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Abstract: A revolution in network technology has been ushered in by software defined networking
(SDN), which makes it possible to control the network from a central location and provides an
overview of the network’s security. Despite this, SDN has a single point of failure that increases
the risk of potential threats. Network intrusion detection systems (NIDS) prevent intrusions into a
network and preserve the network’s integrity, availability, and confidentiality. Much work has been
done on NIDS but there are still improvements needed in reducing false alarms and increasing threat
detection accuracy. Recently advanced approaches such as deep learning (DL) and machine learning
(ML) have been implemented in SDN-based NIDS to overcome the security issues within a network.
In the first part of this survey paper, we offer an introduction to the NIDS theory, as well as recent
research that has been conducted on the topic. After that, we conduct a thorough analysis of the most
recent ML- and DL-based NIDS approaches to ensure reliable identification of potential security risks.
Finally, we focus on the opportunities and difficulties that lie ahead for future research on SDN-based
ML and DL for NIDS.

Keywords: software defined network; intrusion detection systems; machine learning; deep learning;
security attacks

1. Introduction

Over the last two decades, network technologies have tremendously improved; at the
same time, network security threats have also increased. Web-based security attacks, denial-
of-service (DoS), and malicious insiders are a few examples that cause the devastating
cybercrimes. With such malicious activities, critical disruptions can occur within a network.
To ensure network security, antivirus software, firewalls, and network intrusion detection
systems (NIDS) can be deployed. Among these, NIDS is broadly used for detecting intrud-
ers within a network by continuously monitoring the network traffic for any suspicious and
malicious behavior. NIDS is useful to detect different kinds of network threats, including
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distributed denial-of-service (DDoS) attacks, worms, and viruses. Reliability, accuracy, and
detection speed are the success factors of NIDS. Enormous research work has been done on
NIDS, but it still requires improvements in reducing false alarm and increasing detection
accuracy. To reduce false alarm rate [1] and increase threat detection accuracy [2], different
approaches of machine learning (ML) have been used in NIDS. The advanced type of ML
that is deep learning (DL) is also used in developing a more advanced field of NIDS.

Software defined networking (SDN) has revolutionized network technology in recent
years. In contrast to a traditional network, SDN decouples the control plane and data plane
of a network switch. In SDN, the control plane is moved to a remote controller (server),
which can add packet forwarding rules in network switches according to a given program.
This central control of a network offers more programmability and visibility compared with
a traditional network. In addition, it is also attractive from a network security perspective,
as having central control can offer better network monitoring [3].

In SDN, innovative network applications can be developed to monitor and control the
network. In this regard, NIDS is extended for SDN-based architecture. To enhance network
security and traffic monitoring, different approaches of ML/DL can be implemented in the
controller of SDN. From the past few years, the invention of graphics processor units (GPUs)
has increased the popularity of ML/DL approaches in network security. Both ML and
DL techniques are very efficient at predicting any malicious or suspicious behavior from
network traffic, as they can extract and learn new features from network traffic. ML-based
NIDS heavily depend upon the learned features from network traffic, whereas DL-based
NIDS automatically learn from the raw data of complex features and do not rely on learned
features [4].

Many researchers have worked on ML- and DL-based NIDS in order to improve its
performance in detecting network intruders. However, in larger networks, security threats
are also increased due to increased network traffic, which affects the efficiency of NIDS
in detecting malicious activities. Very few studies have been conducted on developing
SDN-based NIDS systems through DL approaches so that there is enough room to deploy
these techniques for improving detection efficiency of intrusions within a network.

The basic purpose of this review paper is to comprehensively review the current
advancements and trends in ML/DL-based NIDS systems and, more significantly, to
provide an overview of the work on SDN-based NIDS systems using ML/DL approaches.
This paper covers the area of knowledge for people with basic to moderate knowledge
related to ML and DL for network threat detection in SDN. The motivation is to provide an
overall picture of the existing research outcomes in this area. In addition, we aim to identify
future research directions that may be useful for new researchers who are interested in this
field of study.

We analyzed the scientific research carried out on network threat detection (NTD)
in SDN, based on ML and DL mechanisms. We covered the main and sub-parts of the
NTD paradigm to efficiently cover threat issues and their protection using ML and DL
approaches to avoid adversary attacks and protect sensitive information during storage
and transmission on a public network. There were various review papers covering different
aspects of this domain, leveraging ML/DL approaches [5–9]. Much research work has been
done on NIDS using ML and DL approaches, but there are few studies on SDN-based NIDS
and very few on DL-based NIDS systems in SDN.

We believe our study is different from existing studies for the following reasons (and
thus, are the main contributions of our work):

• First, we conducted a comprehensive review on ML/DL-based network intrusion
detection systems;

• Second, we reviewed each study on SDN-based NID systems using ML and DL
algorithms;

• We also explored recent advancements and trends in ML/DL approaches for NIDS,
followed by the NIDS system leveraging SDN using ML/DL approaches, and research
issues in NID systems using ML/DL approaches.
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This is a review paper and the scope of our work was to include all studies that
aimed to identify and/or fix network threats in SDN, using either ML or DL algorithms for
threat detection. Table 1 shows a comparison of the current study with similar previously
published articles.

Table 1. Comparison of current study with similar previously published articles.

Review
Paper Year Review

NIDS
SDN

Focused
Include

ML
Include

DL Contribution Limitation

[8] 2017 Yes No Yes No

This research classified IDS. IDS
complexity was classified.

Compared shallow and deep
network learning techniques.
Experiments showed deeper
networks spot threats better.

Signature-based techniques
were used; however, they could
not detect all forms of assault,

particularly if the IDS signature
list was missing the proper

signature.

[10] 2018 Yes Yes Yes No

[5] 2019 Yes Yes Yes No

ML techniques and IDS frameworks
for SDN were examined. The

second category included data
collecting and mitigation strategies.

Standard datasets, testbeds, and
research tools were included.

The authors provided an
overview of obstacles and

potential of employing ML with
emerging technologies such as

SDN; however, it was not
thorough.

[7] 2019 Yes Yes Yes No

This paper looked at ML techniques
using SDN to generate NIDS. Deep

learning was used in SDN-based
NIDS. This research examined SDN

NIDS modelling tools.

When it comes to
network-based IDS, sensors are
deliberately deployed around

the network to pick up on
reconnaissance assaults.

[9] 2019 Yes Yes Yes No

In this overview, machine learning
methods helped SDN-based NIDS.

This survey included NIDS
model-building tools. The two

strategies used in this study may
enhance network intrusion

detection.

Acquiring a new management
tool and providing everyone

with the necessary instruction is
a priority.

The lack of security is a major
obstacle for the SDN.

[11] 2019 Yes No No Yes
Anomaly-detection applications

were evaluated. Categorized deep
anomaly detection systems.

Robust features need manual
extraction. The frequency of

insurance fraud is significantly
smaller than the number of

claims, and each scam is unique.
Such techniques cannot identify

fresh failure signals.

[12] 2020 Yes No No Yes

Categorized deep learning-based
IDS by input data, detection,
deployment, and assessment
methodologies. This survey

compared and examined deep
learning-based IDS experiments.

Due to limited datasets, IDS
systems lack real-world

dependability and applicability.
Benchmark datasets are not

real-time.

[13] 2020 Yes No Yes Yes

This article described IDS and
proposed a taxonomy for ML and

DL-based network-based IDS
(NIDS) systems. The examined

articles described IDS classification
systems.

In general, ANNs tend to
overfit to their training data.
Due to the iterative nature of

selecting the size and structure
of an ANN, overfitting occurs

all too often.

This
Article 2022 Yes Yes Yes Yes

ML/DL algorithms on the SDN
platform could find and resolve

system problems and monitor the
whole network. To utilize ML

tactics in SDN, we categorized ML
frameworks and methods.

The remaining sections of this review paper are as follows: Section 2 provides back-
ground knowledge for SDN and NIDS. Section 3 describes ML/DL-based NIDS and eval-
uates related studies. In Section 4, we review the SDN-based NID system using ML/DL
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approaches and evaluate related studies. Lastly, we present some open research challenges
with ongoing discussion, followed by conclusion and future directions.

2. Background

This section includes basic background knowledge for SDN and IDS.

2.1. General Architecture of SDN

SDNs configure the whole network through programming, with a central location,
as per organizational business needs. SDN is a network emerging paradigm adopted by
telecommunication industries including Cisco Systems and Google. It decouples the control
plane (i.e., intelligence of a network) from the data plane. A SDN-enabled network device
(such as a router or network switch) performs forwarding only (i.e., data plane), whereas
a remote controller implements the control plane. As a result, the controller controls the
entire network and maintains a global view of the whole network. The separation of control
and data planes in SDN can enhance the visibility, adaptability, and other local security
operations of the network.

