUTH is for the first time combined with support vector machines (SVM). The supported CA will be coupled with ReHoSh (Residential Mobility and the Housing Market of Shrinking City Systems). This MAS models population patterns, housing prices, and housing demand in shrinking regions. All dynamics are based on multiple interactions between different household groups as well as stakeholders of the housing market. Moreover, this thesis will elaborate on the most important driving factors, rates, and most probable locations of urban sprawl in the Ruhr as well as on the future migration tendencies of different household types and the price development in the housing market of a polycentric shrinking region. The results of SLEUTH and ReHoSh are loosely coupled for a spatial analysis in which the municipal differences that have emerged during the simulations are disaggregated. Subsequently, a concept is developed in order to integrate the CA and the MAS into one geosimulation approach. The thesis introduces semi-explicit urban weights as a possibility of assessing settlement-pattern dynamics and the regional housing market dynamics at the same time. The model combination of SLEUTH-SVM and ReHoSh is finally calibrated, validated, and implemented for simulating three different scenarios of individual housing preferences and their effects on the future urban pattern in the Ruhr. Applied to a digital petri dish, the generic urban growth elements of the Ruhr are being detected

    Assessing growth scenarios for their landscape ecological security impact, using the SLEUTH urban growth model

    Get PDF
    Rapid urban population growth and the associated expansion of urban areas in China (as elsewhere) present significant environmental challenges, and threaten urban and regional ecological security. Modeling land use changes is one way to aid the management of cities. Using remote sensing and geographic information system (GIS) software platforms, land use data for the years 1989, 1996, 2004, and 2010 for the area inside the Jinan third ring-road were interpreted. An urban green space network was developed, as a core strategy to ensure landscape ecological security, and subjected to ecological sensitivity analysis. The green space network and the result of the ecological sensitivity analysis were integrated into the exclusion/attraction layer of an existing cellular automaton model, SLEUTH (Slope, Land use, Exclusion/attraction, Urban extent, Transportation, and Hillshade). A development scenario for land use change was constructed that integrates these Landscape Ecological Security Development (LESD) strategies and reveals trends in urban growth for the different development scenarios between 2011 and 2040. The results of the LESD scenario were compared with those from two other development scenarios: the Historical Trend Development (HTD) and the Transit-Oriented Development (TOD). The study revealed three significant findings. First, change in the urban area in the study will be dominated by urban edge growth and transit-oriented development, while spontaneous and cluster growth were not obvious. Second, the growth rate of built-up land in the urban area in all three scenarios exhibits emerging trends. The growth rate, according to the LESD scenario, is significantly lower than that for the HTD and TOD scenarios, and encroachment into natural ecological space (such as woodlands, water, and agricultural land) is less than that in the other two scenarios. This result indicates that the LESD scenario can protect natural ecological spaces effectively and can significantly reduce the ecological security risk. This aligns with the integration of smart growth and smart conservation. Third, integrating LESD into the SLEUTH model results in the ability to evaluate urban development policies and can help characterize development strategies for urban landscape ecological security. The results of this study provide reference data and a basis for decision-making for the future management of urban growth, urban planning, and land use planning

    Urban Development Modeling Using Integrated Fuzzy Systems, Ordered Weighted Averaging (OWA), and Geospatial Techniques

    Full text link
    This paper proposes a model to identify the changing of bare grounds into built-up or developed areas. The model is based on the fuzzy system and the Ordered Weighted Averaging (OWA) methods. The proposed model consists of four main sections, which include physical suitability, accessibility, the neighborhood effect, and a calculation of the overall suitability. In the first two parts, physical suitability and accessibility were obtained by defining fuzzy inference systems and applying the required map data associated with each section. However, in order to calculate the neighborhood effect, we used an enrichment factor method and a hybrid method consisting of the enrichment factor with the Few, Half, Most, and Majority quantifiers of the ordered weighted averaging (OWA) method. Finally, the three maps of physical suitability, accessibility, and the neighborhood effect were integrated by the fuzzy system method and the quantifiers of OWA to obtain the overall suitability maps. Then, the areas with high suitability were selected from the overall suitability map to be changed from bare ground into built-up areas. For this purpose, the proposed model was implemented and calibrated in the first period (2004–2010) and was evaluated by being applied to the second period (2010–2016). By comparing the estimated map of changes to the reference data and after the formation of the error matrix, it was determined that the OWA-Majority method has the best estimation compared to those of the other methods. Finally, the total accuracy and the Kappa coefficient for the OWA-Majority method in the second period were 98.98% and 98.98%, respectively, indicating this method’s high accuracy in predicting changes. In addition, the results were compared with those of other studies, which showed the effectiveness of the suggested method for urban development modeling.</jats:p

