9,545 research outputs found

    Understanding ancient coin images

    Get PDF
    In recent years, a range of problems within the broad umbrella of automatic, computer vision based analysis of ancient coins has been attracting an increasing amount of attention. Notwithstanding this research effort, the results achieved by the state of the art in the published literature remain poor and far from sufficiently well performing for any practical purpose. In the present paper we present a series of contributions which we believe will benefit the interested community. Firstly, we explain that the approach of visual matching of coins, universally adopted in all existing published papers on the topic, is not of practical interest because the number of ancient coin types exceeds by far the number of those types which have been imaged, be it in digital form (e.g. online) or otherwise (traditional film, in print, etc.). Rather, we argue that the focus should be on the understanding of the semantic content of coins. Hence, we describe a novel method which uses real-world multimodal input to extract and associate semantic concepts with the correct coin images and then using a novel convolutional neural network learn the appearance of these concepts. Empirical evidence on a real-world and by far the largest data set of ancient coins, we demonstrate highly promising results.Postprin

    Ancient Roman coin retrieval : a systematic examination of the effects of coin grade

    Get PDF
    Ancient coins are historical artefacts of great significance which attract the interest of scholars, and a large and growing number of amateur collectors. Computer vision based analysis and retrieval of ancient coins holds much promise in this realm, and has been the subject of an increasing amount of research. The present work is in great part motivated by the lack of systematic evaluation of the existing methods in the context of coin grade which is one of the key challenges both to humans and automatic methods. We describe a series of methods – some being adopted from previous work and others as extensions thereof – and perform the first thorough analysis to date.Postprin

    A Siamese transformer network for zero-shot ancient coin classification

    Get PDF
    Ancient numismatics, the study of ancient coins, has in recent years become an attractive domain for the application of computer vision and machine learning. Though rich in research problems, the predominant focus in this area to date has been on the task of attributing a coin from an image, that is of identifying its issue. This may be considered the cardinal problem in the field and it continues to challenge automatic methods. In the present paper, we address a number of limitations of previous work. Firstly, the existing methods approach the problem as a classification task. As such, they are unable to deal with classes with no or few exemplars (which would be most, given over 50,000 issues of Roman Imperial coins alone), and require retraining when exemplars of a new class become available. Hence, rather than seeking to learn a representation that distinguishes a particular class from all the others, herein we seek a representation that is overall best at distinguishing classes from one another, thus relinquishing the demand for exemplars of any specific class. This leads to our adoption of the paradigm of pairwise coin matching by issue, rather than the usual classification paradigm, and the specific solution we propose in the form of a Siamese neural network. Furthermore, while adopting deep learning, motivated by its successes in the field and its unchallenged superiority over classical computer vision approaches, we also seek to leverage the advantages that transformers have over the previously employed convolutional neural networks, and in particular their non-local attention mechanisms, which ought to be particularly useful in ancient coin analysis by associating semantically but not visually related distal elements of a coin’s design. Evaluated on a large data corpus of 14,820 images and 7605 issues, using transfer learning and only a small training set of 542 images of 24 issues, our Double Siamese ViT model is shown to surpass the state of the art by a large margin, achieving an overall accuracy of 81%. Moreover, our further investigation of the results shows that the majority of the method’s errors are unrelated to the intrinsic aspects of the algorithm itself, but are rather a consequence of unclean data, which is a problem that can be easily addressed in practice by simple pre-processing and quality checking.Publisher PDFPeer reviewe