Learning and teaching have been profoundly impacted by the development of tech-
nology and proliferation of the Internet. E-learning has emerged from these developments
and is generally understood as “the use of computer network technology, typically through
an intranet or over the internet, to provide information and instruction to people.” How-
ever, e-learning faces several obstacles, such as the wide variety of learning styles and
complications that may arise from cultural differences [14].

A SDN-enabled network device maintains a flow table that is consulted to perform
a forwarding decision for an incoming packet. An incoming packet is matched against a
flow table entry. This matching can be performed on the different header values (such as IP
address and port number) of an incoming packet. For a matching flow, an action is listed in
the flow table. For instance, a particular packet could either be dropped, forwarded on a
particular output port, or forwarded to the controller.

Flow table entries are populated by the external controller. Within the application
or module running on the controller, the forwarding rules are defined. To modify the
data plane with the help of an external application, an application programming interface
(API) is offered by SDN. In SDN, the capabilities of controlling the network have increased
compared with traditional networks. The reason for this is that SDN implements a flow-
based structure. As SDN is software-based, it is easy to modify policies in SDN that are
less prone to errors. As it is programming-based, complex functions in the network can be
developed in simpler ways [7].

The general architecture of the SDN is shown in Figure 1. It shows the three planes of
SDN, named the application plane, control plane, and data plane, which are discussed in
the following sections, respectively.

2.1.1. Data Plane

Another name for the data plane is the infrastructure layer. Normally, there are various
network devices in the data plane, including virtual switches and physical switches that
are interconnected with each other through wireless or wired media. The data plane is
responsible for sending network traffic on to predefined destination by the control plane,
which is also called the forwarding plane. Virtual switches are based on software that can
be operated through Linux. Examples of virtual switches implementations are Pantou [15],
Indigo, and Open vSwitch [16]. Physical switches are based on hardware. Physical switches
can be of two types; one type of physical switch can be implemented on networking
hardware, whereas the other type is implemented on open network hardware (e.g., NetF-
PGA [17]). Two open network hardware-based physical switches are ServerSwitch [18] and
SwitchBlade [19]. These data plane switches work according to received policies from the
control plane, and as a result, they can modify, drop, or forward a packet.
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2.1.2. Control Plane

The control layer of the SDN, also named the central layer, is considered the SDN
brain, and includes controllers that are responsible for the programming and monitoring
of the network and terminating and creating flows. The control layer is also accountable
for routing. For example, it identifies the path in which data has to be forwarded using
a routing algorithm. On one hand, the control plane extracts information from the data
plane and transmits it to application plane; on the other hand, the control plane translates
the application plane requirements into policies, and sends these policies to network
switches (forwarding elements, FEs). Moreover, the control plane includes features such as
providing state information notifications, device configuration, network topology storage,
and shortest path routing etc. Beacon, OpenDayLight [20], Ryu, Flood-light [21], POX, and
NOX [22] are different kinds of controllers. The control plane can interact within and outside
the plane, with the help of three communication interfaces: the westbound/eastbound
interface, southbound interface, and northbound interface [23].

2.1.3. Southbound Interface

The southbound interface is responsible for the interaction between the control plane
and data plane. Through the southbound interface, a controller communicates with a
switch, for instance, to add a new entry in flow table. Apart from forwarding operations,
other important information (such as statistics reports and event notifications) are also
exchanged through the southbound interface.

2.1.4. The Northbound Interface

The northbound interface is an API communication interface connecting the control
layer and application layer. Through the northbound interface, the control plane translates
the application plane requirements into policies, and sends these policies to FEs of the data
plane [24].

2.1.5. Westbound/Eastbound Interfaces

The westbound/eastbound interfaces are used in SDN containing the multi-controller.
When SDN is deployed in large networks, one controller may be unable to process the
large amount of network traffic or data flows, so the larger networks are divided into
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smaller domains with separate controllers dedicated to each domain. Thus, communication
between these separate controllers is necessary so that the global network view can be
presented to the application plane; this communication is where westbound/eastbound
interfaces are used. Table 2 describes threats that occur in SDN planes.

2.2. Network Intrusion Detection System

Threats are detected by monitoring packets using IDS. Malicious and abnormal activi-
ties are detected by IDS from both the inside and outside [6]. Highly rough distribution of
data and vast volumes of network traffic are some problems related to the IDS.

Networks or computers are some of the information sources that are monitored by the
IDS, as its main function is to report illegal activities or access. Data from various network
sources and systems are collected and analyzed by IDS for all possible threats and attacks.
A summary of IDS deployment environments and implemented techniques of detection is
shown in Figure 2. As Figure 2 describes, various techniques and methods can be used to
implement intrusion detection systems, which are further divided into following groups:
ML-based methods, data mining methods, and statistical techniques [8]. IDS has a wide
array of implementations, including systems from tiered monitoring systems to antivirus
software by which traffic of a complete network is followed. It can be categorized into the
following classes:

• Incoming network traffic analyzed by the system known as NIDS.
• Important files of the operating system are monitored by the system and defined as

“Host-based intrusion detection systems (HIDS)”.
• The aforementioned classifications of IDS are further classified. Signature and anomaly

detection are the basis of commonly used variants [25].
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2.2.1. Signature-Based Detection

Possible threats are detected by signature-based IDS by considering some special
patterns, such as some known intrusion sequences that are malicious and used by Trojan
or some byte sequences used in the traffic of network. This terminology originated from
antivirus software that referred to these detected patterns as signatures. Known attacks are
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easily detected by signature-based IDS, but detection of new attacks for which there is no
recognizable pattern is not possible [26].

2.2.2. Anomaly-Based Detection

This is a new technique that was designed for the adaption and detection of unknown
attacks mainly caused by explosion of malware. ML is used in this detection method to
model a trustworthy activity, and then the new behavior of the newly developed model is
compared with the true model. Although unknown attacks are detected by this approach,
there is also a risk for false positives, i.e., the classification of unknown authentic activities
can be reported as malicious [27]. In [28], an algorithm was designed for an anomaly-
based system named the AdaBoost algorithm. In this algorithm, two feature selection
approaches, i.e., principal component analysis (PCA) and ensemble feature selection (EFS),
were utilized for selecting features from a novel set of data, CICIDS 2018. Experimental
results showed that integration of EFS with AdaBoost gave better results compared with
PCA with AdaBoost. An analysis related to passing traffic is performed by IDS located at a
premeditated point in the network to monitor traffic from network devices, and then the
traffic is matched on subnets to a library of all known threats. Once the identification of an
attack is made, it senses any abnormal behavior and the administrator receives an alert [28].
Table 2 shows threats on various SDN plans.

There are various other studies as well on IDS. For instance, [29] provides a compre-
hensive review on IDS, another study [30] suggests a network-based IDS. Similarly, in [31]
authors argue how a high-performance IDS can be designed whereas the implementation
of IDS using genetic algorithm is discussed in [32].

Table 2. Threats on SDN.

Target Plane Threat Reason

Control plane Controller hijacking Due to malicious application vulnerability
leverage in NBI

Application plane Threats from applications Lack of authorization and authentication

Control plane Spoofing
Due to absence of switch and TLS

authentication consistency or compromised
verification checks in flow rules.

Control plane MITM attack between controller and switches Without TLS security, the communication
channel is not secured

Data plane Fingerprinting SDN networks Difference in time to process packets between
SDN and traditional network

Control plane Denial of service attack to saturate flow table Centralized controllers

Data plane Information disclosure Flow tables limitation

Data plane Tampering attack using fraud flow rules Difference in time to process packets, which
reveals information about the content of flow

Data plane ICMP attacks, DoS attacks, sequence prediction
attack, reset attack, and SYN attacks

Inheritance of TCP level attacks from
traditional networks

Data plane Cache poisoning attack against the controller
state and flow table Inserting forged packets

Data plane Freeloading Spoofing IP/MAC address to one of the hosts
of an already established communication link.

3. Machine Learning and Deep Learning in NIDS

In the areas of artificial intelligence (AI), there are numerous powerful ML techniques
evolved and commonly used in data mining, and useful structural patterns and models
from the training set are learnt by the system with the help of ML [33]. There are mostly
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two phases included in the ML technique: (1) Training phase and (2) Decision-making
phase (Figure 3). In the training stage of the ML technique, training data is used by the
applied methods of ML to learn the system model. In the second stage, estimated output
can be obtained by the system with the help of a trained model for every new input [34].

