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Abstract 

The aim of this study to examine the performance of Support Vector Regression (SVR) which is a novel regression method based 
on Support Vector Machines (SVM) approach in predicting the Istanbul Stock Exchange (ISE) National 100 Index daily returns. 
For bechmarking, results given by SVR were compared to those given by classical Linear Regression (LR). Dataset contains 6 
technical indicators which were selected as model inputs for 2005-2011 period. Grid search and cross valiadation is used for finding 
optimal model parameters and evaluating the models. Comparisons were made based on Root Mean Square (RMSE), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Theil Inequality Coefficient (TIC) and Mean Mixed Error 
(MME) metrics. Results indicate that SVR outperforms the LR for all metrics. 
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1.Introduction 

Financial markets are complex, nonlinear and dynamic systems. Financial prediction requires to process noisy, non-
stationary, unstructured and uncertain data. Due to many factors including political events, general economic 
conditions and trader expectations, this is a quite difficult task (Huang and et al., 2005). In recent years a novel method 
called Support Vector Machines (SVM) has been widely used for predicting as well as statistical methods. 

The SVM method was first developed by Vladimir N. Vapnik (Vapnik, 1995) based on the ideas from Statistical 
Learning Theory which uses Structural Risk Minimization (SRM) inductive principle instead of traditional Empirical 
Risk Minimization (ERM). Unlike ERM which focuses on minimizing the training error, SRM tries to minimize the 
generalization error upper bound. Overfitting risk is lower with SVM when compared with models such as Artificial 
Neural Networks (Wu and et al., 2010). 

The method has been implemented in applications such as image recognition (Wei and et al., 2011), hand-writing 
recognition (Arora and et al., 2010), text categorization (Zaghloul and et al., 2009), bioinformatics (Ben-Hur and et al., 
2008) successfully. Recently SVM has found a wide range of financial applications including stock selection (Huang, 
2012), financial time series forecasting (Tay and Cao, 2001), evaluation of consumer loans (Li and et al., 2006), credit 
data fraud detection (Hejazi and Singh, 2012), stock trend prediction (Ni and et al., 2011) and so forth. 

SVM was first designed to solve binary classification problem. Later SVM version for regression which is called 
Support Vector Regression (SVR) was proposed. Similar to Support Vector Classification (SVC), SVR depends on a 
small subset of training data.  

Classical Linear Regression uses Least Squares approach. That is, regression function is a hyperplane that fits a given 
training set with with the minimum mean square error between this hyperplane and the data points. However SVR 
uses a different approach that aims to find a hyperplane which fits the data with a deviation less than a given quantity 
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called epsion (ߝ) for every training data point. SVR does not minimize errors less than ߝ, but only higher errors. By 
this way a regression function whose parameters are a linear combination of those training data points of which error 
is higher or equal to ߝ, can be constructed. This leads a unique, global and sparse solution (Ramon and Christodoulou, 
2006, 14). 

The remained of the paper is organized as follows. Second section focuses on literature review of stock market 
prediction and technical analysis. Third section describes Support Vector Regression method. Findings of the analysis 
are presented in fourth section. Fifth section discusses research findings and further research. 

2. Literature Review 

 

For predicting financial markets, technical inputs, fundamental inputs or both from one or more markets can be used. 
Fundamental inputs are economic indicators which are believed to influence the dependent variable. On the other hand 
technical indicators are calculated from the lagged values (Kaastra and Boyd, 1996). 

Technical analysis is study of how securities prices behave and how to exploit that information to make money while 
avoiding losses. Main purpose is to predict the price of securities over some time interval in order to buy and sell to 
security to make a profit (Rockefeller, 2011: 9). 

In this section literature review on stock market prediction and technical analysis is presented. 

Dunis et al. (2012) examined the application of support vector machines to the task of forecasting the weekly change 
in the Madrid IBEX-35 stock index. They used Relative Strength Index (RSI) and Moving Average Convergence 
Divergence (MACD) technical indicators as predictors. 

Kara et al. (2011) compared performances of Artificial Neural Networks and Support Vector Machines in predicting 
the direction of movement in the daily Istanbul Stock Exchange (ISE) National 100 Index. Ten technical indicators 
(Simple Moving Average, Weighted Moving Average, Momentum, Stochastic K%, Stochastic D%, RSI, MACD, 
William’s R%, A/D Oscillator, CCI) were used as inputs of the proposed models. 

