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Abstract 
As urbanization occurs, cities and villages expand outwards claiming new areas. This process exerts high 
pressure on the open and natural environment and signifies the importance of urban management and 
development. However, the driving forces and effects associated with urbanization affect various 
disciplines, and temporal and spatial scales, which makes understanding and describing them and their 
interrelations a complex issue (Goldstein, et al. 2004). An urban model could function as a planning support 
system to obtain said knowledge, because it enables the simplification of urban complexity and allows to 
combine several disciplines in a multi-disciplinary approach. For studying the urban environment, cellular 
automata has become a popular and successful modelling method due to its simplicity to replicate the 
urban complexity.  
 This master’s thesis aimed at studying the urban growth patterns in Groningen by applying a 
planning support system, namely the cellular automaton SLEUTH. The main objective of this research was 
to calibrate and validate SLEUTH to fit Groningen’s context in an attempt to predict the future land cover 
change of Groningen up to 2045. It did this with an integrated application of: Geographical Information 
Systems, remote sensing, and a multicriteria evaluation. 
 The cellular automata method is underpinned by Complexity Theory. A theory that does not have 
a precise definition, instead, it is described by characteristics, such as self-organizing, dynamical, chaotic 
and critical nature, non-linearity, emergence and self-similarity. These characteristics are derived from 
other paradigms that reach back to the 19th century, such as Cerdá’s Theory on Urbanización and Geddes’ 
Evolutionary Paradigm and Emergence, and other paradigms that have roots in physics and mathematics, 
such as The General Systems Theory, Chaos Theory and fractal geometry. Wolfram (1984b) showed that 
the characteristics of these paradigms and theories exist in cellular automata, and cellular automatons 
were able to capture complex emerging structures based on simple mathematical rules. Couclelis (1985; 
1989) developed the first theoretical approaches for the spatial application of cellular automata to cities. 
After which, Itami (1994) theorized that if cellular automata is applied to a lattice, it could also be integrated 
into Geographical Information Systems to facilitate visualization and interpretation of the simulation results. 
Then in the 1990s, the first urban cellular automatons were developed by Batty and Xie (1994), White et al. 
(1997) and Clarke et al. (1997).  
 In this master’s thesis an overview was presented of fundamental principles of urban modelling, 
after which two modelling methods were elaborated: agent-based modelling and cellular automata. Five 
urban models are discussed that can simulate land cover change (UrbanSim, Metronamica, Dinamica 
EGO, CLUE and SLEUTH), thereafter the SLEUTH model is adopted for this research and explained in 
detail. The urban extent input data was derived from a land use classification by object-based remote 
sensing. In addition, the excluded layer is an important input data layer of SLEUTH, as it plays a key role 
in accommodating for the dispersed urban growth patterns in Groningen. For this study, the excluded layer 
was an urbanization-suitability layer through a multicriteria evaluation, wherein factors were standardized 
through fuzzy set theory and weighted by analytical hierarchy process.  

Further, calibration and validation are essential parts of predictive modelling and become even 
more important when models are used as planning support systems. Often the schism between these parts 
is poorly defined (Pontius, et al., 2004). In light of this critique, the validation procedure for his research 
was separated through time, where the input data from 1973 up to 2006 was part of model calibration 
through the use of a regular ‘Brute-Force’ calibration with the Optimal SLEUTH metric (Silva & Clarke, 
2002), and the urban area and patterns of 2006 up to 2015 was predicted, which were used for model 
validation by three-map comparison (Pontius, et al., 2008), budgets of components of agreement and 
disagreement, and multiple resolution comparison (Pontius, et al., 2011; Pontius, et al., 2004). 
 The modelling results of calibration showed that based on the goodness of fit measures that E0 
performed below acceptable, which is the regular excluded layer only incorporating constraints. E1 should 
be considered a questionable result, which is the excluded layer based on a multicriteria evaluation. E2 
and E3 achieved sufficient fit, which are the excluded layers based on a multicriteria evaluation that 
includes the policies of respectively, 1971 and 1978. Validation showed that for none of the excluded 
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layers, the amount correctly predicted change was larger than the sum of the various types of error, i.e. a 
figure of merit of 50%. In fact, the highest overall figure of merit was only 25%, showing SLEUTH had 
difficulties in accurately simulating under these circumstances. Further, validation showed that all excluded 
layers achieved higher fit-score than their random counterpart, yet none were able to achieve higher fit-
scores than the null map at the finest resolution (i.e. 30 m). Which suggest that having a map of 2006 is a 
better predictor of the urban growth patterns in 2015 than any of the excluded layers at the finest resolution. 
Notwithstanding, allocation disagreement resolved at coarser resolutions and at a resolution of 16 or 32 
times the cell side, E2 and E3 were more accurate than the null map and the random map, and achieved 
a figure of merit up to 30%. This suggests that SLEUTH is able to provide good expression of neighborhood 
relationship at coarser scales. In addition, based on validation and compared to the FOM of other 
applications (Pontius, et al., 2008), E2 and E3 could be classified as reasonably accurate, E0 had a low 
accuracy and E1 had mediocre accuracy at best. Further in-depth analysis showed that SLEUTH lacks 
mechanism that were found important to the study area. For example, the study area could benefit from a 
multi-scale or multi-resolution approach, and the inclusion of models that could forecast regional demands 
regarding real-estate and changes in demographics, to account for regional differences.  

Concluding, to answer to the main research question, none of the excluded layers were capable 
of capturing the dispersed urban growth patterns in the study area during simulation or prediction. Hence, 
the assumption was made that the scenarios used for predicting, would also not be able to produce 
accurate urban growth patterns, as these are based on the same principles as used in the excluded layers. 
Despite, the integrated application of Geographical Information Systems, remote sensing, a multicriteria 
evaluation for urban suitability and SLEUTH, did show (much) higher goodness of fit and (much) higher 
accuracy for the excluded layers that incorporated an urbanization-suitability layer based on an 
multicriteria evaluation, as compared to the excluded layer that did not. Thus, SLEUTH’s excluded layer 
could be further tested and improved to fit Groningen’s context, SLEUTH could be coupled with 
complementary methods to include demographics or socio-economic variables, or a different urban model 
could be used that includes more sophisticated mechanics. 
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Chapter 1: Introduction 
The concentration of population in urban areas and the subsequent urbanization are world-wide 
phenomena. The various effects of urbanization have been studied since the 19th century and were often 
considered a problem that could be, and should be, controlled via planning and policies. This kind of 
approach has its roots in physicalism, a concept that urban problems could be solved by shaping the 
physical urban environment (Batty & Marshall, 2009). Ever since the 19th century, with the rise of Urbanism 
as a science (Soria y Puig, 1999), planning and policies aimed at manipulating the physical environment 
were seen as the solution to controlling the effects caused by urban growth. However, as urbanization is 
of great complexity, affecting the urban structure at multiple spatial and temporal scales, the effects of 
policies and urban plans regularly had unforeseen consequence (Batty, 2014). Controlling the city, its 
effects, problems and inhabitants was not that straightforward.  

At the end of the 1940s the digital computer appeared, which allowed rapid and large-scale 
numerical processing. This new technology enabled researchers to operationalize their mathematical 
theories on spatial systems via urban modelling in an attempt to unravel the urban complexity (Hall, 1996). 
Consequently, this led to a diverse array of quantitative simulation models that attempted to explore urban 
growth patterns. A drawback of these spatial models was that they were complicated and heavy-
engineering based rather than theory, and failed to capture the urban complexity (Batty, 1976). In the 
1980s, the field of spatial modelling was revived by, amongst others, Wolfram (1984b) who showed that 
simple rules in cellular automata (CA) could replicate complex, emerging structures and patterns found in 
nature, and Couclelis (1985; 1989) who developed the first theoretical approaches for the spatial 
application of CA to cities. Subsequently, during the last three decades the field of urban modelling evolved 
rapidly and provided new tools to understand the drivers of change behind urban dynamics. For studying 
urban dynamics, CA has become a popular and successful modelling method due to its simplicity to 
replicate complexity. Moreover, as CA is in itself spatial and is applied to a grid of geographical data, it 
can be integrated in Geographical Information Systems (GIS) to facilitate analysis, visualization and 
interpretation of the modelling results (White, Engelen, & Uljee, 1997; Itami, 1994; Batty & Xie, 1994).  

Problem definition 
Over half of the world population lives in urbanized areas and the number of city dwellers is expected to 
rise in the coming years (UN, 2014). Generally, the Netherlands is conceived as one of the most densely 
urbanized areas in the world, and whilst this is true, Dutch cities are relatively small and urban development 
is dispersed (Broitman & Koomen, 2015). Nonetheless, as urbanization occurs, cities and villages expand 
outwards claiming new areas. This process exerts high pressure on the open and natural environment and 
signifies the importance of urban management and development. Therefore, during the last 70 years the 
Dutch planning concept was to anticipate urban growth and minimize the spatial footprint of the city and 
preserve the natural environment (Faludi & van der Valk, 1994; Zonneveld, 1991). As early as 1972, the 
city of Groningen has attempted to deal with this urban complexity via the compact city policy, a policy 
that the city of Groningen continues to operationalize (Schroor, 2009).  

However, the driving forces and effects associated with urbanization affect various disciplines, 
and temporal and spatial scales, which makes understanding and describing them and their interrelations 
a complex issue. This knowledge is required to support local urban planners and decision-makers to 
evaluate the consequences of their planning policies (Koomen, Rietveld, & de Nijs, 2008). An urban model 
could function as a planning support system to obtain said knowledge, because it enables the 
simplification of urban complexity and allows to combine several disciplines in a multi-disciplinary 
approach (Goldstein, Candau, & Clarke, 2004). They allow the study of interaction between individual 
entities at a lower level that result in patterns at a higher level. This is useful in urban planning, where the 
construction of a society by individuals also influences the human activities of society. Through the use of 
simulations and scenarios, valuable insight into future urban dynamics could be provided to local urban 
planners and decision-makers. 
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Scope of the research 
This master’s thesis is an exploratory research that studies the evolution of urban growth and urban 
patterns of the Groningen region, from here on referred to as Groningen, over different time scales through 
computer simulations. It does so by applying an urban model to the Dutch context. However, it does not 
try to build its own urban model, rather, it will be using an existing model that has been frequently applied 
throughout the world, namely the self-modifying CA SLEUTH (Clarke, Hoppen, & Gaydos, 1997) and the 
improved version SLEUTH-3r (Jantz, Goetz, Donato, & Clagget, 2010), referred to as SLEUTH unless 
specifically discussing SLEUTH-3r. This research focusses on the core of the compact city policy, which 
is minimizing the spatial footprint of the city (Zonneveld, 1991) and urban land cover change. An overview 
of what is believed to be a relevant theoretical background with regard to CA and urban modelling will be 
presented, without explicitly attempting to expand underlying theories of complexity or urbanization. 
Instead, this study is a practical research concerned with land cover changes, with an integrated 
application of: GIS, remote sensing (RS), multicriteria evaluation (MCE) and an urban growth model (UGM). 
In that effort, it does not study the correctness of planning policies that have been applied by Groningen 
in the past, but it attempts to examine the dynamic outcomes of urbanization to support local urban 
planners and decision-makers. Also, it does not explicitly attempt to allocate urban development that could 
cope with future human activities or growth, since an urban model will only provide a rough possible 
indication of land cover change (Timmermans, 2003).  

Therefore, the scope of the research is limited to testing its hypotheses that: (a) it is possible to 
calibrate a UGM to Groningen’s context by combining separate tools (i.e. GIS, RS, MCE and UGM) and 
forecast future urban dynamics under different planning scenarios that fit into the context of Groningen, 
and (b) that other relevant factors that influence the urban development in Groningen could be 
incorporated in the UGM with an urbanization-suitability layer based on an MCE.  

Major advantages of the modelling and simulation approaches adopted by this research are that: 
the simulation will be based on accurate satellite imagery data by RS, which will reveal the history of urban 
expansion; the MCE will be able to include more driving forces of urban development that can be 
integrated into the UGM; and this type of modelling will help in exploring the future urban dynamics through 
scenarios. Drawbacks of this type of approach are that through the use of RS and MCE, data acquisition 
will be time-consuming and only a static temporal and spatial change between defined intervals will be 
recorded. This emphasizes the difficulties in conducting a temporal sensitivity analysis on the simulation 
results and the difficulties in underpinning the growth process in the study area. 

Research aims and objectives 
The aim of this master’s thesis is to contribute to the understanding of CA and urban modelling as planning 
support systems. It attempts to review relevant theories on complexity and to obtain an empirics-based 
understanding of said theory by applying a CA. Therefore, the main research objectives are:  

 calibrating and validating a UGM to suit Groningen’s context; 
 simulating and understanding the urban growth patterns produced by the calibration phase; 
 and predicting the future urban dynamics, spatially and temporally, using Groningen.  

Accordingly, this leads to the following research question: “What will be the land cover change of 
Groningen in 2045 as compared to 2015 based on three different scenarios, to explore Groningen’s future 
urban dynamics?” 

Additional research aims are to apply SLEUTH to a dispersed urban area that is relatively small 
with a slow absolute urban growth as compared to study areas SLEUTH is commonly applied to (García, 
Santé, Boullón, & Crecente, 2012). Due to the dispersed character, the area contains a variety of villages 
and cities of different sizes that all experienced different types of urban growth and show different urban 
patterns. In that regard, an urbanization-suitability layer would be key to differentiate the various types of 
urban growth and to capture the growth pattern with an UGM. Furthermore, this research assesses the 
feasibility of applying SLEUTH to a city with a clear spatial policy to remain compact and minimize urban 
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growth. Generally, the Netherlands has a long tradition of urban planning and since the Second World 
War, urban planning has always had a strong influence on urban growth. Hence, incorporating policy maps 
into an urbanization-suitability layer may be desirable in order to accurately model historic and predict 
future urban dynamics. Although, guiding or masking the model input with policy maps into favoring more 
likely outcomes, could bias the modelling procedure in to better calibration and forecasting results (Akın, 
Clarke, & Berberoglu, 2014; Pontius, Huffaker, & Denman, 2004). This leads to the question: at what point 
is the model guided or biased too much by policies and masking? Accordingly, both additional research 
goals express the importance of calibrating an UGM to fit Groningen’s context. 

Relevance 
The societal relevance comes from the analysis of spatial expansion patterns and land use changes that 
could provide insight into future urban dynamics of Groningen, which is of great importance for local urban 
planners and decision-makers. A CA as a planning support system is a useful tool that could visualize the 
historical growth patterns and alternative futures that are researched, which helps in exploring and 
understanding future urban dynamics.  

The scientific relevance is found in: (a) most examples found in literature apply SLEUTH to rapidly 
growing, large urban areas, where it is relatively easy to make generalizations and extrapolate processes 
than in slower growing areas (García, et al., 2012). Whilst Groningen is the second fastest growing city in 
the Netherlands, it is different from other areas that have been researched with SLEUTH, since it is a much 
smaller urban area and has not experienced same urban sprawl due to the more modest absolute growth 
rates and the compact city policies that have been applied to Groningen (Schroor, 2009). (b) Initially 
SLEUTH had been primarily applied to North-American cities and the application to cities outside of North-
American was questioned. However, the last few years this has expanded rapidly to Chinese, Middle-
Eastern and European cities. Results have shown that SLEUTH is able to identify local characteristics and 
predict future urban land change correctly across the globe (Chaudhuri & Clarke, 2013b). As local 
characteristics are often more similar in nearby regions and delineated by country borders, it would be 
useful to apply SLEUTH to the Dutch context. Consequently, this could help assess the feasibility of 
applying SLEUTH to the Netherlands. 

Research methodology 
The following section operationalizes the research statement as outlined above. This research consists of 
a theoretical approach and a practical approach (Figure 1). The theoretical approach adopts the literature 
review as a method to research Complexity Theory, urbanization and CA. The practical approach consists 
of a quantitative, empirical research using a computer simulation to gain insight in land cover changes 
between 2015 and 2045 based on historic data from 1973 to 2015 for Groningen. Afterwards, the future 
urban dynamics are explored through scenarios. The research design consists of the following methods: 
(a) a literature research trough literature review, and (b) a case study using SLEUTH.  

The research methods applied in the practical approach will be addressed in more detail in 
Chapter 3 since the SLEUTH framework requires a considerable amount of pre-processing and when 
setting up a new application. During the practical research, special attention will be paid to the three 
phases of the modelling efforts: data acquisition, calibration and validation phases. Ensuring the quality of 
the input data is one of the most important elements of model calibration (Silva & Clarke, 2002). Therefore, 
data acquisition and data transformation are key to understanding errors and uncertainties in the input 
data and a crucial component for a successful simulation and interpretation of results (Yeh & Li, 2006). 
Similarly, the calibration phase is important, if not the most critical portion of the modelling effort. It is during 
this phase that an estimate of the parameter values, which describe an urban system, are determined, and 
upon which all forecasting and scenario simulation is based (Batty, 1976). Validation is an essential part 
of predictive modelling when models are used as planning support systems, especially since model 
validation is often poorly defined or even neglected (Pontius, et al., 2004; Pontius, Peethambaram, & 
Castella, 2011). 
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Figure 1: A visualization of the research methodology as applied in this research. 

Research guide 
This master’s thesis is divided into six chapters. The second chapter adopts a theoretical approach that 
aims at discussing the theoretical background of urbanization and urban modelling in an historical context. 
It focusses on Complexity Theory and various related theories such as: urbanization, the evolutionary 
paradigm, the General System Theory, emergence, Chaos Theory and fractal geometry. All of these 
theories include some of the most important characteristics that lay the foundations of Complexity Theory 
and CA. From there on, more is explained on the origin and general structure of spatial models and in 
particular CA. The next section provides an overview and brief explanation of spatial models that are 
currently available and commonly used for the simulation of urban dynamics. Lastly, the chapter end with 
concluding notes and explaining why SLEUTH was chosen for this study. 

The third chapter will explain the research methodology in more detail. Initially, the delineation of 
the study area is shown and a brief historic overview of the study area is given. Afterwards, methods used 
in this study are discussed as well as the various scales that they are applied to. The next section of the 
chapter focus on the calibration, based on a SLEUTH-specific calibration procedure. The subsequent 
validation of SLEUTH is discussed in the following section. Both are discussed in detail, emphasizing the 
fact that these two processes are crucial to a successful modelling result and to properly define them as 
two separate phases during urban modelling. The next section explains the prediction procedure as 
conducted in this study and the three scenarios that were used in prediction. Lastly, the chapter end with 
concluding notes and a brief overview of the third chapter. 
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The following chapter elaborates on the data pre-processing that was done during this study. This 
includes the pre-processing of satellite data via RS, the input data for SLEUTH and the various input layers 
that were needed for an urbanization-suitability layer based on an MCE, to implement in the excluded layer 
of SLEUTH. The chapter focusses on explaining how the input data was pre-processed and why certain 
decisions were made, in order to determine the accuracy of the input data, so the subsequent validation 
could properly assess the accuracy of the modelling results. 

The fifth chapter will present the calibration, validation and prediction results based on the 
application of SLEUTH. Lastly, the final chapter will discuss the conclusion based on the whole research 
and specifically the application of SLEUTH to Groningen. 
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Chapter 2: Theoretical Background 
This chapter adopts a theoretical approach that aims at discussing the theoretical background of 
urbanization and urban modelling. It focusses on complexity and various related theories in section 2.1. 
All of these theories include some of the most important characteristics that lay the foundations of 
Complexity Theory and CA. From there on, more is explained on the general structure of urban models 
and in particular the CA and agent-based methods in section 2.2. Section 2.3 provides an overview and 
brief explanation of five urban models that are currently available and commonly used for the simulation of 
urban dynamics. Lastly, the chapter concludes in section 2.4. 

2.1 Complexity Theory 
CA has become a popular modelling method to understand urban land use change due to its simplicity to 
replicate emerging and complex patterns. To give meaning to the term CA, the underlying principle of 
complexity will be discussed. Complexity is a theory that consists of diverse concepts reaching all the way 
back to the 19th century. Therefore, some relevant concepts and theories will be elaborated: urbanización, 
the evolutionary paradigm, the General Systems Theory, emergence, Chaos Theory and fractal geometry. 
The theories and paradigms that will be briefly discussed are merely a portion of the literature that is the 
basis of Complexity Theory. However, these function as a scope to view Complexity Theory to provide 
some insight in the origins of CA.  

Urbanización 
The concentration of population in urban areas and the subsequent urban growth are world-wide 
phenomena. These phenomena have its origins in a time in transition: a transition from a rural to urban 
society, driven by the industrial revolution. The zeitgeist of this period is portrayed by on one side the 
fascination of the metropolitan society as described by Simmel (1903). To him the city was an opportunity, 
one filled with uncertainty, marking the schism between a rural and urban society. It was a place producing 
conditions that liberated the metropolitan man, as well as overstimulate his senses.  This was unfathomable 
to those living in the country and is what separated the city dweller from his fellow man (Simmel, 1903). 
The city was a place of luxury, watching and being watched, with a distant yet intensely social-cultural 
atmosphere (Benjamin, 1935). 

On the other side there was the rejection of the metropolis, a grim image of the sporadically ever-
growing “monster Leviathan, stretching acre upon acre into the far distance”, as Wright (1901) so 
eloquently phrased in his piece: “The Art and Craft of the Machine”. “Be gently lifted at nightfall to the top 
of a great down-town office building, and you may see how in the image of material man, at once his glory 
and menace, is this thing we call a city” (p. 68). This rejection of the city led to the ‘Garden City’ concept 
by Howard (1902), who showed a similar distaste of the city. “I am always haunted by the awfulness of 
London: by the great appalling fact of these millions cast down, as it would appear by hazard, on the banks 
of this noble stream, working each in their own groove and their own cell, without regard or knowledge of 
each other” (p. 10). Both Howard and Wright were concerned with the well-being of the city dwellers and 
saw the negative social and health effects cities had on its inhabitants that were most acute in large cities. 
Therefore, both developed their utopian antithesis of the industrial city, their antidote to the greatest danger 
of modern existence.  

The idea that urban growth was a monstrous, uncontrollable growth dominated the origins of urban 
planning. The growth and various problems a city produced were considered a problem that could be, 
and should be, controlled via planning and policies. This kind of approach has its roots in physicalism, a 
concept that is based on the idea that urban problems could be solved, and the behavior of the masses 
could be controlled by shaping the physical urban environment (Batty & Marshall, 2009).  

Ever since the 19th century, as a reaction to the urban chaos unraveled by the industrial revolution, 
centralized planning and policies were seen as the solution to controlling the effects caused by urban 
growth. Exemplar to the paradigm of physicalism were Haussmann and Cerdá, who both lived in an era 
where it became important to perform some sort of control over the rapidly growing industrial cities. 
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Between 1852 and 1870, Haussmann was one of the first to attempt this on a large scale by modernizing 
Paris. His goal was to solve the problems of overcrowding, crime, traffic circulation and the spreading of 
diseases. He attempted to do this by controlling the city via creating a whole circulatory and respiratory 
system that would turn the city into an operative whole. Similarly, in 1860 Cerdá attempted to improve the 
living conditions and infrastructural circulation in Barcelona via his top-down urban expansion plans. 
However, as urban areas are structures of great complexity, the effects of policies and urban plans 
regularly had unforeseen consequences. Controlling the city, its effects, problems and inhabitants was not 
that straightforward.  

In the 19th century, with the advances of modern civilization, Cerdá predicted that the construction 
of cities would become a true science. He foresaw the coming of the new science of urbanism and 
developed the concept of urbanización in ‘Teoría General de la Urbanización’ in 1876. He understood that 
the industrial revolution and “the harnessing of steam as a driving force had signaled the end of an era for 
humanity and the beginning of another” (Soria y Puig, 1999, p. 54). With the birth of new infrastructures 
such as telecommunications, sewage systems and railroads, he foresaw a civilization of movement and 
communication. A dynamic place where time is counted in seconds and distance in myriametres (i.e. 10 
kilometers). He developed an integrated approach to urbanism as “today everything is movement, 
everything is expansion, everything is communicativeness” (Soria y Puig, 1999, p. 57) and proposed a 
radical theory that the infrastructure and especially the circulacíon, were fundamental to urbanization. Prior 
to Cerdá circulation, was used as an analytical framework to do calculations and explain or describe the 
current state. However, Cerdá envisioned circulacíon being the theoretical grounds on which the current 
state could be transformed in service of a mobile and alterable urban area and society (Adams, 2014).  

“Today, everything that matters circulates. Circulation is the central activity through which value is 
made visible. It is the concrete register of progress. For this reason, infrastructure now appears as the 
default apparatus by which such a global society mediates its needs. It is the source of our problems as 
well as the diagram for their solutions” (Adams, 2014, p.13). 

The question now was, what should Cerdá name this dynamic place? He introduced a new word: 
urbe. A term closely related to ‘city’, but as Cerdá explains: the difference being that the urban area (urbe) 
presupposes the city, it disregards the administrative boundaries that confine a city (ciudad). The urbe 
included townships and hamlets in the periphery, the towns and villages closer to the center, and in the 
very center, the urban core. These three things, distinct from each other, genuinely form what should be 
called an urbe (Soria y Puig, 1999). With the term urbe, Cerdá wanted to address the dynamic character 
of the urban area wherein infrastructure is the physical appearance of circulation, unbounded by borders. 
It allowed circulation to flow unobstructed and glue all facets and nodes of the urban area together. Cerdá 
named this infrastructure: vialidad. With this theory he recognized the urbe, with the fundaments of vialadid 
and circulacíon, as a complex process relying on five bases: technical, political, economic, legal and 
administrative. These bases were interrelated and to understand them, one would have to study 
circulacíon, vialidad and the urbe with statistical studies, what Cerdá called an “encyclopedic approach”. 
Subsequently, bearing all five bases in mind whilst developing an expansion plan for an urbe would yield 
the highest result, a harmony between “the independence of the family and the enjoyment of sociability” 
(Soria y Puig, 1999, pp. 64-66).  

Evolutionary Paradigm 
During that same period, the image of the city as a machine was replaced by that of an organism. The city 
was often analogous to an organism, such as Howard (1902), who compared settlements to organisms 
and Burgess (1924), who compared urban growth to the anabolic and catabolic states of the metabolism. 
Both these analogues have their roots in the evolutionary paradigm, which was underpinned by the work 
of Geddes (1915). He conceived the city as something organic that would evolve in relation to its 
environment. “The environment acts, through function, upon the organism and conversely the organism 
acts, through function, upon the environment” and the “…environment, function and organism are thus no 
longer viewed apart, but as the elements of a single process…” (Geddes, 1915, p. 198). His work drew 
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loosely upon the Theory of Evolution by Darwin, but emphasized the importance of the cooperation of the 
individual cells to survive competition. His comparison to evolution implied there is a fixed relation between 
the parts and the whole of the organism, but since evolution is open-ended and unpredictable, cities would 
not have an end-state. This is in contrast to traditional city planners such as Haussmann and Cerdá, who 
endeavored the optima forma of cities by the implementation of their plans.  

Additionally, Geddes speaks of Greater London that is exceeding its physical boundaries and is 
uniting neighboring villages and cities. He states that the governmental and administrative boundaries are 
constantly being outgrown. This growth process demanded a new civic statesmanship. “Constellations we 
cannot call them; conglomerations is, alas! nearer the mark at present, but it may sound unappreciative; 
what of Conurbations?” (Geddes, 1915, p. 34). Geddes envisioned a city-region that would function as a 
whole, an organism flourishing through cooperation, thus the city would only be as good as its city-region. 
A few decades earlier, that same point was made by Cerdá, when he coined the term urbe. Nonetheless, 
the term conurbation was picked up by Fawcett (1922) and officially adopted by the United Kingdom. 
Fawcett changed the definition of the term conurbation slightly, to an area occupied by a continuous series 
of dwellings, factories and other buildings, which are not separated from each other by rural land, or what 
he called the “brick-and-mortar unity”. However, it is important to note that both authors saw the region 
strictly as a physical phenomenon (Hall, 1996).  

Unfortunately, Geddes’ ideas of the evolutionary paradigm were to some extent misinterpreted. 
For example, Mumford (1938) tried to extend the organic analogue by arguing that since organisms have 
a definite boundary and maximum size, so should a city. “Like an organism, cities much achieve stability 
and continuity …if they are to perform their high function as the cradle and focus of man’s creative 
activities” (Chapman & Fenyon, 1963). Subsequently, the concentration of activity would undermine its 
benefits, leading to a formless urban tissue spreading randomly across the countryside, bringing chaos 
and congestion. Instead, he emphasized stability. Therefore, the limitations on size, density and area were 
necessary and the most important instruments of civic planning. Cities would have to be understood as a 
city-region, wherein the city could only thrive if all parts would cooperate (Mumford, 1938). This kind of 
thinking fell in line with the traditional top-down planning approach, wherein the planner knew the intended 
optima forma of a city and could apply this via his designs.  

There was a view that Geddes shared with Cerdá, which was the statistical vision they had of the 
city. The both believed one would have to understand and diagnose the urban landscape through 
statistical studies before attempting to treat its problems, “survey before plan” (Geddes, 1915). Conversely, 
Sitte (1889) spoke out against this statistical view of the city and pleaded for city planning according to 
artistic principles. “To approach everything in a strictly methodical manner and not to waver a hair’s 
breadth from preconceived patterns, until genius has been strangled to death and joie de vivre stifled by 
the system, that is the sign of our time” (p. 229). Sitte criticized modern planning and emphasized the need 
to examine the building units that composed a city, as opposed to examining the whole sanitary drainage 
or the traffic flows as Haussmann and Cerdá did. He was inspired by old Roman and Greek streets and 
plazas, the building units, that adapted to local conditions and “developed gradually in natura” (pp. 187-
188). He emphasized on the coherent organism of the town achieved through proper correlation of the 
building units. However, Sitte did not drew an analogue to an organism in the same manner as Howard or 
Geddes, as his perspective was different. Instead, he was referring to organic consistency of a city due to 
proper correlation of its building units.  

General Systems Theory 
After the Second World War, cities faced new problems and the traditional planning system was 
questioned. To tackle the problems, a few geographers sought new literature and discovered the German 
pioneers on location theory (Hall, 1996). In Germany the famous Central Place Theory was developed by 
Christaller (1933) and modified by Lösch (1940). It was based on the empirical study of central places in 
southern Germany in the 1920s. In his study Christaller ranked places in a seven-level urban hierarchy 
based on the market area radius, the population size and the population of the market area. These 
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categories went from Marktorte to Amtsort all the way up to Landstadt. He illustrated how settlements locate 
in relation to one another and how they function in a hierarchy based on regional economics. He showed 
that the complexity that Cerda speaks of is in the nature of the urban area and makes it not just a confined 
space amidst lush forests or agricultural lands. It is part of a hierarchical network of towns and cities, and 
not strictly physical, but also economic. Later, Lösch (1940) found Christaller’s theory too rigid as it 
theorized top-down, instead Lösch began with the lowest order, the farms. From there, Lösch derived 
several central places and produced a similar hierarchy as Christaller. However, akin to Sitte, his 
perspective was different and he theorized the network from the building units, the farms, as opposed to 
Christaller who theorized top-down from the central place.  

Ullman introduced the Central Place Theory to the United States and used this concept to better 
reflect the complex nature of cities via his multi nuclei model (Harris & Ullman, 1945), but it was not until 
Isard (1960) that the Central Place Theory was popularized. Derived of the new science of cybernetics by 
Wiener (1948), the aforesaid location theory and the General Systems Theory of Von Bertalanffy (1928), 
cities and regions were now conceived holistically and seen as complex systems that were only a specific 
spatial subset of a whole general class of systems. The basic principle behind the General Systems Theory 
is that complex systems could be decomposed into simpler sub-systems, which could be subdivided into 
smaller subsystems, until elementary components. In this theory, the emphasis lies on the inter-
connectedness of the parts and the whole and not the elementary components themselves (Couclelis, 
2000). A characteristic of such a system is described by Kuhn (1976) who argued that systems move 
towards an equilibrium, which suggest cities would be deterministic and have an optimal form. This idea 
aligns with the physicalist concept that was adopted by urban planners such as Haussmann and Cerdá, 
and continued the traditional planning that was set in the 19th century. 

At the end of the 1940s the digital computer appeared which would allow rapid and large-scale 
numerical processing, which would make urban planning more technical. In 1954 Mitchell and Rapkin 
(1954) suggested that urban traffic was a measurable function of urban activity and land use patterns. This 
insight enabled researchers to operationalize their theories on spatial systems with the computational 
processing and urban modelling, such as Lowry (1964) did with his model of metropolis. Accordingly, the 
first models from the 1950s and 1960s had a heavy engineering-based approach and were designed to 
solve one problem. It was thought these models could solve the problems associated with urban growth, 
because urban patterns are the result of changes in the equilibrium within cities, which could be 
understood from the macro level (Torrens, 2001). At this point in time, urban planning was still applied and 
theorized from the top down, whilst recognizing the complexity of cities. 

Emergence 
Leaping back to Geddes' evolutionary paradigm. There was one argument Geddes had missed from 
Darwin's theory. That small changes could lead to big effects. That seemingly unrelated changes can 
emerge an aggregate order. This key argument is made by several influential urbanists in the 1960s and 
1970s. For example, Alexander (1964) who argued from an architectural perspective, that cities were 
dependent on the context and formed by the context's demand, “here the human background which 
defines the need for new buildings, and the physical environment provided by the available sites, make a 
context for the form of the city's growth” (p. 16). Also, Lefebvre (1974) who argued that the spatial relations 
of the everyday life and social interactions of the population lead to the production of space. And of course, 
Jacobs (1961) who argued that the diversity that increased the quality of a city was formed by individual 
decisions and generated from the bottom upwards. These urbanists all point out that urban complexity 
could be generated as an emergent feature through local interactions. This notion is different from the 
General System Theory, which was concerned with the whole rather than the separation into individual 
parts. Instead, the aggregate system was thought to be derived of the interactions by individual parts. This 
is similar to how Lösch modified the Central Place Theory, where he left overarching hierarchy intact but 
changed the perspective on how achieve that hierarchy, i.e. from the bottom-up.  
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The first traditional urban models were not able to capture this emergent feature of urban 
complexity. As the mechanistic way cities were perceived, due to the modernistic legacy, was counter to 
the diversity that composed cities and thus destroyed heterogeneity. Lefebvre (2014) referred to this 
process as dissolving cities, where cities had become more homogeneous due to the physicalist approach 
planners had adopted, who tried to control society and events from the top-down. The underpinning issue 
was that cities were perceived as problems of simplicity, conversely: “cities happen to be problems in 
organized complexity, like the life sciences, they present situations in which a half-dozen or even several 
dozen quantities are all varying simultaneously and in subtly interconnected ways. Cities, again like the life 
sciences, do not exhibit one problem in organized complexity, which if understood explains all. They can 
be analyzed into many such problems or segments which, as in the case of the life sciences, are also 
related with one another. The variables are many, but they are not helter-skelter; they are interrelated into 
an organic whole" (Jacobs, 1961, p. 559).  Both the General Systems Theory and the organized complexity 
that Jacobs speaks of, research complex systems. They are in fact complementary theoretical 
approaches. However, the fundamental difference is that the first is theorized top-down and the latter, is 
theorized bottom-up (Couclelis, 2000).  