There are basically four types of ML algorithms: supervised learning, reinforcement
learning, unsupervised learning, and semi-supervised learning, as given in Figure 4. The
commonly used techniques of ML [35] are described in the following subsections. Figure 3
shows the processing procedure of ML methods.
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3.1. Supervised Learning

To anticipate unknown cases, representations are learnt by the algorithms from labelled
input data in supervised learning. Examples of this learning include support vector machine
(SVM) and random forest methods, where SVM is used for classification-related problems
and problems related to classification and regression are dealt with random forest [36]. In
NIDS research, the most commonly used algorithm is SVM, as it is practical in computation
and powerful classification abilities. In the case of high dimensional data, SVM algorithms
are mostly suitable, but it is very difficult to select an accurate kernel function. Memory
and processing units of computation are demanded by SVM [37], so it is resource hungry.
In case of uneven data, an effective supervised ML approach involves a random forest
algorithm, but it can suffer from the problem of overfitting [38].

3.1.1. Random Forest

Random decision forest is another name of the random forest method, and tasks related
to classification and regression are dealt with this method [39]. Different decision trees
are included in the random forest model. Problems of overfitting from the decision-tree
method can be mitigated with the construction of decision trees by randomly selecting from
the feature support subset; in this way. the accuracy of the model can also be improved.
The following steps are included in the random forest method for the classification of a
new data sample: (1) Put the sample of data to each tree in the forest. (2) Classification
results given by each tree is known as the vote of the tree. (3) The sample of data will be
part of the class that receives the most votes.

3.1.2. Support Vector Machine

Another important technique of supervised learning is SVM, usually used in tasks
related to classification and recognition of patterns. Vapnik and others [40] invented
SVM; mapping of the i/p vector into high-dimensional feature support is the main idea
behind the SVM. Various kernel functions are applied to achieve mapping, such as radial,
polynomial, and linear-based functions. In SVM, selection of kernel function is critical, as
it affects the accuracy of classification. The training dataset is the base for the selection of
kernel function. If training data is linearly separable, a linear kernel function will be more
accurate. Kernel functions for example, Radial based function and polynomial is commonly
used in the case when training data is not linearly separable. Generally, accuracy of RBF
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function is much higher as compared to polynomial and linear kernel functions [41,42].
Further detailed discussion related to SVM classifier is given in [43,44].

3.1.3. k-Nearest Neighbor

In this supervised learning technique, a sample of data is classified in terms of k-
nearest neighbors (k-NN) of the unclassified sample. The classification is performed on
the basis of number k-NN; for example, if a sample has more related k-NN, the sample
will be classified in that class. A simple and easy example of k-NN is shown in Figure 5,
where the working principle of k-NN is also explained. When the value of k is one, it will
be the nearest neighbor algorithm. There is a reduced effect of noise on the classification
with a higher value of k. In k-NN algorithms, the main factor is distance, so distance can
be defined by various functions between the sample of data that is not labelled and its
neighbors, including Euclidean, Chebyshev, Euclidean squared, and City-Block functions.
A detailed discussion of k-NN can be found in [45].

3.2. Unsupervised Learning

Representations are learnt by the algorithms from unlabeled input data in unsu-
pervised learning. The purpose of an unsupervised learning algorithm is to anticipate
unknown cases through the distribution or modelling of fundamental structures in the
data [46]. PCA and self-organizing maps (SOM) are the main examples of unsupervised
learning. PCA is used in techniques of feature reduction, whereas SOM is used in clustering
techniques. The PCA technique A is used to speed up feature learning [34]. Before classifi-
cation, PCA is used by many researchers for feature selection [47]. Anomaly detection is
done by using clustering algorithms including k-means and other algorithms based on dis-
tance. In NIDS, payload is reduced by using SOM, which is an artificial neural network [7].
In anomaly detection, initial conditions are applied to clustering algorithms, such as the
production of a high false positive rate and centroid, so that there is a disadvantage for
clustering algorithms [48]. The most important algorithm in unsupervised learning is the
k-means. Figure 4 shows commonly used approaches of ML.
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3.2.1. Self-Organizing Map

The “Self-Organizing Feature Map” is another name of SOM, and it is the most
important neural network model for unsupervised learning. The main purposes of SOM
are the clustering of data and reduction of dimensions. Generally, there are two layers
of SOM: one is the input layer and the other is the map layer. When data clustering is
performed by the SOM, the total neurons of the map layer are equal to the required number
of clusters. A weight vector is assigned to each neuron. The problem of data clustering is
solved by the SOM algorithm. In [50,51], SOM algorithm is discussed in more detail for
interested readers.

3.2.2. k-Means

Another popular algorithm of unsupervised learning is the k-means method; the main
purpose of this technique is the recognition of unlabeled datasets from various clusters.
Only two parameters are required for the implementation of the k-means algorithm, which
are the initial set of data and required cluster numbers [52]. The problem of node clustering
is resolved by following these steps, with k as the required no. of clusters: (1) Randomly
select k nodes to initialize k centroids of clusters. (2) Each node is labelled using a distance
function with the closest centroid. (3) In accordance with current node memberships, new
centroids are adjusted. (4) If the condition of convergence is valid, the algorithm is stopped;
otherwise, the process is repeated from step two. In [53,54], the k-means algorithm is
explained in full detail.

3.3. Semi-Supervised Learning

Unlabeled data is used in this type of supervised learning for training. A small set of
labelled data is included in the training dataset, but it mostly consists of unlabeled data.
This type of learning is more suitable when large amounts of labelled data are not available,
such as when pictures in the archive are mostly unlabeled and only some are labeled [53].

The accuracy of NIDS is enhanced by using SVM of semi-supervised learning [39]. Un-
known attacks are detected by the two classification methods of semi-supervised learning:
(a) The Gaussian fields approach and (b) Spectral graph transducer. The detection system
performance is improved by using the MPCK-means clustering method of semi-supervised
learning [55].
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An efficient and very easy technique of semi-supervised learning is Pseudo La-
belling [56,57]. Basic concept of Pseudo Labelling is also very simple and easy to un-
derstand. Initially a model is trained by using a labelled data. Then pseudo model of
data which are not labelled is predicted by using the trained model. At the end, model is
again trained by using newly pseudo-labelled data and already labelled data. Some other
methods of semi-supervised learning (such as expectation maximization, graph-based
methods) are discussed in [58].

3.4. Reinforcement Learning

Reinforcement learning (RL) based game theory and deep reinforcement learning
(DRL) are included in RL. An action support “A” and a representative and state support “S”
are involved in RL. The learning entity of RL is the agent; the agent maximizes long-term
reward by learning the best actions when interacting with its environment. In RL, the
long-term reward of an action is calculated by using a value function in a given state. The
“Q-function” is a commonly used value function; the q table is learnt by Q-learning using
the Q-function. All pairs of state-actions and corresponding long-term rewards are stored
in the q table [59].

3.4.1. Deep Reinforcement Learning

The deep reinforcement learning method is preferred because it does not require
prior information regarding the exact model based on the mathematics of the environment.
There are some shortcomings in the traditional RL approach, as it is unable to deal with
high-dimensional problems and it has a low convergence rate to best performance policy π.
DRL can address these shortcomings of the traditional RL approach [60]. The main idea of
DRL is approximating the value function by leveraging the deep neural network’s property
of function approximation. When deep NNs are trained, they are given an input in the
form of a state-action. Then, long-term reward is estimated by DRL. This ultimately helps
the agent in the selection of the best action.

3.4.2. RL-Based Game Theory

Premeditated interactions between rational decision-makers are focused on this mathe-
matical tool of game theory. Group of players, utility functions, and techniques are involved
in a game [61]. Decision-makers are always players. Optimal strategies are selected by
players by using utility functions. Game theory is basically divided into two branches:
(a) Cooperative game theory and (b) Non-cooperative game theory [62]. Conversely, play-
ers of the second branch play against one another and a utility function is maximized by
each player by choosing strategies. The assumption usually made in the network field
is that nodes are selfish [63–66]. The focus of this paper is only on the second branch of
game theory. In this branch, communication between players is not allowed and players
do not know the selected techniques of the other players at the start of each round. Each
player broadcasts their selected strategies (external information) at the end of each round.
However, the strategies of other players can affect the utility of each player. In such cases,
other players’ strategies should be predicted using methods of adaptive learning, which
depends on the optimal strategy for everyone. Optimal strategies by each player can be
selected by an adaptive learning method known as RL. RL uses historical information
for the selection of strategies, such as status of network, strategies, and utility of other
players [67–69]. Thus, an effective technique of decision-making is RL-based game theory.

