2,703 research outputs found

    Carbon Free Boston: Energy Technical Report

    Full text link
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Transportation Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Offsets Technical Report; Available at http://sites.bu.edu/cfb/INTRODUCTION: The adoption of clean energy in Boston’s buildings and transportation systems will produce sweeping changes in the quantity and composition of the city’s demand for fuel and electricity. The demand for electricity is expected to increase by 2050, while the demand for petroleum-based liquid fuels and natural gas within the city is projected to decline significantly. The city must meet future energy demand with clean energy sources in order to meet its carbon mitigation targets. That clean energy must be procured in a way that supports the City’s goals for economic development, social equity, environmental sustainability, and overall quality of life. This chapter examines the strategies to accomplish these goals. Improved energy efficiency, district energy, and in-boundary generation of clean energy (rooftop PV) will reduce net electric power and natural gas demand substantially, but these measures will not eliminate the need for electricity and gas (or its replacement fuel) delivered into Boston. Broadly speaking, to achieve carbon neutrality by 2050, the city must therefore (1) reduce its use of fossil fuels to heat and cool buildings through cost-effective energy efficiency measures and electrification of building thermal services where feasible; and (2) over time, increase the amount of carbon-free electricity delivered to the city. Reducing energy demand though cost effective energy conservation measures will be necessary to reduce the challenges associated with expanding the electricity delivery system and sustainably sourcing renewable fuels.Published versio

    Warrant Economics, Call-Put Policy Options and the Fallacies of Economic Theory

    Get PDF
    In this paper we aim to trace the roots of the ongoing economic mayhem and to unmask the chorus of the tragedy which plays on the world stage. The main thesis of our work is that, despite the triumphant rhetoric praising the merits of perfect competition, the global fields of the dysfunctional market system have mushroomed in what we call Warrant Economics for the Free-Market Aristocracy . Warrant Economics unfolds in two symbiotic tenets that constitute the subtle architecture of the neoliberal edifice: (i) the systemic creation and preservation of inequality via Call-Put policy options, and (ii) the systemic exploitation of inequality via novel and toxic forms of securitisation. In effect, the power structure of insiders' capitalism that we describe, through the costless appropriation of an intricate cobweb of Call-Put structures, has distorted competition and accelerated economic concentration. We view the income distribution effect, which favours the top 1%, and the business concentration effect, which gravitates competition towards oligopolistic/monopolistic industries, as the two sides of the Warrant Economics coin. We argue that the Warrant Economics state of capitalism has been legitimised by a degenerating research programme blossomed under the fallacy that economics is the "physics of society". In this faculty of thought, we perceive the Great Recession as a symptom of Warrant Economics, rather than as a tsunami-like event.Warrant Economics, Call-Put policy options, Securitisation, Monopoly, Income distribution, Great Recession, Sovereign debt

    The Development of eServices in an Enlarged EU: eGovernment and eHealth in the Czech Republic

    Get PDF
    In 2005, IPTS launched a project which aimed to assess the developments in eGoverment, eHealth and eLearning in the 10 New Member States at national, and at cross-country level. At that time, the 10 New Member States were Cyprus, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, and Slovakia. A report for each country was produced, describing its government and health systems and the role played by eGovernment and eHealth within these systems. Each report then analyzes, on the basis of desk research and expert interviews, the major achievements, shortcomings, drivers and barriers in the development of eGovernment and eHealth in one of the countries in question. This analysis provides the basis for the identification and discussion of national policy options to address the major challenges and to suggest R&D issues relevant to the needs of each country Âż in this case, the Czech Republic. In addition to national monographs, the project has delivered a synthesis report, which offers an integrated view of the developments of each application domain in the New Member States. Furthermore, a prospective report looking across and beyond the development of the eGoverment, eHealth and eLearning areas has been developed to summarize policy challenges and options for the development of eServices and the Information Society towards the goals of Lisbon and i2010.JRC.J.4-Information Societ