Cellular Automata 
The CA was developed in the 1940s by Ulam (1962), who studied the growth of crystals and Von Neumann 
(1966), who studied self-replicating systems. Both were inspired by the various technological 
advancements in electronic computing made by Turing. Von Nuemann believed that computers through 
software under certain rules or instructions could replicate complex structures and patterns. From this 
notion, he concluded that the elements of reproducibility should be cells. Von Neumann had drawn 
inspiration from Ulam, who suggested to use a discrete system to represent the self-replicating systems. 
He believed that simple cellular automata was found in a set of local rules that generated mathematical 
patterns in 2D or 3D space, where local actions would produce global order (Batty, 2005). From this, 
Conway (Gardner, 1970) developed the Game of Life that combined all these CA elements in a simple 
manner. The game showed that complex patterns could emerge, bottom-up, from simple transition rules 
and simple cell configurations.  

Therefrom, Tobler (1979) was the first who proposed to reduce geographic complexity to cells, 
thus using cellular space for geographic modelling. He showed how the earth's surface could be divided 
into an array of cells to which matrix algebra could be applied to gain, as he called it, interesting results. 
Later, Wolfram (1984b) demonstrated that natural systems of great diversity and complex patterns could 
be modeled based on mathematical equations in a discrete space and time. Wolfram (1984b) stated that 
one of the greatest advantages is the flexibility in CA, as they do not required complex mathematical 
equations or analytical equilibrium problems to be solved.  Additionally, Wolfram (1984a) noticed that, at 
least for 1D, CA could be categorized in four distinct classes of behavior: evolution that lead to 
homogenous states; evolution leads to a set of separate stables structures; evolution leads to chaotic 
patterns; and evolution leads to complex localized structures. With this classification, Wolfram drew an 
analogue between these four classes of behavior and the attractors in continuous dynamical systems, thus 
suggesting the link to Chaos Theory. 

Inspired by Tobler, Couclelis (1985; 1989) developed the first theoretical approaches for the 
spatial application of cellular automata to cities. After which, Itami (1994) theorized that if cellular automata 
is applied to a lattice, a grid of geographical data, thus it can be integrated into GIS to facilitate visualization 
and interpretation of the simulation results. Then in the 1990s, the first urban CA models were developed 
with GIS by Batty and Xie (1994), White et al. (1997) and Clarke et al. (1997).  

Chaos Theory and Fractal Geometry 
To further expand complexity, cities were linked to chaotic dynamics by Dendrinos and Sonis (1990). 
Chaos is a powerful metaphor that invokes an image of randomness, confusion and disorder. Chaos Theory 
studies the behavior and initial conditions of dynamical systems that are deterministic, yet difficult to 
predict. The nature and degree of the relationship between the parts in a chaotic system is not perfectly 
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known, therefore the system is unpredictable. However, there is a sense of underlying order and structure 
that could evolve in time through self-organization, which means the parts act in a collective manner 
through feedback mechanisms and emerge into aggregate patterns. The system has no optimal form or 
end-state, it has inequities and inefficiencies, but it is resilient within limits. Wolfram showed that initial 
conditions of a CA could be completely random, and still order and structure would appear through the 
self-organization and interaction between cells (Wolfram, 1984a; Wolfram, 1984b). 

Fractals are dynamical objects and are essentially a visualization of chaotic dynamics. Mandelbrot 
(1983) worked on fractal geometry and showed that complex structures in nature could be described by 
mathematical laws. He coined the term fractal to mean any fragmented structure with infinite complexity 
through self-similarity. Thus, important characteristics of fractals are self-similarity and scale dependency. 
Self-similarity means that the parts have the same shape as the whole, which makes the form scale-less. 
Further, he noted that fractals are the emergent property of iterative feedback systems, which are both 
unpredictable and deterministic, forming patterns that are complex yet coherent structures. Batty and 
Longley (1994) connected fractal geometry to cities and applied it via CA, whereby this dynamical system 
would function in a discrete time and space. Furthermore, Batty and Xie (1999) theorized on self-organized 
criticality, which means that cities have a critical point as an attractor. Thus global patterns in cities emerge 
from local actions, which is the essence of self-organization. They evolve to a critical point between order 
and disorder, holding themselves at this critical level until certain conditions emerge (i.e. new 
technologies), which could abruptly redirect the system to a new threshold.  

Complexity Theory 
During the last two decades the field of urban modelling evolved rapidly and provided new tools to 
understand the drivers of change behind urban dynamics, evaluate these driving forces and predict future 
urban dynamics. Urban dynamics is a complex process as it is influenced by social, economic, political 
and environmental factors and many more driving forces across various spatial and temporal scales. 
Describing and understanding these drivers of change, how they interrelate and how they have evolved is 
a difficult yet critical component of urban planning. For studying urban dynamics, CA became a popular 
and successful modelling method due to its simplicity to replicate complex, emerging patterns. During the 
1980s Geographical Information Systems emerged, which contributed to conducting real simulations 
(Couclelis, 1997) and to combine graphics, chaos, fractals and complexity via cellular automata (Benenson 
& Torrens, 2004). Batty (2005) discussed in great detail what these drivers of urban change presumably 
are and how these can be applied to CA. 

As mentioned earlier, complexity is the underlying principle of CA. However defining complexity is 
difficult as it has no precise definition, but it does have certain characteristics such as: self-organized 
criticality, dynamical, chaotic and critical nature, non-linearity, emergence and self-similarity. Cities are 
examples of complex systems (Batty, 2014), which shows that urban problems are in fact not simple nor 
objective. And by looking at a city through the lens of Complexity Theory, one could apply these 
characteristics of previously mentioned paradigms and theories. Key to a complex system is that it is a 
collection of elements that is related yet act independently through competition and co-evolution. The 
system evolves in time through self-organization and emergence. A city is not in equilibrium and it does 
not grow towards an optimal form. It has inequities and inefficiencies that may reveal in its physical form. 
However, it is self-sustaining and will hold itself at critical levels through self-organization, before abruptly 
changing to a new threshold.  

2.2 Urban Modelling 
A theory is a concept or abstraction of real world phenomena that enables simplification. Subsequently, a 
model is the simplification of real world phenomena and represents objects in the real world or how 
processes in the real world are believed to function. Thus, a model is built upon a theoretical construct that 
describes and represent these objects, processes and relations. Putting theory into a logical framework 
and a form that can be manipulated, e.g. the digital environment of the computer, is referred to as 
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modelling (Longley et al., 2010). This allows for control over endogenous and exogenous variables and 
enables experimentation to help understand situations not yet realized or how a situation came to be. 
Accordingly, the operationalization of a model is referred to as simulation. The goal of modelling is to 
explore and evaluate changes in relations over time and space and to contribute to scientific theory. 
Therefore, a good model would be able to simulate the outcome of a set of input parameters, as they would 
affect the real world (Batty, 1976).  

Models are used in various ways, from daily life to scientific research, and in various disciplines, 
from social sciences to spatial economics. The abstraction of space and spatial relations is referred to as 
spatial modelling, and the application of a spatial model to the urban environment, as urban modelling. 
Hence, an urban model is one type of application of modelling (Clarke, 2014). Urban models could 
represent simple lines or zones, or they can suggest urban structure and form such as the multi nuclei 
model (Harris & Ullman, 1945) and the monocentric city (Burgess, 1924). Nowadays, typically through 
computer simulations, the theory on how a city or environment is believed to function translates into a form 
that is testable and applicable, without experimenting on the cities themselves (Batty, 2009). Thereby, an 
urban model has become a tool that allows for simplification of the urban complexity, which makes the 
characteristics of the driving forces and their spatial and temporal scales more easily identifiable 
(Goldstein et al., 2004). With this information, an urban model could simulate historical urban change in 
order to fathom the present, and forecast future urban change to explore the future dynamics. In other 
words, the task of an urban model is to simplify the urban complexity and place it in a spatial and temporal 
perspective. 

Urban planners are inherently future-orientated, and being able to predict and control urban 
change and growth is an essential part of urban planning. The field of urban modelling attempts to support 
urban planners to fill the knowledge-gap of not knowing what the future will hold or what the consequences 
would be of their spatial plans. Urban models provide an inexpensive and effective way to anticipate 
problems and urban change (Clarke, 2014), thus it can give planners the necessary data and the 
opportunity to act upon the effects of urban dynamics. It allows for the analysis of the urban complexity 
and provides an opportunity to evaluate land use policies and help to visualize alternate scenarios. Due to 
the uncertainty related to simulating and predicting urban dynamics, urban models have always been 
criticized, due to their inability to precisely predict future changes. Moreover, urban models ought to be 
behaviorally valid regarding the object, processes and relations they represent. Despite this, urban models 
are still worthwhile since they can simulate urban change and the consequences on the built and natural 
environment and provide a rough possible indication of urban dynamics (Pettit, 2005). 

Model structure 
Urban models consist of a set of fundamental principles: scale, time, aggregation and representation. 
Firstly, scale, which is concerned with the distinction between micro and macro, referring to the spatial 
scale of the model and also the level of aggregation. Macro models tend to deal with large groups, 
institutions or large aggregation of activity, whilst micro models the behavior of individuals. The second 
relates to time and whether a model reflects static or dynamic elements of the urban structure (Batty, 2009; 
Batty, 1976). Models could describe a structure at a cross-section in time, or even various periods in time. 
Subsequently, both time and scale could be described through the level of aggregation, which deals with 
how far the data can be disaggregated in terms of temporal or spatial scale (Lowry, 1961). Disaggregating 
data could potentially increase the accuracy and simultaneously increases the complexity of the model. 
Generally, the finer the spatial scale and shorter the time period, the greater the dynamic in activities. 
Therefrom, as this activity is aggregated, its heterogeneity is reduced. Lastly, representation, which is a 
key to all the previous principles. It involves how the model outcome is visualized, as individual or 
aggregated groups, per year or per decade. Urban models tend to groups or categories into zones or 
periods, which influences the level of aggregation and heterogeneity.  
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Model reliability 
Furthermore, urban models need to be reliable if they are used to support decision-making. Hence, models 
follow a certain process that explores their reliability: verification, calibration, validation and prediction. The 
first of these is verification, which is the process of testing the model for internal consistency and is often 
a separate step from testing how well the model’s simulations are (Batty, 1976; Silva & Clarke, 2002). 
Crucial is under what conditions the model is found acceptable. During this phase the model-user is 
confirming whether a model matches its design or theory, and works correctly.  

Secondly, calibration, which is the dimensioning of the model to find estimates of values for 
unknown parameters and constraints that enable the model to reproduce known characteristics of the data 
in the most fitting way (Pontius, et al., 2004). The measures used to increase the agreement during 
calibration are called goodness of fit statistics. Goodness of fit refers to how well the model fits to the actual 
data. It is a well-defined measure of how the model’s simulations match the known observations. Ordinarily, 
calibration involves two major problems: (a) defining the statistics which measure the goodness of fit of the 
model and (b) having defined these statistics, finding the best estimates of values for the model’s 
parameters (Batty, 1976).  
 Thirdly, the model is validated, which is distinct from calibration, since “calibration is only a process 
of determining the values of certain variables which relate to the particular area under study… validation, 
on the other hand, depends upon whether or not the structure of the model reflects reality to the desired 
degree” (Batty, 1976, p. 356). Therefore, validation is a demonstration that a model, and underlying 
hypotheses and theories, possess a satisfactory range of accuracy with regard to replicating the evolution 
of the urban structure in a behaviorally valid manner (Pontius, et al., 2004). In this process theories are 
matched against the facts, whereby they are either falsified or confirmed. Validation is a necessary step 
before it can be used to make predictions of future urban growth.  

Lastly, predictions, which is any outcome of the model, so these could be related to the past, 
present or future. Generally, this relates to forecasting based on a set of best-fit estimates of parameter 
values in order to explore future urban dynamics. 

Methods of urban modelling 
There are various ways to categorize urban models and many authors have done so. This research will not 
present a detailed overview of the history of urban modelling. This can be found in Batty (1976) and Fujita, 
Krugman and Venables (2001) for traditional spatial models, and a more general overview of urban 
modelling in Batty (2014). Additionally, Timmermans (2003) provides an historic overview, wherein he 
categorized the urban models into three waves and provided an extensive list of commonly applied urban 
models in the past. The next sections will address two types of modelling methods that Torrens (2001) 
called “new wave” models: CA and agent-based models (ABM). These two modelling methods have 
properties of complexity, such as emergence and self-organization, and are paradigmatic for the 
application of complexity in urban modelling.  

Cellular Automata 
A CA contains a collection of cells, representing real world objects, on a grid that evolves through a number 
of discrete time steps, according to certain transition rules based on the neighboring cells. These rules are 
applied iteratively for a certain amount of times. Essentially, a CA has five principle characteristics: the 
lattice, the cells, the cell states, the neighborhood and the transition rules (Figure 2).  

 The lattice is a reference set of cells in a regular uniform array, with discrete values at each of the 
cells (such as land use categories). It has n dimensions, but in urban modelling mostly two or three 
dimensions are used.  

 The cell is a subunit of the lattice and represents real world objects. It usually has a rectangular 
shape, however irregular polygons, hexagon or links have been used.  
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 The cell resides in a neighborhood, which are the cells closest to the central cell. The two most 
common configurations of the neighborhood in a 2D-lattice are: the Von Neumann neighborhood 
and Moore neighborhood (Figure 2), although many different neighborhoods have been used.  

 These cells have a cell state, which is a variable associated with the cell. Cells take on one state 
and change during each time step and are updated synchronously during each time step, The 
cell states can be (a) binary values (urban, non-urban), (b) qualitative values that represent 
different land use categories, (c) quantitative values that represent population or urban density or 
(d) a vector of several attributes (Sante, Garcia, Miranda, & Crecente, 2010).  

 The transition rules control the state changes of all the cells in the lattice. During the simulation the 
central cell reacts to the states of the neighboring cells, resulting in a state change. Thus, the state 
change is invoked locally and there is no action beyond the neighborhood, which implies 
emergence. Further, it is assumed the transition rules are uniform, they apply to all cells, states 
and neighborhood at all times (Batty, 2005; Wolfram, 1984b). In this process, the transition rules 
are usually applied sequentially, e.g. in the lattice in Figure 2, starting at the cell in the top left 
corner, iterating to the bottom right corner, cell-by-cell. Therefore each cell acts independently and 
cells invoke changes upon another from which patterns emerge, implying self-organization. 
Typically, cells change simultaneously, meaning the CA iterates cell-by-cell and all cells will be 
processed, but change is not invoked after all cells have been processed.  

 

Figure 2: Visualization of the CA principles: lattice, cells, neighborhood, cell states, and transition rules. 

In order for a CA to operate, it has initial and boundary conditions, which refer to the start- and 
endpoint of the simulation in time and space. The initial conditions apply to the spatial configuration of the 
cells, cell states and neighborhoods and the time at which the process begins. The boundary conditions 
refer to the spatial extent of the lattice, size of the neighborhood and the time over which the CA is allowed 
to operate (Batty, 2005). Therefore, CA is a discrete spatial-temporal system, since it has predefined spatial 
and temporal boundaries and evolves in discrete time steps. 

From these basic principles, Wolfram (1984a) realized that CA can replicate complexity and 
outlined some of the characteristics that CA possess: “(a) the correspondence between physical and 
computation processes are clear; (b) CA are often based on transition rules that are simpler than complex 
mathematical equations, but produce results which are more comprehensive; (c) CA can be modeled 
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using computers with no loss of precision; (d) CA can mimic the action of any possible physical system; 
(e) CA are irreducible” (Itami, 1994, p. 30). These characteristics imply that there is no pre-knowledge of 
an aggregate order and global patterns emerge from local interaction. In fact, Wolfram showed that the 
initial conditions of a CA could be completely random, and still order and structure could appear through 
the interaction between cells (Wolfram, 1984a; Wolfram, 1984b). This idea that micro interactions lead to 
global patterns, is at the basis of CA. This implies that patterns are engraved in several scales, thus they 
hold characteristics of fractal geometry as self-similarity and scale dependency (Batty & Longley, 1994). 

“Simple cellular automata are characterized by phase transitions between behavior types, so that 
a single model can result in stability, stochastic instability or chaos” (Clarke & Gaydos, 1998, p. 700). 
These are properties of chaotic and dynamical system that evolve through self-organized criticality, which 
means they evolve to a critical point between order and disorder, holding themselves at this critical level 
until certain conditions emerge, which could abruptly redirect the system to a new threshold. A good 
example of this is the Glider Gun, which is a cellular configuration in Conway’s Game of Life. In this a 
cellular configuration two objects, i.e. clusters of pixels that are alive, exist in homogenous cellular space 
of pixels that are dead. Due to transition rules, these two objects move through cellular space in stability. 
However, when these two objects collide, i.e. the critical point between order and disorder, a phase 
transition occurs and a new cluster of alive pixels emerges and moves away from the two objects. The 
opposite also occurs in this game, when the two objects collide with static objects in cellular space. In that 
case new alive pixels emerge, but quickly dissipate. Overall, this pattern repeats endlessly, therefore this 
spatial configuration is stable, whilst periodically being chaotic and abruptly redirecting to new thresholds.  

Some examples of CA will be discussed in section 2.3: Metronamica, Dinamica EGO, CLUE and 
SLEUTH. Besides these four models, Sante et al. (2010) provided an overview of urban CA models applied 
to real-world cases, along with an analysis of their capabilities and limitations. 

Agent-based models 
Agent-based models (ABM) use individual behavior and try to predict behavior in the future. ABM, like CA, 
also have the same characteristic with regard to complexity, such as emergence and self-organization, 
however, in this case it comes from agents. Both ABM and CA primarily attempt to model the complexity 
of the entire system, wherein individual units exist. CA focusses on modelling urban dynamics which 
emerges from local interactions, whilst ABM simulates more complex situations where agents control their 
own actions based on their perception of the environment. Agents could mean several things based on 
the level of aggregation, from individuals to groups or institutions, humans, plants, animals or artificial life. 
In essence, agents are objects that do not have a fixed location, but act and interact with one another, as 
well as the environment wherein they exist. Therefore, the main difference with CA, is that agents could be 
perceived as ‘mobile cells’ and agents can motivate their own actions, which can imply movement, 
conversely, cells merely represent landscapes on which an activity takes place. Furthermore, CA are 
limited to their cell size, whereas agents could scale down further to individual coordinates (Heppenstall, 
Crooks, See, & Batty, 2012; Batty, 2005). 

The key element of agents is that they are autonomous, they act independently, although could 
act in synchrony depending on various conditions displayed by other agents or systems. Franklin and 
Graesser (1997) provided a formal definition of the autonomous agent: “An autonomous agent is a system 
situated within and a part of an environment that senses that environment and acts on it, over time, in 
pursuit of its own agenda and so as to effect what it senses in the future” (p. 25). Agents operate in said 
environment to which they are uniquely adapted and wherein they communicate. In that same environment, 
there may be more than one type of agent. In urban modelling, that environment could be networks or 
cellular space. In addition, there are two types of agents: reactive agents and cognitive agents. Reactive 
agents will behave by reacting to the environment or to other agents. A cognitive agent may do the same, 
but they also act according to their own protocol. The way agents act in their environment is the dominant 
factor in the behavior of an ABM. Table 1 shows a range of properties, from passive agents to active agents 
that display some kind of intelligence.  
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Table 1: Properties of agents (Franklin & Graesser, 1997, p. 26). 

Property Meaning 

reactive responds in a timely fashion to changes in the environment 
autonomous exercises control over its own actions 
goal-orientated, pro-active, purposeful does not simply act in response to the environment 
temporally continuous is a continuously running process 
communicative, socially aware communicates with other agents, perhaps including people 
learning, adaptive changes its behavior based on its previous experience 
mobile able to transport itself from one machine to another 
flexible actions are not scripted 
character believable "personality" and emotional state 

 
Figure 3 illustrates the basic structure of an ABM. The agent and the landscape interact, therein 

there are four basic types of relations: agents influencing their own behavior, landscape influencing their 
own state, agents affecting the landscapes, and the landscape affecting agents. Besides this generic 
structure, there are two more significant interactions: other agents and landscapes, and influences from 
external variables. As seen in Figure 3, this leads to four more relations, and a total of eight basic relations 
in an ABM. The other four being: an agent influenced by other agents, an agent influenced by external 
variables, landscape influenced by other landscape, and landscape influenced by external variables 
(Batty, 2005; Heppenstall, et al., 2012). 

For urban modelling, ABM is useful for representing mobile entities in the environment, such as 
households, vehicles or people (Torrens, 2001). Hence, in the 1990s these were first applied to 
transportation dynamics, when activity-based analysis gained interest. Timmermans, Arentze and Joh 
(2002) provided an overview of the origins of transportation activity-based modelling.  

 

 

Figure 3: A general structure of ABM (Batty, 2005, p. 215). 

A noteworthy example of ABM is, TRANSIMS (TRansporation Analysis SIMulation System), which 
is a system of travel modelling procedures that conducts transportation analyses. The goal of TRANSIMS 
is to load traffic onto a network and iterate towards the Nash equilibrium. The outputs of TRANSIMS are: 
detailed data on travel, congestion, and emissions (US Department of Transportation, 2015). Furthermore, 
TASHA (Travel/Activity Scheduler for Household Agents), which is an ABM microsimulation model 
developed for the Greater Toronto Area. It simulates the scheduling of out-of-home activity and the travel 
a person (or household) might engage during a typical weekday (Miller & Roorda, 2003). Similarly 
ALBATROSS, which is also an activity-scheduling model. This model predicts which activities are 
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conducted when, their duration, start time, trip type, travel party, location and transport mode (Arentze & 
Timmermans, 2000). 

Linking CA and ABM  
Historically, CA have been developed to simulate urban dynamics by urban planners and ABM to simulate 
activity-based dynamics by transportation planners. To some extent, these two fields separately developed 
their own approaches and methodologies and could be considered disconnected. Cerdá noted that the 
infrastructure and specifically the circulation of the infrastructure were fundamental to urbanization, thus 
suggesting that the distribution of land use and transportation are strongly connected (Soria y Puig, 1999). 
Accordingly, these two fields are not disconnected and their modelling approaches can complement each 
other, as cells are no decision-makers and agents do have those capabilities (Timmermans, 2006).  
 In that light, there has been ongoing research on integrated land use – transportation models. The 
first model to bridge the gap was SIMPOP, the first application of a multi-agent system in geography (Bura, 
Guérin-Pace, Mathian, Pumain, & Sanders, 1996). In SIMPOP Bura et al. (1996) used the environment to 
model the evolution of cities over long periods of time. The objective was to identify the conditions of 
emergence of a system of towns and cities from an initial homogenous rural settlement pattern, over a 
duration of 2000 years. There were two differences between regular ABM and SIMPOP: (a) in SIMPOP the 
agents were immobile as they represented geographic locations, and (b) SIMPOP simulated the interaction 
between towns and cities, therefore the behavior was not reducible to the behavior of individual persons 
(Pumain, 2012). Hence, it could be argued that SIMPOP was not a true ABM, and more a special case of 
a CA model (Timmermans, 2003). 
 Ligtenberg, Bregt and Van Lammeren (2001) developed a combined CA and ABM technique that 
simulates urban change as a result of individual actor behavior. In their model actors negotiated on the 
allocation of new urbanization. Through time, each actor developed a series of preferences that depict its 
ideas on future urban change. In that process, there were no pre-defined local or regional constraints, 
such as urban suitability, policy restrictions or price of land. The preferences of the actors translated into 
urban change through a voting process on possible allocations. Moreover, other applications of ABM to 
land use and land cover change can be found in Parker et al. (2003) and Wu and Silva (2010), who both 
provided an overview of AB-CA (Agent-based cellular automata). 

Essentially, linking CA to ABM is part of a larger discussion, wherein disadvantages of certain 
model methods can be complemented by other model methods. For example, cells are not decision-
makers, and agents to have that capability, thus using agents to allocate cell state transitions, is a 
complementary methodology. Additionally, Torrens (2001) noted that CA and ABM models lack the ability 
to simulate macro, top-down systems, since both evolve from the bottom-up. Therefore, he argued the 
need for hybrid models, which in addition to using the CA or ABM methods, would be complemented with 
traditional aggregate models. Since 2001, this is more common, as can be seen in Heppenstall et al. 
(2012), wherein various chapters, with various examples, are dedicated to these hybrid models. It has 
been argued that to address urban complexity, it would be better to use submodels as opposed to 
incorporating more data and more factors (Chaudhuri & Clarke, 2013a), thus models complementing each 
other as opposed to the ‘one-model-to-simulate-it-all’. 

2.3 Urban Models 
The following section comprises a review of several urban models. This review aims at discussing what is 
currently available and commonly used. It is not attempting to provide a thorough comparative analysis of 
various urban models. The models that are reviewed are: UrbanSim, Dinamica EGO, Metronamica, CLUE 
and SLEUTH, the urban model that was used in this study. All of the aforementioned models explained in 
this section are designed to model urban development. However, each model adopts a different approach, 
therefore, in this next section for each model a brief overview is presented describing the model structure, 
data requirements and allocation mechanism. 
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UrbanSim 
UrbanSim is an open source urban model written in JAVA and designed by Waddell as a planning support 
system for land use, transportation and environmental planning. The model was specifically designed to 
address policy analysis requirements of metropolitan growth management. The first application of the 
model was to Eugene-Springfield, Oregon in the United States. Later, there were several application to 
cities in the United States and some applications to European cities (Waddell, 2000; Waddell, et al., 2014).  

Data requirements 
UrbanSim is a data driven modelling approach. It takes in large amounts of explicit spatial and non-spatial 
data about the city and the region down to the parcel and building level of detail, a combination of vector 
data and 150x150 m raster data. The backbone of UrbanSim is a relational database, ordinarily in MySQL, 
that contains exogenous data, primary data (regarding households, jobs, buildings, etc.), model 
coefficients, and model specifications. Due to the amount of data going in, UrbanSim requires extensive 
calibration to derive coefficients for several model components: land price model, developer model, 
residential location model, employment location model, and mobility rate model.  

 

Figure 4: A visualization of the UrbanSim structure (Waddell, et al., 2014). 

Model structure 
UrbanSim is not a single model. It is essentially a simulation system consisting of a software architecture 
to couple models and implemented models that interact with this environment. UrbanSim consists of the 
models depicted in Figure 4. The model coordinator schedules the various models to run and notifies them 
when data of interest has changed. The model components represent the major actors, i.e. agents, in the 
urban system: the households, businesses and real estate developers, all subject to the influence of 
governmental policies and environment constraints. The model components attempt to simulate the key 
choices of these major actors and their interactions with regard to when and where they would move. 
UrbanSim is based on the assumption that the behavioral simulation of these major actors in the real estate 
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market leads to an aggregate order on a greater scale, i.e. urban development. Its primary goal is to assess 
the impact of governmental planning on urban development in certain regions through scenarios (Waddell, 
et al., 2014). Furthermore, the model relies on two external model systems: a macroeconomic model to 
predict future macroeconomic conditions and a travel demand model system to predict travel conditions. 

In addition the various model components UrbanSim encompasses, it also includes an option to 
input user-specified events. User-specified events hold information that is outside of the range of 
predictions of simulation. This option is useful to explore the effects of a planned major corporate relocation 
or a large development project such as a shopping mall. The user defines these events, indicating the 
cells that are affected, the date at which it should occur, and other relevant attributes of development, 
employment of policy event.  

Moreover, UrbanSim is calibrated with data from three time periods. The simulation runs from the 
first time period to the second, during which simulation results are compared to the observed data. 
Validation is conducted from the second period to third, thus its calibration and validation are two distinct 
processes in UrbanSim, each with their own set of data. 

Allocation mechanism 
Allocation starts with the transition model, which is a non-spatial model that simulates how many 
households of each type must be either added or removed from the database. It is based on information 
from the external macroeconomic model that projects population, household size and income distribution. 
The mobility model predicts the probability that jobs or household will move from their current location or 
stay during a particular time period. Subsequently, the location choice model predicts the probability a 
household or job that is new (from the transition model) or has decided to move (from the mobility model), 
will choose a specific location defined by a raster cell. Afterwards, the development model simulates real-
estate developer’s choices about where to undertake new development or redevelopment. Herein, the 
model iterates of the grid cells and creates a list of possible transitions, based on current use, policy 
constraints, the proximity to the highway and accessibility to the population. The next model, land price 
model, values the cells based on attributes of the cells and its environment, which influence location 
choices of households, businesses and real-estate developers. Lastly, the export model, which can export 
the simulation data to GIS formats (Waddell, et al., 2014; Waddell, 2000). 

Metronamica 
Metronamica is a CA-based land use change model developed by the Research Institute of Knowledge 
Systems (RIKS). The model is built upon the work of White and Engelen (1993) and White et al. (1997), 
who developed an integrated and constrained cellular automaton. Metronamica is a planning support 
system to simulate and assess the effects of planning policies on urban and regional development. The 
model simulates the impact of various exogenous factors (e.g. macro-economic changes, demographic 
changes) and policy measures (e.g. land use zoning, densification policies, preservation policies) on a 
city, region, country or continent. To date Metronamica has been applied all over the world, with its first 
application being to Cincinnati in the United States (RIKS, 2005).  

Data requirements 
The data requirements depend on the configuration of Metronamica and include three possibilities: 
Metronamica SL, Metronamica ML and Metronamica LUT. The most data is required for Metronamica LUT 
and the least for Metronamica SL. For each configuration the type of data required varies: spatial data for 
the land use model at a local level; non-spatial, statistical data for the regional model; and additional 
information for the transportation model at a regional level (RIKS, 2005). In the next section, only the basic 
data requirements are elaborated. 

The spatial data consists of four input layers: land use, suitability, zoning and accessibility. Firstly, 
land use maps, which are required for the beginning and the end of the calibration period, and cell sizes 
is ordinarily between 50 m and 1000 m. The land use classes are divided into three categories: features, 
functions and vacant classes. Features are land use classes that are not supposed to change in the 
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simulation, such as water bodies. Functions are land use classes that actively participate in the simulation 
and affect the transition potential of other classes, such as residential or commercial land uses. Vacant 
classes are classes that only change as a result of other land use dynamics, such as abandoned lands 
that result of the disappearance of other land use classes. Secondly, the suitability map, which is a map 
containing the urbanization-suitability score for certain land use function. It is a composite measure based 
on factor maps that are found relevant to the model user and determines the physical, environmental and 
ecological appropriateness of a cell. Thirdly, zoning, like suitability is also implemented for each land use 
function and based on actual master plans or other policy plans that are used for imposing constraints or 
stimulating particular trends. It is a composite score that includes protected areas or buffer zones that are 
allowed to change to a certain land use function. It is possible to include a temporal component up to three 
time periods. Hereby an area may be constrained for a certain land use function for a defined time period, 
after that period the function may be allowed. Lastly, accessibility, which takes the infrastructure into 
account: road network, rail network and other network types. This map displays the importance of 
transportation for certain land use activities and functions, and allows for the relative importance and 
quality of infrastructural elements for specific land use functions. The accessibility value for each cell 
depends on the importance of an infrastructural element in the neighborhood and its distance to said 
element based on distance-decay (RIKS, 2005).   

Modelling structure 
The core component of Metronamica is a dynamic land use-transportation model, thus a land use model 
and transportation model are coupled to simulate urban change. In order to represent the changes that 
take place within an area, the model is layered at three geographical levels: global, regional and local 
(Figure 5). The global level consists of the entire modeled area, which computes global trend lines and 
takes in economic, demographic and environmental growth scenarios. At the regional level population, 
employment and productivity are calculated based on the exogenous variables from the global level. A 
dynamic gravity based model accounts for regional differences, resulting in certain regions being more 
attractive than others. This model allocates national growth as well as inter-regional migration of activities 
and residents, i.e. transportation. During this process regions compete with each other for people and 
economic activities. Subsequently, the output of the regional level is converted to a cell-state at the local 
level by means of a CA-based land use model. Hence, the local level allocates people, jobs and land use 
based on regional demands. The output of the CA on the local level in turn influences the regional 
attractiveness regarding population and economic growth (RIKS, 2005). 

 
Figure 5: Metronamica model structure (RIKS, 2005, p. 8). 

Allocation mechanism 
Allocation takes place on a local level based on a constrained CA. A set of rules determines whether or 
not a cell changes, depending on its neighborhood. The default neighborhood configuration is a 196-cell 
concentric neighborhood with an 8-cell radius, unlike traditional CA that often use a 4-cell von Neumann 
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or 8-cell Moore neighborhood configuration. With an 8-cell radius neighbor the cell is not only affected by 
its immediate neighbors, but also by features in more remote locations. The strength of the relationship 
between more distant cells diminishes, thus implying distance decay. Therefore, the weight of each cell in 
the neighborhood differs and may have an either positive or negative influence on the core cell. Depending 
on the neighborhood, a cell changes to a land use function for which it has the highest transition potential, 
until regional demands are satisfied. Additionally, Metronamica accounts for local constraints via the 
described suitability, zoning and accessibility. Figure 6 shows this in the Metronamica’s time loop (RIKS, 
2005).  
 

 

Figure 6: The Metronamica allocation time loop (RIKS, 2005, p. 11). 

 

Dinamica EGO 
Dinamica EGO (Environment for Geoprocessing Objects), from here on Dinamica, is an open-source, 
hybrid platform for environmental modelling, which consists of simple static spatial models up to dynamic, 
complex spatial models. It is based on the first application of the CA Dinamica (Soares-Filho, Cerqueira, & 
Pennachin, 2002). Since then, the model has been reengineered to become a modelling environment that 
contains a variety of submodels, calibration and validation procedures. Dinamica has been applied in a 
variety of studies, to a variety of disciplines all around the world (DINAMICA, 2016). 

Data requirements 
For producing land use simulations, Dinamica uses two landscape maps as its main input. Also, the model 
uses, what is referred to as static and dynamic spatial input layers that contain any spatial information the 
model-user desires. For example, static layers would be factors that only change slowly or are based on 
exogenous variables, such as: soil type or slope. The dynamic layers are derived from endogenous 
variables, for example, distance to deforestation or the urban area. For dynamic layers first the frontier 
cells are identified. After transitions have taken place, temporary maps are recalculated to reflect the new 
Euclidean distances to the dynamic features (Soares-Filho, et al., 2002). Therefore, dynamic maps are 
updated throughout the simulation and could be considered as a dynamic feedback mechanism. 

Model structure 
Dinamica is a framework that supports the development of geomodelling applications and is written in 
C++. It runs on DinamicaVM, a virtual machine written in JAVA that holds the EGO programming language. 
In essence, Dinamica is a model-builder and comprises of a series of algorithms called functors, which 
represent typical cartographic operations. Each functor has a number of inputs and produces a number 
of outputs. The model-user connects the functors in the EGO Graphical User Interface and determines 
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how the data flows in the model. Additionally, through the use of other functors the model-user can specify 
the model and how it simulates, by using conditional execution functions such as: if, then, and while. 
Essentially, with EGO script language a model-user could create any submodel through the use of 
Dinamica’s functors (Soared-Filho, et al., 2002; Ferreira, Soares-Filho, & Pereira, 2015). 

Allocation mechanism 
Despite Dinamica’s flexibility, there is a main allocation mechanism regarding land use modelling (Figure 
7). For producing land use change, the model computes: a transition matrix, the static and dynamic 
variables, the spatial transitional probabilities, and the transitional functions. 

 
 

Figure 7: A flowchart of Dinamica (Soares-Filho, et al., 2002, p. 220). 