NIDS are developed by using different techniques of machine learning, such as self-
organizing map, SVM, RF, ANN, and Naïve Bayesian methods. NIDS was implemented
to reduce features in [64], on the basis of RBM, and for problems regarding classification,
SVM was used. The approximate accuracy of the system was 87%. The anomaly detection
system of the network was developed in [70], on the basis of used discriminative RBM,
along with other generative models. It had good accuracy of classification of developed
detection was also able to collect data from the training dataset. Prediction of network
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events is done in [71] by evaluating eight tree-based algorithms of classification. Features
are selected by using decision-tree algorithm while classification for NSL-KDD dataset is
done by applying random forest algorithm.

In Table 3, we provide a summary of machine learning algorithms, along with the
problems they address, and their advantages and disadvantages.

Table 3. Various ML algorithms, the type of problem they address, and their advantages and
disadvantages.

Machine Learning Approach Type of Problem Advantages Disadvantages

Random forest Regression and classification

Instability is reduced.
Overfitting of DT model is

mitigated.
Accurate for huge training

sets.

Does not give accurate results
for imbalanced training

datasets.
Training speed is low.

Support vector machine Regression and classification

High-dimensional datasets
can be effectively handled.
Valid for both separable

datasets (linear and
non-linear).

Training of large datasets is
difficult.

Not good for noisier datasets.

K-nearest neighbor Regression and classification Implementation is easy.
Flexible.

It is memory-intensive.
Computationally expensive.

Self-organizing map Clustering

Understanding of data
mapping is easy.

High-dimensional datasets
can be effectively handled.

For large maps, it is
computationally expensive.

K-means Clustering
Clustering results can be

easily interpreted.
Implementation is easy.

Linear computational cost.
Sensitive to first outliers.

Semi-supervised learning Clustering, regression, and
classification

Labeled and unlabeled data
are used.

Fully depends on
assumptions, such as

smoothness assumptions and
manifold.

Reinforcement learning Decision-making

Fast decision-making after
training.

Prior knowledge is not
required to work properly.

High-dimensional problems
cannot be handled.

Low convergence rate

Deep reinforcement learning Decision-making More computational resources
are required to train datasets.

3.5. Deep Learning in NID

DL methods are advanced types of neural networks that can handle raw bulk data
as inputs, meaning it does not require trained input [72]. In DL approaches, there are
different kinds of hidden layers in which, with the help of various generalization levels, an
algorithm learns the data representation. Normally, the DL algorithm is applied for object
detection or recognition, network-based IDS, and many other domains. DL algorithms can
be trained in two ways: supervised or unsupervised [73], as shown in Figure 6.
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Supervised DL algorithm: This is a learning function where an input and sample-
corrected output are given, and the modelling of output from input relies on the sample
of corrected output. A function comprising the training example set is extracted from the
corrected output, where each example comprises the desired output and input. In DL
methods, a class of deep neural networks (DNN) is trained in a supervised way, namely the
convolutional neural network (CNN). Normally, CNN can be applied for visual imagery
analysis. For structuring 2D images and face recognition, CNN can be used, and for the
purpose of computer vision, CNN is now considered a benchmark method [74].

Unsupervised DL algorithm: In this, a model network is pre-trained so that it can be
used for other tasks. A type of DL approach called the deep auto encoder (DA) is trained
in an unsupervised way; DA is normally used to reduce the dimensionality of a set of data.
Another type of DL approach called the deep belief network (DBN) reconstructs input
when trained in an unsupervised way and a supervised way of training is used to perform
classification [75]. For NIDS, various approaches of DL can be used.

3.5.1. DNN

In [76], SDN based NID system was proposed and in this an algorithm of DL that is
DNN was employed. In this study, a NID system was implemented in SDN control plane
to monitor all OpenFlow switches. In this proposed NID system, two class classification
(anomaly and normal class) was used of the NSL-KDD dataset. There were four categories
which dataset contained named as: probe attacks, U2R attack, R2L attack, and DoS attack.
The experimental evaluation of this study claims the high accuracy ratio of detection.

In [77], proposed IDS system for vehicular networks in which DNN techniques was
used. This method proposed to detect any injected suspicious data packet in the main
network controller of automatic vehicles. The proposed scheme maps the learned features
on input and differentiate malicious input packets from normal inputs packets and based
on this differentiation it classifies the packets into 2 classes: one is attack packet class and
second is normal packet class. Further according to activation function, it keeps normal
packet class and rule out attack packet class, and the selected normal packet class is sent
to next hidden layer and so on. The detection accuracy of this proposed scheme was high
with the detection ratio of 99% and the rate of false alarm was very less up to 1–2%.
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In [78], IDS was proposed to classify cyber-attacks by using the technique of DNN.
In this proposed system there were three main phases named as: acquisition of data,
preprocessing of data and DNN classification. This system achieved the accuracy up to
96.3%, the experimental results of this study show that this scheme can give better results
as compared to three ML approaches such as k-NN, random forest, and linear regression.

3.5.2. FFDNN

In [79], a system to detect intrusions was proposed by using the DL algorithm FFDNN.
This study proposed for wireless networks and in this system selection approach based on
feature with FFDNN was used to generate features’ subsets with increased optimization
and with reduced redundancy. In this system, the main training data is divided into two
subsets: one is evaluation and second is training dataset. Then, it involves the process of
two-way normalization and transformation. The used dataset was NSL-KDD, and then
finally FFDNN used both for training and testing purposes. The experimental evaluation
shows that suggested scheme achieved the detection accuracy up to 99.69%.

3.5.3. RNN

In [80], IDS was proposed based on RNN to perform LSTM and the used dataset was
KDD Cup 1999. In this study, as input vector 41 features was used and for output vector
1 non attack and 4 attacks were used. The experimental results shows that accuracy of
detecting attacks is 98.8%.

In [81], a system was proposed as anomaly detector in automatic vehicles based on
RNN. The LSTM is used as an RNN, in order to forecast new data packet values, LSTM is
trained and to detect anomalies the errors of LSTM are used as indicator.

In [82], propose SDN based intrusion detection system by using gated recurrent unit
RNN. This study gained 89% of detection accuracy by using reduced number of features.
In this scheme the used dataset was NSL-KDD and four parameters depicts its performance
named as accuracy, precision, F-measure, and recall.

In [83], multichannel IDS system was proposed by using LSTM based on RNN. For
evaluating the performance of this scheme, the used dataset was NSL-KDD. The exper-
imental evaluation shows that performance of this LSTM-RNN was 99.23% with 98.9%
accuracy and 9.86% false alarm rate.

3.5.4. Convolutional Neural Network

In [84], an anomaly traffic detection scheme was proposed based on two NN layers.
In these two layers, one was comprised of LetNet-5 CNN, and the other consisted of LSTM.
For the extraction of spatial features, the first layer was used; the other layer was used
to extract temporal features of the flow. For evaluating the performance of this scheme,
the CICIDS2017 dataset was used, and the experimental results show that the detection
ratio was more than 94%. In this paper, a comparison between some ML algorithms
and the proposed scheme was performed, and the experimental evaluation showed that
the suggested system was comparatively better than other ML approaches, including
random forest, decision tree, logistic regression, and naive Bayes methods, in terms of its
F1-measure, recall, precision, and accuracy. Based on these findings, the authors argued
that the proposed technique was a more appropriate light-weight framework for intrusion
detection, encrypted traffic classification, and detection of novel attacks.

In [85], a network-based IDS was proposed using a convolutional autoencoder, and
this study used two datasets: the CTU-UNB and Contagio-CTU-UNB datasets. To build a
NN model, a Theano model was used. The experimental results showed that the accuracy
rate of this proposed scheme was 99.5%.

3.5.5. Restricted Boltzmann Machine (RBM)

In [86], an IDS system was proposed using a RBM in combination with a deep belief
network. In this study the NSL-KDD1999 dataset was used, which consists of 311,029 testing
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records and 494,021 training records. To implement this detection algorithm, Microsoft
Visual Studio 2013 and C++ was used. The experimental results of this study showed that
92% of attacks were classified through RBM.

In [87], a comparative study was presented on using RBM for the detection of in-
trusions in cyber security. Fundamentally diverse computing models are at the heart of
what sets cyber-physical systems (CPS) apart from other kinds of systems. The physical
side is governed by the same laws that govern everything else in the universe; differential
equations explain system behavior [88]. This study evaluated RBM performance in dif-
ferentiating between malicious and normal NetFlow traffic. To evaluate the performance
of this scheme, the ISCX dataset was used. The experimental results showed that when
learning rate was 0.004, the highest accuracy could be achieved, at 78.7 ± 1.9%. More-
over, the true negative and true positive rates were high at a learning rate of 0.004, being
82.4 ± 1.8 and 74.9 ± 4.6%, respectively.

In [89], an IDS system based on stack RBM was described. This scheme was used to
detect malicious or anomalous activities. For evaluating the performance of this scheme,
NSL-KDD dataset was used, and classification of attacks was done into five classes. In this
study for training purposes 40% data was used and for testing purpose 60% data was used.
According to experimental evaluation the detection accuracy of this scheme is 97.5%.