    A Language-centered Approach to support environmental modeling with Cellular Automata

    Get PDF
    Die Anwendung von Methodiken und Technologien aus dem Bereich der Softwaretechnik auf den Bereich der Umweltmodellierung ist eine gemeinhin akzeptierte Vorgehensweise. Im Rahmen der "modellgetriebenen Entwicklung"(MDE, model-driven engineering) werden Technologien entwickelt, die darauf abzielen, Softwaresysteme vorwiegend auf Basis von im Vergleich zu Programmquelltexten relativ abstrakten Modellen zu entwickeln. Ein wesentlicher Bestandteil von MDE sind Techniken zur effizienten Entwicklung von "domänenspezifischen Sprachen"( DSL, domain-specific language), die auf Sprachmetamodellen beruhen. Die vorliegende Arbeit zeigt, wie modellgetriebene Entwicklung, und insbesondere die metamodellbasierte Beschreibung von DSLs, darüber hinaus Aspekte der Pragmatik unterstützen kann, deren Relevanz im erkenntnistheoretischen und kognitiven Hintergrund wissenschaftlichen Forschens begründet wird. Hierzu wird vor dem Hintergrund der Erkenntnisse des "modellbasierten Forschens"(model-based science und model-based reasoning) gezeigt, wie insbesondere durch Metamodelle beschriebene DSLs Möglichkeiten bieten, entsprechende pragmatische Aspekte besonders zu berücksichtigen, indem sie als Werkzeug zur Erkenntnisgewinnung aufgefasst werden. Dies ist v.a. im Kontext großer Unsicherheiten, wie sie für weite Teile der Umweltmodellierung charakterisierend sind, von grundsätzlicher Bedeutung. Die Formulierung eines sprachzentrierten Ansatzes (LCA, language-centered approach) für die Werkzeugunterstützung konkretisiert die genannten Aspekte und bildet die Basis für eine beispielhafte Implementierung eines Werkzeuges mit einer DSL für die Beschreibung von Zellulären Automaten (ZA) für die Umweltmodellierung. Anwendungsfälle belegen die Verwendbarkeit von ECAL und der entsprechenden metamodellbasierten Werkzeugimplementierung.The application of methods and technologies of software engineering to environmental modeling and simulation (EMS) is common, since both areas share basic issues of software development and digital simulation. Recent developments within the context of "Model-driven Engineering" (MDE) aim at supporting the development of software systems at the base of relatively abstract models as opposed to programming language code. A basic ingredient of MDE is the development of methods that allow the efficient development of "domain-specific languages" (DSL), in particular at the base of language metamodels. This thesis shows how MDE and language metamodeling in particular, may support pragmatic aspects that reflect epistemic and cognitive aspects of scientific investigations. For this, DSLs and language metamodeling in particular are set into the context of "model-based science" and "model-based reasoning". It is shown that the specific properties of metamodel-based DSLs may be used to support those properties, in particular transparency, which are of particular relevance against the background of uncertainty, that is a characterizing property of EMS. The findings are the base for the formulation of an corresponding specific metamodel- based approach for the provision of modeling tools for EMS (Language-centered Approach, LCA), which has been implemented (modeling tool ECA-EMS), including a new DSL for CA modeling for EMS (ECAL). At the base of this implementation, the applicability of this approach is shown

    A microsimulation approach for modelling the growth of small urban areas

    Get PDF
    Tese de mestrado. Projecto e Planeamento do Ambiente Urbano. Faculdade de Engenharia. Universidade do Porto, Universidade de Coimbra. Faculdade de CiĂŞncias e Tecnologia. 200
    corecore