Kim (2003) applied SVM for predicting the stock price index.  The research data used in study was technical 
indicators and the direction of change in the daily Korea Composite Stock Price Index (KOSPI). 12 technical 
indicators (%K, %D, Slow %D, Momentum, ROC, William's %R, A/D Oscillator, Disparity 5, Disparity 10, OSCP, 
CCI, RSI) were used as input variables.  

Karymshakov and Abdykaparov (2012) examined performance of Artificial Neural Networks in forecasting stock 
market index movement. The forecasting was based on two samples of Istanbul Stock Exchange (ISE) data and each 
consisting of 150 observations. Daily high and low values of ISE, daily ISE 100 close value, stochastic oscillator, 5-
day moving average, 1,2,3-period lag values of daily ISE 100, gold price and USD exchange rate were used as 
predictors. 

Diler (2003) predicted the direction of Istanbul Stock Exchange (ISE) 100 Index by using Artificial Neural Networks 
for the 1990-2003 period. In analysis technical indicators (Moving Average, Weighted Moving Average, Momentum, 
Stochastic %K, RSI, and MACD) were used as input.  

 

3. Methodology 

Suppose a training data set ܦ = ,ଵݔ)} ,(ଵݕ ,ଶݔ) …,(ଶݕ , ௡ݔ) , {(௡ݕ ⊆ ℛ௠ ×ℛ is given. A general linear regression 
function ݂(ݔ) = ݓ ⋅ ݔ + ܾ attemps to model the input-output relationship. Unlike classification problems where 
desired outputs ݕ௜ are discrete values, in regression tasks outputs are real valued (Kecman, 2001: 176). 

For Support Vector Regression (SVR) an appropriate loss function is ߝ-insensitive loss (Equation 1) 

ݕ| − ݓ ⋅ ఌ|ݔ = ൜0																																				݂݅
ݕ| − ݓ ⋅ |ݔ ≤ 																																			ߝ

ݕ| − ݓ ⋅ |ݔ −  (1)                                                                 																																																݁ݏ݅ݓݎℎ݁ݐ݋										ߝ
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Minimization of ߝ-insensitive loss can be formulated by using nonnegative slack variables ߦ௜ ,  ௜∗ (Equation 2-3).Theseߦ
variables measures the deviation of training data points lying outside the ߝ −insensitive zone (Hamel, 2009: 199).  

௜ߦ = ൜	0																																|ݕ௜ − ݓ) ⋅ |(௜ݔ − ߝ
௜ݕ	݂݅													 − ݓ) ⋅ (௜ݔ ≤ ,ߝ

						݁ݏ݅ݓݎℎ݁ݐ݋	
                                                                                                   (2) 

∗௜ߦ = ൜ ௜ݕ|																															0	 − ݓ) ⋅ |(௜ݔ − ߝ
ݓ)	݂݅												 ⋅ (௜ݔ − ௜ݕ ≤ ,ߝ

								݁ݏ݅ݓݎℎ݁ݐ݋	
                                                                                                    (3) 

The problem of finding parameters ݓ can be stated as 

݉݅݊	 ଵ
ଶ
ݓ) ∙ (ݓ + ஼

௡
∑ ௜ߦ) + ௜∗)௡ߦ
௜ୀଵ                                                                                                                                      (4) 

Constraints ቐ
௜ݕ − ݓ) ⋅ (௜ݔ − ܾ ≤ ߝ + ௜ߦ 												
ݓ) ⋅ (௜ݔ + ܾ − ௜ݕ ≤ ߝ + ∗௜ߦ 												
௜ߦ	 , ∗௜ߦ ≥ 0,											݅ = 1,… , ݊											

                                                                                                             (5) 

Optimization formulated in (4) and (5) is a quadratic optimization problem which has linear constraints. ܥ parameter 
in objective function controls the tradeoff between model complexity and training errror (Cherkassky and Mulier, 
2007: 441). 

By constructing a Lagrangian function and then applying Karush-Kuhn-Tucker (KKT) optimality conditions primal 
optimization problem that is stated in (4) and (5) can be transformed into the dual form (Suykens and et al., 2002: 55). 