3.5.6. Deep Belief Network

A detection system for intrusions using DBN was proposed in [90]. In this scheme,
DBN was used to fabricate FFDNN for IoTs. To reduce the total cost of the IDS model, a
cross-entropy binary loss function was proposed by the author. The Keras library was used
to sequentially create the DL model. This scheme was designed to detect five different
types of attacks: DDoS, opportunistic service, black hole, wormhole, and sinkhole attacks.
The Internet of Things (IoT) is an emerging technology that allows objects to quickly and
effectively share data across remote networks, such as the cloud or wireless connections.
Cyber assaults, which may lead to deadly incursions, are becoming more common due to
the changes and advances in the IoT ecosystem [91].

Another study [92] proposed an IDS system using a probabilistic neural network
and DBN. To evaluate the performance of this scheme, the authors used the KDD CUP
1999 dataset; 10% of the data was used for testing purposes and another 10% of the data
was used for training purposes. The suggested scheme was compared with three other
models: optimized DBN with probabilistic NN, PCA with conventional probabilistic NN,
and conventional probabilistic NN. The experimental results showed that the proposed
scheme was better than the other three models.

3.5.7. Deep Autoencoder

A system to detect intrusions in cyber security was suggested in [93], based on a deep
autoencoder. In this study, a DA model was used to improve classification results, which
consisted of multiple non-symmetrical hidden layers. The results were as good as the
results of the DBN. Two datasets, the NSL-KDD and KDD C’99 datasets, were used to
evaluate performance, and five matrices were used in the performance evaluation, i.e.,
F-score, false alarm, recall, precision, and accuracy. The experimental results showed that,
for the KDD C’99 dataset, the average accuracy of the proposed scheme was 97.8%, which
exceeded that of other studies of this type. Moreover, the total average accuracy of the
proposed scheme for the NSL-KDD dataset was 85.4%, which was a 5% improvement
compared with the DBN.

In [94], an IDS system was proposed named TSDL, which was based on the DL
algorithm. This proposed model consisted of two stages. A soft-max classifier was used in
the TSDL system with a stacked DA; the classifier had three main layers, called the input,
hidden, and output layers. The FFDNN was employed as a multi-layer perceptron. For the
performance evaluation of this method, the authors used the UNSW-NB15 and KDD C’99
datasets. The experimental results showed that for the KDD C’99 dataset, the recognition
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rate of the proposed scheme was 99.99%. Moreover, for the UNSW-NB15 dataset, this
scheme could achieve up to a 89.12% recognition rate.

The precision of digital measurements is crucial for the monitoring and management
of electrical power systems. These digital readings accurately represent the sensors that
have been set up, but they are susceptible to the introduction of random variables in the
form of hardware failure or malicious hacking [95]. Table 4 shows various DL algorithms
for NID systems.

Table 4. DL algorithms for NID systems.

Deep Learning Approach Model Detail Dataset Ref.

DNN

Using DNN for SDN-based IDS NSL-KDD [76]

Using DNN to handle huge data for large network NSL-KDD [77]

Using DNN for intrusion detection system in vehicular
networks

Vehicular network
communication [78]

Using DNN for network intrusion detection system to
classify cyber attacks PROBING, U2R, R2L, and DoS [96]

Using DNN to detect privacy attacks and DoS in ad
hoc networks KDD C’99 [97]

Using DNN to detect network intrusions KDD C’99 [98]

Using DNN to evolve network attacks KDD C’99 [99]

FFDNN Using FFDNN to detect network intrusions NSL-KDD [79]

RNN

Using RNN to detect network intrusions KDD C’99 [80]

Using RNN to detect attack against vehicle Attacks against vehicles [81]

Using RNN to detect network intrusions NSL-KDD [77]

Using RNN for intrusion detection system in SDN NSL-KDD [82]

Using RNN for multi-channel intrusion detection
system NSL-KDD [83]

CNN

Using CNN to detect network intrusions UMASS dataset [100]

Using CNN to anomaly traffic detection CICIDS2017 [84]

Using CNN for intrusion detection, encrypted traffic
classification, and detection of novel attacks ISCX 2012 IDS [85]

Using CNN to evaluate network intrusions Contagio-CTU-UNB [101]

Machine Learning Approach Type of Problem Advantages Disadvantages

RBM

Using RBM to evaluate network intrusions KDD C’99 [86]

Using RBM to detect cyber security intrusions ISCX dataset [87]

Using RBM for intrusion recognition domain KDD C’99 [102]

Using RBM to detect anomalous activities NSL-KDD [66]

Using RBM to traffic detection Real online network traffic [103]

Using RBM for clustered intrusion IDS in wireless
sensor networks KDD C’99 [104]

DBN

Using DBN for intrusion detection in IoT IoT simulation dataset [90]

Using DBN and probabilistic neural network for IDS KDD Cup 1999 [92]

Using DBN for cyber security intrusion detection NSL-KDD [105]

Using DBN for IDS in SCADA IEEE 118-bus and 300-bus [96]

DA

Using DA for cyber security intrusion detection NSL-KDD [93]

Using DA in IDS UNSW-NB15 and KDD C’99 [94]

Using DA autonomous and self-adaptive misuse IDS NSL-KDD [106]

Using DA for cyber security intrusion detection KDD C’99 [107]
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4. ML- and DL-Based IDS in SDN

In the following sections, we describe ML- and DL-based approaches used to efficiently
detect and prevent intruders in the SDN.

4.1. Machine Learning-Based IDS in SDN

In SDN, one of the most significant usage of IDS is to ensure security. As traffic
statistics are provided by Open Flow protocol (communication medium between switches
and the controller), using messages such as “Stats Request” and “Stats Response”, IDS is
the most compelling tool for the identification of threats and anomalies. For both traditional
and SDN environments, the operations of IDS are equally applicable.

In [108,109], some examples of IDS using traditional SDN techniques are explained.
In [110], anomaly problems were identified leveraging SDN. The main intention of propos-
ing an SDN-based solution was to determine the main problems regarding cloud computing
environment security that would react when an attack occurred. On the other hand, the
authors in [108] used NFV and NID to create a deep packet inspection system. In [56],
the authors used a detection technique based on statistics to get rid of abnormalities in
SDN. “Normal profile of traffic” is defined as it is the foundation of statistics analysis.
Information based on statistics at the packet level for the network and RMS, such as size of
packet and variance, are related to the traffic profile. Traffic of network can be characterized
by using the Hurst parameter, H, for instance, to measure bustiness and self-similarity (H
is higher when traffic is bustier) [109].

In Table 6, a summary of some surveyed papers is presented. In the framework of
ML-based IDS, SDN plays a vital. Details about how SDN is leveraged in the method is
provided in the following section [111].

(a) Data Plane

In this part, all network devices are immersed of collector agents. As shown in
Figure 7, centralized collector records send flow and agent samples. Specific flow metrics
are collected by the device configurations, and then they are exported to the collector.
Currently, major vendors such as Cisco offer export support and built-in flow collection.

(b) Control Plane

Records of network flow are collected by the data collector embedded in the module
of the control plane. Then, the control plane filters the data and conducts feature extraction.
Thus, different datasets are created and generated by the collector, which are crucial for the
ML approach [46]. The OpenFlow controller should be communicating with all network
devices known as data sources.

(c) Application Plane

The constructed and implemented model of ML is used as an application of SDN.
Various methods of ML using generated datasets of different flow collectors can be used as
applications of SDN for different purposes. The operation of a network can be influenced
by constructing different applications powered by the ML-based model. Applications of
incident handling include selection of path and rule enforcement. In the following case, the
ML model used is an application of SDN-based IDS.

It is predicted that network flows can be classified as being normal or malicious.
Figure 7 depicts this process.
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4.1.1. DoS, U2R, Probe, and R2L

Four types of attacks are addressed in the studies discussed in the following section:
DoS, U2R, probe, and R2L. The NSL-KDD dataset used between all of these include the
common characteristics and attacks classified in the four classes.