    Fiscal spending and economic performance : some stylized facts

    Get PDF
    This paper complements the cross-country approach by examining the correlates of growth acceleration in per capita gross domestic product around"significant"public expenditure episodes by reorganizing the data around turning points, or events. The authors define a growth event as an increase in average per capita growth of at least 2 percentage points sustained for 5 years. A fiscal event is an increase in the annual growth rate of primary fiscal expenditure of approximately 1 percentage point sustained for 5 years and not accompanied by an aggravation of the fiscal deficit beyond 2 percent of gross domestic product. These definitions of events are applied to a database of 140 countries (118 developing countries) for 1972-2005. After controlling for the growth-inducing effects of positive terms-of-trade shocks and of trade liberalization reform, probit estimates indicate that a growth event is more likely to occur in a developing country when surrounded by a fiscal event. Moreover, the probability of occurrence of a growth event in the years following a fiscal event is greater the lower is the associated fiscal deficit, confirming that success of a growth-oriented fiscal expenditure reform hinges on a stabilized macroeconomic environment (through a limited primary fiscal deficit).Public Sector Expenditure Analysis&Management,Fiscal Adjustment,Economic Conditions and Volatility,Debt Markets,Achieving Shared Growth

    Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002

    Get PDF
    The flexibility to adapt to new services and protocols without changes in the underlying hardware is and will increasingly be a key requirement for advanced networks. Introducing a processing component into the data path of routers and implementing packet processing in software provides this ability. In such a programmable router, a powerful processing infrastructure is necessary to achieve to level of performance that is comparable to custom silicon-based routers and to demonstrate the feasibility of this approach. This work aims at the general design of such programmable routers and, specifically, at the design and performance analysis of the processing subsystem. The necessity of programmable routers is motivated, and a router design is proposed. Based on the design, a general performance model is developed and quantitatively evaluated using a new network processor benchmark. Operational challenges, like scheduling of packets to processing engines, are addressed, and novel algorithms are presented. The results of this work give qualitative and quantitative insights into this new domain that combines issues from networking, computer architecture, and system design

    Identifying opportunities for developing CSP and PV-CSP hybrid projects under current tender conditions and market perspectives in MENA – benchmarking with PV-CCGT

    Get PDF
    Concentrating solar power (CSP) is one of the promising renewable energy technologies provided the fact that it is equipped with a cost-efficient storage system, thermal energy storage (TES). This solves the issue of intermittency of other renewable energy technologies and gives the advantage of achieving higher capacity factors and lower levelized costs of electricity (LCOE). This is the main reason why solar tower power plants (STPP) with molten salts and integrated TES are considered one of the most promising CSP technologies in the short term [1]. On the other hand, solar photovoltaic (PV) is a technology whose costs have been decreasing and are expected to continue doing so thus providing competitive LCOE values, but with relatively low capacity factors as electrical storage systems remain not cost-effective. Combining advantages and eliminating drawbacks of both technologies (CSP and PV), Hybridized PV-CSP power plants can be deemed as a competitive economic solution to offer firm output power when CSP is operated smartly so that its load is regulated in response to the PV output. Indeed previous works, have identified that it would allow achieving lower LCOEs than stand-alone CSP plants by means of allowing it to better utilize the solar field for storing energy during the daytime while PV is used [1]. On the fossil-based generation side, the gas turbine combined cycle (CCGT) occupies an outstanding position among power generation technologies. This is due to the fact that it is considered the most efficient fossil fuel-to-electricity converter, in addition to the maturity of such technology, high flexibility, and the generally low LCOE, which is largely dominated by fuel cost and varies depending on the natural gas price at a specific location. Obviously, the main drawback is the generated carbon emissions. In countries rich in natural gas resources and with vast potential for renewable energies implementation, such as the United Arab Emirates (UAE), abandoning a low LCOE technology with competitively low emissions – compared to coal or oil - and heading to costly pure renewable generation, seems like an aggressive plan. Therefore, hybridizing CCGT with renewable generation can be considered an attractive option for reducing emissions at reasonable costs. This is the case of the UAE with vast resources of both natural gas and solar energy. Previous work have shown the advantages of hybrid PV-CCGT and hybrid PV-CSP plants separately [1][2]. In this thesis, CSP and the two hybrid systems are compared on the basis of LCOE and CO2 emissions for a same firm-power capacity factor when considering a location in the UAE. The results are compared against each other to highlight the benefits of each technology from both environmental and economic standpoints and provide recommendations for future work in the field. The techno-economic analysis of CSP (STPP with TES), PV-CSP(STPP with TES) and PV-CCGT power plants have been performed by DYESOPT, an in-house tool developed in KTH, which runs techno-economic performance evaluation of power plants through multi-objective optimization for specific locations[1]. For this thesis, a convenient location in the UAE was chosen for simulating the performance of the plants. The UAE is endowed by the seventh-largest proven natural gas reserves and average to high global horizontal irradiation (GHI) and direct normal irradiation (DNI) values all year round, values considered to be lower than other countries in the MENA region due to its high aerosol concentrations and sand storms. The plants were designed to provide firm power in two cases, first as baseload, and second as intermediate load of 15 hours from 6:00 until 21:00. The hours of production were selected based on a typical average daily load profile. CSP and PV-CSP model previously developed by [3][1] were used. Ideally in the PV-CSP model, during daytime hours the PV generation is used for electricity production, covering the desired load, while CSP is used partly for electricity production and the rest for storing energy in the TES. Energy in the TES system is then used to supply firm power during both periods of low Irradiance and night hours or according to need. A PV-CCGT model has been developed which operates simultaneously, prioritizing the availability of PV while the CCGT fulfils the remaining requirement. There is a minimum loading for the CCGT plant which is determined by the minimum possible partial loading of the gas turbine restricted by the emission constraints. Accordingly, in some cases during operation PV is chosen to be curtailed due to this limitation. The main results of the techno-economic analysis are concluded in the comparative analysis of the 3 proposed power plant configurations, where the PV-CCGT plant is the most economic with minimum LCOE of 86 USD/MWh, yet, the least preferable option in terms of carbon emissions. CSP and PV-CSP provided higher LCOE, while the PV-CSP plant configuration met the same capacity factor with 11% reduction in LCOE, compared to CSP