First a transition matrix is calculated, which is obtained by a using Markov chain matrix to determine 
the quantity of change between categories in the landscape maps of two time periods. Therefrom, dynamic 
distances are calculated and the dynamic variables are updated. Next, Dinamica computes the spatial 
transition probabilities for each cell as a function of different driving factors that come from the static and 
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dynamic variables, based on weight of evidence and genetic algorithms. Afterwards, two CA-based 
transitional functions are initiated that use a stochastic selection algorithm, the Expander Functor and the 
Patcher Functor. The Expander Functor is dedicated to the expansion and contraction of existing patches 
of a certain class. The second function, the Patcher Functor, is an algorithm that generates new patches 
through a seeding mechanism, which can be defined as spontaneous growth. During the two CA methods 
the user can specify a number of items that can influence the model behavior, such as: mean patch sizes, 
isometry or neighborhood search window sizes. The last step in the allocation mechanism is to propagate 
changes in the selected cells. During calibration Kappa statistics, fraction correct, fuzzy Kappa and fuzzy 
fraction correct are used to fit the model, as well as to validate the simulation results (DINAMICA, 2016; 
Soares-Filho, et al., 2002).. 

Dinamica also has the option to divide the study area into regions with specific parameter settings 
or specifications. A difference between Dinamica and other models, is that it is able to run subregion-
based models with interactions between the subregions, thus enabling certain variables to have an effect 
on a specific subregion or all other subregions, as well as running them simultaneously.  

CLUE 
The CLUE modelling framework (Conversion of Land Use and its Effects) is based on a CA model, of which 
the first version was developed by Veldkamp and Fresco (1996) and applied to Costa Rica. The various 
versions of CLEU (CLUE, CLUE-s, Dyna-CLUE and CLUE-Scanner) are amongst the most frequently 
applied land use models. The original version simulated the effects of demographics and biophysical 
conditions on land use and land cover changes, including a local and regional feedback mechanism from 
those driving forces. Subsequently, a multi-scale approach allows the model to simulate the urban 
dynamics related to the top-down and bottom-up effects and constraints. 

Data requirements 
The data requirement depends on the version of CLUE that is used and the data needed for a successful 
application. Generally, it could be said that the model requires non-spatial and spatial data inputs. The 
non-spatial data could comprise population and associated demographic, or various socio-economic 
factors. In CLUE it is possible to use simple extrapolation methods or complex economic models to project 
future dynamics of the non-spatial data. The spatial data requires two raster files for preferably two time 
periods with a number of land use classes. Typically, further physical aspects are including related to 
spatial policies or constraints, land use type specific conversion settings, land use demands and local 
characteristics (Verburg & Overmars, 2009). 

Model structure 
Even though, each CLUE version is slightly different, CLUE consists of two main modules: a non-spatial 
demand module and a spatially explicit allocation module, shown in Figure 8. The demand module 
calculates the demand for a land use type on a national scale, based on changes in various, user-defined, 
socio-economic and demographic factors. The calculations are based on historic trends derived from the 
input data, which are projected to account for future demand. From a regional or national level, the demand 
module influences the spatial allocation and distribution of various land use types and associated 
productions (Verburg, Veldkamp, & Fresco, 1999).  

Interesting in the model structure is the multi-resolution approach. Conversely to other CA 
approaches, where land use is determined by the one land use type, presumably the most dominant, in 
CLUE it is determined by the relative cover of each land use type in each cell. For example, CLUE uses 
two raster, both contain the same land use types, but one is much coarser. A coarse cell could contain 
25% urban area, 25% agricultural lands and 50% rangelands. The constituent cells of a finer scale reflect 
those same proportions when accumulated (Verburg, et al., 1999).  
 The allocation itself is based upon a variety of historic spatial analyses of the interaction between 
land use, socio-economic conditions and biophysical constraints. Multiple regression models are 
calculated to quantify this relationship between the various conditions and the allocation of land use. The 
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aforementioned scales determine the structure of the land use patterns. The coarse scale is used for 
general trends and relationships between land use and its driving factors, whilst the fine scale is to identify 
variability within regions. Therefore, the spatial analyses are conducted on two scales, allowing for variation 
within the influences of determining factors (Verburg, et al., 1999; Veldkamp & Fresco, 1996).  
 

 
Figure 8: Structure of the CLUE modelling framework (Verburg, et al., 1999, p. 215) 

Allocation mechanism 
Figure 9 shows the basic allocation procedure, although each CLUE version has a slightly different 
process. Spatial analysis groups the land use types into two categories: those that are demand driven at 
a regional scale, and those for which no demand at a regional scale could be determined. The allocation 
module allocates regional demands to individual cells, until the demand has been satisfied by iterative 
comparison between individual allocated land use types to neighborhood demand. In this process each 
cell is affected by location suitability and neighborhood suitability, such as biophysical limitations. 
Moreover, there is a component related to land use specific conditions, such as conversion elasticity (i.e. 
the cost of converting to a land use type, either monetary or institutional), and comparative advantage, 
when land use types are below their regional demand (Verburg & Overmars, 2009). 

For each cell, the land use type with the highest probability is checked against a conversion matrix. 
This matrix, constraints certain type of transitions under certain circumstances, e.g. the conversion from 
agriculture to forest would not be possible in one time step. Afterwards, the allocated land use type is 
checked against regional and neighborhood demands, if deemed acceptable, the cell is updated (Verburg 
& Overmars, 2009).  
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Figure 9: A flowchart of the allocation procedure in Dyna-CLUE (Verburg & Overmars, 2009, p. 1170). 

SLEUTH 
SLEUTH is a scale-independent, open source, 2D CA based model that simulates urban growth and land 
use changes that are caused by urbanization. Therefore, SLEUTH has become a popular tool to evaluate 
policies and scenario planning (Chaudhuri & Clarke, 2013b). The application of SLEUTH to the San 
Francisco Bay Area by Clarke et al. (1997) was the first major application of the SLEUTH model. This paper 
documents the details of the model, describing the necessary data layers, the five growth coefficients, 
what they control and the four types of urban growth. In addition to these fundamental principles of 
SLEUTH, the concept of self-modification was introduced. It is a descriptive model, meaning it does not 
explain the land cover and land use changes of the urban structure. Same shape and changes could be 
derived of sets with different initial conditions and boundaries, and different parameters. It also does not 
explicitly deal with population, policies or economic impacts of land use change, although it could be 
integrated via the excluded layer (Mahiny & Clarke, 2012; Onsted & Chowdhury, 2014; Jantz, Drzyzga, & 
Maret, 2014) or via the self-modification module (Liu, et al., 2012). 

Data requirements 
SLEUTH stands for Slope, Land use, Excluded, Urban, Transportation, Hillshade, which is the input data 
for the model. The model uses a raster grid based on a GIF-image in gray scale with a consistent resolution 
and spatial extent. The Slope layer uses elevation data and requires only one time period with the percent 
slope, commonly derived from a digital elevation map. The Land use layer is an optional layer that uses 
any number of land use categories, as long as they are consistent. It requires at least two time periods and 
is used to calculate a class-to-class transition probability matrix among the different land use categories. 
The excluded layer defines all areas that are resistant to urbanization, this could be a location where it’s 
impossible to develop or where development is unlikely. For this layer it is possible to include the likeliness 
a location is available for development, from 0 (available) to 100 (not available). The Urban layer consists 
of a raster in which a cell is either urban or non-urban. In this layer the earliest year is known as the seed, 
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which is used for the initialization of the model. Subsequent years are the control years, which are used to 
calculate goodness of fit statistics. The Transportation layer needs at least two time periods and has the 
option to include weighting to represent the relative importance of roads, and to determine the probability 
of urban development according to the accessibility of a location. The last layer, Hillshade is needed to 
give spatial context to the urban extent data and is only used for visualization purposes (Clarke, et al., 
1997; Candau, 2002).  

Model structure 
SLEUTH is constituted of two sub-models (Figure 10): the Urban Growth Model (UGM) and Land Cover 
Deltatron Model (LCDM). The UGM simulates the effects of the topographic slope, transportation network 
and resistance to urbanization on the urbanization patterns through time. It uses a Boolean logic, it is either 
urbanized or not urbanized. The LCD uses typical CA-based rules, such as discrete state transitions, class 
transition probabilities (Markov matrix) and a Moore neighborhood to define land use changes through 
time (Clarke, 1997; Candau, 2002).  

 

Figure 10: The structure of the SLEUTH and SLEUTH-3r models. 

The essence of the SLEUTH is the growth cycle, which is its basic unit and represent the time step 
of one year. It uses the initial condition of the cells, which is determined by the input data, and the setting 
of five controlling coefficients (Table 2) to a unique value. Each of the growth rules (from the UGM and 
LCD) is applied, which is then evaluated by the self-modification module. The simulation is repeated a 
user-specified number of times during the Monte Carlo (MC) method. The MC method is used to evaluate 
and average the output results of all the basic simulations that were completed. During each MC iteration 
descriptive statistics are calculated, which after each growth cycle are averaged across all MC iterations 
(Clarke, et al., 1997; Candau, 2002). From this basic simulation the UGM defines urban growth dynamics 
through four types of growth: spontaneous growth, spreading center growth, edge growth and road-
influenced growth. Each type of growth is applied sequentially during each cycle and is controlled by five 
parameters: dispersion, spread, breed, slope resistance and road gravity. The coefficients are integers 
that can range from 0 to 100 and represent the relative contribution of each corresponding variable. The 
model-user controls these via the scenario-file, wherein the demol-user can specify parameter values and 
statistical and graphical output SLEUTH ought to produce (Clarke, et al., 1997; Candau, 2002). 
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Table 2: The types of growth and their controlling coefficients. 

Type of growth Description Controlling coefficients 

Spontaneous Simulates the occurrence of a random cell being urbanized Diffusion, slope 
New spreading 
centers 

Determines whether a spontaneously urbanized cell 
becomes a new spreading center 

Breed, slope 

Edge Simulates the growth that comes from existing or new 
spreading centers 

Spread, slope 

Road-influenced Simulates new  urbanized cells along the existing 
transportation infrastructure  

Road gravity, diffusion, 
breed, slope 

 

Allocation mechanism 
As is shown in Figure 10, the UGM is the first of the two models that is applied in SLEUTH. Figure 11 shows 
the four growth rules as applied in the UGM, for each of the four growth types that are applied sequentially. 
 

 

Figure 11: Allocation mechanism for the UGM. 

The first of these is spontaneous growth, which is controlled by the slope and diffusion growth 
coefficient. Based on the size of the input data, i.e. number of rows and columns, a certain amount of pixels 
is randomly chosen for urbanization. These pixels are matched against the slope resistance, as defined 
by the slope layer and the urbanization resistance, as defined by the excluded layer, in both cases by 
generating a random integer. Afterwards, the spontaneous growth has a chance of becoming a new 
spreading center, which is defined by the slope and breed growth coefficient. Based on a randomly 
generated integer, a spontaneous growth cell can become a new spreading center, given two randomly 
selected neighboring cells are available for urbanization. If the cell passes both tests, the two neighboring 
cells are matched against the slope resistance and the urbanization resistance.  
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The third phase is edge growth and is controlled by the slope and spread growth coefficient. This 
growth stems from existing urban cells, from the previous two phases, as well existing urban cells. If a non-
urban cell has at least three neighboring urban cells, it has a chance of becoming an urban cell. Again, 
this chance is based on the slope resistance and the urbanization resistance. The last phase is road-
influenced growth, which is controlled by the slope, road gravity, diffusion, breed growth coefficients. It is 
determined by the transportation layer and existing urban cells as well as generated urban cells from the 
previous phases. With a probability defined by the breed coefficient, newly urbanized cells are selected, 
therefrom the existence of the road is sought in the neighborhood, as defined by the road gravity 
coefficient. A temporary cell is placed at the nearest cell to the road, from there the cell randomly moves 
along the road a certain amount of steps, as defined by the diffusion coefficient. Once it arrives at its final 
location, two neighboring cells are randomly selected. If they are available for urbanization, they are 
matched against the slope resistance and the urbanization resistance to determine if they are urbanized 
(Clarke, et al., 1997; Candau, 2002). 

The LCDM is the land use cellular automaton incorporated in SLEUTH and consists of deltatrons 
that act as independent agents of change based on historical data. Before the LCD module cycle starts 
two calculations are made. For two time periods the land use input is used to calculate a class transition 
matrix. Then for each class the corresponding average slope is calculated, so that steep sloped lands 
exclude certain land use categories. Afterwards, the LCDM starts, which consists of two phases: create 
change and propagate change. Phase one is driven by the number of newly urbanized cells from the UGM. 
A cell at a random location is chosen for which the transition suitability is calculated. Two random land use 
categories are selected, the one with the average slope most similar to that of the cell, is chosen. This land 
use category is then matched against the class transition matrix. Afterwards, a random number is 
generated that determines whether the cell’s land class is changed and the changed cell attempts to 
randomly spread to its neighbors and form a cluster. Thereafter, deltatrons are born in deltaspace on the 
locations that changed. During phase two, standard CA rules are used and deltatrons try to initiate change 
onto neighboring cells. If a cell has two or three neighboring deltatrons with the same land use category, 
that cell is selected for transition. This cell is matched against a random number, if successful the change 
is enforced on the map. The LCD iterates through this process until all the deltatrons have decayed (Clarke 
& Candau, 2000; Candau, 2002). A variety of studies have used the Deltatron module of SLEUTH for 
predicting and analyzing land use changes (Dietzel & Clarke, 2004a; Al-shalabi, et al 2013; Mahiny & 
Clarke, 2012; KantaKumar, Sawant, & Kuma, 2011; Dietzel & Clarke, 2006),  

After the UGM and LCDM modules have applied their growth rules, a last optional phase of self-
modification calculates the sums up the combined growth rate of the four growth types. There are three 
categories: rapid growth, normal growth and no growth (Figure 12). The growth rate falls into one of these 
categories and subsequently the controlling coefficients are multiplied by a constant to simulate an 
accelerated or depressed growth, i.e. during rapid growth, diffusion, breed and spread are multiplied by 
a constant greater than one to simulate the tendency of an expanding system to grow even more rapidly.  

 

 
Figure 12: The three possible phases of the self-modification module. 
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The self-modification module consists of the limits CRITICAL_HIGH and CRITICAL_LOW that 
determine the boundaries at which the urban growth would be multiplied by respectively the BOOM or 
BUST value. The CRITICAL_SLOPE determines at what slope degree cells would no longer be available 
for urbanization. The last two values are ROAD_GRAV_SENSITIVITY and SLOPE_SENSITIVITY. During the 
boom-cycle, the road-gravity factor becomes larger, prompting a wider band of urbanization around the 
roads, and a decrease in the slope resistance factor to permit expansion onto steeper slopes. During the 
bust-cycle the opposite occurs. These seven self-modification values can all be specified by the user in 
the scenario-file (Clarke, et al., 1997; Candau, 2002). Liu et al. (2012) have adjusted these parameters to 
incorporate macro trends, but they have concluded that their attempt had failed to improve SLEUTH and 
further research is needed. Others, have successfully predicted, whilst adjust parameter values in the self-
modification module (Jantz, et al., 2010; Jantz, et al., 2014). 

2.4 Section Conclusions 
Section 2.1 provided a brief history of Complexity Theory by introducing some key theories and paradigms 
associated with complexity. Complexity has a long history and has been applied across various 
disciplines. Key to complexity is that it does not have a precise definition, instead, it is described by 
characteristics, such as self-organizing, dynamical, chaotic and critical nature, non-linearity, emergence 
and self-similarity. Wolfram (1984b) showed that these characteristics exist in CA, hence CA is often linked 
to Complexity Theory.  
 Section 2.2 provided the fundamental principles of urban modelling as well as the terminology 
associated with urban modelling. There are a variety of modelling methods that are not described in this 
research, from more traditional models as applied from the 1950s, to other current model methods such 
as microsimulation. Instead, the basic structure and approach of CA and ABM are elaborated, since both 
have the properties of complexity. Whilst Complexity Theory may be vague and difficult to grasp at times, 
describing these two modelling methods, could clarify the meaning of Complexity Theory and its 
characteristics, such as emergence and self-organization. Moreover, section 2.2 discussed model 
coupling, which has become more popular and more frequently applied over the last 15 years to improve 
urban modelling, whereby disadvantages of a model method can be complemented by other model 
methods.  
 Section 2.3 described five urban models: UrbanSim, Metronamica, Dinamica EGO, CLUE and 
SLEUTH. It illustrated that there are similarities and differences between the models. For example, all 
models are free, except for Metronamica, and only UrbanSim, Dinamica EGO and SLEUTH are also open-
source. Out of the five models, all comprise CA in some sort of way, however UrbanSim also uses agents 
through microsimulation. All the models are coupled with other submodels, either aggregate models, as is 
the case with UrbanSim, Metronamica and CLUE or other CA methods, as with SLEUTH and Dinamica 
EGO. UrbanSim and Metronamica are the only two models that incorporate transportation, via submodels. 
All models, except SLEUTH, adopted a multi-scale approach. Another key difference is related to the 
complexity of using the model. For example, UrbanSim is a data-driven model and requires extensive 
amounts of data, thus acquiring and calibrating the data is time-consuming. Conversely, SLEUTH requires 
much less input data and is relatively simple to execute and calibrate. Besides the differences and 
similarities, there are also interesting or novel features used in the five models, for example: UrbanSim 
holds the option for user-specific events; Metronamica employs an extended neighborhood with distance 
decay functionality; Dinamica EGO contains a dynamic feedback mechanism through dynamic suitability 
layers; CLUE uses a novel multi-scale allocation mechanism; and SLEUTH consists of the self-modification 
module.  

All these models have been successfully applied worldwide and would be able to simulate land 
cover change, as required in this research. Nonetheless, the reasons for choosing SLEUTH are that: (a) 
any researcher can use the model at no cost if they have the required input data; (b) SLEUTH is relatively 
easy to use for simulation and prediction, also due to the presence of many background documents and 
an internet discussion board; (c) the model is scale independent, meaning that any spatial resolution could 

29 
 



be used as long as it is consistent; (d) the model has been developed by various research teams and is 
not for one specific location, therefore, it can be applied to many regions; and (e) SLEUTH is an open-
source model, thus it has availability to the source code. Additionally, for this study SLEUTH-3r was used 
as this version has improved functionality and is computationally more efficient than SLEUTH. 

It is important to acknowledge some drawbacks of SLEUTH. As stated in Chapter 1, the goal of 
the study is to simulate and predict land cover change for Groningen, which adopted a clear compact city 
policy. However, the compact city policy is about more than urban land cover change and minimizing the 
spatial footprint of the city, it also involves multi-functional land use, high frequency transportation and 
urban densification, etc. (Zonneveld, 1991). SLEUTH is developed on the assumption that five types of 
growth occur in urban areas and these are all related to urban expansion as opposed to urban densification 
(Clarke, et al., 1997). Koomen and Borsboom-van Beurden (2011) pointed out, in the Netherlands there is 
a need for policy-makers to know about densification in cities as well. Other CA have been applied using 
a simple two or three class density classification (Veerbeek, Pathirana, Ashley, & Zevenbergen, 2015; 
Zhang, Ban, Liu, & Hu, 2011). With regard to the compact city policy it would be useful to accommodate 
for multi-functional land use, which has been applied in the field of cellular automata by representing single 
cells as multiple classes (Crols, et al., 2015; White, Uljee, & Engelen, 2012), or as is the case with CLUE, 
where coarse cell could contain several classes based on the constituent cells at a finer scale (Verburg, 
et al., 1999). Furthermore, another decisive component of the compact city policy is transportation, which 
some urban models include, as is the case in Metronamica, UrbanSim or other integrated land use – 
transportation models (Timmermans, 2006). 
 SLEUTH does not have the mechanisms to explicitly deal with all the aforementioned components 
of the compact city policy, however could be included by model coupling or rewriting the source-code. 
Either of those does not fit into the scope of this research, since: (a) both are time-consuming, which does 
not fit into the timeframe of this research; (b) this is an exploratory research that tries to fit SLEUTH to 
Groningen, not improve SLEUTH’s functionality; and (c) this research focusses on the core of the compact 
city policy, which is minimizing the urban footprint. Therefore, this research focusses on what SLEUTH 
does best, land cover change (Chaudhuri & Clarke, 2013b), whilst acknowledging other relevant 
components of the compact city policy exist, but are not researched in this study.  
 

 

  

30 
 



Chapter 3: Research methods 
This chapter elaborates on the research methods used for the practical approach of this research, the 
case study using SLEUTH. First, an historical overview and the physical location of the study area is 
presented. Afterwards, specific components related to SLEUTH are addressed: types of scale, the 
excluded layer, calibration, validation and prediction. Therein, a key component is the excluded layer, as 
it can substantially influence the modelling results. In this study the excluded layer is an urbanization-
suitability layer based on an MCE, whereby the MCE factors are combined through fuzzy set theory and 
given a weighting score through Analytical Hierarchy Process. Moreover, in section 3.4, section 3.5 and 
section 3.6, respectively the calibration, validation and prediction procedures are discussed.  

3.1 Study Area 
The study area is spanned over a region of 1,181.33 km² and comprises the administrative boundaries of 
the municipality of Groningen, the capitol city of the province of Groningen and is located in the northern 
part of the Netherlands (see Figure 13). According to the CBS Statistics Netherlands (2016), the city of 
Groningen has a population of 200,336 (per 1-1-2016) and is the second, relatively, fastest growing city, 
after Utrecht. Groningen has a relatively large sphere of influence as it is one of the few large cities in the 
region, which makes it an meaningful city to the northern part of the Netherlands.  
 

 

Figure 13: A visualization of the study area, the city of Groningen and neighboring cities and villages. 

Historical overview 
Groningen has a long history reaching back until at least 1040, although it is believed it has been a city 
long before. It was founded on the Hondsrug, a ridge of sand reaching far into lower-lying parts of marine 
clay and fertile moorlands, which made the city to a certain extent inaccessible. It was the most northern 
city in the diocese of Utrecht, far from other cities and amidst the Friezen from the lordless countryside, 
the ‘Ommelanden’. A small river leading alongside the Hondsrug made it possible for Groningen and the 
surround countryside the ‘Ommelanden’ to transport and trade via water. This unique location made 
Groningen an important trade node for the population, where they would trade products of the sand ridges 
(wood and rye) with products of the coastal regions (butter, hides and fish). The diocese of Utrecht needed 
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Groningen as this was their only influence in the area and the Friezen needed Groningen as this was their 
only safe marketplace (Schroor, 2009; RHC Groninger Archieven, 2016).  

In the 13th century Groningen joined the trade union ‘Hanseatic League’ and its merchants started 
trading with cities alongside coasts of the North and Baltic Sea. With the trade connections across the 
seas, Groningen was by far the strongest party in the region. Groningen took full advantage of this position 
and further developed their city and strived towards becoming an independent city. Groningen expanded 
its influence by purchasing lands and concluding agreements between the city and the Ommelanden. The 
connections via the rivers were improved and canals were dug so the rivers would reach the city ramparts. 
These were the glory years of Groningen, as the population grew and the economy thrived. It became an 
independent city with a large military force, educated civilians and large ambitions. To express their 
ambition and power, Groningen built churches in gothic style with tall towers to show the Ommelanden 
and nearby cities where the true power in the north resided. This did not go unnoticed and soon the Dukes 
of Burgundy to the south and also the city of Hamburg to the east were looking to overpower Groningen 
and exploit their strong position. In 1536 after 40 years of conflict, Groningen was subdued by Karel of 
Burgundy. Now Groningen was no longer independent and for the first time, part of a central government 
run from Brussels (RHC Groninger Archieven, 2016). 

In the 16th century the Dutch provinces, including the Ommelanden, revolted against Philip II of 
Spain during the Eighty Years' War. However, the city of Groningen did not, as they were satisfied with 
their current status. In fact, in 1580 under the lead of its Stadtholder Rennenberg, Groningen joined Philips 
II of Spain, which would become known as the treason of Rennenberg. Due to the strategic position of the 
city of Groningen the Spanish could still influence the northern part of the Netherlands, which weakened 
the position of the Dutch Republic and led to internal conflicts between the Ommelanden and the city of 
Groningen. Friend and foe plundered the area, leaving destruction in its path. Friesland and the 
Ommelanden insisted the siege of the city of Groningen, which eventually the Republic did. This led to the 
‘Reduction of Groningen’, which meant the city of Groningen and the Ommelanden were merged into one 
province named ‘Stad en Lande’. The province then joined the Republic of Seven United Netherlands as 
the seventh province, against the will of the city of Groningen (RHC Groninger Archieven, 2016). 

Eventually, the war settled down during the interbellum of the war. The walls of the city of Groningen 
were reinforced, fearing an impending Spanish invasion. In 1648 the war was officially ended. However, in 
1672 the four largest powers focused on the rebellious nation. The French, English, archbishops of Münster 
and Köln invaded the Republic of Seven United Netherlands. They did not account for the strong position 
of Groningen. Therefore, on the 26th of July 1672 the archbishops focused on the city and sieged it up to 
the 28th of August, when their armies suddenly retreated, leaving Groningen undefeated. After the Eighty 
Years’ War, the city of Groningen wanted to restore their old status as an independent city. The 
Ommelanden were against this and wanted to pursue their liberal ideas of equality. Yet again, this led to 
much conflict within the Province that wouldn’t settle down until Napoleon enforced his ideas of liberté, 
egalité and fraternité. During this period, the liberals had a chance to practice their modern ideas and the 
province of Groningen was truly formed (RHC Groninger Archieven, 2016). 

Up to 1795 the amount of inhabitants of the city of Groningen was relatively stable at 24,000. During 
the 19th century the population of the city grew rapidly as new paved roads, tram lines, railways and the 
university were constructed. The city was no longer isolated and could not house all its new inhabitants 
within the fortified walls. Therefore, in 1876 plans were made to dismantle the fortifications so new residents 
could live inside and nearby Groningen. During the next decades the urban fringe changed as the city 
expanded. Due to the ‘Woningwet’ in 1901, a law that was aimed at improving living conditions, cities with 
more than 10,000 inhabitants were obligated to develop expansion plans every 10 years. This has led to 
many new expansion plans in Groningen, the first of these was in 1903 ‘Plan van Uitleg’ (Schroor, 2009). 

After the Second World War up to 1970, the population grew rapidly and it was expected it would 
grow even more in coming decades, up to 500,000 inhabitants by the year 2000. To cope with these 
projections, Groningen developed the ‘Structuurplan 1961’ and ‘Structuurplan 1969’. The city of Groningen 
designated many new future urban expansion areas, and in the process annexed neighboring villages. In 
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the 1970s, it was found that the population projections were far too optimistic and Groningen adjusted their 
spatial expansion plans accordingly. Whilst Groningen did not officially adopt a new policy, it radically 
diverted and aimed at being a compact city that minimized urban expansion and created a multifunctional 
city center. Old pauperized neighborhoods in the city center were renovated, local facilities were improved 
and traffic was averted from the city center. Some of the old expansion areas were still constructed, albeit 
in an adjusted, smaller form (Schroor, 2009).  

In the 1980s the compact city policy was officially embraced. Due to the economic recession, the 
housing market of Groningen collapsed and investors went elsewhere. Consequently, to reduce the 
pauperization and to preserve the city center, the local government chose five areas within its boundaries 
that needed to be improved. In the scope of the compact city policy, this indicated a further densification 
of the urban fabric and improvement of facilities. This policy was also about open space preservation, 
increasing the basis for facilities, multi-functional land use and high frequency transportation (Zonneveld, 
1991). The next decades the accent slightly shifted. Groningen broadened its scope and aimed at creating 
coherence in the region. From the 1990s onwards, the city was viewed as part of the Groningen-Assen 
region and no longer as a solitary city. Over the years, urban development was still primarily within the city 
boundaries, but new plans were created to improve the infrastructure and public transit to create stronger 
regional network. An example is Meerstad, a large urban expansion plan to the east of Groningen, which 
was developed and financed by various partners in the region. This controversial plan, due to its size and 
financial model, was expected to finish by 2025. However, due to disappointing sales figures and the 
controversy, this prognoses was adjusted and the plan was trimmed down. Up to date, Groningen is still 
mostly developing and executing urban plans, such as Meerstad, that were initiated around the year 2000 
(Schroor, 2009). 

Choosing Groningen 
The reasons for choosing Groningen are: (a) it is more isolated than other Dutch cities, which could ensure 
external influences are less than elsewhere in the country. This could presumably increase the accuracy 
of simulation and predictions made via urban modelling. (b) The Netherlands has easily accessible open 
geo-data available and the author is familiar with this geo-data as well as the urban structure and growth 
of Dutch cities. (c) Groningen has had a clear spatial policy, the compact city, and it will continue to 
operationalize this policy in the future, which again could increase the accuracy of the predictions that 
would be made. (d) Groningen is one of the fastest growing cities in the Netherlands, which means local 
city planners could use insights into future urban dynamics with the help of a planning support system. 

3.2 Scale 
The choice of scale influences the modelling results and choosing the appropriate scales is an important 
part of modelling (Benenson, 2007). In an effort to define scale, Wu and Li (2006) constructed a conceptual 
theory with layers about scale. The first layer distinguishes three primary dimensions of scale: the spatial 
scale, temporal scale and the organizational scale. The spatial scale is measured in resolution (such as 
meters), the temporal scale in time steps (such as years) and the organizational scale is measured in 
institutions (such as countries). The secondary layer consists of four kinds of scale: the intrinsic scale, 
observation scale, analysis or modelling scale and the policy scale. The intrinsic scale refers to the scale 
at which a process or pattern actually operates. This process is observed, measured or sampled on an 
observation scale. When the process is observed, it is modeled or analyzed on an analysis or modelling 
scale. Afterwards, the results of the model or analysis are then looked at by policymakers on a policy scale.  

Scale defines what is left out of the model, meaning what occurs on the intrinsic scale over 
distances and times that are less than the observation or modelling scale. Consequently, the intrinsic scale, 
the measurements made on the observation scale, the modelling efforts on the modelling scale and the 
results looked at by policymakers on the policy scale, all need to be of a similar and appropriate scale. For 
example, a certain cell size would be more appropriate to capture certain spatial patterns, and a certain 
spatial extent would be more appropriate to capture the scale being researched. Moreover, observing a 
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process via remote sensing with satellite imagery limits the model to the resolution of the imagery, limiting 
the processes that can be measured. Therefore, the scale of the cell size, the spatial extent and timeframe 
are data dependent. 

Spatial scale 
For SLEUTH, Jantz and Goetz (2005) researched the impact of spatial resolution on SLEUTH’s overall 
performance and concluded that the scale at which land use data is represented, can impact the 
quantification of land use patterns and the ability of SLEUTH to discern spatial patterns. They emphasized 
the importance of considering scale as an integral issue during each phase of the modelling effort. Another 
research was conducted by Dietzel and Clarke (2004b) and showed similar scale sensitivity in SLEUTH, 
but they also proposed guidelines for appropriate spatial resolutions and scales. For the city of Groningen, 
which has a spatial footprint of less than 1000 km², this would mean it should be accompanied by a spatial 
resolution of 30 m² to as small as 10 m². If the smaller villages surrounding Groningen that function together 
in a region would be included (Tordoir, Poorthuis, & Renooy, 2015), the organizational scale would 
encompass an area of approximately 1000 km².  

Furthermore, the data sources that are used are partly vector-based and partly raster-based with 
a spatial resolution of 30 m, therefore, the cell size would be limited to 30 m. In the Netherlands a 25 m is 
a common spatial resolution to capture urban dynamics on city level, because this is similar to the parcel 
size which is an important element regarding urban dynamics (Koomen & Borsboom, 2011). This spatial 
resolution in combination with the aforementioned spatial extent, are similar to what Dietzel and Clarke 
(2004b) have proposed as guidelines regarding spatial scale. Additionally, others have used a similar 
spatial scale and extent (Mahiny & Clarke, 2012; Rienow & Goetzke, 2015; Dezhkam, et al., 2013). 
Therefore, a spatial extent of 1181.33 km² with a spatial resolution of 30 m seems appropriate and thus the 
area would be comprised of 1250 pixels by 1050 pixels or a total of 1,312,500 pixels. 

Temporal scale 
Regarding the timeframe, some researchers have used data from 1930 to 2001 covering 70 years (Herold, 
Goldstein, & Clarke, 2003), whilst others have used data from 1988 to 1996 covering 8 years (Dietzel & 
Clarke, 2004a). It depends on the context, the goals and what data is available. This research is 
considering the compact city policy of Groningen, which started in 1970s and Landsat data is available 
for this region from 1973 onwards. Therefore, this study will use data from 1973 up to 2015. The second 
factor to the timeframe is related to the prediction period. For SLEUTH, 20 years is the default time period. 
Research has shown that during the first 5 to 10 years of the prediction, the predicted urban dynamics 
stays close to the real urban dynamics and beyond 10 years the prediction becomes increasingly uncertain 
(Goldstein, et al., 2004; Chaudhuri & Clarke, 2014). Nevertheless, for this research it was chosen to predict 
up to 30 years in the future, as this could potentially put the 20 year prediction into a different perspective. 

3.3 SLEUTH 
The excluded layer defines all areas that are resistant to urbanization, this could be a location where it’s 
impossible to develop or where development is unlikely. It is an imperative feature of SLEUTH, since it can 
substantially influence the simulation results. Therefore, the next sections will elaborate on the excluded 
layer in SLEUTH and the methods involved in its construction. 

Excluded layer 
The excluded layer SLEUTH can be influenced substantially, e.g. by model-coupling, an urbanization-
suitability layer by MCE (Mahiny & Clarke, 2012), machine learning (Rienow & Stenger, 2013; Rienow & 
Goetzke, 2015), or an attraction/exclusion layer (Jantz, et al., 2010). In this study, the excluded layer is an 
urbanization-suitability assessment through an MCE as done by Mahiny and Clarke (2012) and Sakieh et 
al. (2015b). Both researches demonstrated the enhancement of the simulation and prediction results from 
the MCE-incorporated SLEUTH-model. The reasons to use a MCE are: (a) there exist a large number of 
spatial factors that are impractical to manually analyze; (b) there are often conflicting criteria that vary 

34 
 



across space; and (c) the relation between suitability and available data are subject to some kind of 
uncertainty. Furthermore, the attraction/exclusion layer introduced by SLEUTH-3r (Jantz, et al., 2010) will 
not be used, as the MCE will presumably already differentiate between more and less attractive areas. The 
reason that machine learning algorithms or other methods using artificial intelligence were not used is due 
to their complexity to incorporate in SLEUTH. 

With fuzzy set theory the MCE layers were standardized to allow for uncertainty and tolerance of 
imprecise data (Zadeh, 1965), as it was unclear where exactly the limits/cut-offs of suitability were of each 
criteria, i.e. at what points the criteria stops affecting urban suitability or stops affecting urban suitability 
further. The fuzzying of the layers was done in GRASS with r.fuzzy set, its fuzzy set definition is shown in 
Figure 14. The fuzzy set definitions for the MCE factors is not perfectly known by the model-user, inevitably, 
this will lead assumptions being made, albeit informed assumptions. To reduce this uncertainty, the control 
points were based on statistical analyses in Python, by comparison of the type of areas the urban growth 
has taken place between 1973 and 2015, and from individual perception and interpretation. Additionally, 
sets of parameter values were tested in SLEUTH based on the Optimal SLEUTH Metric and fractional 
difference metrics (see: section 3.4), to examine what fuzzy set definitions were fitting.  