The D-NN was used by the authors in [5] to detect six features based on anomalies
and are suitable for SDN: type of protocol, count, duration, srv count, src bytes, and
dst bytes. The model was trained and tested by the authors, and compared with other
processes, such as SVM, NB, multi-layer perceptron, J48, random tree (RT), and random
forest (RF) methods. The paper explore the applications of DL used in a detection system
known as flow-based anomaly detection. At the same time, the authors claimed that the
development of machine learning is not fully completed. Ref. [112] presented a discussion
of nine classifiers based on ML with a supervised learning technique. Different tests were
performed on accuracy, recall, execution time, false alarm rate, area under curve of ROC,
f1-measure, McNemar’s test, and precision. PCA was used in the tests to reduce dimensions
with DT, K-NN, LDA, NN, linear SVM, extreme learning machine (ELM), BaggingTrees,
NB, RUSBoost, RF, AdaBoost, and LogitBoost. The results showed that performance of
bagging and boosting techniques was higher than the other techniques. A subset of dataset
features were selected as features in which content features were not included. A hybrid
classification system of level-5 was used by the same authors in [113] for IDS, in a network
that was not based on SDN. Use of flow-statistics was the main aim of the paper; these
flow-statistics were provided by the controller for the development of NIDS. In the first
level, k-NN was used as the classification method; for the second level, ELM was used.
For the other levels, the hierarchical extreme learning machine (H-ELM) was used. One
type of attack was detected by each level using the same preferred features from [113]. For
scalability purposes, the implemented system was in the form of a POX controller module,
rather than an application plane function. The effectiveness of the method chosen to select
features was because the features could be directly accessed from the controller. The results
showed improved accuracy compared with the other methods.

4.1.2. DDoS Attacks

In the following section, DDoS attacks are specifically investigated in the presented
studies for two reasons. First, DDoS attacks have been focused on large sections of IDS stud-
ies. Second, attacks should be individually considered with the perspective of recent threats,
for example, the Mirai botnet and Internet of Things (IoT) [114]. A specific application
using SDN was presented by the authors in [115] to tackle challenges in anomaly detection
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regarding scalability. The scenario was wireless SDN, which enabled the E-Health system.
Massive machine-type communications were the main feature of such a network, where
humans do not interact. For semi-supervised operations, CPLE was the ML technique used,
with offline training. The main intention was online testing, so running localized detection
was allowed within the devices. The requirement for frequent network traffic collection was
avoided by using online testing to update the model of anomaly detection. The features
used for classification were similar to the features defined in [116]. An overview of IDS
based on ML in SDN is provided by authors in [112].

Millions of people may experience significant power outages if an attacker exploits
cyber security weaknesses. This study addresses this problem by presenting an OPNET-
based network model exposed to many DoS assaults, illustrating the cyber security features
of IEC 61850-based digital substations [117].

Five ML techniques were investigated by the study to mitigate DDoS attacks and
intrusion (support vector machine, neural networks, Bayesian networks, genetic algorithms,
decision tree, and fuzzy logic). Each method was theoretically analyzed by authors and a
comparison scheme was generated that presented the advantages and disadvantages of the
approaches. Our review could be used to choose the best technique, in accordance with
system requirements. In [118], the authors compared the SVM analysis in SDN with other
approaches in defending against a DDoS attack. Threats to the controller regarding security
and types of SDN-based DDoS attacks are briefly discussed in the paper. Moreover, four
methods of SVM and a description of system was provided in the paper. For training and
testing, the datasets used were the 1999 and 1998 DARPA, and a comparison of approach
was done with bagging, RBF, random forest, J48, and naive Bayes methods. Highest
accuracy was shown for the proposed SMV, at approximately 95%. The support vector
classifier-based learning algorithm, where features are selected by using an ID3 decision
tree, was used by authors in [119]. The following three components, along with the software
testbed, was used to evaluate the model: (1) Data collection was done using the sFlow
Toolkit. (2) For the virtual switch, Open vSwitch was used. (3) The controller used was Ryu
and the dataset was KDD-Cup 1999.

The model used in [120] was the Dirichlet process mixture model, to mitigate DDoS
attacks based on DNS. An owned dataset was used by the authors in [3]; they created a
dataset to generate DDoS attacks. The IDS system was presented by the authors in [121] for
the identification of DDoS attacks. They compared three methods: SVM with 97% accuracy,
KNN BEST was 83% accurate, and naïve Bayes was approximately 83% accurate. Features
considered as inputs included the number of packets, bandwidth, destination IP, protocol,
source IP, and protocol. They used an owned dataset for testing. A proposal was presented
by the authors of [24] to improve resiliency by detecting some DDoS attacks, preferably
the SYN flood attack, in the SDN network. Three different techniques were studied for
classification: NB, DT, and SVM. DT showed 99% recall, precision, and accuracy. KDD 99
was the dataset used, with features including protocol, src port, src IP address, dst port, and
dst IP address. Later, PCA was used by the authors for reduction. DDoS attack detection
and classification was done by authors using an approach in the cloud environment [122].
They used a two-stage learning scheme with two stages using two techniques: Bayesian
and multivariate Gaussian. The employed features were blacklist IP, dst IP, number of
packets, src IP, and spoof dst IP. Although complementary elements to the ML method were
included in the study, however they did not directly secure the SDN. As an alternative,
some steps were for the security of cloud infrastructure.

4.1.3. Comparison of Various Approaches in SDN

When considering a wide range of attacks regarding cyber security, it is important to
have five attacks, including DDoS, U2R, DoS, probe, and R2L. Though SDN is an innovative
paradigm, it is still subject to all known attack types. New adapted attacks should also
be considered by the research community. Reviewing the adaption of approaches to SDN
is essential for the recognition, prevention, and extenuation of attacks. In all traditional
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networks, the main point of applied ML approaches are to recognize attacks. ML uses
miscellaneous techniques. Most of the studies we reviewed investigated a single ML
approach. One of two approaches from at least two methods was used in other papers;
the techniques were compared or combined to improve anomaly detection. Half of the
reviewed papers used neural networks (generic NN, CNN, RBM, ANN, and NEAT), as
shown in Tables 5 and 6. SVM was another approach used in the reviewed papers. The
naïve Bayes method was also presented in several articles. However, a set of six features
suitable for SDN was presented by authors in [123], which were further used in four studies.
In different cases, independent selection of techniques of features are conducted, which
have to be included in ML. In [124], it is demonstrated that a network attack in SDN can be
predicted with an accuracy of 91.68% using Bayesian Networks machine learning approach.

Table 5. Different DL techniques for NID in SDN with training datasets.

Reference Method of
Detection Dataset Used Detected Attack Feature

Selection

[112] NEAT Owned:
800000+Packets DDoS and worm 3-packet-level

features

[127] ANN, LSTM,
and CNN Owned Crossfire 3-flow-based

features

[128] DT, NB, and
SVM KDD-Cup 1999 DDoS 4-flow-based

features

[4] MHBNC NSL-KDD DoS, R2L, U2R,
and probe

Extraction of
features and

pre-processing

Table 6. Different ML techniques for NID in SDN with training datasets.

Reference Method of
Detection Dataset Used Detected Attack Feature

Selection

[122] RBM KDD-Cup 1999 General anomaly 41 features

[114] Random forest KDD99 DoS, R2L, U2R,
and Probe 10 feature sets

[125] SVM NSL-KDD DOS 25 used from 41
features

[126] k-means Simulation-
based

UDP flood and
TCP flood

Packet count,
duration, and

byte count

4.2. Deep Learning-Based IDS in SDN

There are several studies that have used DL-based IDS in SDN. Normally, seven differ-
ent kinds of threat vectors exist in the SDN, of which three threat vectors are definite and
linked with the controller application plane, controller data plane, and control plane. NIDS
is broadly used for detecting intruders within the network by continuously monitoring
any suspicious and malicious behavior in network traffic. Based on strategies for network
attack detection, NIDS are mainly of two types. The first strategy compares network traffic
with pre-defined intrusion samples, and this is called signature-based detection [129]. New
kinds of attack strategies cannot be detected by this kind of NID system; despite this fact,
this technique is still very popular and commonly used in commercial IDS. In the second
strategy, network traffic is compared with a normal user behavior model and any deviations
from normal behavior of traffic is marked as an anomaly, using ML approaches. This type
of NIDS is called anomaly-based detection. This technique can even detect attacks that
have never seen before. Normally, flow-based monitoring of network traffic is combined
with the latter NIDS strategy, i.e., anomaly-based detection [130].
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Flow-based network traffic monitoring relies upon packet header information, which is
why it handles a lower amount of data compared with payload-based NIDs,. Applications
of ML approaches are found in multiple zones of computer science, including speech
recognition, face detection, and intrusion detection systems; however, such ML applications
have faced some issues. In [131], the authors discuss the various issues in which ML
algorithm applications affect the NID system. Although deep learning research on NID
systems that leverage SDN is in its pre-stages, it is gaining more attention among researchers
due to its results. Until now, DL algorithms have been extensively used in different areas of
computer science for image, face, and voice recognition and has had real success. Through
DL algorithms, correlations in bulk amounts of raw data can be easily found, and due to
this feature, it can be broadly used in the next generation of NID systems. With the help of
DL-based NID systems, one can obtain high detection accuracy and even efficiently detect
attacks that have never been seen. In another study [132] authors investigate how DL might
be useful for detecting malicious java script code.