In this dual form ߙ௜ ,  .௜ coefficients are found by solving the quadratic optimization problem formulated in (6) and (7)ߚ

	ݔܽ݉ ℒ(ߙ௜ , (௜ߚ = ∑ߝ− ௜ߙ) + (௜ߚ + ∑ ௜ߙ)௜ݕ − (௜ߚ −
ଵ
ଶ
∑ ௜ߙ) − ௝ߙ௜)൫ߚ − ௜ݔ௝൯൫ߚ ⋅ ௝൯௡ݔ
௜,௝

௡
௜ୀଵ

௡
௜ୀଵ                                         (6) 

Subject to  ቐ
	∑ ௜௡ߙ

௜ୀଵ = ∑ ௜௡ߚ
௜ୀଵ ,																		

			0 ≤ ௜ߙ ≤ ܥ ݊⁄ 																											
		0 ≤ ௜ߚ ≤ ܥ ݊⁄ , ݅ = 1,… , ݊				

			                                                                                                                 (7) 

By solving optimization problem in (6)  and (7) for a given training set (ݔ௜ , ,(௜ݕ ݅ = 1, … , ݊, the value of ߝ and ܥ 
parameter, optimal values of ߙ௜∗ and ߚ௜∗ are obtained. Using these values regression function can be written as  (8). 

(ݔ)݂ = ∑ ∗௜ߙ) − ௜ݔ)(∗௜ߚ ⋅ (ݔ + ܾ௡
௜ୀଵ                                                                                                                                   (8) 

In regression function represented in (8) only a small fraction of training data points have a nonzero coefficients. 
These data points that determine the regression functions are called support vectors. They are the samples that lay at or 
outside ߝ −insensitive zone. 

The bias term (ܾ) can be found by using one of the support vector pairs (ݔ௦ ,  .௦) as shown in (9)ݕ

ܾ∗ = ௦ݕ − ∑ ∗௜ߙ) − ௜ݔ)(∗௜ߚ ⋅ ௦)௡ݔ
௜ୀଵ                                        (9) 

Linear regression formulation can be extended to nonlinear case by using kernels. A kernel (ܭ)  is function that 
achives the the inner product in input space instead of high dimensional feature space (Steinwart and Christmann, 
2008: 18). Any inner product kernel that satisfies Mercer conditions can be used in SVR to create nonlinear regression 
functions (Schölkopf and Smola, 2001: 110). The most popular kernels are linear, polynomial, sigmoid, radial basis 
function (RBF) kernels. 

Nonlinear regression fuction can be stated as in (10). 
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(ݔ)݂ = ∑ ∗௜ߙ) − ௜ݔ)ܭ(∗௜ߚ , (ݔ + ܾ௡
௜ୀଵ                                               (10) 

where  ߙ௜∗, ∗௜ߚ ∈ [0,1], ݅ = 1,… , ݊ 

In SVR prediction quality depends on setting of proper model parameters as well as parameters like ߝ and ܥ and 
kernel parameters. 

 

4. Findings 

In the analysis technical indicators (Table 1) were used as predictors and index returns as target variable. Dataset 
contains the daily observations of these variables for the 2005-2011 period. Technical indicators were obtained from 
MetaStock Software (http://www.equis.com).  Closing prices of ISE-100 Index were collected from ISE offical web 
site. Training set were composed of observations from 04.01.2005 to 02.08.2010  (1397 observations)  and test set 
includes 03.08.2010-30.12.2011 period (349 observations). 

Table 1. Technical indicators used in analysis and what they measure. 

Technical Indicator Meausures (Achelis, 2001). 
MO (Momentum) The amount that a security's price has changed over a given time span. 
CCI (Commodity Channel  Index) Variation of a price from its statistical mean.  
MFI (Money Flow Index) The strength of money flowing in and out of a security. 
RSI (Relative Strength Index) The internal strength of a single security. 
STOCH (Stochastic) Where a security's price closed relative to its price range over a given 

time period. 
WILLR (William’s %R) Overbought / oversold levels. 
 

Return of the index  (ݎ௧ )  was calculated by using closing prices of current and previous day as follow. 

௧ݎ = ቀ݈݊ ௉೟
௉೟షభ

ቁ ∗ 100                                            (11) 

௧ܲ : Price at time ݐ, ௧ܲିଵ: Price at time ݐ − 1. 

For comparing performance of SVR and LR, both symmetrical (Table 2) and non symmetrical performance criteria 
was used. 

 

Table 2. Symmetrical performance criteria. 