    Reconhecimento automático de moedas medievais usando visão por computador

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaThe use of computer vision for identification and recognition of coins is well studied and of renowned interest. However the focus of research has consistently been on modern coins and the used algorithms present quite disappointing results when applied to ancient coins. This discrepancy is explained by the nature of ancient coins that are manually minted, having plenty variances, failures, ripples and centuries of degradation which further deform the characteristic patterns, making their identification a hard task even for humans. Another noteworthy factor in almost all similar studies is the controlled environments and uniform illumination of all images of the datasets. Though it makes sense to focus on the more problematic variables, this is an impossible premise to find outside the researchers’ laboratory, therefore a problematic that must be approached. This dissertation focuses on medieval and ancient coin recognition in uncontrolled “real world” images, thus trying to pave way to the use of vast repositories of coin images all over the internet that could be used to make our algorithms more robust. The first part of the dissertation proposes a fast and automatic method to segment ancient coins over complex backgrounds using a Histogram Backprojection approach combined with edge detection methods. Results are compared against an automation of GrabCut algorithm. The proposed method achieves a Good or Acceptable rate on 76% of the images, taking an average of 0.29s per image, against 49% in 19.58s for GrabCut. Although this work is oriented to ancient coin segmentation, the method can also be used in other contexts presenting thin objects with uniform colors. In the second part, several state of the art machine learning algorithms are compared in the search for the most promising approach to classify these challenging coins. The best results are achieved using dense SIFT descriptors organized into Bags of Visual Words, and using Support Vector Machine or Naïve Bayes as machine learning strategies.O uso de visão por computador para identificação e reconhecimento de moedas é bastante estudado e de reconhecido interesse. No entanto o foco da investigação tem sido sistematicamente sobre as moedas modernas e os algoritmos usados apresentam resultados bastante desapontantes quando aplicados a moedas antigas. Esta discrepância é justificada pela natureza das moedas antigas que, sendo cunhadas à mão, apresentam bastantes variações, falhas e séculos de degradação que deformam os padrões característicos, tornando a sua identificação dificil mesmo para o ser humano. Adicionalmente, a quase totalidade dos estudos usa ambientes controlados e iluminação uniformizada entre todas as imagens dos datasets. Embora faça sentido focar-se nas variáveis mais problemáticas, esta é uma premissa impossível de encontrar fora do laboratório do investigador e portanto uma problemática que tem que ser estudada. Esta dissertação foca-se no reconhecimento de moedas medievais e clássicas em imagens não controladas, tentando assim abrir caminho ao uso de vastos repositórios de imagens de moedas disponíveis na internet, que poderiam ser usados para tornar os nossos algoritmos mais robustos. Na primeira parte é proposto um método rápido e automático para segmentar moedas antigas sobre fundos complexos, numa abordagem que envolve Histogram Backprojection combinado com deteção de arestas. Os resultados são comparados com uma automação do algoritmo GrabCut. O método proposto obtém uma classificação de Bom ou Aceitável em 76% das imagens, demorando uma média de 0.29s por imagem, contra 49% em 19,58s do GrabCut. Não obstante o foco em segmentação de moedas antigas, este método pode ser usado noutros contextos que incluam objetos planos de cor uniforme. Na segunda parte, o estado da arte de Machine Learning é testado e comparado em busca da abordagem mais promissora para classificar estas moedas. Os melhores resultados são alcançados usando descritores dense SIFT, organizados em Bags of Visual Words e usando Support Vector Machine ou Naive Bayes como estratégias de machine learning

    Local Image Patterns for Counterfeit Coin Detection and Automatic Coin Grading

    Get PDF
    Abstract Local Image Patterns for Counterfeit Coin Detection and Automatic Coin Grading Coins are an essential part of our life, and we still use them for everyday transactions. We have always faced the issue of the counterfeiting of the coins, but it has become worse with time due to the innovation in the technology of counterfeiting, making it more difficult for detection. Through this thesis, we propose a counterfeit coin detection method that is robust and applicable to all types of coins, whether they have letters on them or just images or both of these characteristics. We use two different types of feature extraction methods. The first one is SIFT (Scale Invariant Feature transform) features, and the second one is RFR (Rotation and Flipping invariant Regional Binary Patterns) features to make our system complete in all aspects and very generic at the same time. The feature extraction methods used here are scale, rotation, illumination, and flipping invariant. We concatenate both our feature sets and use them to train our classifiers. Our feature sets highly complement each other in a way that SIFT provides us with most discriminative features that are scale and rotation invariant but do not consider the spatial value when we cluster them, and here our second set of features comes into play as it considers the spatial structure of each coin image. We train SVM classifiers with two different sets of features from each image. The method has an accuracy of 99.61% with both high and low-resolution images. We also took pictures of the coins at 90Ëš and 45Ëš angles using the mobile phone camera, to check the robustness of our proposed method, and we achieved promising results even with these low-resolution pictures. Also, we work on the problem of Coin Grading, which is another issue in the field of numismatic studies. Our algorithm proposed above is customized according to the coin grading problem and calculates the coin wear and assigns a grade to it. We can use this grade to remove low-quality coins from the system, which are otherwise sold to coin collectors online for a considerable price. Coin grading is currently done by coin experts manually and is a time consuming and expensive process. We use digital images and apply computer vision and machine learning algorithms to calculate the wear on the coin and then assign it a grade based on its quality level. Our method calculates the amount of wear on coins and assign them a label and achieve an accuracy of 98.5%