There are many advantages exhibited by the SDN-based NID system using deep learn-
ing algorithms, including quality of service, virtual management, and security enforcement.
SDN eliminates dependency on hardware because the whole network can be configured
through programming and SDN enables a global view of the entire network, providing
the chance to strengthen the network security [133]. In Table 7, different SDN-based NID
systems using a deep learning algorithm are briefly overviewed and compared. Using
emulation and simulation platforms, SDN can be developed with programmable features
and software switch implementations. SDN can be easily implemented in both software
and hardware environments with the help of protocol standards, i.e., OpenFlow [134].
OMNeT++ [135], NS-3, Mininet [136], and NS-2 are some other simulation tools used
for SDN. In SDN, its control plane is considered its most vital part, and is also called
the operating system of the entire network. The control plane of SDN is accountable for
providing a global view of the entire network and communicate with all programmable
network elements. Beacon, OpenDayLight [137], Ryu, Floodlight [20], POX, and NOX [21]
are different kinds of controllers.

The focus of recent studies have been on employing DL algorithms in NIDS, rather
than ML algorithms. Through DL algorithms, correlations in bulk amounts of raw data
can be easily found, and due to this feature, it could be broadly used in the next gener-
ation of NID systems. Compared with the results of various NID systems based on ML
algorithms, DL-based NID systems gave much better results in the context of SDN [22].
Most machine learning algorithms are trained in a supervised way and these can give good
results in classification tasks, but not in logic modelling; deep learning-based algorithms
outperformed ML algorithms in logic modelling. As attack behaviors consistently change,
they introduce new types of attacks, and unsupervised learning approaches such as RNN,
stacked deep auto-encoder, and hybrid approaches are the best options in detecting these
attacks in SDN-based NID systems. Currently, researchers are focusing on SDN-based
NIDS using DL algorithms for SOHO networks and their satisfactory results suggest that
intrusion detection system accuracy has greatly improved because of SDN scalability and
DL algorithms [138].

4.2.1. DDoS Attack Detection Using DL Algorithms

Different kinds of vulnerabilities exist in the SDN platform, due to which the architec-
ture of SDN is being targeted by various kinds of attacks such as a DDoS attack. In a DDoS
attack, the intended user cannot get access to the network resources or machine. Multiple
bots or multiple people are usually responsible for a DDoS attack, e.g., to launch a DDoS
attack, the intruder can take advantage of SDN characteristics against the application plane,
infrastructure plane, and controller of SDN. In the SDN environment, it is very easy to
deploy a DDoS attack; preventing such an attack is very difficult [139,140]. The occurrence
of DDoS attacks in SDN is increasing daily, since the advent of the internet. The major
reason behind the increased occurrence of DDoS attacks is the development and emergence
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of botnets that are formed within a network by machines or bots when they are exploited
with malware. According to [141], the increase in DDoS attacks in 2016 was 125.36% of
those that occurred in 2015. In [142], a lightweight detection system for DDoS attacks based
on SOM in SDN was suggested, with a 6-tuple feature extraction: growth of different ports
and single-flows, percentage of air-flows, average of duration per flow and bytes per flow,
and packets per flow. In the flow-table, statistics features are extracted at certain intervals
and are used in the implementation of this proposed method, making it a light-weight
system. However, as a downside, this system has some limitations; it cannot be used for
traffic handling that is not based on flow rules. Enhanced power plant monitoring is now
possible thanks to modern sensors. As part of the overall cogeneration procedure, cooling
towers condense exhaust steam to cool the facility [143].

In [144], an SDN-based DDoS blocking application was designed that could block a
DDoS attack. For attack detection, this scheme worked in cooperation with two targeted
servers. This was a prototype study that was designed to detect HTTP flooding attacks.
In [145], the authors proposed a technique to detect a DDoS attack by using entropy
calculations in the SDN controller and a deep auto-encoder approach for feature reduction.
To detect attack, a threshold value was implemented, and selection of the threshold value
was based on experimental results. A downside to a vast network is that there is a controller
bottleneck; it can also affect the reliability affects because the threshold value can change in
different scenarios.

In [146], a system combining a fuzzy interface, a hard detection threshold under attack,
and normal states based on real characteristics of traffic was proposed for the detection of
DDoS attack. For attack detection, three features were chosen, including flow quality to
a server, packet quantity distribution per flow, and interval time distribution. Currently,
researchers are working on the detection of flow-based intrusion.

In [112], IDS was also placed by the authors in the control plane. NSLKDD was
the used dataset and a meta-heuristic Bayesian network was the technique used for the
classification of traffic. Phase of selection and extraction of features was included in the
proposed process to optimize the classifier. Fitness evaluation of the features which were
selected was included in the classifier. After that, a Bayesian classifier was used. Seven
other approaches are used were the comparison, but this proposed method was more
accurate than the other algorithms, having 82.99% accuracy.

4.2.2. Anomaly Detection Using DL Algorithms

In the SDN environment, many approaches have been implemented for anomaly
detection to secure the OpenFlow network. In [147], the author designed a programmable
router for a home network by using the programmability feature of the SDN network
to provide an ideal location and platform for detecting malicious behavior in SOHO
(small office/home office). The four most popular SDN-based anomaly detection methods
include NETAD, maximum entropy detector, rate-limiting, and TRW-CB algorithms were
implemented in NOX and the OpenFlow compliant switch of SDN. Experimental results
of these algorithms showed that, in detecting malicious activities, these algorithms had
more accurate results in SOHO networks compared with ISP. Without introducing any
new performances overhead, these anomaly detection algorithm work at line rates for the
SOHO network.

In [148], an anomaly-based detection system based on flow was proposed, using a
gravitational search algorithm and multi-layer perceptron. Experimental results showed
that this proposed system gave a high accuracy ratio in classifying malicious and benign
flows. In [149], an SDN-based NID system was proposed by using SVM. Experimental
results showed that the positive alarm rate was very high, with a lower false alarm rate. In
this study, the traffic system was trained with malicious network traffic, rather than with
normal data.

In [150], the authors proposed an anomaly detection system based on DL algorithms
in which flow for anomaly detection and OpenFlow was combined to reduce overhead
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processing. In this proposed method, the false positive rate was high in detecting attacks
because network traffic flow was used for implementation.

The network traffic of social multimedia is continuously increasing due to increases in
usage and continuous development of multimedia services and applications. The secure
transmission of data requires a network that includes features of quality of service, quality
of information, scalability, and reliability. In this context, SDN is a significant network,
but energy-aware networking and runtime security affects its capability; thus, to increase
SDN reliability, a SDN-based anomaly detection system was proposed in [1]. By using
DL approaches in the context of social multi-media, this system was used to detect any
suspicious flow in network traffic. This proposed system consisted of two modules. The
first was an anomaly-detection module based on RBM and gradient descent-based SVM
for the detection of any suspicious behavior. The second module was end-to-end data
delivery to satisfy SDN’s quality of service requirements. For the performance evaluation
of this proposed scheme, both benchmark and real-time datasets were used. Experimental
evaluation showed that this proposed scheme was very efficient and effective in effective
in data delivery and anomaly detection for social multimedia.

Some studies used deep learning for general anomaly detection. In the paper [151],
the authors presented DL-based IDS for SDN environments. IDS was implemented as
a component of the control plane in both studies, rather than using it as an application.
The location allowed for direct interaction to protect the controller. Moving target defense
and IDS was the aim of the authors [151]. To get data from training, a simulated network
was generated by the authors (of about 40,000 packets). A neuroevolutionary model was
presented as a light-weight detector for the architecture, by which real-time operation was
allowed. Two different detectors, DDoS and worm, were developed to achieve it, with each
detector identifying one type of attack. “Neuroevolutionary of Augmenting Topologies
(NEAT)” was used by authors to combine the two detectors. NEAT is a method related to
neuro-evolution with a crossover background.

The general environment of SDN was presented by authors in [4] with unsupervised
learning. The auto encoder was used in the approach; the encoder and decoder were the
two phases of the auto encoder, used to identify reconstruction error and minimize it for
each test sample. TensorFlow was the development library, but the used dataset was not
clear.

4.2.3. Specific Circumstances of Network

Some studies also investigated specific circumstances of network. The implementation
of IDS based on DL in optimal SDN was presented in [127]. Attacks were reviewed in
the control plane in [128], and then they were classified into leakage of data, modification
of data, unauthorized access, misuse of security policy, and denial of service. Anomaly
detection considered features about optimal links, as the process was based on optical
networks. These included usage of average bandwidth, destination nodes, formats of
modulation, frequent source, and average length of route. Light-path creation, deletion,
and modification were some attacks included in related networks. Point-anomaly-based
methods were the first detection methods, with a point being used to represent a data
instance. Probability was calculated by a user-created algorithm. A sequence-anomaly
based method was the second detection method, where the occurrence of anomalies was
in a sequence and a cumulative sum approach was used. NSFNET topology was used by
the authors to test an owned dataset, and the results of the detection method showed 85%
accuracy.