 

 
Figure 14: The fuzzy set definition with control points (A, B, C, D), shape parameter and two membership functions 
from fuzzy set theory as defined in GRASS. 

 
Onsted and Chowdhury (2014) noted critically that if a model-user incorporates zoning categories, many 
simply guess the values. Thus, they used Equation 1 to calculate the rate of urban growth that had taken 
place in each of these zones. In this research, this equation was used as a guide for the user-defined fuzzy 
values: 

 𝑮𝑮𝒏𝒏 = 𝟏𝟏 − ��𝟏𝟏 − �
𝑫𝑫𝒏𝒏

𝑨𝑨 ��
�𝟏𝟏𝒕𝒕�

� (1) 

where 𝑮𝑮𝒏𝒏 is the rate of urban growth in the zoning category 𝒏𝒏, 𝑫𝑫𝒏𝒏 is the total actual urban growth in zoning 
category 𝒏𝒏, 𝑨𝑨 is all available land for developing in a zone and 𝒕𝒕 is the number of years of growth. Jantz et 
al. (2014) noted that Equation 1 is highly dependent upon how zoning categories are defined or 
aggregated. It is based on the assumption that across the entire zone, policies are applied uniformly. It 
also means that non-conforming land uses are distributed evenly, although, in this study that is not an issue 
as this study focuses on a binary classification. Furthermore, they note that using Equation 1, seems most 
suitable for areas where zoning data is temporally consistent. This is a key point, since policies have 
changed over the last 40 years in the study area and hence, they are not always consistent. But, this could 
also be attributed to the lack of functionality of SLEUTH, since it does not support multiple excluded layers 
or dynamic excluded layers. Despite this criticism, Equation 1 functioned as an indication as to what the 
user-defined fuzzy values could be for the MCE factors and for that it seems sufficiently capable. With 𝑮𝑮𝒏𝒏 
from Equation 1 the resistance to urban growth was calculated for each zone by: 
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where 𝑹𝑹𝒏𝒏 is the urban growth resistance value of each land category, 𝑮𝑮𝒏𝒏 is the rate of land lost to urban 
growth in land category 𝒏𝒏 and 𝑮𝑮𝒎𝒎𝒎𝒎𝒎𝒎 is the 𝑮𝑮 of the land category with the greatest urban growth rate.  

Another method used is the Analytical Hierarchy Process (AHP), which allows pairwise comparison 
of the fuzzy layers and assigns weights to the fuzzy layers based on matrix calculations. AHP was used for 
weighting the seventeen layers using general knowledge of the area and tests performed on the input data 
(Saaty, 1980). AHP was used since it has the capability to weight elements when these are difficult to 
compare by cognitive evaluation, e.g. equal important, moderate important, strong plus or extreme 
importance. Determining the weights was done by trial-and-error and by comparing calibration test outputs 
of various factor weight combinations. The consistency of the matrix is evaluated by dividing the 
consistency ratio with a random consistency ratio (Alonso & Lamata, 2006). In this case, the measured 
consistency ratio of the AHP weighting was 0.07, which is below 0.1 and thus within acceptable limits. A 
detailed description of how AHP works and it is executed can be found in Saaty (1980). 

Furthermore, another group of digital map layers was used in the MCE that depict the unsuitability, 
called the constraint layers. These consist of layers excluding pixels for urban growth based on the water 
mask and road and railways buffers. The water mask is excluding all water elements. A 50 m buffer around 
the highway and regional roads and 30 m buffer around the railway are excluded from urbanization. The 
fuzzified layers were combined through weighted linear combination and multiplied by he constraint layers, 
which leads to the MCE for urban suitability (𝑺𝑺𝒏𝒏) being given by: 

 𝑺𝑺𝒏𝒏 = ��𝑾𝑾𝒊𝒊𝑿𝑿𝒊𝒊

𝑰𝑰

𝒊𝒊=𝟏𝟏
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where 𝑺𝑺𝒏𝒏 is the urban suitability score for cell 𝒏𝒏, 𝑿𝑿𝒊𝒊 is the fuzzified criterion score for factor 𝒊𝒊, 𝑾𝑾𝒊𝒊 is the 
weight assigned to factor 𝒊𝒊, 𝑰𝑰 is the number of factors, 𝑪𝑪𝒏𝒏𝒏𝒏 is the score of cell 𝒏𝒏 on constraint 𝒋𝒋, and 𝑱𝑱 is the 
number of constraints.  

Choosing MCE factors 
Using an urbanization-suitability layer in the exclusion layer could accommodate for other relevant factors 
that influence the urban development in the Netherlands. For the MCE, raster layers were prepared of 
criteria that are believed to affect the urban growth in Groningen and were available for analysis. The list 
of factors used in this research is not an extensive list and there are probably other factors that influence 
urban growth. The relevant factors that were included in this multi-criteria evaluation were: proximity to the 
city center, proximity to railway stations (Koopmans, Rietveld, & Huijg, 2012), proximity to the highway 
exits, protected areas such as Natura 2000-areas (Borzacchiello, Nijkamp, & Koomen, 2010; Irwin & 
Bockstael, 2004), zoning policies (Onsted & Chowdhury, 2014), proximity to industrial sites, proximity to 
city edges, land use or land cover, and ground suitability (Mahiny & Clarke, 2012; Verburg, et al., 2004; 
Leao, Bishop, & Evans, 2004). For this study, proximity to the city center was interpreted as the proximity 
to the public facilities, and shops and restaurants.  
 The distance to public facilities, shopping facilities and restaurants, industrials, but also borders 
and public transit stations were split into two variants. These factors were divided into a regional 
component and a more local component. The reason for doing this was to emphasize the differences 
between rural and urban areas. If all public facilities were included and received an equal weighing score, 
facilities in smaller cities would be equally influential as the main hospital or university in the city of 
Groningen, which does not reflect reality. Hence, the least important facilities were excluded, and the more 
decisive local and regional facilities were split into two categories. Moreover, there is a relation to factors 
that are outside the scope of the spatial extent, such as industrial sites just outside the boundaries of the 
study area that could influence the urban growth in the area of interest. To accommodate this issue the 
study area was buffered to 5000 m, to include these areas of interest. 
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The Groningen is characterized by a dispersed urban growth pattern, wherein various zones have 
distinct urban growth patterns. One way to take in these distinct zones and allocate appropriate amounts 
of growth to these areas, would be by including policy maps. However, Goetz, Jantz, Bockstael and Towe 
(2007) have pointed to the lack of policy variables in SLEUTH. Poelmans and Van Rompaey (2009) have 
suggested that it is actually impossible to take in local policy and other local conditions during the 
modelling efforts. Withal, Onsted and Chowdhury (2014) showed that it is feasible and may produce better 
results. They are critical of others who included policy zones and elaborated on the most common ways 
excluded layers are created in SLEUTH: ignoring zones as many urban modelers do or merely guessing 
the impact of zoning. Thus, they introduced two methods to compute the urban resistance of each zone, 
based on the (historical) input data. Additionally, local knowledge is an essential source of qualitative 
information to determine these resistances. 

Notwithstanding, it can be a dangerous practice to mask out areas or restrict urbanization in zones 
(Akın, et al., 2014; Pontius, et al., 2004), which could lead to bias when modelling or forecasting. For 
example, in Groningen some water bodies transformed to other land use categories. By restricting water 
bodies from urbanization, the model would not be able to simulate these changes. Similarly, by including 
zones that encourage urbanization, more urban growth will be simulated or forecasted in those zones. 
These zones are based on policies for future urban development for the next 10 to 20 years, hence, the 
model would be biased into urbanizing those areas first and achieving higher goodness of fit results in the 
process. Nonetheless, the opposite could also be argued, that policy is an influential factor in the study 
area and that these zones should be included. In fact, the excluded layer may be the only way to 
incorporate policies in SLEUTH (Chaudhuri & Clarke, 2013a).  

To minimize the bias of masking, the policy zones were included in the MCE as factors, not as 
constraints, and as coarse categories. Additionally, the policy maps of 1970 and 1978 were used, as 
presumably these would produce the least bias in masking, since they are nearby the start year of the 
simulation. Moreover, from an analysis of the policy maps, it was found that between 1970 and 1980 the 
policy drastically changed. In the beginning of the 1970s, local municipalities anticipated substantial 
population growth, thus, large amount of areas was allocated to urban expansion. From 1978 onwards, the 
policy changed to a compact city policy and urban expansion areas became smaller. Since the time period 
for this research was set to 1973 and falls between these two different policies, both were included in the 
calibration and assigned a separate excluded layer. 

 

 

Figure 15: A visualization of the phases in model calibration. 

3.4 Calibration 
Calibration is one of the most important, if not the most critical portion of the modelling effort. It is during 
this phase that estimates of the parameter values, which describe an urban system, are determined, and 
upon which all forecasting and scenario simulation is based (Batty, 1976). For SLEUTH, the calibration was 
standardized by Silva and Clarke (2002), although other methods of calibration have been tested, including 
genetic algorithms (Goldstein, 2005; Clarke-Lauer & Clarke, 2011), ant colony optimization and 
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subregional calibration (Liu, et al., 2012). A similar use of artificial intelligence to improve calibration can 
be found in other CA applications (Wu & Silva, 2010; Feng, Liu, & Batty, 2015). The regular ‘Brute-Force’ 
calibration (Silva & Clarke, 2002) was performed in this study, even though, ant colony optimization and 
calibration through genetic algorithms would presumably produce better results and are computational 
more efficient. However, ant colony optimization was not readily available and whilst GA-SLEUTH is, which 
uses genetic algorithms for calibration, it does not use the improved functionality of SLEUTH-3r. Therefore, 
SLEUTH combined with a standard calibration procedure was conducted, which is shown in Figure 15. 
This modelling approach is of a similar structure as outlined in section 2.2: verification, calibration, 
validation and prediction. In the following sections the various phases will be elaborated.  

Input data preparation 
CA are subject to errors and uncertainties when they are applied to real urban environments, due to human 
errors, technical limitations and the complexity of nature. This is because current CA are quite different 
from Wolfram’s deterministic models (Wolfram, 1984b) which used limited data and had strict definitions. 
Instead, current CA require large amounts of input data to produce realistic modelling results. Inevitably, 
these data layers will contain errors and uncertainties that can alter simulation results during the iterative 
processes involved in CA. Ensuring the quality of the input data is an essential element of model calibration 
(Silva & Clarke, 2002). Therefore, understanding these errors and uncertainties in the input data is a crucial 
component for a successful simulation and interpretation of the modelling results (Yeh & Li, 2006). For this 
research, the input data preparation consists of three stages: data gathering, data pre-processing and 
data standardization. A brief overview will be given in the next sections and a more detailed description 
on these three stages will be presented in Chapter 4.  

Data gathering entails the accumulation of input data from various sources and data storage in 
databases. For this research, a variety of datasets were collected: satellite data, topographic maps, digital 
elevation map, vector data of the road infrastructure, and various other spatial and non-spatial raster and 
vector data for the urbanization-suitability layer. Whether data is useable depends on the accuracy of the 
data and the credibility of the data supplier, therefore reading associated documentation is useful to 
understand its limitations. Frequently, datasets were open-source or web-scraped of websites. The 
exceptions were policy maps of the years between 1970 and 2000, these were collected via archival 
research. Most of the open-source data came as large country-wide datasets or database-dumps of the 
Netherlands. Hence, it was found useful to store these datasets in a PostgreSQL database. Consequently, 
this ensured a proper data structure and standards and a means to rapidly process data. 

Afterwards, the ‘raw’ data needed to be transformed into meaningful information by giving it some 
degree of interpretation, which is commonly referred to as data pre-processing. In reality, the data was not 
raw. In this study it was usually pre-processed in some manner by the data provider, as became evident 
from related documentation. Nonetheless, the data is often inconsistent, incomplete or contains errors. 
Hence, it needed to be transformed into understandable and useable data. Generally, data pre-processing 
involves data cleaning and data transformation (Longley, et al., 2010).  

For this study, two general points can be made regarding data pre-processing. First, to avoid 
future confusion on the spatial characteristic of the study area, a control-file was created. This raster file 
was used as a reference to all other raster data, so all raster data used the same spatial resolution (30 m), 
spatial extent (i.e. bounding box), spatial projection (EPSG: 28992), file formats (GeoTIFF and GIF) and file 
data type (32Float and 8Byte). Secondly, the database stored a collection of raster and vector data types. 
Map transformations applied to data can lead to loss of data and uncertainty. Specifically, the conversion 
of vector data to raster data will usually lead to a loss of spatial information (Yeh & Li, 2006). In that case, 
the default choice was to convert all cells touched by vector objects and to use the appropriate algorithm 
for interpolation, often cubic convolution. Consequently, the data feature will be overestimated, but it will 
also ensure it is consistently present in the raster data. Furthermore, for the interpretation of various factors 
in the MCE a variety of GIS-operations were used, which may generate new errors due to imperfect user 
knowledge and inaccurate data. To cope with the described data uncertainty, fuzzy set theory was used 
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as explained in more detail in section 3.3. The validation of data, if necessary, is described in more detail 
in Chapter 4. 

Lastly, all data was standardized in conformity with SLEUTH specifications. The model required 
six grayscale GIF images (i.e. 8Byte). For all layers, 0 is a non-existent or null value, and values larger than 
0 are considered existing. All raster images required the same number of rows and columns, same spatial 
projection and spatial resolution, hence the control-file that was created. Moreover, the images ought to 
follow a specific naming convention: <location>.<layername>.[<data>].[<user info>].gif, details can be 
found in the scenario-file that comes with SLEUTH. 

Verification 
After data preparation, the first stage in model calibration was to set up the simulation environment 
correctly. In this case: a Cygwin environment with the Open MPI library to enable parallel processing. 
Afterwards, the scenario-file was prepared and SLEUTH was run in test-mode to test if the input data was 
compatible with the model specifications and to confirm the model worked correctly. As Silva and Clarke 
(2002) have pointed out: “it is prudent to first run the model in test mode… and to verify the statistical files 
as well as the different GIF images produced” (p. 531).  

Pre-calibration 
The second stage in the calibration of SLEUTH-3r is pre-calibration, which is to determine (a) appropriate 
auxiliary values and (b) determine appropriate self-modification values. After this phase, the regular ‘Brute 
Force’ calibration phases as described by Silva and Clarke (2002) can proceed.  

The initial auxiliary diffusion coefficient, auxiliary breed coefficient and auxiliary diffusion multiplier 
were introduced by Jantz et al. (2010) in SLEUTH-3r. The default setting is so these would not have any 
effect on computation and would be the same as in the original SLEUTH model. Therefore, to use these 
key features of SLEUTH-3r, the model would have to be calibrated to find the appropriate values. Further, 
the self-modification module was implemented in the original SLEUTH model by Clarke et al. (1997). 
Likewise, to use this key feature the model would have to be calibrated to find the most appropriate values 

The initial auxiliary diffusion coefficient and auxiliary breed coefficient were implemented in 
SLEUTH-3r to deal with the instability of the road gravity coefficient. As Jantz and Goetz (2005) explained, 
they were unable to identify the best-fit value for the road gravity coefficient across various spatial 
resolutions, as this coefficient did not converge to a specific range during calibration. This is mainly due 
to road-influenced growth always being applied last in the growth cycle, which can significantly limit the 
number of cells available for urbanization. Withal, it is not the road growth coefficient itself that has a 
significant impact on road-influenced growth, but rather the breed and dispersion coefficients. 
Accordingly, the breed coefficient influences the amount of road growth attempts and the dispersion 
coefficient determines the range of the road growth attempt, i.e. how far away a cell can be urbanized from 
the road cells. Thus, Jantz et al. (2010) introduced the auxiliary diffusion coefficient and auxiliary breed 
coefficient, which specifically alter the breed and dispersion coefficients that are used in road influenced 
growth. However, currently it is unclear how to calibrate these two auxiliary values correctly, therefore these 
were left at the default setting. 

The third auxiliary value introduced in SLEUTH-3r is the initial auxiliary diffusion multiplier, which is 
a multiplier that along with the diffusion coefficients and the amount of pixels in the input image diagonal, 
determines the number of spontaneous urban growth attempts: 

 𝑫𝑫𝒗𝒗 = 𝑫𝑫𝒄𝒄 · 𝑫𝑫𝒎𝒎 · �𝑹𝑹𝟐𝟐 + 𝑪𝑪² (4) 
where 𝑫𝑫𝒗𝒗 is the dispersion value, 𝑫𝑫𝒄𝒄 is the diffusion coefficient, 𝑫𝑫𝒎𝒎 is the diffusion coefficient multiplier, 𝑹𝑹 
is the number of rows in the image and 𝑪𝑪 is the number of columns in the image.  

With the auxiliary diffusion multiplier Jantz et al. (2010) attempted to address SLEUTH’s inability to 
capture dispersed urban patterns and its tendency to allow edge growth to dominate the urban system. 
This calibration ensured that SLEUTH-3r would be able to simulate the appropriate level of diffusive growth, 
which is imperative in an area with dispersed urban patterns, as is the case in Groningen. In the original 
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SLEUTH code, this multiplier was a constant set to 0.005. In SLEUTH-3r, the user can interactively change 
it from the scenario-file. In order to use this key feature of SLEUTH-3r, the appropriate multiplier value must 
be discovered. Therefrom, SLEUTH-3r’s growth coefficients were set to produce the maximum level of 
spontaneous growth (i.e. the diffusion coefficient was set to 100 and all other coefficients were set to 0). 
With 25 Monte Carlo iterations several simulations were performed in calibration-mode to determine to best 
fitting auxiliary diffusion multiplier value. The pixel or population fractional difference (PFD) and cluster 
fractional difference (CFD) were used to identify at what values the model would slightly (by 30%) over-
estimate the amount of urban clusters (Jantz, et al., 2010).  

The self-modification module is often recognized as an important component of SLEUTH, as it 
would allow SLEUTH to simulate dynamic growth rates over time, so that growth rates replicate the typical 
S-curve of urbanization and population growth (Silva & Clarke, 2002). Candau (2002) states that the self-
modification module was not able to reproduce the boom and bust phases experienced in her study area. 
This is because the default self-modification values are inherited from calibration of an earlier SLEUTH 
version applied to a different study area (Clarke, et al., 1997). Additionally, it may be likely that due to 
changes made in the transition rules in the newer versions of SLEUTH and SLEUTH, the default self-
modification values may not always be fitting. Unfortunately, there is no calibration procedure to determine 
the values associated with the self-modification module (Jantz, et al., 2014; Candau, 2002). However, 
Candau (2002) proposed to perform a coarse calibration without self-modification and use the best-fit set 
of coefficients as a baseline, to compare to coarse calibration results with self-modification.  

Coarse, fine and final calibration 
The value of a model’s prediction is only as good as the model’s ability to be effectively calibrated. 
Therefore, calibration is said to be the most decisive step in the modelling effort (Silva & Clarke, 2002). It 
determines “given a starting image of urban extent, which set of initial control parameters leads to a model 
run which best fits the observed historical data” (Clarke & Gaydos, 1998, p. 706). In SLEUTH-3, the goal 
of calibration is to find a set of growth coefficient values that can accurately reproduce the historical urban 
growth that has taken place within the study area. Testing the simulated land cover change against known 
prior data is known as an effective calibration method (Dietzel & Clarke, 2007), because it is based on the 
assumption that past land cover change is the best predictor for future land cover change.  

Goodness-of-fit statistics 
As explained in paragraph 2.2, the choice of appropriate goodness of fit statistics is crucial, since it 
determines how a model will simulate urban growth and patterns, and how the model will predict future 
urban growth and patterns. Thus far, there is no clear consensus on which best-fit statistics to use in 
SLEUTH. The model produces thirteen r²-statistics to calculate the goodness-of-fit (Table 3), of these 
thirteen, Clarke et al. (1997) relied primarily on four statistics: population, edges, clusters and the Lee-
Sallee statistics. Others have relied on a weighted sum of all statistical measures (Yang & Lo, 2006) or an 
unweighted score of several best-fit metrics (Silva & Clarke, 2002; Candau, 2002). Moreover, Dietzel and 
Clarke (2007) introduced a new metric, the Optimal SLEUTH Metric (OSM), a composite score of the best 
goodness of fit metrics: compare, pop, edges, clusters, average slope, x-mean and y-mean, and f-match 
if land use categories are included. Others have successfully used this composite metric for calibration 
(Onsted & Chowdhury, 2014; Chaudhuri & Clarke, 2013a; Bihamta, Soffianian, Fakheran, & Gholamalifard, 
2015; Mahiny & Clarke, 2012; Sakieh, et al., 2015b; Sakieh, et al., 2015b) 

Jantz et al. (2010) noted the potential difficulty in evaluating the fit of the model using a composite 
score. Additionally, they stated that the r²-statistics used to evaluate the goodness of fit of SLEUTH could 
result in an under- or over-fitting of the model. Consequently, SLEUTH-3r introduced new calibration 
statistics to enhance the calibration procedure. For each of the fit-statistics (Table 3), SLEUTH-3r calculates 
(a) the algebraic difference between the observed and the modeled value, (b) the ratio of the modeled 
value to the observed value and (c) the fractional change in the modeled value relative to the observed 
value. This is calculated for each run and for each year. Of these statistics, Jantz et al. (2010) used the 
PFD and CFD, and selected parameter sets that were able to match these fit-metrics within ±5-10%. 
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Achieving an accurate fit for the PFD metric would ensure that the overall amount of development is 
matched. The CFD is a pattern metric that captures an important component of urban form, i.e. clustered 
vs. dispersed patterns. In later research, Jantz et al. (2014) also used the edges fractional difference (EFD), 
which compares the number of edge pixels between the simulation and control years. The EFD is a shape 
metric that captures a component of the shapes of the clusters. Other researchers that used SLEUTH-3r 
applied this approach (Han, et al., 2015) or expanded it with the OSM (Jawarneh et al., 2015).  

In this research, the approach of Jawarneh et al. (2015) will be used. However in this case, OSM 
will be the leading metric and PFD, CFD and EFD will facilitate in evaluating the best-fit scores in terms of 
over- and underestimating. From various testing in this research, it was found that the OSM was the most 
successful in this study area and produced credible modelling results. Using the PFD, CFD and EFD as 
complementary metrics could provide more insight into the parameter values.  

Table 3: The thirteen metrics used in SLEUTH to calculate the goodness-of-fit. 

Fit statistic Definition 

Product A composite score of all the other scores combines 
Compare The modeled population of the final year compared to the actual population of the input data 
Population The least square regression score for the modeled urbanization compared to the actual urbanization of the 

control years 
Edges Least square regression score of the modeled urban edge count compared to the actual urban edge of the 

control years 
Clusters Least square regression score for the modeled cluster count compared to the actual cluster count of the 

control years. Urban clusters are single or multiple contiguous urban pixels, determined by using an eight-
neighborhood rule. 

Cluster size Least square regression score for the modeled averaged cluster size compared to the actual average cluster 
size of the control years  

Lee-Salee A shape index, measures the spatial fit of the modeled urban extent compared to the actual urban extent of 
the control years 

Average slope Least square regression score of the modeled average slope of urbanized cells compared to the actual 
average slope of the control years 

% Urban  Least square regression score of the percentage of available urban cells compared to the actual urbanized 
cells of control years 

X-mean Least square regression score of the average x-values for the modeled urbanized cells compared to the 
actual x-values of the control years 

Y-mean Least square regression score of the average y-values for the modeled urbanized cells compared to the 
actual y-values of the control years 

Radius Least square regression score of the averaged radius of the circle that encloses the simulated urban pixels 
compared to the actual urban pixels for each control year. 

F-match A proportion of goodness of fit across land use classes 
 

Brute Force calibration 
SLEUTH is commonly calibrated via a ‘Brute Force’ methodology, during which a large number of 
combinations of parameter values are tested automatically (Silva & Clarke, 2002; Clarke, Hoppen, & 
Gaydos, 1996). With the help of statistical and graphical metrics that are produced during the growth 
cycle, the goodness of fit is calculated for each set of growth coefficients. Each growth cycle is iterated, a 
user-specified number of times, during the MC simulation to reduce the spatial variability resulting from 
random processes. Afterwards, the averages across the multiple MC iterations are computed to produce 
the final best-fit statistics. Accordingly, the user evaluates the results, seeking the parameter values with 
the highest best-fit statistics to find the optimal set of estimates of values for the growth coefficients. 

The values of each of the five growth coefficients can range from 1 to 100 with incremental steps 
as small as one. If all combinations of the five coefficients would be computed with the smallest incremental 
steps possible, the model would run 1005 combinations. This would be highly inefficient. To reduce 
computational requirements, calibration is generally divided into three sequential phases: coarse 
calibration, fine calibration and final calibration (Silva & Clarke, 2002). Between the phases, the user 
attempts to narrow down the range of the parameter values that best fit the five growth coefficients. At the 
final phase the user averages the top three results to extract the estimates of the growth coefficient values 
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used for forecasting. If the self-modification module is used, the estimates of the growth coefficient values 
are used from the avg.log file for prediction.  

Generally, for coarse calibration all five growth coefficients are set to their widest range of 0-25-
100 as START, STEP and STOP values respectively, resulting in 55 combinations. SLEUTH is stochastic, 
so, during calibration it is common practice to increase the MC iterations to reduce random processes, 
from approximately 4 to 7, up to 10. For coarse calibration a small number of MC iterations (4) was used 
to reduce computational requirements. Using the best-fit values found from coarse calibration the 
coefficient value range is narrowed for fine calibration. Ideally, ranges will be narrowed so that incremental 
steps of five to ten could be used, whilst using five to six values per coefficient. For fine calibration a larger 
number of MC iterations (7) was used. Using the best-fit values found from fine calibration the coefficient 
value range is narrowed for final calibration. Ideally, the coefficient value range is narrowed further and 
incremental steps are smaller than in fine calibration. For final calibration a larger number of MC iterations 
(10) was used. The growth coefficient values of top three best-fit results are averaged to produce the 
estimates of the growth coefficient values for prediction. 

Jantz and Goetz (2005) found that any gains in performance achieved by testing additional growth 
coefficient values beyond coarse calibration (i.e. increments of 25) were minimal, particularly given the 
substantial increase in computing time. Hence, they had only performed coarse calibration, where all 
growth coefficient values ranged from 0 to 100 with increments of 25. From tests conducted during this 
research and based on other similar research (Liu, et al., 2012; Sakieh, et al., 2015b; Silva & Clarke, 2002), 
fine and final calibration can have additional value. Therefore, regular calibration will be conducted in this 
research. 

SLEUTH is a stochastic urban model and utilizes the MC iteration method for simulating urban 
growth patterns for each set of coefficients. The goodness-of-fit statistics that SLEUTH calculates are 
averaged over the MC iterations. To ensure robust calibration, for each of calibration phases, the top five 
best-fit results were run in test-mode with 25 MC iterations in order to validate the best-fit score visually 
and statistically, as this would be sufficient for quantifying the spatial variability resulting from the random 
processes (Goldstein, Dietzel, & Clarke, 2005; Jantz, et al., 2010; Clarke, et al., 1996). Similarly, after final 
calibration, the top three best-fit values for each growth coefficient were averaged and the model was run 
once more in test mode with 25 Monte Carlo iterations to validate the modelling results. By combining 
testing with calibration the computational efficiency is maintained, as well as a rigorous calibration 
procedure. 

Scale 
Silva and Clarke (2002)  suggested that calibration should involve a multistage optimization of all controlling 
coefficients across various spatial resolutions to adapt to local characteristics. For instance, calibration 
was also used to find the correct factors and weights in MCE, appropriate layer for ambiguous features 
and calibration of the self-modification parameters. Moreover, scale should be an integral issue during 
each phase of the modelling effort (Jantz & Goetz, 2005). Accordingly, all input data has been rescaled to 
a 60 m (625 by 525 pixels) and 150 m (250 by 210 pixels) spatial resolution for testing purposes. Silva and 
Clarke (2002) also stated, that during this effort: “each calibration phase corresponds to a multistage 
selection that depends both on the increased spatial resolution and the control values that the previous 
calibration phase identified” (p. 531). Increasing the spatial resolution during each calibration phase 
(coarse, fine and final) has been applied in other research (Akın, et al., 2014; Bihamta, et al.2015; 
KantaKumar, Sawant, & Kuma, 2011). However, scale influences the growth coefficients differently in the 
model (Jantz & Goetz, 2005; Candau, 2002; Dietzel & Clarke, 2004b). To avoid inaccuracies resulting from 
cell size sensitivity, the highest spatial resolution of 30 m was used for all calibration phases and the 
coarser resolutions were strictly used for testing purposes.   

Excluded layer 
Ordinarily, coarse calibration uses one excluded layer, although there are exceptions (Onsted & 
Chowdhury, 2014; Akın, et al., 2014; Onsted & Clarke, 2012). As stated by Onsted and Chowdhury (2014): 
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“The dearth of research devoted to improving excluded layer construction is surprising, since different 
excluded layers will cause SLEUTH… to derive very different coefficients of growth to explain past 
development patterns and forecast future growth” (p. 6). For this study, four excluded layers were used 
from the beginning of calibration to explore the sensitivity to local conditions by using an MCE. Moreover, 
by using multiple exclusion layers, comparisons could be made regarding the performance of said 
exclusion layers. One of these excluded layers was a standard excluded layer (E0) that functioned as a 
null map, only excluding water bodies and protected natural areas (Mahiny & Clarke, 2012). One excluded 
layer included an MCE (E1) and the last two excluded layers included an MCE with an additional factor: 
the policy maps of 1971 (E2) and the policy maps of 1978 (E3). The reason to included two different policy 
layers is because, these two were the closest two policy maps to the start date of 1973, and they both 
reflect a different policy. As stated in section 3.1, in 1971 the municipalities in the study area forecasted 
large population growth and spatial expansion, whereas in 1978 they more explicitly aimed a compact city 
policy to reduce urban sprawl.  

3.5 Validation 
Validation is an essential part of predictive modelling and becomes even more important when models are 
used as planning support systems. The validation of an UGM is usually carried out by comparing the 
simulated map to the observed map to determine the predictably of the model. However, often model 
validation is poorly defined (Pontius, et al., 2004). In light of this critique, the validation procedure for his 
research will be separated through time, where the input data from 1973 up to 2006 was part of model 
calibration from which the urban area and patterns of 2006 up to 2015 were predicted. For the validation, 
each excluded layer was reprocessed to update the MCE factors and constraints of 2006 to reflect new 
water bodies, natural areas, roads and urban areas. The resultant estimates of the parameter values were 
derived from calibration and used for model validation. Therefrom, the model was initialized in 2006 and 
run in predict to 2015 with 100 MC iterations. The reason to run the model in predict-mode from 2006 is 
due to that predict-mode differentiates between probabilities a cell is urbanized. With 100 MC iterations, it 
is possible to differentiate the probability a cell is urbanized up to single percentages, according to 
SLEUTH. Each cell that is urbanized in 50 or more MC iterations is used for model validation. This resulted 
in simulated urban area and patterns of 2015, which were compared to the observed urban area and 
patterns of 2015 to validate the time series on a known historic sequence. Also, SLEUTH does not output 
image files with a coordinate system, hence the previously mentioned control-file (section 3.4) was used 
to project the output images to a valid coordinate system.  

During validation there should be an objective way to compare the prediction map to a reference 
map (Pontius, et al., 2004). Hence, it is useful to use a validation technique that: (a) quantifies the budgets 
of error, (b) compares to a null map, (c), compares to a random map, and (d) performs the analyses at 
multiple scales. Knowing the budgets of error is useful for improving the model, as these errors will likely 
have the largest potential for improvement. Comparing the predicted map to a null map, i.e. no change, 
and a randomly generated map with the same class sizes, enables the model-user to assess the additional 
predictive power of the model. And, analyzing across multiple scales, provides insight in to the scale 
sensitivity of the prediction map.  

There are multiple methods that have been used to compare the predicted maps to the observed 
maps (Hagen-Zanker & Martens, 2008; Hagen, 2002; Pontius & Millones, 2011; Van Vliet, Bregt, & Hagen-
Zanker, 2011), a review is presented by Van Vliet et al. (2016). For SLEUTH, Chaudhuri and Clarke (2014) 
have used Kappa statistics to test the validity of the simulation results, such usage of supplement statistics 
to validate the simulation results has been applied in various other applications of SLEUTH (Wu, et al., 
2009; Rienow & Goetzke, 2015; Sakieh, et al., 2015a). However, Kappa statistics often provide information 
that is misleading and redundant, as noted by Pontius and Millones (Pontius & Millones, 2011). In addition, 
certain Kappa statistics are difficult to interpret correctly, e.g. Kappa simulation and its variations. Herold 
et al. (2003) proposed to use pattern analysis and successfully simulated using SLEUTH, which others 
have used as well (Wu, et al., 2009; Sakieh, et al., 2015b; Mahiny & Clarke, 2012; Chaudhuri & Clarke, 
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2013a; Goldstein, et al. 2004). However, pattern analysis in itself is a poor validation technique since it 
cannot specifically account for quantity disagreement (Pontius, et al., 2008). 

Therefore, to provide assessments of accuracy, this study used a variety of validation techniques 
to objectively compare the predicted maps to the observed map: three-map comparison (Pontius, et al., 
2008), budgets of components of agreement and disagreement, and multiple resolution comparison 
(Pontius, et al., 2011; Pontius, et al., 2004). In the following sections these techniques will be addressed in 
more detail. All the model validation techniques were performed with the GDAL software library, written in 
python-code and visually checked in QGIS. 

Three-map comparison 
A three-map comparison considers the overlay of three maps: (a) the reference map of time one, (b) the 
reference map of time two, and (c) the prediction map for time two (Pontius, et al., 2008; Pontius et al., 
2011). This map comparison method allows the model-user to differentiate pixels that are correct due to 
persistence vs. the pixels that are correct due to change. This is a useful comparison method as it focuses 
on the amount of correctly predicted changed pixels, as opposed to comparing the entire predicted map 
to the entire observed map. The latter option tends to produce misleading results that often overestimate 
the predictive power of a model, since the pixels that are persistence would also be included in the overall 
accuracy.  