    Techno-economic model and feasibility assessment of green hydrogen projects based on electrolysis supplied by photovoltaic PPAs

    Get PDF
    The use of hydrogen produced from renewable energy enables the reduction of greenhouse gas (GHG) emissions pursued in different international strategies. The use of power-purchase agreements (PPAs) to supply renewable electricity to hydrogen production plants is an approach that can improve the feasibility of projects. This paper presents a model applicable to hydrogen projects regarding the technical and economic perspective and applies it to the Spanish case, where pioneering projects are taking place via photovoltaic PPAs. The results show that PPAs are an enabling mechanism for sustaining green hydrogen projects

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Optimizing the application of plasma functionalised water (PFW) for microbial safety in fresh-cut endive processing

    Get PDF
    The microbiological profiles and responses of native microflora of endive were investigated using a model process line, to establish where a defined PFW should be optimally applied to retain or improve produce microbiological quality. The PFW processes were compared with tap water and ClO2. The antimicrobial efficacy of PFW was quantified by determining the reduction in microbial load, the microbial viability and vitality. Depending on the stage of application of PFW, up to 5 log10-cycles reduction was achieved, accompanied by a reduction of metabolic activity, but not necessarily with a decrease in metabolic vitality. Multiple application (3-step-PFW-application) was more effective than single application (1-step-PFW-application) and PFW showed stronger antimicrobial effect in pre-cleaned endive. High concentrations of nitrite (315 mg l−1) and nitrate (472 mg l−1) in PFW were the main factors for the antimicrobial efficacy of PFW against bacteria. Furthermore, H2O2 and an acidic pH supported the mechanism of action against the endive microflora. These results identify the pathway to scale up successful industrial application of PFW targeting microbiological quality and safety of fresh leafy products.Industrial relevance The safety, quality and shelf life of freshly cut vegetables, e.g. lettuce, are strongly influenced by the microbial load. In addition, the hygienic design of production line, and a good handling/ production practice are indispensable. This study shows that the application of PFW, as a promising non-thermal sanitation technology, enables the inactivation of native microbial contamination on fresh-cut endive depending on the process stage of application. It further describes the impact of PFW on the metabolic activity and metabolic vitality of the lettuce-associated microflora. For higher acceptance, the mechanism of action of PFW was assumed based on previous chemical analyses and compared to the industrial standard of ClO2. The results contribute to the understanding and product-specificity of PFW-induced effects on safety, quality and shelf life of fresh cut lettuce and could be a basis for a possible industrial implementation and complement of common technologies
    • 

    corecore