    Selection of Robust Features for Coin Recognition and Counterfeit Coin Detection

    Get PDF
    Tremendous numbers of coins have been used in our daily life since ancient times. Aside from being a medium of goods and services, coins are items most collected worldwide. Simultaneously to the increasing number of coins in use, the number of counterfeit coins released into circulation is on the rise. Some countries have started to take different security measures to detect and eliminate counterfeit coins. However, the current measures are very expensive and ineffective such as the case in UK which recently decided to replace the whole coin design and release a new coin incorporating a set of security features. The demands of a cost effective and robust computer-aided system to classify and authenticate those coins have increased as a result. In this thesis, the design and implementation of coin recognition and counterfeit coin detection methods are proposed. This involves studying different coin stamp features and analyzing the sets of features that can uniquely and precisely differentiate coins of different countries and reject counterfeit coins. In addition, a new character segmentation method crafted for characters from coin images is proposed in this thesis. The proposed method for character segmentation is independent of the language of those characters. The experiments were performed on different coins with various characters and languages. The results show the effectiveness of the method to extract characters from different coins. The proposed method is the first to address character segmentation from coins. Coin recognition has been investigated in several research studies and different features have been selected for that purpose. This thesis proposes a new coin recognition method that focuses on small parts of the coin (characters) instead of extracting features from the whole coin image as proposed by other researchers. The method is evaluated on coins from different countries having different complexities, sizes, and qualities. The experimental results show that the proposed method compares favorably with other methods, and requires lower computational costs. Counterfeit coin detection is more challenging than coin recognition where the differences between genuine and counterfeit coins are much smaller. The high quality forged coins are very similar to genuine coins, yet the coin stamp features are never identical. This thesis discusses two counterfeit coin detection methods based on different features. The first method consists of an ensemble of three classifiers, where a fine-tuned convolutional neural network is used to extract features from coins to train two classifiers. The third classifier is trained on features extracted from textual area of the coin. On the other hand, sets of edge-based measures are used in the second method. Those measures are used to track differences in coin stamp’s edges between the test coin and a set of reference coins. A binary classifier is then trained based on the results of those measures. Finally, a series of experimental evaluation and tests have been performed to evaluate the effectiveness of these proposed methods, and they show that promising results have been achieved

    Looking the part : examining the transcendence of gender in the portraits of Agrippina the Younger

    Get PDF
    The propagandist art of the Roman Empire typically used images of the imperial women as a type of political icon. These women were often displayed in reliefs or portrait groups as symbols of morality, fecundity, femininity, and the continuation of the dynasty. While scholars have discussed this issue in great detail, they have often overlooked the fact that the portrait images of these very same women often contradict the feminine virtues that they are meant to convey. For instance, the portraits of Agrippina the Younger are divided into typologies based on, among other things, the incorporation of physiognomic features of contemporary emperors (Caligula, Claudius, and Nero) that lend an element of androgyny to her depictions. This physiognomic assimilation was not simply the unconscious input of sculptors accustomed to carving the emperor’s features, since it occurs in some of the highest quality versions of Agrippina’s portrait types. Agrippina’s portraits integrated these masculine features to reinforce her various positions in relation to the emperor while demonstrating the unity and cohesiveness of the imperial dynasty as a whole. Furthermore, this gender transcendence was employed to advance Agrippina’s political aspirations through the formation of alliances with popular imperial factions. In addition, Agrippina’s depictions exploit the virtues of masculinity and the memory of her beloved father, Germanicus. By analyzing the portraits of Agrippina the Younger, this paper aims to explore the dichotomy presented by this transcendence of gender in order to expand our current understanding of gender roles and women’s functions within the dynastic ideology

    The cultural evolution of coinage as an informational system

    Get PDF
    The invention of coined money significantly changed economic history, by introducing a convenient and universal medium of exchange, whose value is regulated and guaranteed by a political authority. In order to be used as a means of payment, coins need to be recognized as valid and trustworthy. Combining carefully designed material features with inscriptions and images, they form a system of symbols that store and transmit information, primarily of an economic nature. The aim of this thesis was to investigate how coins encode information, and to understand how historical dynamics and human cognition shaped their evolution as an informational system. These questions were explored over three studies. The first study investigated the influence of changing political and economic circumstances in the ancient Mediterranean (7th - 1st ct. BCE) on the informative role of graphic designs as marks of issuing authority and monetary value. The second study discussed the advantages and challenges of digitization, standardization and quantitative approaches to cultural data, with a focus on coin iconography. The third study examined the representation and perception of monetary value in the properties of contemporary coins. This thesis shows how we can examine the structure and evolution of coins within an interdisciplinary framework, using quantitative methods, combined with insights from evolutionary and cognitive anthropology, and information theory. The increasing availability of expertly curated digital collections opens more possibilities for developing quantitative approaches necessary for proper interpretation of the processes which shaped observed patterns in cultural data. The approach taken in this thesis complements the research in numismatics and economic history on the origins and development of coinage, while also highlighting the possibilities of using historical artefacts to study large-scale patterns in the evolution and transmission of cultural traits
    • …
    corecore