For further analysis, the sources of percent correct and percent error were identified, by computing 
the: figure of merit, producer’s accuracy, user’s accuracy and overall accuracy. The figure of merit (FOM) 
is the ratio of the intersection of the observed change and the predicted change to the union of the 
observed change and the predicted change. The FOM can range from 0% to 100%, meaning no overlap 
to perfect overlap between the observed change and predicted change. This is given by: 

 𝑭𝑭𝑭𝑭𝑭𝑭 =  
𝑩𝑩

𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪 + 𝑫𝑫
 (5) 

 
where, 𝑨𝑨 is the area of error due to observed change predicted as persistence; 𝐵𝐵 is the area of correct 
due to observed change predicted as change; 𝑪𝑪 is the area of error due to observed change predicted as 
wrong gaining category, which can only occur when multiple land use categories are used; and 𝑫𝑫 is the 
error of area due to observed persistence predicted as change.  
 Three supplementary types of accuracy can be calculated from a three-map comparison: the 
producer’s accuracy, which is the proportion of pixels that the model predicts accurately as change, given 
that the reference maps indicate observed change. The user’s accuracy which is the proportion of pixels 
that the model predicts accurately as change, given that the model predicts change. And the overall 
accuracy, which is the proportion of agreement between the observed map and predicted map. The 
producer’s accuracy (PA) is given by: 

 𝑷𝑷𝑷𝑷 =  
𝑩𝑩

𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪
 (6) 

 The user’s accuracy (UA) is given by: 

 𝑼𝑼𝑼𝑼 =
𝑩𝑩

𝑩𝑩 + 𝑪𝑪 + 𝑫𝑫
 (7) 

 And the overall accuracy (OA) is given by: 

 𝑶𝑶𝑶𝑶 =  
𝑩𝑩 + 𝑬𝑬

𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪 + 𝑫𝑫 + 𝑬𝑬
 (8) 

 
where, 𝑬𝑬 is the area of correct due to observed persistence predicted as persistence. 
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Quantity disagreement and allocation disagreement 
To validate the accuracy of the prediction, Pontius and Millones (2011) developed the quantity 
disagreement and allocation disagreement, which are computed from a confusion matrix derived from a 
cell-by-cell comparison of the observed map and the predicted map. These two measures differentiate the 
sources of error due to difference in the relative category size between the observed map and the 
predicted map, and the error due to a difference in the spatial allocation of the category given the category 
sizes. They are both parts of the components agreement and disagreement, which in addition to the types 
of disagreement, also differentiate between three types of agreement: agreement due to chance, due to 
quantity and due to allocation. The quantity and allocation disagreement is explained by Pontius and 
Millones (2011), and the types of agreement are discussed in Pontius et al. (2004). 
 Quantity and allocation disagreement are used in this study, because they are easy to compute 
and easy to understand. If the disagreement between the simulated and the observed map is high, then 
these two disagreements provide the model-user with information on where the simulation is falling short. 
However, the values of the agreement and disagreement cannot be interpreted on their own, since a low 
disagreement could also be attributed to low observed change. Hence, the various types of agreement 
and disagreement are a complementary validation method to the three-map comparison, wherein the 
disagreement can be visualized and further differentiated.  

Multiple resolution comparison 
Multiple resolution comparison is a complementary method to three-map comparison and types of 
agreement and disagreement. It is rescales the observed and predicted maps by coarsening the spatial 
resolution. Therefrom, on multiple scale the three-map comparison and the budgets of components of 
agreement and disagreement can be applied to assess the accuracy of the predicted on multiple scales. 

Multiple resolution comparison will be able to deal with the scale sensitivity of the prediction map, 
as opposed to when a pixel-by-pixel comparison is performed. For example, a pixel is considered incorrect 
when the reference map disagrees with the category of said pixel in prediction map, regardless of whether 
the correct category is found in a neighboring pixel. To address this scale sensitivity, the prediction map 
was compared to the reference map on multiple resolutions, to distinguish the sources of agreement and 
disagreement on multiple scales and the components of a three-map comparison. To accommodate the 
variations in categories that would occur at coarser scales, a geometric progression procedure is used 
that produces pixels with partial membership. The various formulae for fuzzy membership and a geometric 
progression procedure are given by Pontius et al. (2004) and Pontius et al. (2011).  

3.6 Prediction 
Prediction is the last of the process flow. After the calibration and validation of the modelling results, a set 
of estimates of growth coefficients was produced (Appendix D; Appendix E). These coefficients were used 
as input for the prediction. Dezkham, Amiri, Darvishsefat and Sakiek (2013) mention there are three ways 
to predict in SLEUTH: via the exclusion layer, i.e. scenarios (Xiang & Clarke, 2003), via the self-modification 
module and with changing the parameters values. For this research, only the exclusion layer was used, 
due to the limitations and complexity associated with the self-modification module. The growth coefficient 
values were used from calibration and not altered for prediction, as minimal changes in the growth 
coefficients would not change the prediction outcome much (Jantz & Goetz, 2005) and drastic changes to 
the growth coefficient values would undermine the calibration procedure. Hence, three scenarios were 
created based on the validation procedure.  

 S1: a regular MCE excluded layer, as has been applied throughout this study, referred to as the 
E1 excluded layer. For this scenarios, each constraint and each factor in the MCE will be updated 
to reflect the situation of 2015. This scenario depicts a future without policy constraints, what would 
happen if urban growth in Groningen would be unconstrained.  

 S2: a ‘regular’ policy excluded layer with MCE, as has been applied throughout this study, referred 
to as the E2 or E3 excluded layers. The basis of this excluded layer is the most recent policy of the 
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Province of Groningen, which includes zones that specifically restrict urbanization in agricultural 
lands and natural areas, and encourages urbanization in urban expansion areas. This scenario 
reflects the future based on the current zoning policies of local governments. 

 S3: a nature protection excluded layer with MCE, which is also a policy layer like the previous 
scenario, however, this from the perspective of protecting natural areas. It is based on the 
Natuurnetwerk Nederland, which is aimed at protecting natural areas and the biodiversity. 

Ordinarily, for prediction, a start date is set, the last control year, and an end date is set, typically 
up to 20 years in the future. Research has shown that prediction beyond 10 years becomes increasingly 
uncertain, but could stay well within acceptable norms (Chaudhuri & Clarke, 2014). Despite that, for this 
research the prediction time period was 30 years, from 2015 up to 2045, as this could presumably put the 
20 years default prediction time period into a different perspective. 

Furthermore, during prediction, the urban growth is converted to a probability that a certain cell 
would be urbanized, based on how many times a cell is urbanized during the MC iterations. If 100 MC 
iterations are used (Candau, 2002; Clarke, et al., 1997), it would be possible to differentiate the probability 
a cell would be urbanized with incremental steps of 1%, in addition of dealing with the stochastic nature of 
SLEUTH. For forecasting into the future, this approach is used and a distinction is made between cells that 
have a higher than 50% chance of being urbanized and cells that have a lower than 50% chance of being 
urbanized, according to SLEUTH. 

3.7 Section Conclusions 
Section 3.1 depicted the study area, which is spanned over a region of 1,181.33 km² and comprises the 
city of Groningen that is located in the north of the Netherlands. The city is a, relatively, fast growing city in 
the Netherlands and is one of the few large cities in the region, which makes it a meaningful city to the 
northern part of the Netherlands. In this section a brief historical overview is presented. Key in that overview 
in light of this study, is the long tradition of planning urban growth via urban expansion plans, which led to 
less organic growth. Since the 1970s the expansion plans were based on the compact city policy, which 
aims at minimizing the urban footprint and preserving open space. Regarding this, it would be interesting 
to explore how SLEUTH copes with such an area. 
 Section 3.2 addressed the spatial and temporal scale as used in this study. The choice of scale 
influences the modelling results and choosing the appropriate scales is a crucial to modelling (Benenson, 
2007). This section justified the spatial, temporal and organizational scales that were used and why. 
Primarily, by reason of limitations in available data, since the satellite imagery came in a spatial resolution 
of 30 m2 and the earliest record is from 1973. Moreover, since Groningen does not function in isolation, the 
organizational scale was set to include neighboring cities and villages, thus the spatial extent was set to 
1,183.33 km2. The temporal scale was set to calibration and validation from 1973 up to 2015, and prediction 
from 2015 up to 2045.  
 Section 3.3 discussed the excluded layer. It is an imperative feature of SLEUTH, since it can 
substantially influence the simulation results by incorporating other relevant factors that are ordinarily not 
included in SLEUTH. Thus, in this study, the excluded layer is an urbanization-suitability assessment 
through an MCE as done by Mahiny and Clarke (2012) and Sakieh et al. (2015b). Both researches 
demonstrated the enhancement of the simulation and prediction results from the MCE-incorporated 
SLEUTH-model. With fuzzy set theory the MCE layers were standardized to allow for uncertainty and 
tolerance of imprecise data (Zadeh, 1965), and weights were assigned via AHP. Moreover, this section 
discussed what MCE factors were used and why. An important component of the MCE is the policy layer. 
Goetz, Jantz, Bockstael and Towe (2007) have pointed to the lack of policy variables in SLEUTH and 
Onsted and Chowdhury (2014) showed that it is feasible to include it in the excluded layer. However, it can 
be a dangerous practice to mask out areas or restrict urbanization in zones (Akın, et al., 2014; Pontius, et 
al., 2004), as it could lead to bias when modelling or forecasting. To minimize the bias of masking, zones 
were aggregated into the MCE as factors, not constraints, and in coarse categories. Additionally, the policy 
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maps of 1970 and 1978 were used, presumably these would produce the least bias in masking as they 
are nearby the start year of the simulation. 
 The next sections (3.4 and 3.5) described the calibration of SLEUTH, verification, calibration, 
validation and prediction processes that were executed. The verification of the input data and the model, 
the calibration to acquire the most fitting estimates of parameters, and the validation to assess the accuracy 
of the model results, are key to a successful modelling result (Batty, 1976; Silva & Clarke, 2002). For 
calibration choosing the appropriate goodness of fit statistics is crucial, therefore OSM was used in 
combination with PFD, CFD and EFD. To ensure robust calibration, for each of calibration phases, the top 
five best-fit results were run in test-mode with 25 MC iterations in order to validate the best-fit score visually 
and statistically. Further, since validation is often poorly defined, the validation procedure for his research 
was separated through time, where the input data from 1973 up to 2006 was used for model calibration 
wherefrom the urban area and patterns of 2006 up to 2015 was predicted. Three validation methods were 
used that (a) quantify the budgets of error, (b) compare to a null map, (c), compare to a random map, and 
(d) perform the analyses at multiple scales. These methods were: budgets of components of agreement 
and disagreement, three-map comparison and multiple resolution comparison.  

Section 3.6 elaborated on the prediction process as executed in this study, which was done with 
three scenarios: the S1 MCE excluded layer, the S2 MCE excluded layer including the policy of 2014, and 
the S3 MCE excluded layer including a nature preservation policy. 
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Chapter 4: Data Pre-processing 
The following section describes the pre-processing that was done for this research. Data pre-processing 
involves the transformation of raw data into meaningful information by giving it some degree of 
interpretation. Often raw data is inconsistent, incomplete or it contains errors. Thus, the raw data needs to 
be transformed into understandable and useable data. Generally, data pre-processing involves data 
cleaning, such as: filling in missing values, smoothing noisy data and resolving inconsistencies; and data 
transformation, such as: data normalization, aggregation or generalization (Longley, et al., 2010). In this 
section the data pre-processing that have been undertaken will be explained in more detail, which are the 
pre-processing of: the satellite data up to the land use classification, the SLEUTH input data and the data 
for the excluded layer. For all the data pre-processing efforts, testing and validation, the following software 
has been used: SLEUTH, QGIS, GRASS GIS, GDAL, PostgreSQL, eCognition and Python. 

4.1 Satellite Data 
Satellite based Earth observation is a technique to monitor land cover changes. In a time series analysis it 
holds potential to uncover long term land cover dynamics. One of these observations is made by the 
Landsat mission, the longest continuous record of satellite-based observations of the Earth’s surface, 
which makes it an invaluable resource for monitoring land cover changes (Roy, Kovalskyy, Zhang, Yan, & 
Kommareddy, 2015). This master’s thesis is aimed at a long-term directional trend of land cover change 
for Groningen which required imagery for a period of several decades. Therefore, the Landsat satellite 
images of the years 1973, 1984, 1990, 1998, 2006 and 2015 were acquired from USGS Landsat (2016a). 
For each of the years, as many images as available were collected, between 4 and 8 images. The reason 
for this is that by combining the same bands of multiple Landsat images, each pixel’s value can be 
averaged to come closer to the true value of the pixel which increases the accuracy. Collecting the images 
between the months of May and October ensured the least amount of barren exposure, which made 
differentiating urban from other land cover categories easier.  

The oldest high-quality, cloud-free image from the Landsat database (USGS, 2016a) for the city of 
Groningen was collected from the Landsat 1 Multispectral Scanner (LS1 MSS). It was acquired on the 22nd 
of March 1973 (path 212 and row 23) with a spatial resolution of 60 m. The other Landsat data came at a 
spatial resolution of 30 m from Landsat 5 Thematic Mapper (LS5 TM) for the years 1984, 1990, 1998, 2006 
and from Landsat 8 Operational Land Imager (LS8 OLI) for the year 2015. The LS1 MSS comes with 4 
spectral bands, the LS5 TM comes with 7 spectral bands and the LS8 OLI comes with 11 spectral bands. 
For further information on the spectral bands, see the USGS Landsat website (2016a). The table below 
(Table 4) shows the wavelength in µm of the spectral bands of the three Landsat missions that were used 
in this study, and how these compare to the other Landsat missions. The table contains the following 
spectral bands: blue, green, red, near infrared (NIR), shortwave infrared (SWIR) and thermal infrared 
(TIRS). The NIR of LS1 MSS is composed of two separate bands, but since these two bands are similar, 
they were used as one. Moreover, LS1 MSS does not have the same amount of bands as the other Landsat 
missions and it comes at a spatial resolution of 60 m, which made the land use classification harder for the 
year 1973. Rescaling the L1 MSS to 30 m was necessary to be able to simulate from the 1970s, when the 
compact city policy was adopted by Groningen. Therefore, LS1 MSS required most of the manual 
corrections made to the classification. 

Table 4: The spectral bands of LS1 MSS, LS5 TM and LS8 OLI that were used in this study, and how these compare 
to the other Landsat missions. 

 Blue (µm) Green (µm) Red (µm) NIR (µm) 
SWIR1 
(µm) 

SWIR2 
(µm) 

TIRS (µm) 

LS1 MSS  0.50 – 0.60 0.60 – 0.70 0.70 – 1.10    
LS5 TM 0.45 – 0.52 0.52 – 0.60 0.63 – 0.69 0.76 – 0.90 1.55 – 1.75 2.08 – 2.35 10.40 – 12.50 
LS8 OLI 0.45 – 0.51 0.53 – 0.59 0.64 – 0.67 0.85 – 0.88 1.57 – 1.65 2.11 – 2.29 11.50 – 12.50  
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The ability to detect and quantify land cover and land use changes on the Earth’s surface depends 
on sensor that can provide calibrated (known accuracy and precision) and consistent measurements. 
Geometric, radiometric and atmospheric correction are a prerequisite for creating high-quality science 
data. It ensures the data is consistently measured throughout the time series and becomes comparable, 
which is crucial to remote sensing of a time series (Chander, Markhem, & Helder, 2009). By that reason, 
all bands for all the years were geometrically, radiometrically and atmospherically corrected. Afterwards, 
the spectral bands were improved by image enhancement techniques that aid the visual and digital 
interpretation of the images. A representation of this process is shown in Figure 16. All the operations were 
performed with the GDAL software library and written in python-code due to the large amount of bands 
that needed to be corrected, enhanced and stacked together. The result were visually checked and 
compared in QGIS. 

 

Figure 16: A simplified visualization of pre-processing involved in the Landsat imagery.  

Geometric correction 
In order to align the cells of all the Landsat imagery’s bands, the raster data was geometrically corrected. 
This means that all the data was transformed to the same coordinate system, in this case from WGS 84 
UTM Zone 31 or WGS 84 UTM Zone 32 to RD New, which is the Dutch national projection. Some of the 
images did not have a valid projection, so these the images were geo-referenced with a cubic convolution 
algorithm. Geo-referencing is the process of assigning a spatial coordinates to data that has no explicit 
coordinate system. Images are georeferenced by linking spatially distributed control points in the satellite 
image to a base map with a known coordinate system (Longley, et al., 2010). To assess the accuracy of 
the geo-referenced image the root mean square error is a commonly used statistic. It measures the 
difference between locations that are known and locations that are digitized. The geo-referenced images 
had a root mean square error of between 11 and 15, which is less than half of the pixel size and indicates 
the images were relocated with an accuracy of less than one pixel. Also, it involved clipping the raster 
dataset to the same spatial extent and resampling the data with a cubic convolution algorithm to the same 
spatial resolution, in this case 30 m.  

Radiometric correction 
The sensors at the Landsat satellites capture reflected solar energy, which is converted to radiance and 
rescaled into an 8-bit digital number (DN) ranging from 0 (low intensity) to 255 (high intensity). Depending 
on the solar angle and satellite angle the intensity of radiation coming from a surface that is captured at 
the Landsat sensor varies between dates. Thus, the uncalibrated DN needs to be corrected (Chander, et 
al., 2009). The first step of this procedure is radiometric correction, which entails the conversion of the DN 
back to spectral radiance (𝑳𝑳𝝀𝝀. The spectral radiance at the sensor’s aperture is measured in watts per 
square meter per steradian (solid angle) per micrometer (𝑾𝑾 · 𝒎𝒎𝟐𝟐 · 𝒔𝒔𝒔𝒔 · µ𝒎𝒎) and given by: 

 𝑳𝑳𝝀𝝀 =
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝝀𝝀 − 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝝀𝝀)

(𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 − 𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸) ∗
(𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 − 𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸) + 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝝀𝝀 (9) 

where 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝝀𝝀 is the maximum spectral radiance of a band that is scaled in 𝑾𝑾 · 𝒎𝒎𝟐𝟐 · 𝒔𝒔𝒔𝒔 · µ𝒎𝒎, 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝝀𝝀 is the 
minimum spectral radiance of a band that is scaled in 𝑾𝑾 · 𝒎𝒎𝟐𝟐 · 𝒔𝒔𝒔𝒔 · µ𝒎𝒎, 𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 is the maximum 
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quantized calibrated pixel value of a band in DN, 𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 is the minimum quantized calibrated pixel 
value of a band in DN and 𝑸𝑸𝐶𝐶𝑨𝑨𝑨𝑨 is the quantized calibrated pixel value in DN. 

For LS8 OLI Equation 9 is slightly different as the metadata contains a pre-calculated offset, the 
band-specific multiplicative rescaling factor (𝑴𝑴𝑳𝑳) and gain, the band-specific additive rescaling factor (𝑨𝑨𝑳𝑳). 
More information on the calibration procedure for LS8 can be found in the Landsat 8 handbook (USGS, 
2016b). 

Atmospheric correction 
The second step is atmospheric correction, for which the spectral radiance was converted to surface 
reflectance (𝝆𝝆). This was done by calculating the path radiance (𝑳𝑳𝒑𝒑) based on Dark Object Subtraction 
(DOS), which is a family for image-based atmospheric correction techniques. Chavez (1996, p. 1027) 
states that “the basic assumption is that within the image some pixels are in complete shadow”, such as 
deep water and deep shadow. “Their radiances received at the satellite are due to atmospheric scattering 
(path radiance)”, hence these areas should have almost no reflective properties. “This assumption is 
combined with the fact that very few targets on the Earth’s surface are absolute black, so an assumed one-
percent minimum reflectance is better than zero percent”. In this case DOS1 was calculated by 
determining the DN at the lowest one-percent of the image histogram (𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎), therefore the path radiance 
is given by: 

 𝑳𝑳𝒑𝒑 = 𝑴𝑴𝑳𝑳 ∗ 𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎 + 𝑨𝑨𝑳𝑳 −
𝟎𝟎,𝟎𝟎𝟎𝟎 ∗ [(𝑬𝑬𝑺𝑺𝑺𝑺𝑺𝑺𝝀𝝀 ∗ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔 ∗ 𝑻𝑻𝒛𝒛) + 𝑬𝑬𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅] ∗ 𝑻𝑻𝒗𝒗

(𝝅𝝅 ∗ 𝒅𝒅²)  (10) 

where 𝑴𝑴𝑳𝑳  is a band-specific multiplicative rescaling factor from Landsat metadata, 𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎 is the DN at the 
lowest 1% of the image’s histogram, 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝝀𝝀 is the mean solar exo-atmospheric irradiances in 𝑾𝑾 · 𝒎𝒎𝟐𝟐 · µ𝒎𝒎 
from Chander et al. (2009), 𝜽𝜽𝒔𝒔 is the angle of incidence of the direct solar flux unto the Earth’s surface in 
degrees from the Landsat metadata and 𝒅𝒅 is the Earth-sun distance in astronomical units from Chander et 
al. (2009). Additionally, the following assumptions were made based on Moran et al. (1992): 𝑻𝑻𝒗𝒗 is the 
atmospheric transmittance along the path from the ground surface to the sensor, set at 1; 𝑻𝑻𝒛𝒛 is the 
atmospheric transmittance along the path from the sun to the ground surface, also set at 1; and 𝑬𝑬𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 is 
the downwelling spectral irradiance at the surface due to scattered solar flux in the atmosphere, set at 0. 

From the path radiance the surface reflectance was calculated. Surface reflectance is the 
reflectance of the surface of the Earth, thereby clouds and other atmospheric components do not affect 
the reflectance spectra. This is given by: 

 𝝆𝝆 =
𝝅𝝅 ∗ �𝑳𝑳𝝀𝝀 − 𝑳𝑳𝒑𝒑� ∗ 𝒅𝒅²
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝝀𝝀 ∗ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔

 (11) 

The Landsat TM and OLI also contain thermal bands for which the temperature was calculated by 
converting the spectral radiance to at-satellite brightness temperature in Kelvin. This is given by: 

 
𝑻𝑻 =

𝑲𝑲𝑲𝑲

𝒍𝒍𝒍𝒍 �𝑲𝑲𝑲𝑲𝑳𝑳𝝀𝝀
+ 𝟏𝟏�

 
(12) 

where 𝑲𝑲𝑲𝑲 is a band-specific thermal conversion constant in 𝑾𝑾 · 𝒎𝒎𝟐𝟐 · 𝒔𝒔𝒔𝒔 · µ𝒎𝒎 and 𝑲𝑲𝑲𝑲 is a band-specific 
thermal conversion constant in Kelvin, both are from Chander et al. (2009). 

Image enhancement 
Once all the individual bands for each Landsat raster dataset were converted to surface reflectance or at-
satellite brightness temperature, the bands were improved to aid visual and digital interpretation with 
image enhancement techniques. There are a variety of image enhancement techniques and the ones used 
in this research were: contrast enhancement performed in QGIS and principal component analysis (PCA), 
image transformation and band rationing performed in Python (Lillesand & Kiefer, 2015).  
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Contrast enhancement entails enhancing the image by applying a standard deviation contrast 
stretch. This does not change the value of the pixels, it merely improves the visual representation. This is 
useful when interpreting the Landsat imagery for selecting training pixels during classification or whilst 
selecting sample pixels for an accuracy analysis of the classification. The PCA is a mathematical method 
that is used to create another uncorrelated dataset with principal component images to accommodate for 
the high correlation between the individual bands. Image transformation involves the manipulation of the 
same bands of multiple Landsat datasets of the same area acquired at different times, i.e. multi-temporal 
image data. The pixels were averaged to come closer to the true value of the pixel and thereby improving 
the accuracy of the image. To these pixel values band rationing was applied to calculate the following 
indices: the Normalized Difference Vegetation Index (NDVI), which is given by: 

 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
(𝑵𝑵𝑵𝑵𝑵𝑵 − 𝑹𝑹𝑹𝑹𝑹𝑹)
(𝑵𝑵𝑵𝑵𝑵𝑵 + 𝑹𝑹𝑹𝑹𝑹𝑹) (13) 

The Modified Normalized Difference Water Index (MNDWI), which is given by: 

 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
(𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑵𝑵𝑵𝑵𝑵𝑵)
(𝑺𝑺𝑺𝑺𝑺𝑺𝑹𝑹 + 𝑵𝑵𝑵𝑵𝑵𝑵) (14) 

The Normalized Difference Built-up Index (NDBI), which is given by: 

 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =
(𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺)
(𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 + 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺) (15) 

where 𝑵𝑵𝑵𝑵𝑵𝑵 corresponds to the near infrared spectral band in the 0.70 µm – 1.10 µm wavelength range,  
corresponds to the red spectral band in the 0.60 µm – 0.70 µm wavelength range, 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 corresponds to 
the shortwave infrared spectral band in the 1.20 µm – 1.75 µm wavelength range and  corresponds to the 
green spectral band in the 0.50 µm – 0.60 µm wavelength range. 

 

Figure 17: The resulting satellite images for the LS8 OLI for the year 2015 after the various corrections. 

The calculation of these indices is based on specific properties of the features of interest in terms 
of strong absorption or reflection in certain spectral bands (Lillesand & Kiefer, 2015). The NDVI is 
commonly used for the extraction of vegetation. This index is based on the fact that plants absorb visible 
light for photosynthesis in the 0.40 µm – 0.70 µm wavelength range and reflect the near infrared light in the 
0.70 µm – 1.10 µm wavelength range, which is divided by the total light coming in. The NDBI is based on 
the fact that built-up areas have a high reflectance in 1.55 – 1.75 µm wavelength range and low reflectance 
in the 0.76 – 0.90 µm wavelength range, which is then also divided by the total light coming in. Similarly, 
the MNDWI absorbs the light in the 1.20 – 1.70 µm wavelength range and reflects the light in the 0.50 – 
0.60 µm wavelength range. Zha et al., (2003) showed that the NDVI combined with the NDBI is a useful to 
extract built-up areas. The MNDWI is used to reduce spectral confusion between built-up areas and bare 
areas, as Ogashaware and Bastos (2012) suggested that bare areas contain more water than built-up 
areas. Therefore, in this research these three indices were used to extract urban areas from the imagery. 
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Afterwards, all the bands and indices were stacked together into a single TIF-file. Figure 17 shows the 
resulting satellite image and three the spectral band combinations from the stacked TIF-file. 

Remote sensing 
Remote sensing is the science of acquiring information about the Earth’s surface through sensing and 
recording reflected or emitted energy and processing, analyzing and applying that information. Several 
studies have been conducted that combine SLEUTH with remote sensing and geographic information 
systems (Sakieh, et al., 2015a; Qi, 2012; Amin, 2007; Pan, et al., 2010; Liu, et al., 2012). There are primarily 
two techniques for remote sensing: pixel-based remote sensing and object-based remote sensing 
(Lillesand & Kiefer, 2015). Pixel-based remote sensing is concerned with individual pixels and their 
spectral values, whilst object-based remote sensing combines homogenous regions in an image into new 
objects. Object-based remote sensing is based on the assumption that important semantic information is 
not represented in single pixels, but image objects and their relations. The image content is represented 
in a network of image objects and act as building blocks for subsequent image analyses. Image objects 
carry more useful information than individual pixels do and can be characterized by not just spectral values 
and spectral derived information, but also shape, texture, neighborhood or context. Therefore, object-
based remote sensing with eCognition was used in this research to classify the land use in Groningen. 

Object-based image analysis is divided into two steps: (a) image segmentation and (b) image 
classification. The merged satellite images were segmented into smaller image objects via multi-resolution 
segmentation, a bottom-up region merging technique (Lillesand & Kiefer, 2015). The associated algorithm 
starts with considering each pixel of the various input bands as an individual object. It searches for 
adjacent pixels that have a similar spectral values. These are merged together into a bigger object, thus 
creating homogenous objects in an image. The homogeneity criterion is based on a combination of 
spectral values and shape properties, which is split up into smoothness and compactness. The segmented 
images were classified with a nearest neighbor supervised classification method by collecting 25 training 
samples of each land use class: water bodies, forests, rangelands, agricultural lands, heathlands and 
barren lands, and urban areas. The samples were selected via targeted sampling, due to the ease in data 
collections and so the selected pixels would represent the range of variability within each class (Congalton 
& Green, 2008). Based on fuzzy logic the nearest neighbor algorithm assigns a class to all the image 
objects that the objects belongs to the most. The resulting classification was visually validated via 
topographic maps and manually corrected if needed in QGIS. To ensure the urban area is consistent 
throughout the time series, the urban area of earlier years was harmonized with later years. This is based 
on the assumption that once a cell is urbanized it will stay urbanized.  

Validation of classification 
The classification maps are not perfectly accurate and are bound to contain errors. Therefore, to conduct 
a meaningful validation of predicted maps, an accuracy analysis of the observed maps is required to 
determine their credibility and to provide reasonable explanation for possible estimates of errors. This is 
particularly true when the observed maps are classified from remotely sensed data at a medium spatial 
resolution, where the measured classification accuracy may only be lower due to the mixed pixel problem 
(Chaudhuri & Clarke, 2014). The mixed pixel problem refers to the problems associates with the 
representation of multiple spectral classes in one pixel. Typically, each pixel contains the average spectral 
value of several classes, due to emittance and reflectance of different types of material in that pixel. 
Ordinarily this takes place along the edges of features where class transitions occur. 

Consequently, the classification for the years 1973, 1984, 1990, 1998, 2006 and 2015 was 
validated via a confusion matrix to assess the OA, the UA, the PA and the Kappa coefficient of agreement. 
The OA is the number of correctly classified pixels divided by the total number of pixels. The US is a 
measure of the errors of commissions, which are incorrectly included pixels to the class of interest, 
indicating the probability a pixel represents the same category in the observed map. The PA is a measure 
of the errors of omissions, which are incorrectly excluded pixels to the class of interest, indicating how well 
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a certain area can be classified (Congalton & Green, 2008). Kappa measures the agreement between the 
classification and the observed maps based on chance (Congalton, 1991). This is given by: 

 𝑲𝑲� =  

𝑵𝑵 · �𝒙𝒙𝒊𝒊𝒊𝒊 −�(𝒙𝒙𝒊𝒊+ · 𝒙𝒙+𝒊𝒊)
𝑱𝑱

𝒊𝒊=𝟏𝟏

𝑱𝑱

𝒊𝒊=𝟏𝟏

𝑵𝑵𝟐𝟐 −�(𝒙𝒙𝒊𝒊+ · 𝒙𝒙+𝒊𝒊)
𝑱𝑱

𝒊𝒊=𝟏𝟏

 (16) 

where 𝑱𝑱 is the number of categories in the confusion matrix, 𝒙𝒙𝒊𝒊𝒊𝒊 is the number of observation in row 𝒊𝒊 and 
column 𝒊𝒊, 𝒙𝒙𝒊𝒊+ and 𝒙𝒙+𝒊𝒊 are the marginal totals of row 𝒊𝒊 and column 𝒊𝒊, and 𝑵𝑵 is the total number of 
observations. Generally, Kappa can be interpreted in the following way: if Kappa equals 1, then the 
classification is perfect; if Kappa is larger than 0, then the observed proportion correct is greater than the 
expected proportion correct due to chance; if Kappa is equal to 0, then the observed proportion correct is 
equal to the expected proportion correct due to chance; and if Kappa is smaller than 0, then the observed 
proportion correct is less than the expected proportion correct due to chance.  

Based on Congalton (1991), who provided an indication for the amount of training pixels ought to 
be selected, for the years 1973, 2006 and 2015, per class 60 training pixels were selected, resulting in a 
total of 360 training pixels. For the years 1984, 1990 and 1998, per class 30 training pixels were selected, 
resulting in a total of 60 training pixels. Samples were selected via stratified sampling, where the strata are 
the land use categories from the classification map, and each stratum contained a minimum of 30 samples. 
Afterwards, the sample matrix was converted to a matrix that represents the entire study area to compute 
unbiased summary statistics. This was done by multiplying the matrix cell by its associated class size 
proportion given by the classified map (Pontius & Millones, 2011), based on the assumption that the real 
class size proportions are similar to those in the classification map. The sample pixels values were derived 
of image observations of satellite imagery.  

Table 5: The confusion matrix of the land use classification of 1973, and the errors of omission and commission, 
producer’s and user’s accuracy are shown per class as well as the overall measures.  

 
Reference 

  Producer’s 
accuracy 

User’s 
accuracy Classified 1 2 3 4 5 6 sum  

1 0.025 0.000 0.000 0.001 0.000 0.000 0.026  89.35% 95.08% 
2 0.000 0.016 0.000 0.000 0.000 0.001 0.017  30.29% 92.98% 
3 0.000 0.026 0.447 0.006 0.013 0.013 0.506  98.91% 88.46% 
4 0.003 0.001 0.000 0.097 0.000 0.000 0.101  84.93% 95.59% 
5 0.000 0.010 0.005 0.010 0.324 0.000 0.349  95.95% 92.96% 
6 0.000 0.000 0.000 0.000 0.000 0.001 0.001  4.96% 100.00% 

sum 0.028 0.053 0.452 0.114 0.338 0.015 1.000    
           
 Overall accuracy 91.01%    
 Overall producer’s accuracy 67.40%    
 Overall user’s accuracy  94.18%    
 Kappa 0.86    

Note. The numbers in the confusion matrix represent the following classes, 1: water, 2: forest, 3: rangelands, 4: urban 
areas, 5: agricultural lands and 6: heathlands and barren lands. The amount of training pixels selected for heathlands 
and barren lands is less than for the other classes, as this category is less common. 

The results show that the OA, PA, UA and Kappa statistic of the three observed maps is sufficient. 
(Table 5 and Table 6). The accuracy analysis of the year 1973 is the only one provided here, as this is 
exemplar to the accuracy of the other classified years. What this shows is that due to the small class size 
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of category six (barren and heathlands), that the PA is much lower than for other categories. The other 
accuracy analyses, for the years 2006 and 2015 can be found in Appendix A and for 1984, 1990 and 1998 
in Appendix B. 

Table 6: The results of the accuracy analyses of the classifications of 1973, 1984, 1990, 1998, 2006 and 2015. 

 Overall accuracy  Producer’s accuracy User’s accuracy Kappa 

1973 91.01% 67.40% 94.18% 0.86 
1984 96.23% 87.91% 95.05% 0.82 
1990 96.67% 89.45% 96.67% 0.85 
1998 95.59% 89.76% 93.53% 0.83 
2006 92.30% 62.69% 94.64% 0.84 
2015 94.13% 77.82% 95.42% 0.89 

 

4.2 Input Data 
The SLEUTH model requires several input data, as shown in Table 7, and conform specific specifications 
as explained in section 3.4 In the next section the various input layers and the topographic maps used for 
validation will be discussed, and from where the data was accumulated. First, a brief explanation on what 
data is required for SLEUTH. 

The Slope layer uses elevation data with a percent slope and requires only one time period. The 
Land use layer is an optional layer that uses any number of land use categories, as long as they are 
consistent. It requires two time periods and is used to calculate a class-to-class transition probabilities 
matrix among the different land use categories. The excluded layer defines the urban suitability from 0 
(suitable) to 100 (unsuitable). The Urban layer consists of a raster in which a cell is either urban or non-
urban. In the original SLEUTH model this layer required at least four periods to calculate goodness-of-fit 
statistics, in SLEUTH-3r only two periods are required due to the new goodness-of-fit statistics. Lastly, the 
Transportation layer needs at least two time periods and has the option to include weighting to represent 
the relative importance of roads and to determine the probability of urban development according to 
accessibility of a location.  

Table 7: A list of the sources of the model input data for SLEUTH. 

Theme Year Source(s) 

Slope and hillshade  Derived from the AHN2 of 2009 for the years between 1973 and 2015. 
Land use 1973 Classified from LS1 MSS for 1973, LS5 TM for 2006 and LS8 OLI for 2015. The 

urban class was further differentiated with vector data from BBG for1989, 2006 
and 2012 as well as topographic maps for 1970, 2005 and 2015. 

 2006 
 2015 
Urban extent 1973 Classified from LS1 MSS for 1973, LS5 TM for 1984, 1990, 1998 for 2006 and 

LS8 OLI for 2015, with the help of topographic maps for 1970, 1982, 1990, 
1999, 2005 and 2015. 

 1984 
 1990 
 1998 
 2006 
 2015 
Transportation 1973 Classified from NWB for 2015, 2006 and 1998. 1973, 1984 and 1990 were 

digitized from topographic maps of 1970, 1982 and 1990.  1984 
 1990 
 1998 
 2006 
 2015 
Excluded  Based on a MCE for1973, 2006 and 2015, water masks for 1973, 2006 and 

2015, and policy zones of 1971, 1978, 1984, 1994, 2000 and 2015. 

