9 research outputs found

    Cost-efficient modeling of antenna structures using Gradient Enhanced Kriging

    Get PDF
    Reliable yet fast surrogate models are indispensable in the design of contemporary antenna structures. Data-driven models, e.g., based on Gaussian Processes or support-vector regression, offer sufficient flexibility and speed, however, their setup cost is large and grows very quickly with the dimensionality of the design space. In this paper, we propose cost-efficient modeling of antenna structures using Gradient-Enhanced Kriging. In our approach, the training data set contains, apart from the EM-simulation responses of the structure at hand, also derivative data at the respective training locations obtained at little extra cost using adjoint sensitivity techniques. We demonstrate that introduction of the derivative information into the model allows for considerable reduction of the model setup cost (in terms of the number of training points required) without compromising its predictive power. The Gradient-Enhanced Kriging technique is illustrated using a dielectric resonator antenna structure. Comparison with conventional Kriging interpolation is also provided

    Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas

    Get PDF
    Accurate and fast models are indispensable in contemporary antenna design. In this paper, we describe the low-cost antenna modeling methodology involving variable-fidelity electromagnetic (EM) simulations and co-Kriging. Our approach exploits sparsely sampled accurate (high-fidelity) EM data as well as densely sampled coarse-discretization (low-fidelity) EM simulations that are accommodated into one model using the co-Kriging technique. By using coarse-discretization simulations, the computational cost of creating the antenna model is greatly reduced compared to conventional approaches, where high-fidelity simulations are directly used to set up the model. At the same time, the modeling accuracy is not compromised. The proposed technique is demonstrated using three examples of antenna structures. Comparisons with conventional modeling based on high-fidelity data approximation, as well as applications for antenna design, are also discussed

    Predicting the Istanbul Stock Exchange Index Return using Technical Indicators: A Comparative Study

    Get PDF
    The aim of this study to examine the performance of Support Vector Regression (SVR) which is a novel regression method based on Support Vector Machines (SVM) approach in predicting the Istanbul Stock Exchange (ISE) National 100 Index daily returns. For bechmarking, results given by SVR were compared to those given by classical Linear Regression (LR). Dataset contains 6 technical indicators which were selected as model inputs for 2005-2011 period. Grid search and cross valiadation is used for finding optimal model parameters and evaluating the models. Comparisons were made based on Root Mean Square (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Theil Inequality Coefficient (TIC) and Mean Mixed Error (MME) metrics. Results indicate that SVR outperforms the LR for all metrics

    Cost-efficient electromagnetic-simulation-driven antenna design using co-Kriging

    Full text link

    Hybrid System Identification of Manual Tracking Submovements in Parkinson\u27s Disease

    Get PDF
    Seemingly smooth motions in manual tracking, (e.g., following a moving target with a joystick input) are actually sequences of submovements: short, open-loop motions that have been previously learned. In Parkinson\u27s disease, a neurodegenerative movement disorder, characterizations of motor performance can yield insight into underlying neurological mechanisms and therefore into potential treatment strategies. We focus on characterizing submovements through Hybrid System Identification, in which the dynamics of each submovement, the mode sequence and timing, and switching mechanisms are all unknown. We describe an initialization that provides a mode sequence and estimate of the dynamics of submovements, then apply hybrid optimization techniques based on embedding to solve a constrained nonlinear program. We also use the existing geometric approach for hybrid system identification to analyze our model and explain the deficits and advantages of each. These methods are applied to data gathered from subjects with Parkinson\u27s disease (on and off L-dopa medication) and from age-matched control subjects, and the results compared across groups demonstrating robust differences. Lastly, we develop a scheme to estimate the switching mechanism of the modeled hybrid system by using the principle of maximum margin separating hyperplane, which is a convex optimization problem, over the affine parameters describing the switching surface and provide a means o characterizing when too many or too few parameters are hypothesized to lie in the switching surface

    Network Threat Detection Using Machine/Deep Learning in SDN-Based Platforms: A Comprehensive Analysis of State-of-the-Art Solutions, Discussion, Challenges, and Future Research Direction

    Get PDF
    A revolution in network technology has been ushered in by software defined networking (SDN), which makes it possible to control the network from a central location and provides an overview of the network’s security. Despite this, SDN has a single point of failure that increases the risk of potential threats. Network intrusion detection systems (NIDS) prevent intrusions into a network and preserve the network’s integrity, availability, and confidentiality. Much work has been done on NIDS but there are still improvements needed in reducing false alarms and increasing threat detection accuracy. Recently advanced approaches such as deep learning (DL) and machine learning (ML) have been implemented in SDN-based NIDS to overcome the security issues within a network. In the first part of this survey paper, we offer an introduction to the NIDS theory, as well as recent research that has been conducted on the topic. After that, we conduct a thorough analysis of the most recent ML- and DL-based NIDS approaches to ensure reliable identification of potential security risks. Finally, we focus on the opportunities and difficulties that lie ahead for future research on SDN-based ML and DL for NIDS.publishedVersio

    Predictive Modeling and Analysis of Student Academic Performance in an Engineering Dynamics Course

    Get PDF
    Engineering dynamics is a fundamental sophomore-level course that is required for nearly all engineering students. As one of the most challenging courses for undergraduates, many students perform poorly or even fail because the dynamics course requires students to have not only solid mathematical skills but also a good understanding of fundamental concepts and principles in the field. A valid model for predicting student academic performance in engineering dynamics is helpful in designing and implementing pedagogical and instructional interventions to enhance teaching and learning in this critical course. The goal of this study was to develop a validated set of mathematical models to predict student academic performance in engineering dynamics. Data were collected from a total of 323 students enrolled in ENGR 2030 Engineering Dynamics at Utah State University for a period of four semesters. Six combinations of predictor variables that represent students’ prior achievement, prior domain knowledge, and learning progression were employed in modeling efforts. The predictor variables include X1 (cumulative GPA), X2~ X5 (three prerequisite courses), X6~ X8 (scores of three dynamics mid-term exams). Four mathematical modeling techniques, including multiple linear regression (MLR), multilayer perceptron (MLP) network, radial basis function (RBF) network, and support vector machine (SVM), were employed to develop 24 predictive models. The average prediction accuracy and the percentage of accurate predictions were employed as two criteria to evaluate and compare the prediction accuracy of the 24 models. The results from this study show that no matter which modeling techniques are used, those using X1 ~X6, X1 ~X7, and X1 ~X8 as predictor variables are always ranked as the top three best-performing models. However, the models using X1 ~X6 as predictor variables are the most useful because they not only yield accurate prediction accuracy, but also leave sufficient time for the instructor to implement educational interventions. The results from this study also show that RBF network models and support vector machine models have better generalizability than MLR models and MLP network models. The implications of the research findings, the limitation of this research, and the future work are discussed at the end of this dissertation
    corecore