Criteria Formula 

RMSE (Root Mean Square Error) ඩ
1
ܰ
෍(̂ݎ௧ − ௧)ଶݎ
ே

௧ୀଵ

 

MAE (Mean Absolute Error) 
1
ܰ
෍|̂ݎ௧ − ௧ݎ |
ே

௧ୀଵ

 

MAPE (Mean Absolute Percentage Error) 
1
ܰ
෍ฬ

௧ݎ̂ − ௧ݎ
௧ݎ

ฬ
ே

௧ୀଵ

 

TIC (Theil İnequality Coefficient) 
ܧܵܯܴ

ට1ܰ∑ ௧ݎ̂
ଶே

௧ୀଵ + ට1ܰ∑ ௧ଶேݎ
௧ୀଵ

 

 

௧ݎ̂ : predicticted index return, ݎ௧: actual index return, ݐ: prediction period, ܰ: number of observations in test set. 
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Non symmetric performance criteria that was utilized in the analyses is MME. MME (Mean Mixed Error) is based on 
giving different weights when predicted index return is under (U) or Over (O) actual index return. Shortly,  U and O 
can be shown as  

ܷ = :ݐ} ௧ݎ̂ − ௧ݎ < 0} and  ܱ = :ݐ} ௧ݎ̂ − ௧ݎ > 0}   

İf penalizing the predicted returns that are under actual returns is needed   

(ܷ)ܧܯܯ = ଵ
ே
ቂ∑ ௧ݎ̂| − |௧ݎ + ∑ ௧ݎ̂| − ௧|ଶݎ

ಲ
௧∈௎௧∈௢ ቃ                                                                                                          (12) 

criteria is used. On the contrary to penalize predicted returns that are over actual returns  

(ܱ)ܧܯܯ = ଵ
ே
ቂ∑ ௧ݎ̂| − ௧ݎ | + ∑ ௧ݎ̂| − ௧|ଶݎ

ಲ
௧∈ை௧∈௎ ቃ                                                                                                        (13) 

criteria is preferred. ܣ is a parameter that has value of -1 if |̂ݎ௧ − |௧ݎ < 1, and otherwise having the value of 1. 

For obtaining succesfull prediction results from SVR models, determining optimal parameters is crucial. For this 
objective a grid search was done on predefined search ranges. For epsilon(ߝ) 0.05 ,0.01 ,0.005 ,0.002 ,0.001 ,0.0001 
values were tested. For each of these epsilon values, optimal C and Gamma kernel parameters were search within 0-20 
and 0-2 intervals respectively. The highest prediction accuracy is given by best combination of these three (namely 
epsilon, C and Gamma) parameters. 

Only RBF kernel is used as it is the most often preferred kernel in financial applications in the literature. To decrase 
overfitting risk 10-fold cross validation was applied. 

After grid search the lowest prediction error that is obtanined from the SVR model which has a parameter combination 
of C=10, epsiolon=0.05 and Gamma=0.5.  

Results of the Linear Regression Model is presented on (Table 3). All the predictiors have a acceptable significance 
levels. Regression Function given by LR is as follow. 

௧ݎ = −0.06404 ∗ ܯ ௧ܱ +−0.0025 ∗ ௧ܫܥܥ +−0.03768 ∗ ௧ܫܨܯ + 0.044256 ∗ ௧ܫܴܵ + −0.01895 ∗ ௧ܪܥܱܶܵ +
0.059886 ∗ ௧ܴܮܮܫܹ + 9.860439                                                                                                                                 (14) 

Table 3. Results of Linear Regression. 

 
(Table 4) shows the results of SVR and LR models based on 6 performance criteria. SVR has provided better results 
than LR for all metrics. 

Table 4. Analysis results for SVR and LR. 

Model RMSE MAE MAPE TIC MME(O) MME(U) 
SVR 1.12738 0.86080 2.60304 0.381186 1.15421 1.21414 
LR 1.34070 1.01747 2.684342 0.517769 1.47541 1.51829 
 

 
Coeff. Std.Err t-stat p-value 

MO -0.06404 0.011548 -5.54513 0.0000 
CCI -0.0025 0.001293 -1.93054 0.0636 
MFI -0.03768 0.005012 -7.51871 0.0000 
RSI 0.044256 0.008402 5.267332 0.0000 
STOCH -0.01895 0.003136 -6.04308 0.0000 
WILLR 0.059886 0.004395 13.62469 0.0000 
(Intercept) 9.860439 1.095733 8.998939 0.0000 
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All the analyses were done by using RapidMiner 5.0 (http://rapid-i.com) which is open source data mining software. 
For SVR implementation, MySVM library in RapidMiner was utilized. 

5. Conclusion 

In this study, Support Vector Regression method was applied to predict Istanbul Stock Exchange (ISE) National 100 
Index returns by using technical indicators. For constructing the best model, optimal SVR parameters were found by 
using grid search. SVR model gave better results than Linear Regression based on all the metrics. İt can be concluded 
that SVR can be a useful tool for predicting stock market returns.  

For further research, hybrid models can be utilized to improve prediction accuracy. In addition to technical indicators, 
fundamental inputs can be used in the model. Tuning model parameters by more advanced techniques is another way 
of building more successful SVR models. 
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