Topographic maps 
Topographic maps were used to assist classification and to aid visual validation of the classification results.  
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These maps for 1970, 1982, 1990, 1999, 2005 and 2015 were gathered from the Kadaster (2016b). The 
maps were geo-referenced to the situation of 2015, as this was presumably the most accurate with the 
most control points. The geo-referencing of the topographic map for 2015 gave a root mean square error 
of 2.363 with a cell size of 2.5. This root mean square error is sufficient, as the maps were only used for 
visual validation purposes. All subsequent maps, the years 1970, 1982, 1990, 1999 and 2005, were aligned 
with the 2015 image with a minimal root mean square error, lower than 0.01. The corrected maps for the 
years 1970, 1990 and 2015 are shown in Figure 18. 
 

 

Figure 18: Three topographic maps of Groningen for the years 1970, 1990 and 2015. 

Slope and hillshade 
The Slope layer uses elevation data with a percent slope and requires only one time period. The Hillshade 
layer is needed to give spatial context to the urban extent data and is only used for visualization purposes.  
Both layers were derived from the AHN2 (AHN, 2013), which comes as a TIF-file of the ground level at 0.5 
m². The study area was gathered in 2009 by airborne LiDAR, which is a technology that measures the 
surface elevation by illuminating the surface with a laser light from an airplane. According to the 
specifications, the point density is between 6 and 10 per m2, with 95% of the data accurate up to 15 cm 
and positional accuracy up to 50 cm. Then, the point cloud is filtered to only include ground level points 
and resampled to a 0.5 m2 raster file by the squared inverse distance weighting method.  

All of this suggest that the data is highly accurate. In fact too accurate for the scale it was used for 
in this study. First, the tiles of the TIF-file were interpolated to fill in gaps by the filtering of the ground level 
points, and merged together to create a digital elevation map (DEM). Thereafter, to reduce the noise, the 
DEM was smoothened by applying an unweighting average resampling method to a spatial resolution of 
30m2. Subsequently, the DEM was converted to slope in degrees to create the slope layer. The hillshade 
layer was derived of the DEM. The results are shown in Figure 19. 
 

 

Figure 19: Visualization of the digital elevation map, slope in degrees and hillshade of the study area. 
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Land use 
As outlined in Chapter 1, this research focusses on the urban land cover change and not land use change, 
hence the land use input data is not required. However, some MCE factors are based on the land use data, 
such as distance to public facilities and distance and the exclusion of water bodies, and other important 
factors of the MCE. 

The land use input layer has been constructed from the remotely sensed classification as well as 
additional vector datasets: the Bestand Bodemgebruik (BBG) from CBS (2008) for the years between 1989 
and 2012 and the BAG (Kadaster, 2016a) and the Top10NL (Kadaster, 2015) for 2015. All these large 
datasets were put in PostgreSQL databases to correctly relate and select the areas of interest. Afterwards, 
the datasets were combined with the remotely sensed classification to further validate the accuracy. See  
for the accuracy analyses of the land use classification maps, and Figure 20 for the final results of the land 
use classification of 1973, 2006 and 2015. Before 2000, the BBG was based on topographic maps of a 
1:10,000 scale, after 2000 the data was based on aerial photography of 10 cm accuracy and the 
Top10VECTOR geometry, which is the predecessor of the Top10NL. All three datasets contain information 
on the land use, but the difference is that the BBG describes the land cover classes and Top10NL and 
BAG describe the objects on the surface. This implies that BBG is the most useful dataset for determining 
the land use classes, and the other two are merely indicators and cannot be used on their own in this 
study. Furthermore, the CBS (2008) describes the relation of older versions and newer versions of the BBG, 
since the definitions of the land use categories changed. In SLEUTH each pixel can only contain one 
category, therefore, only the primary land use class was used as defined by the BBG. 
 

 

Figure 20: The input data for the land use layer for the years 1973, 2006 and 2015.  

Urban extent 
The remotely sensed classification was transformed into a binary classification of urban and non-urban 
lands, which is depicted in Figure 21. In this research it was chosen to exclude roads and railways outside 
of the cities and villages, and water bodies from the urban class. The reason for excluding these land use 
categories from the urban layer is because these would disrupt the growth patterns and negatively 
influence the calibration phase. This was concluded from testing the input data in SLEUTH. 

After testing it was found that filtering individual pixels or small clusters of pixels from the urban 
layers increased the calibration results of SLEUTH. Most of the small clusters of pixels represent large 
farms or a few houses that are adjacent to each other. The growth rules applied by SLEUTH are generalized 
over the entire study area and since the study area displays a rather dispersed urban growth pattern, these 
small clusters would incorrectly grow too rapidly. Therefore, SLEUTH was not able to cope with these 
clusters correctly and the cluster measure seemed particularly sensitive to these clusters of pixels. 
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Figure 21: The input data for the urban layer for the years 1973, 1984, 1990, 1998, 2006 and 2015. 

Via the excluded layer it is possible to divide the area into several zones that show more resistance 
to urbanization and thus limit the amount of urban growth. However, even with zoning SLEUTH was not 
able to cope with these small clusters correctly. Therefore, all urban clusters smaller than 12 were filtered 
out of the data, as this would maintain the dispersed urban development pattern of the study area and 
improve SLEUTH’s calibration results. This was analyzed by filtering the clusters of size up to 25 and using 
the filtered urban layers for calibration in SLEUTH. With the OSM, PFD, CFD and visual interpretation a 
cluster filter size of 12 was found to be a fitting value. Each urban layer was filtered individually ensuring 
small growing clusters that were persistent through the time series could still exist. Subsequently, the land 
use layer was harmonized with the urban layers by converting the filtered urban pixels to rangelands as 
this is the most common land cover class in the study area and seemed appropriate based on visual 
interpretation.  

Figure 22 shows the urban growth that has taken place in the study area between 1973 and 2015. 
Table 8 shows the amount of urban pixels and urban clusters of the input data for both the original urban 
layer and the filtered urban layer. The amount of urban growth that has taken place in the study area seems 
to be linear. The filtered urban layer contains less urban pixels and clusters, but also shows a similar linear 
growth as the original urban layer, therefore the two layers seem to be comparable. 

Table 8: Shows the amount of urban pixels and urban clusters in the input data. 

 Area Area (filtered) Clusters Clusters (filtered) 

1973 112,351 104,939 5,377 2307 
1984 133,289 125,098 5,947 3018 
1990 153,641 144,308 6,427 3666 
1998 169,557 159,056 6,610 4059 
2006 190,471 178,485 6,663 4420 
2015 210,855 196,981 6,774 4432 
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Figure 22: The urban change for Groningen between the years 1973 and 2015. 

Transportation 
The transportation datasets were acquired from NWB (Rijksoverheid, 2013) for the years between 1995 
and 2015 and Top10NL for 2015 (Kadaster, 2015). The accuracy of the NWB is that 95% of the roads are 
within 5 m of the actual position of the road, which seems sufficient considering the spatial resolution of 30 
m used in this research. From these datasets, the transportation layer was created for the years 1998, 2006 
and 2015 and with the help of topographic maps the transportation layers of earlier years were created by 
manually adjusting the transportation network.  

For this layer, it was chosen to only include important infrastructural connections: the highways, 
regional roads, main roads from the NWB, and the railways and airports from the Top10NL. The reasoning 
for including the airports in this layer was because during the testing phase adjacent pixels would 
incorrectly be urbanized. Thus, the airport was excluded from the urban layer and placed in the 
transportation layer, even though parts of the airports are in fact buildings. Moreover, considering the 
procedure as described in 3.4, the conversion of vector data to raster data would in this case overestimate 
the amount of road pixels in the map. With a spatial resolution of 30 m, not every road would fit into that 
specification. However, due to the algorithms used in the road gravity coefficients, it would be preferred to 
have continuity in the transportation network.  

Furthermore, the transportation layer contains weight values to indicate their importance, 1 being 
the least important and 100 the most important. Regional roads were set at 25, main roads at 50, railroads 
and airports were set at 75, highways at 100 and all other pixels were set at 0. These estimates of parameter 
values were arbitrarily chosen and based on other research that used similar values (Han, et al., 2015). It 
was found that testing and validating these estimates was particularly difficult considering the road gravity 
coefficient does not seem to exhibit a relationship to any fit statistic (Jantz & Goetz, 2005). Afterwards, this 
layer was harmonized with the land use classification and urban layer, which means that the roads and 
airports in the land use layer are the same as in the transportation layer.  
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Figure 23: The input data for the transportation layer for the years 1973, 1984, 1990, 1998, 2006 and 2015.  

4.3 Excluded Layer 
In the next section the various factors of the MCE, as mentioned in 3.3 SLEUTH, will be discussed, on what 
data they were based and what type of data transformation techniques were used. All the factors are 
incorporated in the MCE via fuzzy set theory, which requires a fuzzy set definition, a membership function 
and shape parameter. All parameter values were based on literature and individual interpretations. By trial 
and error, these sets of parameter values were calibrated and tested. As it turns out, this type of calibration 
with this many factors is rather time-consuming in SLEUTH, since every set of parameter values needs to 
be calibrated and interpreted individually. Hence, the calibration procedure regarding the MCE factors 
was rather coarse, by adjusting the control points and weighting scores by relatively coarse incremental 
steps. Subsequently, the effects of the adjustments were recorded and compared to the regular E0 
excluded layer and other sets of parameter values. Over time, the records of sets of values grew and 
assessments could be made on what factors were determined as more and what factors were less 
important and what the effects were of higher and lower values for the control points of the fuzzy set 
definition.  

The factors and constraints of the MCE are shown in Figure 24. Table 9 shows all the included 
criteria of the MCE and their weighting scores and fuzzy membership functions. For the excluded layers 
that include policy zones, the weights in Table 9 are correct. However, E0 and E1 do not include a policy 
layer, therefore, their weights were calculated separately. E0 and E1 have the same relative weights for 
each factor as compared to E2 and E3, but without the policy layer, i.e. the ratios between the factors are 
the same yet the weighting scores are higher and still sum up to one. Further, the components of the 
biophysical layer had the lowest weights and the transportation layer was found the most influential. From 
the criteria, the proximity to the highway exits, regional shops and restaurants, regional public facilities and 
regional industrial sites were found the most influential. All these weights characterize the importance of 
the city of Groningen in the region, in an attempt to differentiate small villages from larger cities.  
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Table 9: Each factor of the MCE and its weighting score and the fuzzy membership functions. 

 Weighting 
score 

Membership 
function 

Control points Criteria 
(resultant layer) 

Weighting 
score 

   A B   
Ground water depth (m) 0.0145 S -20  -1 Biophysical 0.0369 
Elevation (m) 0.0103 S -4 3   
Flooding 0.0061 User defined 

fuzzy values 
    

Soil type 0.0061 User defined 
fuzzy values 

    

Land use categories 0.0513 User defined 
fuzzy values 

  Land use 0.0513 

Policy zones 0.4193 User defined 
fuzzy values 

  Policy 0.4193 

Proximity to regional public 
facilities (m) 

0.0734 Z 3000 10000 Public facilities 0.0978 

Proximity to sub-regional 
public facilities (m) 

0.0245 Z 2000 7500   

Proximity to regional 
shopping facilities and 
restaurants (m) 

0.0675 Z 3000 10000 Shopping 
facilities 

0.0900 

Proximity to sub-regional 
shopping facilities and 
restaurants (m) 

0.0225 Z 2000 7500   

Proximity to regional 
industrial sites (m) 

0.0722 Z 2500 15000 Industrial 
facilities 

0.0963 

Proximity to local industrial 
sites (m) 

0.0241 Z 1000 5000   

Proximity to Groningen’s 
border (m) 

0.0489 Z 0 10000 Borders 0.0652 

Proximity to small cities’ 
borders (m) 

0.0163 Z 0 5000   

Proximity to intercity train 
station (m) 

0.0495 Z 2500 10000 Transportation 0.1432 

Proximity to stop train 
station (m) 

0.0158 Z 1500  5000   

Proximity to highway exits 
(m) 

0.0779 Z 2500 15000   

Ground water depth 
The ground water depth was gathered from TNO (2016). This comes as a point cloud containing 
information on the water depth at GPS locations in the study area, as well as in the adjacency of the study 
area from the 1950s onwards. The points between 1965 and 1975, and 2005 and 2015 were averaged on 
the specific location and interpolated using a nearest neighbor algorithm to create a raster of the ground 
water depth. The resulting layer was smoothened with the r.denoise algorithm in GRASS. The control points 
for an S-shape fuzzy membership function were based on Biron (2004) who indicated that anything above 
-1 m is not suitable for urban development, and it was assumed anything below minus 20 m would not 
affect urban development. The results were two maps, one for 1973 and one for 2015, the latter was also 
used for the validation time period from 2006 onwards. 

Elevation 
The DEM was used for the elevation layer. The layer was given an S-shape fuzzy membership function to 
indicate that grounds below 3 m were negatively affected by elevation, with 4 m below sea level being the 
lowest point in the study area. Grounds with an elevation above 3 m lost its beneficial effect. The resulting 
map was used for all calibration and validation phases, as presumably the elevation did not change much 
over the last decades. 
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Figure 24: Shows the factors and constraint used in the MCE for 1973. 

Flooding 
The flooding data of the year 2015 was gathered from the Rijksoverheid (2015). It came as a vector dataset 
containing zones that had a certain risk of flooding: flooding every 1000 years, flooding every 100 years, 
flooding every 10 years or no flooding. Equation 1 and Equation 2 calculated the urban growth that has 
taken place inside the four flooding zones between 1973 and 2015, these were used as a guide to 
understand how certain zones had potentially affected the urban growth. Accordingly, the fuzzy values 
were derived from the urban growth resistance per zone through individual perception and interpretation. 
In this process the zones, flooding every 1000 years and flooding every 100 years were merged into one 
zone as these were found to be similar, and water was excluded and given a value of 0. The results are 
depicted in Table 10. 

Table 10: Shows the user-defined fuzzy values of flooding chance. 

Flooding chance Fuzzy value 

No flooding 1.00 
Flooding every 100 years or more 0.93 
Flooding every 10 years  0.57 
Water 0.00 

Soil type 
Soil type came as a vector dataset containing several soil types for the year 2012. It is derived from a 
detailed soil type classification, whereby various soil characteristics were grouped into 72 soil physic 
classes. Afterwards, these classes were further grouped into 10 main categories (Alterra, 2006; Alterra, 
2012). With Equation 1 and Equation 2 these categories were used to calculate the urban growth that has 
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taken place on the various soil types between 1973 and 2015, from which the fuzzy values as depicted in 
Table 11 were derived. Water was excluded from the soil types and given a value of 0. The fuzzy values 
depicted in Table 11 align with expectations. Since, the more organic and water-holding soil types are the 
least suitable for urbanization or at least would require additional, more expensive, preparations before 
they are suitable. Thus, peat soil and light clay have lower suitability scores and sand and loam have high 
suitability scores.  

Table 11: Show the user-defined fuzzy values of soil types. 

Soil type Fuzzy value 

Sand 1.00 
Peat soil 0.10 
Organic soil on sand 0.79 
Light sandy loam 0.46 
Heavy sandy loam 0.92 
Light clay 0.47 
Heavy clay 0.70 
Loam 0.93 
Water 0.00 

Land use categories 
Using the land use maps from 1973, 2006 and 2015, seven land use categories were defined through a 
user-defined option (Table 12). Water and roads were excluded from urbanization by giving those a fuzzy 
value of 0. For the other land use categories Equation 1 and Equation 2 were used to calculate the urban 
growth that has taken place in the five land use categories, from which the fuzzy values were derived. The 
fuzzy values in Table 12 show that forests are less suitable and urban areas and rangelands would not 
resistance urbanization at all. These are not surprising results, since agricultural lands and heathlands 
would in reality pose some resistance to urbanization, more than rangelands and less than forest. 

Table 12: Shows the user-defined fuzzy values of land use or land cover classes. 

Land use or land cover Fuzzy value 

Water 0.00 
Roads 0.00 
Agricultural lands 0.59 
Heathlands and barren lands 0.54 
Forests 0.24 
Rangelands 1.00 
Urban areas 1.00 

Policy 
The policy maps of between 1960 and 2000 were gathered via archival research. These maps were 
georeferenced with a root mean square error between 3 and 5 with a cell size of 10. Maps after 2000 were 
gathered from geoportal of Drenthe (2016) and Groningen (2016), see Figure 25 for an example of what 
these maps look like after geo-referencing. Subsequently, the policy maps of the Provinces were 
vectorized and zoned into several categories. For each category was checked how it has affected urban 
growth in the past based on Equation 1 and Equation 2. If the resistance of zones was relatively close to 
each other and believed to be similar, the zones were merged. This results in five distinct categories: 
urban, urban expansion, agriculture, agriculture with important natural components and nature. The fuzzy 
values for the five categories are shown in Table 13.  

The results in Table 13 are according to expectations, since urban and urban expansion areas 
would show the least resistance to urbanization, and agricultural and natural lands would resist 
urbanization much more. Interestingly, the fuzzy value of agricultural lands in Table 12 is substantially 
different from agricultural lands in Table 13. However, this is due to the definition of agricultural lands. 
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Table 12 is based on the RS classification, thus it represents the land cover class. Whereas Table 13 is 
based on policy zones, which are not as strictly delineated and comprises of more types of land cover 
classes than the agricultural class. 

Table 13: Shows the user-defined fuzzy values of the five policy zones. 

Policy zone Fuzzy value 

Urban 1.00 
Urban expansion 0.76 
Agriculture 0.14 
Agriculture with nature 0.10 
Nature 0.05 

 

 

Figure 25: Three examples of policy maps, for 1971, 1978 and 1984. 

Distance to public facilities, shopping facilities and restaurants, and industrial sties 
The location of public facilities, shopping facilities and restaurants, and industrial sites was extracted from 
the land use maps of 1973, 2006 and 2015. Through individual interpretation the most important facilities 
and sites were selected to better concentrate the urban growth. Raster maps were formed based on the 
Euclidean distance to the facilities and sites and fuzzified with a Z-shape membership function. The control 
points were based on individual interpretation and statistical analyses of where urban growth had taken 
place between 1973 and 2015 with regard to the facilities and sites. The regional facilities, shops, 
restaurants and industrial sites have a larger influences then the more local variants. It was found that 
industrial sites had a distinctly different sphere of influence than public facilities, shops and restaurants. 
The regional industrial sites had a far larger influences than the regional facilities, shops and restaurants, 
and the local industrial sites had a much smaller influence than sub-regional facilities, shops and 
restaurants. Presumably, this is due to local industrial sites that were more dispersed than shops, 
restaurants and facilities. 

Distance to the borders 
The urban areas were extracted from the urban layers of 1973, 2006 and 2015. The layer was formed 
based on the Euclidean distance to the borders of Groningen and medium-sized cities in the region. 
Medium-sized cities were defined as cities with a population bigger than 5000 inhabitants. The control 
points of the Z-shape membership function were based on individual interpretation and statistical analyses 
of where urban growth had taken place between 1973 and 2015 with regard to the distance to borders.  

Distance to public transit and highway exits 
The train stations were gathered from the GTFS by the Nationale Spoorwegen (2016). The highway exits 
were manually created based on topographic maps. These points were converted to raster maps based 
on the Euclidean distance to the stations and highway exits. The control points of the Z-shape membership 
function were based on individual interpretation and statistical analyses of where urban growth had taken 
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place between 1973 and 2015. It was found that the distance to the highway exits was particularly 
important to the study area. When it was first incorporated in the MCE, calibration was noticeably improved. 

Constraints 
The constraint layer included water bodies and road networks (Mahiny & Clarke, 2012) and protected 
natural areas based on the Natura2000-areas. The reason to excluded these areas was due to calibration 
tests that showed higher goodness of fit results, whilst excluded water bodies, road networks and natural 
areas. Also, water bodies, important regional or national roads, and natural areas are for large part 
restricted from urbanization by policy in the Netherlands. Subsequently, the constraint layers and MCE 
factors were combined by using Equation 3. It was found that excluded natural areas and water bodies 
improved calibration drastically, whist acknowledge the dangers of related to the bias of masking as 
mentioned in section 3.3. 

Excluded layers 

 

Figure 26: Shows the four excluded layers of 1973 used in calibration. 
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Figure 26 shows the excluded layers: E0 the regular excluded layer, E1 the MCE excluded layer, the E2 
MCE and 1971 policy excluded layer and E3 the MCE and 1978 policy excluded layer. Figure 27 shows 
the prediction scenarios: the S1 MCE excluded layer, the S2 MCE excluded layer including the policy of 
2014, and the S3 MCE excluded layer including a nature preservation policy.  
 

 

Figure 27: Shows the three excluded layers of 2015 used in the prediction. 

4.4 Section Conclusions 
The quality of the input data is one of the most important elements of modelling (Silva & Clarke, 2002). 
Therefore, understanding the errors and uncertainties associated with the input data is a crucial 
component for a successful simulation and interpretation of the modelling results (Yeh & Li, 2006). The 
input data was primarily derived from a land use classification by RS, hence Section 4.1 was dedicated to 
explaining precisely what was done to the satellite data and what the accuracy of the final result was. The 
described corrections that were made to the satellite data are key to be able to conduct a time-series 
analysis. The validation of the land use classification showed that all time periods, 1973, 1984, 1990, 1998, 
2006 and 2015, had an accuracy between 91.01% and 96.67%, and a Kappa value between 0.82 and 
0.89, thus, the accuracy of the land use classification was found sufficient.  
 Section 4.2 described how the various input data layers of SLEUTH were created: slope, land use, 
excluded, urban, transportation and hillshade. If derived from external data, the accuracy of said data was 
described. It showed that external data was often too accurate, i.e. it produced noise and negatively 
affected SLEUTH simulation. Several methods were used for coarsening the input data. For example, small 
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urban clusters and cells were excluded from the urban data layer, only regional and national roads, airports 
and the railway were included in the transportation layer, and the slope layer was smoothened by applying 
an unweighting average resampling method. In the process of transforming input data conform SLEUTH 
specifications, spatial information got lost (Yeh & Li, 2006). Simplification of input data is inherent to current 
urban models and should be acknowledged, yet not considered as a negative factor, since making 
simplifications is inherent to urban modelling. 

Section 4.3 was dedicated to the excluded layer, which adopted an urbanization-suitability layer 
based on an MCE. This layer is crucial to a successful application of SLEUTH in this study area, as it plays 
a key role in accommodating for the dispersed urban growth patterns in Groningen. During the construction 
of the urbanization-suitability layer various assumptions were made regarding the fuzzy set definition, 
factor weights, what factors to include and what constraints to include. Also for the input data of the factors 
themselves, the level of aggregation and representation. This uncertainty was reduced as much as 
possible by statistical analyses in Python and testing sets of parameter values in SLEUTH. 
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Chapter 5: Modelling Results 
This chapter will present an overview of the modelling results regarding calibration in section 5.1, the 
validation in section 5.2 and the prediction section 5.3. The first section assesses the goodness of fit of the 
model with four different excluded layer and follows the same structure as outlined in section 3.4 
verification, pre-calibration and calibration. Validation provides an assessments of accuracy, this study 
used a variety of validation techniques to objectively compare the predicted maps to the observed map: 
three-map comparison, budgets of components of agreement and disagreement, and multiple resolution 
comparison. Finally, prediction which is based on a set of best-fit estimates of parameter values derived 
from calibration and validation, under three different scenarios.  

5.1 Calibration 

Model verification 
During model testing, the SLEUTH-3r code was slightly modified, as stated in Appendix C. Subsequently, 
the model was tested to check whether the input data was compatible with the model specifications, and 
to confirm the model works correctly with the modified code. Both the input data as the model performed 
according to specifications. 

Pre-calibration 
The first phase of pre-calibration was to determine an initial auxiliary diffusion multiplier. SLEUTH-3r’s 
growth coefficients were set to produce the maximum level of spontaneous growth (i.e. the diffusion 
coefficient was set to 100 and all other coefficients were set to 0). With 25 Monte Carlo iterations several 
simulations were performed to determine a fitting multiplier value. The PFD and CFD were used so that the 
model would slightly over-estimate the amount of urban clusters (Jantz, et al., 2010). The starting point was 
the default value of 0.005 as a baseline to compare to other results, from there the value was altered by 
increments of 0.0005. This resulted in an auxiliary diffusion multiplier of 0.0025 for this study area. A lower 
auxiliary diffusion multiplier leads to less diffusive growth, thus less pixels are randomly selected for 
urbanization during spontaneous growth.  Afterwards, the model was run with the growth coefficients set 
to maximum to determine the maximum amount of growth the model could predict. This was to confirm 
whether SLEUTH-3r was still able to predict sufficient amounts of urban growth with the new diffusion 
coefficient multiplier, which it could.  

The second phase of pre-calibration was to determine appropriate values for the self-modification 
module. This calibration was particularly difficult for the study area. The default values would put the study 
area in a constant boom-cycle as the urban growth rate would always exceed the threshold value. This 
would in turn decrease the slope resistance and increase the values of other growth coefficients, which 
was not fitting. Moreover, the urban growth between 1973 and 2006 was close to linear growth for most of 
the period, therefore the self-modification would presumably not add much value. This was based on the 
assumption that, without prior knowledge about the future growth rate, a growth rate based on the recent 
past, i.e. linear growth, was the best estimate. While self-modification adds an important dynamic 
component to the SLEUTH modelling system, it also introduces another layer of complexity during 
calibration. Therefore, the self-modification module was disabled by setting the threshold values to 
unrealistic limits, so the urban growth would never enter a boom- or bust-cycle. 

Road gravity and slope coefficient 
During calibration the road gravity coefficient varied greatly and did not converge to a specific range of 
values. Previous studies have shown a similar result, that unlike the other four growth coefficients, the road 
gravity coefficient does not seem to exhibit a relationship to any fit statistic (Jantz & Goetz, 2005). This is 
mainly due to road-influenced growth always being applied last in the growth cycle and the significant 
impact on road-influenced growth by the breed and dispersion coefficients, as was explained in Section 
3.4. In this study area road influence growth would only account for approximately 275 to 500 growth 
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pixels, which would be up to 0.33% of total urban growth. Therefore, the other types of growth accounted 
for most of the urban growth. Consequently, the goodness-of-fit statistics produced by SLEUTH were 
significantly influenced by the other four growth coefficients and not directly by the road gravity coefficient. 
This resulted in best-fit statistics with a road gravity coefficient value that ‘happened to coincide’ with the 
other growth coefficients. 

This does not mean this type of growth is irrelevant. Road-influenced growth would presumably 
urbanize cells that would otherwise be unlikely candidates for urbanization. Furthermore, future growth that 
originated from that road-influenced growth cell is also not contributed to road-influenced growth, even 
though the road-influenced growth cell may be the initiator. It could be argued that either the relationship 
between urban growth that originated from road-influenced growth and the road gravity coefficient is not 
defined well enough, or the best-fit statistics used in this study were not appropriate for evaluating the road 
gravity coefficient. Either way, it resulted in an instable coefficient according to best-fit statistics as used 
in this study. Due to its instability, this coefficient was fixed during both calibration, validation and prediction 
phases of the model to 50. Only main roads and highways were included in the transportation layer and 
this value would presumably best allow the transportation network to influence the urbanization along it.  

Similarly, in the study area, slope resistance is not a relevant factor as the area is practically flat. 
However, this is not necessarily reflected in the best-fit statistics, as these would consistently overestimate 
its influence. A part of this can be explained. In the Netherlands roads and urban development is often 
elevated to reduce the vulnerability to flooding. On a DEM it can clearly be seen that this leads to slopes 
around these constructions. Even though the input data for slope is much coarser, i.e. 30 m resolution, 
than the original data, the effects were still present in the slope input data. This leads to a slope resistance 
coefficient that is difficult to interpret correctly from best-fit statistics. However, from visual interpretation of 
several calibration tests this coefficient did actually not influence the urban growth as much as the best-fit 
statistics reported, and changing it from 1 to 100 gave similar results. Therefore, the slope coefficient was 
fixed to 25. 

Calibration 
The four excluded layers yielded different estimates of the growth coefficient values (Table 14; Appendix 
D). Table 14 shows the final calibration results of each calibration process and which of them yielded the 
highest goodness of fit scores, based on OSM, PFD, CFD and EFD. The OSM is a composite score based 
on seven different measures, and the PFD, CFD and EFD are fractional difference measures based on 
population, clusters and edges. The values of the growth coefficients for slope and road gravity are left 
out, as these were fixed to respectively 25 and 50. 

Table 14: Calibration results of the four excluded layers. 

 OSM PFD CFD EFD Diffusion Breed Spread 

E0 0.008 4.139 -0.540 -0.033 97 58 100 
E1 0.160 0.485 1.054 0.258 3 57 50 
E2 0.405 0.126 1.668 0.149 62 22 40 
E3 0.361 0.200 2.258 0.288 72 95 42 

 
Judging from the OSM statistic, the excluded layers E0 performed below acceptable and E1 

should be considered a questionable result, as compared to other application of SLEUTH using OSM 
(Onsted & Chowdhury, 2014; Chaudhuri & Clarke, 2013a; Bihamta, et al., 2015; Mahiny & Clarke, 2012). 
The E0 excluded layer achieved the lowest fit-score, which is the regular excluded layer only incorporating 
constraints. And the excluded layers incorporating policies (E2 and E3) achieved the highest fit-score. 
Since it is difficult to evaluate the goodness of fit based on a composite metric, it is important to examine 
what the OSM is composed of, as shown in Appendix D. What this shows, is that the r2-X-mean and r2-Y-
mean are two metrics that were difficult to fit under these conditions. Accordingly, this suggests that the 
gravity of urban growth was modelled in the wrong areas. Most of the other constituent metrics are above 
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0.9, indicating the success of calibration (Mahiny & Clarke, 2012). In addition, the r2-edges, r2-clusters and 
Lee-Sallee metric are three metrics that capture important components of the shape, for the E0-layer these 
were rather low, thus suggesting that the model parameters were not adjusted properly to capture these 
components. For the E1, E2 and E3-layers, these r2-statistics achieved high fit-score sufficiently, 
suggesting the model parameters were adjusted properly to capture the shape and form of urbanization. 

All excluded layers overestimated the amount of urban pixels, and all but E0, overestimated the 
amount of urban clusters. The PFD of E0 shows a large fractional difference in population, however, this is 
not necessarily reflected as dramatically in the r2-population score, as shown in Appendix D, but is in the 
r2-compare score. The reason for this is due to the r2-population score taking in urban persistence and r2-
compare only compares the simulated pixels. Each layer failed to simulate the correct amount of clusters, 
hence the CFD score always under- or overestimated. This suggests, contrary to what the r2-clusters 
showed, that these parameter settings failed to capture the dispersed character of the study area. 
However, this is no cause for alarm since these statistics do not specify the cause of this disagreement. 
Presumably this is due to diffusive growth, so the disagreement could be caused by single pixels. 

The estimates of the growth coefficients seem to vary substantially between the excluded layers. 
This demonstrates that simulation on this scale, the study area shows strong sensitivity to the various 
excluded layers. Only the spread coefficient, whilst excluding E0, seems to converge to values between 
40 and 50. Interestingly, this is also the largest contributor to urban growth in this study area. Based on 
accumulated growth over all MC iterations, a typical distribution of growth would be: approximately 2% 
diffusive growth, less than 1,5% breed growth, less than 0,5% road influenced growth and approximately 
96% spread growth.  

Initially, during several calibration tests, the various fit-metrics varied substantially and did not 
always narrow down to a specific range of values. Whilst examining the top 50 OSM results of several tests, 
the OSM scores and its constituent metrics, dropped rapidly when going further down the top results. It 
was found that this type of behavior was a strong indicator of poor calibration results. Conversely, when 
best scoring fit-metrics narrowed down to a range of values and more than just ‘a few’ sets of coefficients 
were able to achieve high fit scores, this was found as a strong indicator of proper calibration. Additionally, 
sometimes the top scoring set of coefficients had substantially higher OSM score than the runner-up. After 
investigations, in all cases this was due to the r2-X-mean and r2-Y-mean being much higher than with other 
sets of coefficients. Presumably, this was due to the stochastic nature of SLEUTH, whereby a set of values 
would happen to more accurately fit the r2-X-mean and r2-Y-mean. This also emphasizes the importance of 
a robust calibration, whereby, for each of calibration phases, the top five best-fit results were run in test-
mode with 25 Monte Carlo iterations in order to validate the best-fit score visually and statistically, as this 
would be sufficient for quantifying the spatial variability resulting from the random processes (Jantz, et al., 
2010; Clarke, et al., 1996). 

Jantz and Goetz (2005) found that any gains in performance achieved by testing additional growth 
coefficient values beyond coarse calibration (i.e. increments of 25) were minimal, particularly given the 
substantial increase in computing time. Especially, during the coarse and fine calibration in this study, 
estimates of the growth coefficients narrowed down much further. Indicating at least fine calibration does 
add value. Furthermore, what should not be underestimated is the added value of increasing the MC 
iterations during the three calibration phases. In an early application of SLEUTH (Clarke, et al., 1996), the 
model-users calibrated with 100 MC iterations during their extensive calibration phase. This number was 
reduced due to computational requirements. Goldstein et al. (2005) have shown that one would need 
between 10 and 25 MC iterations for the optimal variation in the calibration process. Perhaps, with current 
computing power and capabilities, such as parallel-processing, the amount of MC iterations could be 
increased. 

5.2 Validation 
In order to provide assessments of accuracy beyond the goodness of fit measures calculated by SLEUTH, 
an additional accuracy assessment was performed. After the estimates of parameter values were identified 
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the model was initialized in 2006 and run to predict the situation of 2015 with 100 MC iterations (Candau, 
2002; Clarke, et al., 1997). This resulted in a predicted map of 2015 that was compared to the observed 
map of 2015, to validate the time series on a known sequence. For validation three techniques were used: 
quantity and allocation disagreement, three-map comparison and multiple resolution comparison.  

Quantity and allocation disagreement 
The quantity and allocation disagreement are two measures that differentiate the sources of error due to 
difference in the relative category size between the observed map and the predicted map, and the error 
due to a difference in the spatial allocation of the category given the category sizes. These two 
disagreements provide the model-user with information on where the simulation is falling short. 
 

 

Figure 28: The quantity and allocation disagreement between the observed map and the predicted map of 2015. 

Note. Near allocation disagreement becomes resolved at a resolution of 64 times the original fine-resolution pixel side.  

Figure 28 shows the quantity and allocation disagreement between the observed map of 2015 and 
the predicted map of 2015 for all excluded layers. It shows that E0 achieved low fit-scores, and E2 and E3 
performed similarly and could be considered as reasonably accurate predictors of future urban change in 
the study area, solely based on Figure 28. Moreover, it shows that E0 has a large quantity disagreement 
and most of its allocation disagreement can be attributed to near allocation disagreement. Compared to 
the other three excluded layers, E0 does not achieve high fit-scores, which aligns with goodness of fit 
statistics reported in calibration. Similarly, E1 has a large quantity disagreement, which means that E1 was 
not able to accurately predict the class sizes either. The large quantity disagreement in E0 and E1, is the 
main difference with E2 and E3. This type of disagreement could occur when (a) the model is not predicting 
enough growth, or (b) the model is predicting too much growth. Table 14 depicted that both layers 
overestimated the amount of urban growth, thus now it becomes clear how the r2-statistics translate to 
percent of disagreement of the landscape. In all layers most of the allocation disagreement is resolved at 
a resolution of 64 times the original pixel side. Finally, Figure 28 suggests that E1, E2 and E3 seem to 
predict with sufficient accuracy and E0 is not capable of predicting land cover change accurately.  

Three-map comparison 
The three-map comparison method considers the overlay of three maps: (a) the reference map of time 
one, (b) the reference map of time two, and (c) the prediction map of time two (Pontius, et al., 2008; Pontius 
et al., 2011). This map comparison method allows the model-user to differentiate pixels that are correct 
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due to persistence vs. the pixels that are correct due to change. This is a useful comparison method as it 
focuses on the amount of correctly predicted changed pixels.  

The first statistic, the FOM is a statistic that measures the ratio of the correctly predicted observed 
change to the union of the observed change and the predicted change. It shows that E3 and E2 achieved 
the highest accuracy and the E0 – random the lowest. For none of the excluded layers, the amount of 
correctly predicted change is larger than the sum of the various types of error, i.e. 50%. In fact, the highest 
overall FOM is only 25%, showing SLEUTH had difficulties in accurately simulating under these 
circumstances. Furthermore, for this statistic, what would be expected is that each excluded layer would 
achieve higher fit-scores than its random counterpart, and that each excluded layer would achieved higher 
fit-scores than the null map. The first is the case for all excluded layers, and the latter only for E1, E2 and 
E3, showing again that E0 was not able to accurately predict under these circumstances. Moreover, it may 
be tempting to expect each excluded layer to outperform each of the random maps, however, the random 
map is based on the class sizes of its associated excluded layer. Since E2 and E3 experienced much less 
growth than E0, the quantity disagreement is different and accordingly so is the class size. Subsequently, 
the random map allocated less growth cells randomly across the map, leading to less error.  
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Figure 29: Shows the accuracy of the predicted maps of 2015 as compared a null map and a random map for each 
excluded layer. 
 

Figure 29 also shows that the error due to the observed change predicted as persistence accounts 
for most the error in E2 and E3. In E0 and E1, most error is due to observed persistence predicted as 
change. This is reflected in a higher UA for E2 and E3, and a higher PA in E0 and E1. Another peculiarity 
is the high percentage of PA in E0, which can be explained by the high amount of growth produced in E0. 
The PA takes into account the percent correctly simulated as change and the observed change that was 
missed in prediction. The first is relatively large and the latter relatively small. Conversely, the UA looks at 
map accuracy from the opposite perspective, the percent correctly simulated as change and the simulated 
change that never occurred in the observed map, therefore, the UA is much lower. This also occurs in E1, 
albeit less pronounced. E2 and E3 have a UA that is higher than 50%, indicating the proportion of pixels 
that the model predicts accurately as change, is the majority of the pixels predicted as change by the 
prediction map. Thus, the minority of the predicted change in E2 and E3 could be classified as 
overestimated urban change.  
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 Pontius et al. (2008) performed a similar analysis for thirteen study areas based on multiple CA. 
Even though a comparison to that research is difficult to make, as the application used different spatial 
resolutions, some included land use categories and the simulation time period is different. Nonetheless, if 
the top three results, E1, E2 and E3, are compared to this list, all three would score mediocre and E0 would 
be in the bottom five. This does not explain if the results are good or bad, it merely emphasizes that other 
model applications with similar FOM values, were found sufficiently accurate by the model-users. 

 

 
Figure 30: Validation results for the time period from 2006 up to 2015. 

The main reason why E0 does not perform well, is a result of the large error due to persistence 
being predicted as change. In other words, the simulation has changed too many cells from non-urban to 
urban, when in reality these cells remained non-urban. Accordingly, Figure 30 shows how these statistics 
are allocated on a map. E0 shows that existing urban area, from each hamlet to the larger cities, all 
experienced equal growth. In reality, these hamlets have had little to no growth, which is why Figure 29 
shows a large error due to persistence being predicted as change for E0. Moreover, since E0 simulated 
this many urban pixels, it also predicted more urban change correctly. A similar situation occurred in E1, 
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where there was too much growth predicted in the rural areas, albeit much less than in E0. E2 and E3 
performed rather well in the rural areas, which can be attributed to the policy layers that were included and 
more capable of differentiating rural, natural and urban areas. Between E2 and E3 there is not much 
difference in the allocation of correctly predicted change, even though these two policy layers were rather 
different in where urban expansion areas were, i.e. what are were more attractive for urbanization. 
Surprisingly, this could be argued for all maps, E1 and to some extent E0. What this implies is that the 
urban expansion areas in E2 and E3 did not influence the prediction results as much as was expected. 
One would expect these areas to steer the model in the right direction, but this was not that pronounced 
in the final maps. Further, based on these four predictions maps, as stated previously, it seems that the 
more resistance in the more rural areas, the higher the FOM.  

Figure 30 also shows that all maps contain the same black areas, the error due to the observed 
change predicted as persistence. Or in other words, the observed urban change was not predicted. 
Therefore, all excluded layers seemed to have difficulties in accurately predicting urban change under 
these conditions.  

Multiple resolution comparison 
The multiple resolution comparison method is a complementary method to three-map comparison and 
types of disagreement. For this, the observed and predicted maps were rescaled by coarsening the spatial 
resolution. Therefrom, the multiple scale was applied to the three-map comparison and types of agreement 
and disagreement to assess the accuracy of the predicted on multiple scales. This method will be able to 
deal with the scale sensitivity of the prediction map, as opposed to when a pixel-by-pixel comparison is 
performed. 

Figure 31 and Figure 32 show the budgets of components of agreement and disagreement across 
multiple resolutions on a base 2-logaritmic scale. The vertical scale stays constant throughout the graphs 
and emphasizes the difference in agreement and disagreement between the graphs. The horizontal axis 
portrays the resolution multiplied by the cell side, thus eventually the entire area becomes one pixel. 
Because of only two land use categories, the agreement due to chance is the largest component of 
agreement, at a resolution of 1 it accounts for 50% of the landscape. It illustrates that the quantity 
disagreement is independent of the spatial resolution as it relates to the class sizes and not the allocation. 
The allocation agreement and disagreement resolve at coarser scales, suggesting that SLEUTH is able to 
provide good expression of neighborhood relationship at coarser scales.  

  
Figure 31: Multiple-resolution budget for components of agreement and disagreement between: (left) E0-predicted 
map of 2015 and the reference map of 2015; (right) E1-predicted map of 2015 and the reference map of 2015. 
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Figure 32: Multiple-resolution budget for components of agreement and disagreement between: (left) E2-predicted 
map of 2015 and the reference map of 2015; (right) E3-predicted map of 2015 and the reference map of 2015. 

  
Figure 33: Budgets of components of the three-map comparison at multiple resolutions for (left) E0 and (right) E1. 

  
Figure 34: Budgets of components of the three-map comparison at multiple resolutions for (left) E2 and (right) E3. 
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Figure 33 and Figure 34 show the three-map comparison components at multiple scales. The 
horizontal axis zooms in to the area of interest, thus visually comparing the graphs is not practical. These 
graphs portray that most of the agreement is due persistence and that this agreement becomes larger at 
coarser spatial resolutions. The error due to persistence predicted as change, did not resolve at coarser 
resolutions, due to the quantity disagreement. In each graph, the error due to change predicted as 
persistence became either correct due to persistence or due to predicted correctly. Furthermore, Figure 
34 shows how similar E2 and E3 are, even though the excluded layers were different. For all layers the 
FOM increases as the resolution coarsens, E2 and E3 in fact were able to achieve a FOM of over 40% at 
a resolution of 128 times the cell side. 

  
Figure 35: (left) percent correct between the reference map of 2015 vs. three other maps (a) null map, (b) E0-predicted 
map of 2015 and (c) random map; (right) percent correct between the reference map of 2015 vs. three other maps (a) 
null map, (b) E1-predicted map of 2015 and (c) random map. 

  
Figure 36: (left) percent correct between the reference map of 2015 vs. three other maps (a) null map, (b) E3-predicted 
map of 2015 and (c) random map; (right) percent correct between the reference map of 2015 vs. three other maps (a) 
null map, (b) E3-predicted map of 2015 and (c) random map. 

Figure 35 and Figure 36 could be considered ‘concluding graphs’ and show the percent correct 
of E0, E1, E2 and E3, as compared to a random map with the same class sizes and the null map. What all 
graphs show, and both the components of agreement and disagreement and three-map comparison 
illustrated that as the resolution becomes coarser, the agreement becomes higher. If the quantity and 
allocation disagreement is considered, as shown in Figure 28, the graphs depict that the allocation 
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disagreement resolved completely at coarser resolutions, given the quantity disagreement. Figure 28 
already showed that most of the allocation disagreement was due to a near location disagreement. Figure 
35 and Figure 36 emphasize this and show how this affected the overall agreement between the observed 
map of 2015 and the predicted maps at various resolutions. It is important to note that a similar trend can 
be observed for the random map, as it too resolved the allocation disagreement. As previously stated, E2 
and E3 were able to achieve a FOM of over 40% at a resolution of 128 times the cell side. However at this 
spatial resolution the E2 and E3 were not able to outperform the random map, as shown in Figure 35 and 
Figure 36. There seems to be a specific range at which the map outperformed the null map and the random 
map, between 8 and 64 times the spatial resolution. At 8 times the cell side, E2 and E3 were only slightly 
more accurate, and at 64 times the cell side, the random map is almost as accurate as E3. Therefore, the 
optimal spatial resolution for E3 seems to be either 16 or 32 given the original cell size of 30 m, based on 
a base 2-logaritmic scale and the geometric progression algorithm that was used for coarsening the 
resolution. At a resolution of 16 and 32, the FOM rises to respectively, 28% and 30% and E2 and E3. 

All excluded layers performed better than their random counterpart. However, as can clearly be 
seen, the E0 standard excluded layer has a much lower percent correct than the null map has at its finest 
resolution. Also, it does not exceed the null map accuracy at any resolution. Consequently, this implies 
that having a map of 2006, is a better predictor of future urban growth up to 2015 than E0. The E1 excluded 
layer also performed below the null map, albeit much better than E0. In both cases the excluded layers 
overestimated the amount of urban growth, thus resulting in a higher quantity disagreement, as was shown 
in Figure 28. Only the two MCE excluded layers that included spatial policies, E2 and E3, were able to 
achieve higher accuracy than the null map, both surpass the null map at a resolution of approximately 
eight times the cell side length, hence, at a resolution coarser than eight times the cell side length, or 
roughly 240 m, E2 and E3 achieved higher accuracy than the null map. What this shows is that none of the 
excluded layers are able to perform better than the null map at the finest resolution. Further, it suggests 
that in this study, coarsening the resolution is a necessary step to increase the accuracy and add value to 
the prediction maps.  

 

Figure 37: Visualization of disagreement at coarser scales. 

To elaborate this concept of coarsening the spatial resolutions and how it the allocation difference, 
Figure 37 is used. It portrays an observed map and a simulated map of the same spatial extent, both four 
by four cells. The observed map contains eight urban cells and eight non-urban cells, the simulated map 
contains nine urban cells and seven non-urban cells. Imagine a pixel-by-pixel comparison is made of these 
two maps, the quantity disagreement would be one cell or 0.06 and the allocation disagreement would be 
six cells or 0.38, given the class size. Therefore, the agreement would be 9 out of 16 cells or 0.56. If the 
resolution of the maps were coarsened by four times the cell side length, the entire map would become 
one pixel. Subsequently, with fuzzy membership, the observed map would be a fuzzy member of urban by 
0.5 and non-urban by 0.5, and the simulated map would become a fuzzy member of urban by 0.56 and 
non-urban by 0.44. Therefore, at this coarser resolution the agreement between the two maps would be 
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0.94, the remaining 0.06 is due to the quantity disagreement. This shows that the quantity disagreement 
does not resolve at coarser resolutions and the allocation disagreement does, given the class sizes. A 
similar situation occurs in Figure 38. 

Figure 36 illustrates that between a spatial resolutions of 8 to 64 times the cell side, E3 is more 
accurate than both the random and null map. As previously stated, the optimal spatial resolution for E3 
seems to be either 16 or 32 given the original cell size of 30 m, based on a base 2-logaritmic scale and 
the geometric progression algorithm that was used for coarsening the resolution. Of those two, 16 times 
the cell side is the finer resolution, thus this was used. Figure 38 displays the results of E3 mapped at the 
resolution of 16 times the cell side, or roughly 480 m. The maps on the right still disagree to a certain extent. 
Conversely, it can be seen that in the more rural areas the maps are fairly similar. However, the maps on 
the right still show some areas, ‘bright white’ pixels, that the prediction was not able to forecast, even at a 
coarser scale. So, the question becomes, what kind of areas are these ‘bright white spots’?  
 

 

Figure 38: Shows the change from non-urban to urban at a 16 times coarser resolution. 

Figure 39 shows the quantity disagreement between the E3 predicted map of 2015 and the 
observed map of 2015. It shows a sequence wherein the study area is disaggregated, thus it narrows 
down to the areas that have the highest quantity disagreement, essentially those ‘bright white’ areas. The 
images are called ‘blocks’ and are comprised of pixels, they show the total quantity disagreement across 
all pixels in one block. A block in this context is referring to the amount of groups the pixels were 
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aggregated into, by dividing the study area into equal-sized groups. The top 5 ‘mismatch’ shows the 
numerical disagreement in the areas with the highest disagreement, which accounts for 20% of the total 
quantity disagreement. With the r2-X-mean and r2-Y-mean disagreement in mind of the calibration phase, 
the ‘4 blocks’ does not show a large disagreement, however, the ‘16 blocks’ does. In fact, the Top 5 
‘mismatch’ clearly shows what area has the high disagreement, namely -814 pixels. Interestingly enough, 
each of the top 5 is related to underestimating urban growth, hence the ‘-‘, and the first area to overestimate 
was ninth on that list, with 168 pixels. Although, the maps do not explicitly portray this, most of the top 
overestimating areas touch the border of the city of Groningen, the main city in the study area. 

 

 
Figure 39: Visualization of the quantity disagreement between E3 predicted map and the observed map of 2015. 

 
Figure 40: Two maps zoomed in on two ‘mismatch’ areas: (left) the observed map of 2006 and (right) the observed 
map of 2015. 
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Figure 40 zoomed in on two areas, as defined by the ‘256 blocks’ map in Figure 39. The northern 
area delineated by red underestimated urban growth by 269 pixels (242,100 m2), and the southern area 
delineated by red underestimated urban growth by 814 pixels (732,600 m2). The background is the LS5 
for 2006 and the LS8 for 2015 as used in this study, hence the resolution (30 m) is the same. Due to the 
band combination used here, the urban area becomes pink/purple and rangelands becomes green. The 
reason to zoom in on these two areas is to emphasize what is happening in the ‘bright white’ areas and 
why SLEUTH is not able to capture this growth under these conditions.  

As can be seen, especially in the southern area, is that between 2006 and 2015 a new 
neighborhood was built. With the SLEUTH mechanism in mind from section 2.3, what would SLEUTH be 
able to predict in this area in nine years? The most growth comes from: diffusion, breed and spread growth. 
Based on Equation 4 in section 3.4 and based on Appendix D, diffusion was set at 76, therefore, each year 
SLEUTH would attempt randomly select 217 cells to urbanize across the entire study area. The study area 
contains 1,312,500 cells, even the southern delineated area, one of 256 blocks, contains more than 5,000 
cells, and the newly constructed neighbor is approximately 750 cells. The breed mechanism is entirely 
dependent on diffusion, as it only grows around the cell urbanized from diffusive growth. What are the 
odds that these two growth mechanisms would correctly urbanize cells in this particular area? So, it comes 
down to spread. Spread will not be able to fill up that area within nine time steps, from 2006 to 2015, as it 
only urbanizes in a neighborhood of 3 by 3. In a close to perfect simulation, this would presumably still 
take SLEUTH 20 to 25 years, not accounting for slope resistance or the excluded layer. 

The follow-up question becomes, why were these areas constructed here? ‘Oostindie’ is a 
residential neighborhood and was constructed to the south of the city of Leek. The primary cause for the 
construction was the demand for extra housing up to the year 2020 due to the expected changes in the 
regional population, which is expressed in the regional policy by Groningen-Assen. It states that the region 
requires an additional 6,000 residential dwellings in a village-type of living environment. The area to the 
north is ‘Leeksterveld’, which is an industrial area, this too was driven by a regional demand and policy of 
Groningen-Assen. The reason why both developments were directed by the region, is due to the expected 
population decline in the rural areas and the expected population rise in the city of Groningen. To avoid 
competition amongst the villages and cities, since they all want their share of the population growth in the 
city of Groningen, regional policies are constructed wherein the demand for industrial and residential 
terrains is closely monitored and allocated to subregions. The reason why those specific sites were chosen 
within the subregion, was largely due to land properties and whether the city of Leek was able to acquire 
those lands. Further, the proximity to the city and its facilities was an important factor for Oostindie, and 
the proximity to the highway exits, public transit stops and the availability of cycling paths, i.e. accessibility 
to the city of Leek and the region, for Leeksterveld (Gemeente Leek, 2007). 

This example is paradigmatic for how the cities and villages grow in the study area. A large portion 
of the disagreement is due to areas such as these. Interestingly, as has been shown and suggested 
numerously, a coarser spatial resolution is capable of dealing with these areas. Although, as shown in 
Figure 38, these areas still exist, but are less pronounced. Furthermore, it also expressed the link to regional 
demands and changed in demographics that are important factors to urban development in the study 
area, implying the need for supplementary methods during model prediction such as model coupling. 

5.3 Prediction 
In this section the prediction results are shown, which are based on the best estimates of growth coefficient 
values, as shown in Appendix D. The study area was used for prediction under three scenarios: the S1 
MCE excluded layer, the S2 MCE excluded layer including the policy of 2014, and the S3 MCE excluded 
layer including a nature preservation policy. The prediction time period is 30 years, from 2015 up to 2045. 

Ordinarily, the default setting for prediction is that only cells are displayed that were urbanized 
more than 50% during accumulated MC iterations. However, using this data and comparing it on a pixel-
by-pixel basis is impractical, and based on validation would presumably not add much value over a null 
map. Also, validation has shown that the optimal spatial resolution for E2 and E3 seems to be either 16 or 
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32 times the cell side, based on a base 2-logaritmic scale and the geometric progression algorithm that 
was used for coarsening the resolution. Therefore, to handle fuzzy membership at coarser resolutions, a 
geometric progression procedure was used, as given by Pontius et al. (2004) and Pontius et al. (2011). 
The observed map of 2015 was subtracted from predicted map of 2045, to come to a map showing the 
predicted change. Figure 42, Figure 43 and Figure 44 show the prediction results of the three scenarios: 
S1, S2 and S3. Figure 41 shows the amount of urban pixels forecasted under each scenario. Figure 45 
shows the historical urban growth and the predicted maps of 2030 and 2045 for all three scenarios. 
 

 

Figure 41: Graph showing the projected amount of urban pixels of 2045 for S1, S2 and S3. 

S1 excluded layer 

 

Figure 42: Prediction of 2045 using the S1 excluded layer. 
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S2 excluded layer 

 

Figure 43: Prediction of 2045 using the S2 excluded layer. 

S3 excluded layer 

 

Figure 44: Prediction of 2045 using the S3 excluded layer. 

The predictions show that S1 predicts the most urban change, and S2 the least. Figure 41 shows 
a linear growth trend, as the self-modification module was not invoked. In Figure 42, Figure 43 and Figure 
44, it can clearly be seen that S2 and S3 contain much less growth in the rural areas than S1. In all three 
scenarios most of the urban growth occurs along the border of the city of Groningen. S1 predicts more 
growth in the smaller cities and villages in the south than S2 and S3. Instead, S2 shows more growth in the 
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south-east corner and S3 more directly south and south-west of the city of Groningen. S3 is based on a 
nature preservation policy, which did not define all the areas in this study area. Hence, in the S3 excluded 
layer not all areas were defined by the policy layer, some were neutral and only subject to the MCE factors. 
In the map this results in more urban growth in S3 than S2. Further, the maps have similarities. For example, 
all three predict urban growth directly east and west of Groningen, admitting, more noticeable and more 
clearly delineated in S2 and S3. 

 

Figure 45: Visualization of the historical urban growth and the predicted urban growth of S1, S2 and S3. 

First and foremost, these predictions ought to be put into perspective. During verification and 
transformation of input data, various accuracy assessments were made. The most important one is the 
accuracy of the land use classification, which showed that the accuracy was between 93% and 95%. Prior 
to calibration the data already contained various uncertainties. Even though it is difficult to identify where 
these uncertainties are located and, if and how they evolve during calibration, it is good to consider the 
accuracy of the input data.  

During validation, E2 and E3 were the best predictors of urban change out of the four excluded 
layers used in this study. For none of the excluded layers, the amount of correctly predicted change was 
larger than the sum of the various types of error, i.e. 50%. In fact, the highest overall FOM is only 25%. 
Even though, Figure 36 showed that E2 and E3 were able predict more accurately than the null map at a 
resolution of 8 times the cell side, the FOM is still mediocre at best. Figure 30 showed that E2 and E3 were 
able to cope with the rural areas in the study area with sufficient accuracy. However, they failed at 
predicting the larger planned urban areas, which is perhaps not that surprising.  

Further, what has not been researched during validation is the temporal accuracy. As stated in 
Chapter 1, the drawbacks of this type of research approach was the use of RS and MCE and that data 
acquisition would be time-consuming, thus only a static temporal and spatial change between defined 
intervals was recorded. This emphasizes the difficulties in conducting a temporal sensitivity analysis of the 

82 
 



simulation results and the difficulties in underpinning the growth process in the study area. Temporal 
comparison as suggested by Wu et al. (2009) and as done by Chaudhuri and Clarke (2014), is important 
to a validation procedure. Comparing the simulation results over various time periods provides insight into 
the temporal accuracy of the model application. What other research has shown is that prediction beyond 
10 years becomes increasingly uncertain, but could stay well within acceptable norms (Chaudhuri & 
Clarke, 2014).The validation time period was nine years. In those nine years, as shown in previous sections, 
some predictions already became mediocre (E2 and E3) and other questionable (E1). How this accuracy 
would evolve beyond nine years is uncertain, but the trend is that the accuracy declines as the predication 
time period increases.  

Given all this information, E2 and E3 were better at predicting the right amount of urban pixels, 
and E1 was overestimating this amount. For E2 and E3 the largest error in the three-map comparison was 
due to the observed change predicted as persistence, and for E1 this was the error due to persistence 
predicted as change. Also, all three layers showed sensitivity to the spatial resolution, hence a prediction 
at the finest resolution would probably not be a good predictor of urban change. Lastly, none of the 
excluded layers were capable of coping with the planned urban areas that appeared frequently across 
the study area.  

Withal, if validation is a predictor of the accuracy of S1, S2 and S3, then S1 would have 
overestimate the urban growth, and S2 and S3 would be closer to the true amount of urban pixels. S1 
would probably have the lowest accuracy, and S2 and S3, at this spatial resolution, could potentially 
achieve higher accuracy than a null map. All three predictions would have over- or underestimated the 
amount of clusters, implying they would not have captured the dispersed character of the study area. 
Implying, that S2 and S3 may have some value with regard to forecasting, whilst bearing in mind that during 
validation similar maps only achieved a FOM of 28% at a spatial resolution 16 times the cell side, and 
would probably much lower in 2030 and 2045. 

5.4 Section Conclusions 
In this chapter, the calibration, validation and prediction results were discussed. Section 5.1 focused on 
calibration. It showed poor calibration results for E0, questionable calibration results for E1, and good 
calibration results of E2 and E3. Since it is difficult to evaluate the goodness of fit based on one composite 
metric, it is important to examine the constituent metrics of OSM. What this depicted, is that the r2-X-mean 
and r2-Y-mean were two metrics that were difficult to fit under these conditions. Most of the other constituent 
metrics were above 0.9, indicating the success of calibration.  

Furthermore, calibration was a time-consuming process in this study, due to the calibration of 
auxiliary coefficient values, the self-modification parameters (which was unsuccessful), the weights and 
fuzzy membership function of the MCE factor. The calibration related to the MCE factors was especially 
time-consuming, since the effects of the factors had to be tested by trial and error. A variety of sets of 
parameter values needed to be tested with coarse calibration, thus rescaling the input data to a 60 m (625 
by 525 pixels) and 150 m (250 by 210 pixels) spatial resolution, was found helpful since it required less 
computer power. Scale influences the growth coefficients differently in the model (Jantz & Goetz, 2005; 
Candau, 2002; Dietzel & Clarke, 2004b), therefore to avoid inaccuracies resulting from cell size sensitivity, 
the highest spatial resolution of 30 m still as tested with the various sets of parameter values.  
 The choice of the goodness of fit statistics was crucial to the outcome of calibration. Due to the 
amount of successful calibrations with the OSM, this statistic was primarily used (Onsted & Chowdhury, 
2014; Chaudhuri & Clarke, 2013a; Bihamta, et al., 2015; Mahiny & Clarke, 2012). However, Jantz et al. 
(2010) noted the potential difficulty in evaluating the fit of the model using a composite score, thus the 
OSM was complemented the PFD, CFD and EFD, which were used to evaluate the best-fit scores in terms 
of over- and underestimating. Neither the r2-statistics nor the OSM account for over- and underestimating 
and most of the r2-statistics include persistence, which makes the OSM and r2-statisics difficult to interpret 
and sometimes misleading. Two additional approaches were used for this: additional testing with 25 MC 
iterations (Goldstein, Dietzel, & Clarke, 2005; Jantz, et al., 2010; Clarke, et al., 1996), and visual 
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interpretation. Once the OSM scores were listed to form a top 25, the top 5 results were tested by using 
25 MC iterations. Ordinarily, after testing the OSM scores would be lower, and of these five, the best fitting 
sets of parameter values could be used to narrow down the growth coefficient. After the 25 MC iterations 
were performed, the model was set to produce an accumulated growth image, which was a useful tool for 
visual interpretation.  For example, during early testing and calibration, a set of parameter values produced 
high OSM, PFD, CFD and EFD results, based on statistics this calibration was found successful. After 
testing with 25 MC, the image experienced close to no growth, hence the calibration was in fact 
unsuccessful. This type of procedure was found to be a robust calibration process that reduced spatial 
variability as well as successfully interpreted the goodness of fit results. 
 Section 5.2 discussed the validation. In order to provide assessments of accuracy beyond the 
goodness of fit measures calculated by SLEUTH, an additional accuracy assessment was performed. The 
techniques used in this study were: the budget of components of agreement and disagreement, three-
map comparison and multiple resolution comparison. They were used to (a) quantify the budgets of error, 
(b) compare to a null map, (c), compare to a random map, and (d) perform the analyses at multiple scales. 
Intuitively, these three techniques are more easily understood than statistics that covers the entire study 
area, such as r2-statistics or OSM from calibration. 

After the best-fit parameters were identified, the model was initialized in 2006 and run to predict 
the situation of 2015 with 100 Monte Carlo iterations. The quantity and allocation disagreement between 
the observed map of 2015 and the predicted map of 2015 showed that E0 performed the worst, E1 
mediocre and E2 and E3 performed similarly and achieved the highest accuracy, solely based on the 
quantity and allocation disagreement. In all layers most of the allocation disagreement is resolved at a 
resolution of 64 times the original pixel side. The three-map comparison showed that all excluded layers 
achieved higher fit-score than their random counterpart, and only E1, E2 and E3 achieved higher fit-scores 
than the null map. For none of the excluded layers, the amount of correctly predicted change is larger than 
the sum of the various types of error, i.e. a FOM of 50%. In fact, the highest overall FOM was only 25%, 
showing SLEUTH had difficulties in accurately simulating under these circumstances. Although, at a 
resolution of 16 or 32 times the cell side, E2 and E3 achieved a FOM over up to 30%, given the original 
cell size of 30 m. Therefore, based on validation and compared to the FOM of other applications (Pontius, 
et al., 2008), E2 and E3 could be classified as reasonably accurate, E0 had a low accuracy and E1 had 
mediocre accuracy at best. 

Further, based on visual interpretation of the three-map comparison, E0 produced unrealistic 
results as each hamlet to the larger cities, all experienced equal growth. Whilst in reality, these hamlets 
have had little to no growth. A similar situation occurred in E1, where there was too much growth predicted 
in the rural areas, albeit much less than in E0. E2 and E3 performed rather well in the rural areas, which 
can be attributed to the policy layers that were included. All predicted maps were unable to predict the 
planned urban areas that are frequently found in the study area. Surprisingly, the urban expansion areas 
in the policy layers, areas that encouraged urbanization, did not influence the model as much as expected.  
The multiple resolution comparison method showed that the allocation disagreement resolved at coarser 
spatial resolutions and that only E2 and E3 were able to achieve higher accuracy than the null map. Both 
surpassed the null map at a resolution of approximately eight times the cell side length.  

Afterwards, an in-depth analysis was conducted to a paradigmatic error that occurred throughout 
the prediction maps. A large portion of the disagreement is due to areas that were planned based on local 
policies. Interestingly, as has been suggested numerously, a coarser spatial resolution was found capable 
of dealing with these areas to some extent. This paradigmatic error also suggested that other factors may 
be important for this study area, such as a regional housing and real-estate demand, which are allocated 
to subregions based on regional policies, implying the need for supplementary methods during model 
prediction such as model coupling.   
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Chapter 6: Conclusions 
In this chapter the modelling results and findings of this research will be presented. The conclusion will be 
bestowed as the answer to the main research question, and rejection or confirmation of its hypotheses as 
described in Chapter 1. Therefrom, the outcomes of the model will be concluded and the practicality and 
usefulness of the model will be discussed. Section 6.2 discusses three additional topics: the policy maps, 
the self-modification module and the spatial resolution. 

6.1 Conclusions 

From the main research question… 
The research objectives are briefly mentioned again to discuss what this research had contributed. Which 
goals were accomplished, and to what extent this research has added value to the field of urban modelling 
and to local decision-makers. This study reports on three main research objectives: (a) calibrating and 
validating a UGM to suit the Groningen’s context; (b) simulating and understanding the urban growth 
patterns produced by the calibration phase; and (c) predicting the future urban dynamics, spatially and 
temporally, using Groningen. Accordingly, this led to the following research question: “What will be the 
land cover change of Groningen in 2045 compared to 2015 based on three different scenarios, to explore 
Groningen’s future urban dynamics?” 

The concise answer to the main research question is: it is unclear, since none of the excluded 
layers were capable of capturing the dispersed urban growth patterns in the study area during calibration 
and validation. Hence, the assumption was made that the scenarios used for predicting, would not be able 
to produce accurate urban growth patterns, as these were based on the same principles. In that light, 
three remarks ought to be made.  

(a) At coarser spatial resolutions, SLEUTH was better capable of coping with various uncertainties 
and produced more accurate validation results. It has been suggested that, given the original cell size of 
30 m, the optimal spatial resolution for this study area, under these conditions, would be either 16 or 32 
times the cell side (480 m or 960 m). At these resolutions, the excluded layers that included policy maps 
in the MCE (E2 and E3) were able to achieve higher accuracy than both a random map and a null map 
(i.e. no change). However, for none of the excluded layers, the amount of correctly predicted change was 
larger than the sum of the various types of error, i.e. a figure of merit (FOM) of 50% (0% there being no 
overlap and 100% equals a perfect match). In fact, the highest FOM value was only 25%. At the coarser 
resolutions of 16 and 32 times the cell side, this could rise up to approximately 30% for both E2 and E3. 
Pontius et al. (2008) performed a similar analysis of thirteen studies based on multiple urban modelling 
application by others. Even though a comparison to that research is difficult, as the studies used different 
spatial resolutions, some included land use categories and the simulation time period was different. 
Nonetheless, E2 and E3 would score mediocre compared to those studies, based on the FOM. This does 
not explain if the results of E2 and E3 are fitting or not, it merely emphasizes that other model applications 
with similar FOM values, were found sufficiently accurate by the model-users. 

(b) As stated in Chapter 1, the drawbacks of the approach adopted by this research, i.e. using 
remote sensing for data acquisition and a multicriteria evaluation method, are that data acquisition and 
calibration were time-consuming and only a static temporal and spatial change between defined intervals 
was recorded. Given this, a temporal sensitivity analysis during validation was not conducted, therefore 
simulation and prediction results could not be put into a temporal perspective regarding accuracy. This 
emphasizes the difficulties in properly assessing the accuracy of the prediction maps. From 2006 to 2015, 
in nine years during validation, the FOM accuracy declined to approximately 30%, under the optimal 
conditions, thus suggesting the FOM accuracy declined rapidly in just nine years. What other research has 
shown is that prediction beyond 10 years becomes increasingly uncertain (Chaudhuri & Clarke, 2014). The 
decline in accuracy in the first nine years emphasizes the need for a quantitative analysis regarding the 
temporal accuracy, especially when the prediction maps are used for supporting local planners and long-
term decision-making.  
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 (c) As previously mentioned, the excluded layers E2 and E3 included policy maps in the MCE, in 
addition to other factors of the MCE, such as proximity to public facilities, soil type and proximity to highway 
exits. E0 only comprised of constraints, such as water bodies and natural areas and E1 consisted of an 
MCE without policy maps. Onsted and Chowdhury (2014) showed that it is feasible to include policy maps 
and may produce better results. This research produced a similar result, since E2 and E3 achieved the 
highest goodness of fit score, and the highest accuracy during validation. Notwithstanding, it can be a 
dangerous practice to mask out areas or restrict urbanization in zones (Akın, et al., 2014; Pontius, et al., 
2004), as this could lead to bias when modelling or forecasting. By restricting or encouraging urbanization 
in particular zones that are based on policies for future urban development, the model would be biased 
into urbanizing those areas first and achieving higher goodness of fit results. In Chapter 1 it was stated 
that the societal relevance comes from providing insight into future urban dynamics of Groningen, which 
is of great importance to local urban planners and decision-makers. Notwithstanding, if the prediction 
maps E2 and E3 are based on the policies of said local decision-makers, given the accuracy concerns as 
expressed previously, the added value of these predictions becomes limited. 
 Given these insights, to address the second main objective: “understanding the urban growth 
patterns”. The historical overview in section 3.1, the goodness of fit metrics, visual interpretation, the 
excluded layer and an in-depth analysis of two areas in section 5.2, provided some insight into 
understanding the growth patterns in Groningen. The MCE showed that the policy maps, the proximity to 
the highway exits, proximity to regional public facilities, proximity to regional shops and restaurants, 
proximity to regional industrial sites and to some extent the proximity to the intercity train station, were 
meaningful factors in the MCE. In addition, excluding the water bodies and rivers, and the natural areas, 
were considered decisive constraints. The validation showed that the rural areas did not experience much 
growth and most growth was adjacent to the larger villages and cities. Furthermore, an in-depth analysis 
was conducted and a large amount of urban growth occurred in planned areas. These examples were 
considered paradigmatic for how the cities and villages grow in the study area, which SLEUTH was not 
able to capture during simulation. 

Withal, in order to draw further conclusions on the urban growth process of the study area, further 
studies would be required. For example, Herold et al. (2003) proposed to use pattern analysis to research 
the urban patterns and structure, which others have used (Wu, et al., 2009; Sakieh, et al., 2015b; Mahiny 
& Clarke, 2012; Chaudhuri & Clarke, 2013a; Goldstein, et al. 2004). These statistics measure the entire 
area and are thus generalized over the entire area. Therefore, a qualitative approach in addition to such 
quantitative analyses seems desirable, as has been argued by Sitte (1889) over a century ago, e.g. by 
conducting in-depth analyses of paradigmatic errors in the study area. 

… to a new research question 
Given the aforementioned concerns, the main research question should become: “Why is SLEUTH not 
capable of simulating the urban dynamics in Groningen?” This question should be put into perspective by 
considering the scientific relevance of this research, which was argued to come from applying SLEUTH to 
the Dutch context and assessing the feasibility of applying SLEUTH to Groningen, an area that experience 
modest absolute growth rates and adopted a compact city policy. This was done with an integrated 
application of: Geographical Information Systems (GIS), remote sensing (RS), multicriteria evaluation 
(MCE) and an urban growth model (UGM). Hence, the hypotheses were that: (a) it is possible to calibrate 
a UGM to Groningen’s context by combining separate tools (i.e. GIS, RS, MCE and UGM) and forecast 
future urban dynamics under different planning scenarios that fit into the context of Groningen, and (b) that 
other relevant factors that influence the urban development in Groningen could be incorporated in the 
UGM with an urbanization-suitability layer based on an MCE.  

(a) Firstly, the integrated application of GIS, RS, MCE and SLEUTH, the UGM. GIS and RS, via 
Landsat data, was able to reveal the urban land cover and land use for the years 1973, 1984, 1990, 1998, 
2006 and 2015, which in itself is a valuable resource. Both calibration and validation, showed (much) 
higher goodness of fit and (much) higher accuracy for the excluded layers that incorporated an 
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urbanization-suitability layer based on an MCE (E1, E2 and E3), as compared to the excluded layer that 
did not (E0). This illustrates that the integrated approach of GIS, RS, MCE and SLEUTH was successful 
and that SLEUTH can be improved by including an MCE. It could be argued that an MCE or a different 
method to include an assessment of the urban suitability, is in fact necessary to capture the urban growth 
patterns of this study area. To come back to the hypotheses, this research shows that it is possible to 
include other relevant factors that influence the urban development in Groningen, by using an urbanization-
suitability layer based on an MCE. Conversely, this research has not definitively shown that it is possible 
to calibrate a UGM to Groningen using these tools due to the mediocre accuracy results. Perhaps, there 
are other relevant factor that could be included in the MCE, and the fuzzy membership definition and factor 
weights could be further explored. Whether this would improve the simulation with SLEUTH, ought to be 
approached with certain skepticism.  

(b) Secondly, as has been hinted in section 2.4 and section 5.2, SLEUTH lacks certain mechanics 
as compared to other urban models. As portrayed in the in-depth analysis in section 5.2, SLEUTH failed to 
predict urban change in areas that were planned, which were considered paradigmatic to the urban growth 
patterns in Groningen. This analysis showed that a coarser spatial resolution is capable of dealing with 
these areas. It also expressed the link to regional demands regarding real-estate and changes in 
demographics that are important factors to urban development in the study area, implying the need for 
supplementary methods for a successful prediction. 

Other have attempted to include other relevant factors via the self-modification module to include 
socio-economic or demographic factors Liu et al. (2012) or incorporated demographics and employment 
to the excluded layer (Jantz, et al., 2014). However, including dynamic factors into static modules seems 
ineffective. For example, there can only be one excluded layer in SLEUTH. Ordinarily this layer aligns with 
the start date and subsequently SLEUTH has no mechanism to update the values in this layer, and 
probably should not either. The excluded layer ought to be used for exogenous, static or slowly changing 
factors, such as soil type or elevation. Other urban models do include tools to include dynamic factors in 
a type of excluded layer. Dinamica EGO differentiates between a dynamic layer that is based on 
endogenous variables and can update itself throughout the simulation period, and a static layer that 
consists of static or slowly changing factors. Or Metronamica where it is possible to add a temporal 
component for up to three time periods, which could be seen as the equivalent of having three excluded 
layer for three predefined years. UrbanSim has the option to include user-specific events at specific times. 
Other options would be to couple SLEUTH with models that can forecast socio-economic or demographic 
variables, a similar approach to Metronamica and CLUE, or activity-based models that can simulate the 
movement of the population. In fact, it has been argued that it would be preferred to use submodels, such 
as Rienow and Goetzke (2015) and Silva et al. (2008), to address complex issues than to include extra 
MCE factors in the excluded layer (Chaudhuri & Clarke, 2013a), and presumably, than to insert additional 
factors in the self-modification module. 

Additionally, the study area could benefit from a multi-scale or multi-resolution approach, such as 
applied in Metronamica or CLUE. As has been argued numerously, SLEUTH was found able to provide 
good expression of neighborhood relationship at coarser scales. The in-depth analysis in section 5.2 
illustrated that the regional demand in the study area is distributed over multiple subregions, based on 
various criteria. SLEUTH could benefit from modelling approaches such as Metronamica, which 
incorporates a dynamic gravity based model based on various variables which account for regional 
differences resulting in certain regions being more attractive than others. Or CLUE, which uses two 
resolution scales, a coarse and fine scale. The coarse scale is used for general trends and relationships 
between land use and its driving factors, whilst the fine scale is to identify variability within regions by fuzzy 
membership.  

Withal, this research showed that including an urbanization-suitability layer in SLEUTH can improve 
modelling results in this study area. However, critical remarks ought to be made as to what factors are 
appropriate to include in an urbanization-suitability layer. Perhaps the right approach would be to couple 
SLEUTH to other models, or adopt a different urban model that holds more sophisticated mechanics. 
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6.2 Discussions 
In this section three discussion points are elaborated. Which are: the inclusion of policy as a factor in the 
MCE; the calibration of the self-modification module and the spatial resolution.  

Policy maps 
In Chapter 1, additional research aims were to apply SLEUTH to a dispersed urban area that is relatively 
small with a slow absolute urban growth compared to study areas SLEUTH is commonly applied to (García, 
et al., 2012), and attempted to assess the feasibility of applying SLEUTH to a city with a clear spatial policy 
to remain compact and minimize urban growth. This was attempted by using an MCE based on an 
urbanization-suitability layer as an excluded layer. It becomes evident that none of the excluded layers 
were able to capture the actual urban dynamics that have taken place in the study area. As none of the 
excluded layers seem to be able to capture the dispersed urban growth pattern of the study area. The 
core of the issue is that the growth coefficient values are uniformly applied over the entire study area, even 
though these values are not appropriate to capture the urban dynamics in the rural areas. Due to the 
mechanics in SLEUTH and the excluded layer, the study area is not discerned into regions that experience 
similar types of urban growth, hence its inability to capture the urban dynamics. In reality the urban growth 
was focused around Groningen and not dispersed equally across the entire study area. 

In an attempt to solve this, the excluded layer was based on an urbanization-suitability layer. The 
MCE achieved higher fit-scores, as becomes evident by comparing E0 to E1. However, it was still not able 
to properly discern the study area into regions that experienced the same type of growth. One way to 
include these distinct zones and allocate appropriate amounts of growth to these areas, would be by 
including policy maps in the suitability layer. Goetz, Jantz, Bockstael and Towe (2007) have pointed to the 
lack of policy variables in SLEUTH. Poelmans and Van Rompaey (2009) have suggested that it is 
impossible to take in local policy and other local conditions during the modelling efforts. Withal, Onsted 
and Chowdhury (2014) showed that it is feasible and may produce better results. It can be a dangerous 
practice to mask out areas or restrict urbanization in zones (Akın, et al., 2014; Pontius, et al., 2004), which 
could lead to bias when modelling or forecasting. Nonetheless, the opposite could also be argued, that 
policy is a decisive factor in the study area and that these zones should be included. In fact, the excluded 
layer may be the only way to incorporate policies in SLEUTH (Chaudhuri & Clarke, 2013a).  
 The calibration showed that including the policy layer had a positive effect on the goodness of fit, 
and the validation showed that these layers achieved higher accuracy scores. It was found that in this 
study, the areas marked as ‘urban expansion’, areas where urbanization is encouraged, did not affect the 
modelling results as much as expected and resisting urbanization in the rural areas, did. Considering the 
bias of masking and the policy layer that was included as an MCE factor, this study area seems to require 
zoning. Natural areas and agricultural lands ought to be separated from urban lands, since the two 
experienced different growth patterns. Whether this should be based on policy layers or explicitly defined 
by other relevant factors in an MCE, is the question. There ought to be a boundary between zones, whether 
this is a discrete boundary or a fuzzy boundary, presumably both could work. Besides adjusting the MCE, 
it could also be achieved by changing the spatial extent of the study area. Either by zooming in on a 
specific area, or masking areas that are too different in terms of urban growth patterns. 
 The primary cause, and why it was found that policy areas needed to be included, was due to 
small clusters experiencing the same growth as large cities, i.e. uniformly applied growth rules. In essence, 
this comes down to (a) hierarchy and (b) scale, or in other words Zipf’s ranksize rule (Batty, 2005). This 
rule is based on the notion that the size of cities scales according to the size of the largest city and is 
consistent with the internal physical morphology of cities as evidenced in their fractal structure (Batty & 
Longley, 1994). With this power law, it could be possible to rank the clusters in a hierarchy and 
subsequently scale the amount of growth in relation to the largest cluster, presumably the city of Groningen, 
and scale the amount of growth that can be invoked by pixels that are a member of smaller cluster.  
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Self-modification 
When reading other articles, most if not all, mention the self-modification module of SLEUTH. This optional 
phase is often recognized as an important component of SLEUTH, as it would allow SLEUTH to simulate 
dynamic growth rates over time, so that growth rates replicate the typical S-curve of urbanization and 
population growth (Silva & Clarke, 2002). The original application of SLEUTH wherein self-modification was 
calibrated to the San Francisco Bay Area by Clarke et al. (1997). The default self-modification values are 
inherited from this application, of an earlier SLEUTH version applied to a different study area (Clarke, et 
al., 1997). Additionally, it may be likely that due to changes made in the transition rules in the newer 
versions of SLEUTH and SLEUTH-3r, the default self-modification values may not always be fitting. Candau 
(2002) reports extensively on the self-modification module, all its different parameters and what they do. 
She suggests that the self-modification module ought to have its own calibration procedure, as at that point 
it did not. Therefrom, self-modification and calibration are only briefly mentioned, e.g. Jantz et al. (2014) 
and Liu et al. (2012) who both altered the parameter settings in their attempt to improve modelling results. 
Liu et al. (2012) state: “These additional parameters also contribute to the model accuracy, and the 
significance of their influence, determine that a method to calibrate them is required”.  
 Chapter 4 stated that the second phase of pre-calibration was to determine the appropriate values 
for the self-modification module. This calibration was particularly difficult for the study area. The default 
values would put the study area in a constant boom-cycle as the urban growth rate would always exceed 
the threshold value. Therefore, under these conditions, due to the lack of a calibration procedure and lack 
of explicit literature that addresses this issue, the calibration of the self-modification was unsuccessful. 
Whilst self-modification adds an important dynamic component to SLEUTH, it also introduces another layer 
of complexity during calibration. A layer of complexity that is often overlooked. As has been stated by 
others, this module requires an automated calibration procedure. Whether current fit-statistics are 
appropriate for evaluating the goodness of fit of the self-modification module, and whether this calibration 
should be executed before or after estimates of growth coefficient values are produced, ought to be 
researched. Using the default values is presumably not a valid procedure for the self-modification module, 
and neither is arbitrarily choosing parameter settings. 

Spatial resolution 
Silva and Clarke (2002) compared a SLEUTH application to Porto and to Lisbon and noticed better 
calibration results in Porto. They noted that this may be due to the spatial resolution in the data, since Porto 
used coarser input data than Lisbon. “… the question should be: by increasing the spatial resolution of the 
data in the case of Porto, could it be easier to capture detail and therefore narrow down the values to the 
local characteristics?” (p. 546). Even though, they discussed the calibration procedure, a similar point 
could be made in general about SLEUTH. Does coarser input data procedure higher fit results?  

This research shows, for this study area, that the various excluded layers higher accuracy at 
coarser resolutions. This is inevitable, as allocation disagreement resolves at coarser resolutions. 
Accordingly, E2 and E3 were able to outperform the null map, both surpass the null map at a resolution of 
approximately eight times the cell side length. However, this result should not alarm the model-user, as it 
merely indicates that resolution of the input data is finer than SLEUTH’s ability to predict urban dynamics. 
Moreover, it also depends on the goal of the research. If the goal is to predict the urban dynamics at a 
coarser resolution, than these results may be acceptable. In this case, 16 or 132 times the length of the 
cell side, respectively, 480 m or 960 m. To support local planners and decision-makers operating on a 
spatial extent such as applied in this research, this could provide a rough possible indication of land cover 
change (Timmermans, 2003).  

So, does this suggest that input data ought to be coarser? The key argument to be made here is 
that, this only occurred under specific conditions, i.e. the application of fuzzy set theory whilst coarsening 
the resolution. This led to more agreement between comparing clusters of cells as opposed to cell-by-cell 
comparison. Therefore, in this study, this became only possible due to the availability of finer data, whence 
the coarser data came from. Also, due to the stochastic mechanisms in SLEUTH, pixels are randomly 
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selected during the various growth cycles. This is the case for all of the four growth types. Imagine an 
existing village observed urban growth shaped as a chessboard pattern, and SLEUTH would have 
predicted that same chessboard pattern during simulation, just one row or one column off. Validating the 
simulation results would produce zero percent agreement, whilst a human visually checking the data would 
be inclined to argue SLEUTH did an excellent job. The reason this happens could partly be attributed to 
SLEUTH’s stochastic mechanisms that is randomly selecting pixels to urbanize in the correct area, albeit 
on the wrong location. One way to deal with this is coarsening the spatial resolution via fuzzy set theory. 
Subsequently, the agreement would be perfect if the resolution would be two times the cell side length. 
However, if input data would have been coarser to begin with, additional coarsening would be required to 
resolve nearby allocation disagreement and the question becomes, does this coarser resolution fit within 
the research objectives, e.g. is it useable to support local planners and decision-makers? 
 Given all this, does this suggest that in this research the filtering of small urban clusters was a valid 
procedure, since at coarser resolution the disagreement caused by these pixels would be resolved? Again, 
this depends on the goal of the research. Presumably, local planners and decision-makers would not 
require to know about those individual pixels, or the urban change of the large farms or a few clustered 
houses. Moreover, this related to the schism between calibration and validation, as calibration is optimized 
before validating the simulation results, which should be seen as two distinct procedures. In this case, the 
filtered pixels could have drastically influenced the urban extent during calibration, since these pixels were 
often close to larger cities and villages. As these cities and villages expand horizontally, they would annex 
the individual pixels and small clusters, thus, producing different urban growth patterns due to the 
mechanism incorporated in SLEUTH. In that context, it could be argued that these individual pixels and 
small clusters are noise, thus filtering them was valid. 
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Soria y Puig, A. (1999). Cerdá : The five bases of the general theory of urbanization. Madrid: Sociedad Editorial 
Electa Espana, S.A. 

Timmermans, H. (2003). The saga of integrated land use-transport modeling: How many more dreams before we 
wake up? International Conference on Travel Behaviour Research (IATBR). Luzern, Germany. 

Timmermans, H. (2006). Modeling land use and transportation dynamics: methodological issues, state-of-art, and 
applications in developing countries. Discussion Paper Series, 2006-06. 

96 
 



Timmermans, H., Arentze, T., & Joh, C. (2002). Analysing space-time behaviour: new approaches to old problems. 
Progress in Human Geography, 26(2), 175-190. doi:10.1191/0309132502ph363ra 

TNO. (2016). DINOloket Data en informatie van de Nederlandse ondergrond. Retrieved February 11, 2016, from 
https://www.dinoloket.nl/ 

Tobler, W. (1979). Cellular geography. Theory and Decision Library, 20, 379-386. doi:10.1007/978-94-009-9394-5_18 
Tordoir, P., Poorthuis, A., & Renooy, P. (2015). De veranderende geografie van Nederland: De opgaven op 

mesoniveau. Retrieved February 2, 2016, from Rijksoverheid: 
https://www.rijksoverheid.nl/documenten/rapporten/2015/03/18/de-veranderende-geografie-van-nederland 

Torrens, P. M. (2001). Can geosimulation save urban simulation? Throw some agents into the mixture, simmer and 
wait ... London: Centre for Advanced Spatial Analysis (CASA). Retrieved January 4, 2016, from 
https://www.bartlett.ucl.ac.uk/casa/pdf/paper32.pdf 

Ulam, S. (1962). On some mathematical problems connected with petterns of growth of figures. Proceedings of 
Symposia in Applied Mathemetics(14), 215-224. 

UN, U. (2014). World Urbanization prospects 2014 revision. Retrieved February 1, 2016, from 
http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf 

US Department of Transportation. (2015). TRANSIMS. Retrieved July 28, 2016, from 
https://www.fhwa.dot.gov/planning/tmip/resources/transims/ 

USGS. (2016a). Landsat Missions. Retrieved January 2, 2016, from http://landsat.usgs.gov/ 
USGS. (2016b). Landsat 8 (L8) Data Users Handbook. Retrieved February 2, 2016, from 

landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf 
Van Vliet, J., Bregt, A., & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the 

accuracyassessment of land-use change models. Ecological Modelling, 222(8), 1367-1375. 
doi:doi:10.1016/j.ecolmodel.2011.01.017 

Van Vliet, J., Bregt, A., Brown, D., Van Delden, H., Heckbert, S., & Verburg, P. (2016). A review of current calibration 
and validation practices in land-change. Environmental Modelling & Software, 82, 174-182. 
doi:10.1016/j.envsoft.2016.04.017 

Veerbeek, W., Pathirana, A., Ashley, R., & Zevenbergen, C. (2015). Enhancing the calibration of an urban growth 
model using a memetic. Computers, Environment and Urban Systems, 50, 53-65. 
doi:10.1016/j.compenvurbsys.2014.11.003 

Veldkamp, A., & Fresco, L. (1996). CLUE-CR: An integrated multi-scale model to simulate land use change 
scenarios in Costa Rica. Ecological Modelling, 91(1-3), 231-248. doi:10.1016/0304-3800(95)00158-1 

Verburg, P., & Overmars, K. (2009). Combining top-down and bottom-up dynamics in land use modeling: exploring 
the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 24, 1167-
1181. doi:10.1007/s10980-009-9355-7 

Verburg, P., Ritsema van Eck, J., de Nijs, T., Dijst, M., & Schot, P. (2004). Determinants of land-use change patterns 
in the Netherlands. Environment and Planning B: Planning and Design, 31(1), 125-150. 

Verburg, P., Veldkamp, A., & Fresco, L. (1999). Simulation of changes in the spatial pattern of land use in China. 
Applied Geography, 19(3), 211-233. doi:10.1016/S0143-6228(99)00003-X 

Von Bertalanffy, L. (1928). Kritische Theorie der Formbildung. Berlin: Gebrüder Borntraeger. 
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Appendices 
Appendix A 
Table 15: The confusion matrix of the land use classification of 1973, and the producer’s and user’s accuracy are 
shown per class as well as the overall measures.  

 
Reference 

  Producer’s 
accuracy 

User’s 
accuracy Classified 1 2 3 4 5 6 sum  

1 0.025 0.000 0.000 0.001 0.000 0.000 0.026  89.35% 95.08% 
2 0.000 0.016 0.000 0.000 0.000 0.001 0.017  30.29% 92.98% 
3 0.000 0.026 0.447 0.006 0.013 0.013 0.506  98.91% 88.46% 
4 0.003 0.001 0.000 0.097 0.000 0.000 0.101  84.93% 95.59% 
5 0.000 0.010 0.005 0.010 0.324 0.000 0.349  95.95% 92.96% 
6 0.000 0.000 0.000 0.000 0.000 0.001 0.001  4.96% 100.00% 

sum 0.028 0.053 0.452 0.114 0.338 0.015 1.000    
           
 Overall accuracy 91.01%    
 Overall producer’s accuracy 67.40%    
 Overall user’s accuracy  94.18%    
 Kappa 0.86    

Note. The numbers in the confusion matrix represent the following classes, 1: water, 2: forest, 3: rangelands, 4: urban 
areas, 5: agricultural lands and 6: heathlands and barren lands. The amount of training pixels selected for heathlands 
and barren lands is less than for the other classes, as this category is less common. 

Table 16: The confusion matrix of the land use classification of 2006, and the producer’s and user’s accuracy are 
shown per class as well as the overall measures. 

 
Reference 

  Producer’s 
accuracy 

User’s 
accuracy Classified 1 2 3 4 5 6 sum  

1 0.003 0.000 0.000 0.000 0.000 0.000 0.003  17.14% 96.43% 
2 0.000 0.006 0.000 0.000 0.000 0.000 0.006  83.14% 92.06% 
3 0.010 0.000 0.640 0.010 0.019 0.019 0.697  98.65% 91.78% 
4 0.002 0.001 0.000 0.076 0.000 0.001 0.081  85.97% 94.44% 
5 0.000 0.000 0.009 0.003 0.198 0.003 0.213  91.22% 93.15% 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.01% 100.00% 

sum 0.015 0.007 0.649 0.089 0.218 0.023 1.000    
           
 Overall accuracy 92.30%    
 Overall producer’s accuracy 62.69%    
 Overall user’s accuracy  94.64%    
 Kappa 0.84    

Note. The numbers in the confusion matrix represent the following classes, 1: water, 2: forest, 3: rangelands, 4: urban 
areas, 5: agricultural lands and 6: heathlands and barren lands. The amount of training pixels selected for heathlands 
and barren lands is less than for the other classes, as this category is less common. 
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Table 17: The confusion matrix of the land use classification of 2015, and the producer’s and user’s accuracy are 
shown per class as well as the overall measures. 

 
Reference 

  Producer’s 
accuracy 

User’s 
accuracy Classified 1 2 3 4 5 6 sum  

1 0.005 0.000 0.000 0.000 0.000 0.000 0.005  98.01% 100.00% 
2 0.000 0.006 0.000 0.000 0.000 0.000 0.007  80.06% 89.39% 
3 0.000 0.000 0.628 0.000 0.019 0.019 0.667  97.67% 94.20% 
4 0.000 0.001 0.000 0.102 0.000 0.003 0.106  100.00% 95.89% 
5 0.000 0.000 0.015 0.000 0.201 0.000 0.215  91.16% 93.06% 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.02% 100.00% 

sum 0.005 0.007 0.643 0.102 0.220 0.023 1.000    
           
 Overall accuracy 94.13%    
 Overall producer’s accuracy 77.82%    
 Overall user’s accuracy  95.42%    
 Kappa 0.89    

Note. The numbers in the confusion matrix represent the following classes, 1: water, 2: forest, 3: rangelands, 4: urban 
areas, 5: agricultural lands and 6: heathlands and barren lands. The amount of training pixels selected for heathlands 
and barren lands is less than for the other classes, as this category is less common. 

Appendix B 
Table 18: The confusion matrix of the urban classification of 1984, with the classes 1: urban and 2: non-urban. 
Additionally, the mapping, producer’s and user’s accuracy are shown per class as well as the overall measure. 

 
Reference 

  Producer’s 
accuracy 

User’s 
accuracy Classified 1 2 sum      

1 0.101 0.007 0.108      76.62% 93.55% 
2 0.031 0.861 0.892      99.20% 96.55% 

sum 0.132 0.868 1.000        
           
 Overall accuracy 96.23%    
 Overall producer’s accuracy 87.91%    
 Overall user’s accuracy  95.05%    
 Kappa 0.82    

Note. The numbers in the confusion matrix represent the following classes, 1: urban and 2: non-urban. 

Table 19: The confusion matrix of the urban classification of 1990, with the classes 1: urban and 2: non-urban. 
Additionally, the mapping, producer’s and user’s accuracy are shown per class as well as the overall measure. 

 
Reference 

  Producer’s 
accuracy 

User’s 
accuracy Classified 1 2 sum      

1 0.113 0.004 0.117      79.36% 96.67% 
2 0.029 0.854 0.883      99.54% 96.67% 

sum 0.143 0.857 1.000        
           
 Overall accuracy 96.67%    
 Overall producer’s accuracy 89.45%    
 Overall user’s accuracy  96.67%    
 Kappa 0.85    

Note. The numbers in the confusion matrix represent the following classes, 1: urban and 2: non-urban. 
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Table 20: The confusion matrix of the urban classification of 1998, with the classes 1: urban and 2: non-urban. 
Additionally, the mapping, producer’s and user’s accuracy are shown per class as well as the overall measure. 

 
Reference 

  Producer’s 
accuracy 

User’s 
accuracy Classified 1 2 sum      

1 0.131 0.014 0.145      81.14% 90.63% 
2 0.031 0.824 0.855      98.38% 96.43% 

sum 0.162 0.838 1.000        
           
 Overall accuracy 95.59%    
 Overall producer’s accuracy 89.76%    
 Overall user’s accuracy  93.53%    
 Kappa 0.83    

Note. The numbers in the confusion matrix represent the following classes, 1: urban and 2: non-urban. 

Appendix C 
In the file ‘color_obj.c’-line 246 was changed to ‘color_table_landuse_ptr->color[index].red = (color_val & 
RED_MASK) >> 16;’; line 247 was changed to ‘color_table_landuse_ptr->color[index].green = (color_val 
& GREEN_MASK) >> 8;’; and line 248 was changed to ‘color_table_landuse_ptr->color[index].blue = 
color_val & BLUE_MASK;’. These lines were changed as the index was wrong and overwriting the 
probability color table. 

In the ‘ugm_defines.h’-file, line 68 was changed to ’#define BYTES_PER_WORD sizeof(PIXEL)’, so 
it would correctly define the size of a long integer. 

In the ‘main.c’-file line 463 was changed to replace ‘WORD_BIT’  with ‘BYTES_PER_WORD*8’. This 
change removed the reference to WORD_BIT and prints the size of a long integer (in bits) to the log file.  
In the ‘memory_obj.c’-file line 431 ‘fprintf (memlog_fp, “WORD_BIT = %u\n”, WORD_BIT);’ was removed. 
The removal of line 376 is needed since WORD_BIT may not be defined, also this line was only printing to 
the log file and therefore not necessary. Line 630 ‘(WORD_BIT / 8)’ was replaced with ‘BYTES_PER_WORD’. 
This change ensured that the proper amount of memory is allocated given the size of a long integer in the 
system architecture. 

In the scenario-file WRITE_MEMORY_MAP was changed to yes, as SLEUTH-3r attempted to close 
the memory log file whether it was requested to write it or not.  

Appendix D 
This appendix shows the calibration results for the four variants of the excluded layer: E0 the standard 
excluded layer, E1 the excluded layer based on an MCE and the excluded layers based on an MCE that 
includes the policies for the years E2 1971 and E3 1978. Each section shows two tables, the first table 
displays the calibration settings for each calibration phase: coarse, fine and final. The second is displaying 
the top three results for each calibration phase: coarse, fine and final. 
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Excluded E0 - Standard 
Table 21:  Excluded E0, standard excluded layer calibration settings. 

Growth parameter 

Coarse  Fine  Final 

Result value 

Monte Carlo iterations 
= 4 

 Monte Carlo iterations 
= 7 

 Monte Carlo iterations 
= 10 

Total number of 
simulations = 125 

 Total number of 
simulations = 180 

 Total number of 
simulations = 42 

Range Step  Range Step  Range Step 

Diffusion 0-100 25  50-100 10  70-100 5 97 
Breed 0-100 25  25-75 10  45-70 5 58 
Spread 0-100 25  0-100 25  100-100 1 100 
Slope 25-25 1  25-25 1  25-25 1 25 
Road gravity 50-50 25  50-50 1  50-50 1 50 

 

Table 22:  Excluded E0, standard excluded layer calibration results. 

OSM Comp Pop Edges Cluster 
Lee-
Sallee 

X-
mean 

Y-
mean 

Slope Diff Brd Spr Slp RG 

Coarse             

0.008 0.193 0.959 0.539 0.966 0.223 0.714 0.136 0.833 75 75 100 25 50 
0.007 0.194 0.964 0.507 0.964 0.225 0.743 0.128 0.842 100 50 100 25 50 
0.007 0.197 0.973 0.460 0.977 0.230 0.807 0.116 0.857 50 75 100 25 50 

Fine             

0.007 0.195 0.967 0.507 0.974 0.226 0.798 0.115 0.849 100 45 100 25 50 
0.007 0.196 0.970 0.483 0.977 0.228 0.815 0.115 0.853 90 45 100 25 50 
0.007 0.195 0.967 0.501 0.973 0.226 0.759 0.122 0.845 70 65 100 25 50 

Final             

0.008 0.193 0.957 0.550 0.964 0.221 0.656 0.143 0.829 100 60 100 25 50 
0.008 0.195 0.967 0.505 0.974 0.226 0.814 0.118 0.849 100 45 100 25 50 
0.007 0.192 0.955 0.564 0.960 0.221 0.640 0.141 0.826 90 70 100 25 50 

 

Excluded E1 - MCE 
Table 23:  Excluded E1, MCE excluded layer calibration settings. 

Growth parameter 

Coarse  Fine  Final 

Result value 

Monte Carlo iterations 
= 4 

 Monte Carlo iterations 
= 7 

 Monte Carlo iterations 
= 10 

Total number of 
simulations = 125 

 Total number of 
simulations = 330 

 Total number of 
simulations = 156 

Range Step  Range Step  Range Step 

Diffusion 0-100 25  0-25 5  0-5 1 3 
Breed 0-100 25  0-100 10  40-90 2 57 
Spread 0-100 25  40-60 5  50-50 1 50 
Slope 25-25 1  25-25 1  25-25 1 25 
Road gravity 50-50 25  50-50 1  50-50 1 50 
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Table 24:  Excluded E1, MCE excluded layer calibration results. 

OSM Comp Pop Edges Cluster 
Lee-
Sallee 

X-
mean 

Y-
mean Slope Diff Brd Spr Slp RG 

Coarse             

0.153 0.679 0.993 0.998 0.986 0.563 0.358 0.713 0.904 1 25 50 25 50 
0.146 0.678 0.993 0.998 0.993 0.564 0.346 0.699 0.905 1 50 50 25 50 
0.140 0.678 0.993 0.998 0.925 0.563 0.347 0.716 0.903 25 1 50 25 50 

Fine             

0.161 0.676 0.993 0.998 0.990 0.563 0.372 0.720 0.904 1 80 50 25 50 
0.152 0.675 0.993 0.997 0.994 0.563 0.352 0.718 0.906 5 40 50 25 50 
0.150 0.674 0.993 0.998 0.997 0.563 0.355 0.704 0.903 1 90 50 25 50 

Final             

0.160 0.674 0.993 0.997 0.993 0.563 0.372 0.717 0.903 3 72 50 25 50 
0.159 0.677 0.993 0.997 0.989 0.564 0.379 0.704 0.901 1 52 50 25 50 
0.157 0.674 0.993 0.998 0.996 0.562 0.364 0.717 0.905 5 46 50 25 50 

Excluded E2 – Policy 1971 
Table 25:  Excluded E2, policy 1971 and MCE excluded layer calibration settings. 

Growth parameter 

Coarse  Fine  Final 

Result value 

Monte Carlo iterations 
= 4 

 Monte Carlo iterations 
= 7 

 Monte Carlo iterations 
= 10 

Total number of 
simulations = 125 

 Total number of 
simulations = 605 

 Total number of 
simulations = 169 

Range Step  Range Step  Range Step 

Diffusion 0-100 25  0-100 10  40-100 5 62 
Breed 0-100 25  0-100 10  0-60 5 22 
Spread 0-100 25  40-60 5  40-40 1 40 
Slope 25-25 1  25-25 1  25-25 1 25 
Road gravity 50-50 25  50-50 1  50-50 1 50 

 

Table 26:  Excluded E2, policy 1971 and MCE excluded layer calibration results. 

OSM Comp Pop Edges Cluster 
Lee-
Sallee 

X-
mean 

Y-
mean Slope Diff Brd Spr Slp RG 

Coarse             

0.207 0.798 0.994 0.988 0.970 0.610 0.528 0.574 0.899 1 50 50 25 50 
0.182 0.800 0.994 0.988 0.976 0.609 0.493 0.535 0.898 1 25 50 25 50 
0.160 0.795 0.994 0.988 0.962 0.609 0.526 0.450 0.899 1 100 50 25 50 

Fine             

0.415 0.889 0.994 0.987 0.954 0.627 0.834 0.671 0.892 100 1 40 25 50 
0.409 0.880 0.993 0.983 0.949 0.627 0.785 0.716 0.894 50 30 40 25 50 
0.405 0.866 0.993 0.980 0.927 0.625 0.832 0.699 0.893 40 70 40 25 50 

Final             

0.405 0.888 0.994 0.985 0.952 0.629 0.805 0.682 0.891 50 15 40 25 50 
0.403 0.879 0.993 0.983 0.930 0.627 0.797 0.710 0.894 50 30 40 25 50 
0.403 0.872 0.993 0.983 0.952 0.625 0.813 0.685 0.893 85 20 40 25 50 
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Excluded E3 – Policy 1978 
Table 27:  Excluded E3, policy 1978 and MCE excluded layer calibration settings. 

Growth parameter 

Coarse  Fine  Final 

Result value 

Monte Carlo iterations 
= 4 

 Monte Carlo iterations 
= 7 

 Monte Carlo iterations 
= 10 

Total number of 
simulations = 125 

 Total number of 
simulations = 330 

 Total number of 
simulations = 216 

Range Step  Range Step  Range Step 

Diffusion 0-100 25  0-75 15  60-75 3 72 
Breed 0-100 25  0-100 10  50-100 5 95 
Spread 0-100 25  40-60 5  40-45 1 42 
Slope 25-25 1  25-25 1  25-25 1 25 
Road gravity 50-50 25  50-50 1  50-50 1 50 

 

Table 28:  Excluded E3, policy 1978 and MCE excluded layer calibration results. 

OSM Comp Pop Edges Cluster 
Lee-
Sallee 

X-
mean 

Y-
mean Slope Diff Brd Spr Slp RG 

Coarse             

0.254 0.794 0.994 0.980 0.931 0.616 0.554 0.707 0.903 25 100 50 25 50 
0.254 0.815 0.995 0.982 0.975 0.616 0.506 0.717 0.902 75 1 50 25 50 
0.254 0.819 0.995 0.985 0.960 0.619 0.548 0.670 0.898 1 75 50 25 50 

Fine             

0.375 0.855 0.992 0.972 0.961 0.628 0.855 0.615 0.898 75 90 40 25 50 
0.336 0.852 0.992 0.970 0.958 0.628 0.776 0.615 0.896 75 100 40 25 50 
0.328 0.862 0.993 0.975 0.937 0.630 0.838 0.556 0.901 60 100 40 25 50 

Final             

0.361 0.834 0.992 0.973 0.954 0.624 0.764 0.680 0.905 75 95 42 25 50 
0.358 0.834 0.992 0.973 0.954 0.625 0.771 0.670 0.903 75 90 42 25 50 
0.356 0.838 0.993 0.973 0.960 0.625 0.768 0.664 0.900 66 100 42 25 50 
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