Numerous compromised nodes were included in the attack by which synchronized
traffic with low intensity was generated to disconnect hosts and links from any network.
There is a growing reliance on digital measurements in the monitoring and managing of
electrical power networks. Recently, wide-area monitoring systems (WAMS) have been
established to enhance the situational awareness of complex networks and, by extension,
their transmission efficiency [152].
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Coordinated attacks are classified using three DL techniques including convolutional
neural networks, artificial neural networks, and LSTM networks. In [128], a testbed was
created by authors for the generation of their dataset in Mininet [153] with increased traffic.
After that, training and testing of the model was performed using this dataset. The results
showed that when there was an increase in the speed of the vehicles, the performance was
reduced, as well as efficiency. The training time of each algorithm was 100 s. The short time
allowed the system to re-train as necessary.

Table 7. Comparison of NID system leveraging SDN based on deep learning approach.

Paper Objective Controller Used Method Comparison

[1]
Lightweight DDoS

Flooding
Attack

OpenFlow Controller Used SOM with artificial
neural network

It could efficiently detect DDoS
attack but there were no flow
rules installed for detection

[150] Anomaly
Detection

SDN
Controller

Used DL approach for
detection of flow-based

anomaly

Did not have any alternative
solutions for signature-based

intrusion detection system

[144] DDoS Attack
Detection

OpenFlow Controller
(NOX)

Used deep auto-encoder
approach for feature

reduction

For vast networks, there is a
controller bottleneck

[146] Intrusion
Detection OpenFlow Controller Used learning vector

quantization and SOM
Cannot efficiently detect U2R

attack

[148] Intrusion
Detection

SDN
Controller

Used DL with generative
adversarial networks

It is very efficient and cost
effective in intrusion detection

[147] Anomaly
Detection

NOX and OpenFlow
Compliant Switches

Used four anomaly
algorithms: TRW-CB
algorithm, NETAD,

maximum entropy detector,
and rate limiting

Able to detect anomalies in
SOHO network and have

standardized programmability

[154] Anomaly
Detection

SDN
Controller

DL-based RBM and gradient
descent-based SVM anomaly
detection for suspicious flow

detection

Effective data delivery is realized
using multi-objective flow

routing scheme based on SDN

[155] DDoS Attack Detection SDN
Controller

Generative adversarial
network-based adversarial

training in SDN

Able to continuously monitor
network traffic using IP flow
analysis and enable anomaly

detection in near real-time, used
dataset was CICDoS2019

5. Discussion

We have discussed SDN-based ML and DL approaches for intrusion detection. SDN-
based IDS using ML and DL algorithms showed many advantages, including quality
of service (QoS), virtual management, etc. As SDN allows us to create an ecosystem
of controlling software and opening switches, we can achieve the innovative and rapid
integration of desired operations. Through SDN, the monitoring and processing of data has
become easier, and has provided flexibility to program the network to strengthen network
security. Therefore, researchers are focusing on SDN for implementation of DL and ML
approaches in order to detect intrusions.

Detection of sophisticated attacks is difficult using classical ML techniques for large-
scale network environments. Poor classification can be caused by several challenges, such
as less available labeled training data and irrelevant features. As shown in Table 3, we
compared various ML algorithms and described the advantages and disadvantages for
each approach. Detection of attacks via classical ML methods can be problematic due to
these factors, as well as the use of obsolete datasets, i.e., NSLKDD and KDD99. These sets
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of data contain either outdated signatures of network attacks or do not consider essential
features of modern traffic [155]

One of the most noteworthy solutions to overcome the weaknesses of ML was the DL
method [156]. DL is broadly used by different companies, including Facebook, Google,
and Microsoft. They use DL in various applications, such as image processing, translation,
and speech recognition. However, the literature shows that there are also some concerns
regarding DL approaches for IDS that require more research. Some concerns regarding
DL approaches are that they require larger amount of data to perform better, compared
with other techniques, and use more complex operation computational time than ML
approaches. For example, in the case of the CNN DL approach, detection of intrusions in
real time is difficult due to the complex convolution operation [155].

To overcome this issue, feature selection is used so that the space covered by features
are reduced and only the most significant features are adopted. Moreover, straight appli-
cation of ML is not feasible for network traffic analysis due to the huge amount of traffic
data. Hence, pre-processing (feature selection) of network traffic plays a crucial role om
devising accurate detection techniques. Feature selection methods have been compared
for detections of intrusion by authors in [157–160], also outlining disadvantages of feature
selection in the different learning systems (i.e., complexity and expensive implementation).
In recent years, feature selection has been an active topic of research, where different
methods of feature selection are being used, such as random forest for the reduction of
features and feature selection approaches based on bi-layer behavior and principal fea-
ture analysis [161,162]. Support vector data description was used for anomaly detection
in [163], for the automated selection of optimal feature combinations by applying different
techniques of feature selection. Researchers are now interested in using processes of DL,
such as RBM, recurrent NN, deep auto encoders, and deep belief network, for reducing
the dimensionality of the dataset and selecting appropriate features. DL has also gained
popularity in the field of feature selection. In IDS development, different models of DL
have been utilized, as high-level features can be represented by them into more intellectual
features of data. Selection of appropriate features was attempted by different studies for
detection of intrusions [14,91]. Intensive features were automatically extracted by DL
approaches from records of data that were unlabeled. Therefore, many tasks regarding
cyber security use DL, including analysis of traffic, intrusion detection, etc. Large-scale
network traffic can be addressed by DL using different layers of processing to construct the
unknown structure in the distribution of input. DL is able to form good representations of
input data that traditional methods were unable to do.

6. Research Challenges

Some challenges in the development of an efficient and flexible SDN-based intrusion
detection in a network, using approaches of ML/DL [164], are listed as follows:

• The accuracy ratio of DL approaches is higher compared with ML approaches for
intrusion detection. Unfortunately, accuracy comes at the expense of the time com-
plexity issue due to the complex operations involved. For detecting an attack in real
time, extensive research is required on DL approaches [155].

• Selecting an appropriate method for the selection of features is a predominant chal-
lenge by which redundancy between selected features and significance of features
to the task of NID can be precisely determined. Therefore, improvement in compu-
tational realism and evaluation of the optimum no. of model parameters is a huge
challenge for both ML and DL techniques [2].

• Appropriate methodologies for assessment and metrics is absent, and comparison
of alternative techniques and evaluation of IDS is not possible due to the absence
of a general framework. Deep analysis was conducted later, as this issue was very
significant.

• For academic research, the accuracy of the existing dataset of intrusion detection is not
suitable for prediction of research, as proper data classification is required by them.
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Synthetic datasets are used by network researchers for detection of intrusions in the
network due to the lack of more accurate and realistic datasets. Datasets used for
intrusion detection systems, e.g., NSL-KDD and KDD99, are outdated. KDD Cup
1999 is the most common dataset used to evaluate intrusion detection; NSL-KDD,
which is the modified form of this dataset is used in IDS systems. It is very important
to evaluate systems of network intrusion accurately and consistently by creating
datasets [165]. New sets of data CSE-CIC-2018 are available for testing and evaluating
intrusion detection; however, more research is required on these datasets.

• It was reported in [166] that attacks can easily affect most systems of intrusion detec-
tion, as their dependence power is poor. Descriptions of how IDS is eluded by different
mechanisms is given in the literature [167]; the technology of intrusion detection needs
to be improved in this aspect. Similarly, DDoS attack in SDN enabled cloud computing
environment is also an active research area as discussed in [168].

• One of the most fundamental challenges from NIDS based on SDN is the efficient
handling of packet processing flows because the implementation of NIDS using differ-
ent approaches of ML and DL is significantly affected by this challenge with its high
volumes of data.

• Different attacks (e.g., DDoS) may affect the software-defined network. In SDN, some
basic potential vectors of threat include attacks on the control plane, forged traffic
flows, and susceptibilities in switches. Devastating impact can be caused by all of
these attacks on the overall network [6]. Thus, improvement in the security of SDN is
required.

• For large networks, a performance bottleneck could be faced by controllers of the
network applying SDN because of the large amounts of data (incoming and forward-
ing). Another big research challenge is to reduce this performance bottleneck of the
controller, so that NIDS can be implemented [169].

• Usually, high data rates cause high costs and low throughput by which current wide-
band transmission technologies can be characterized [155]. Optimization of intrusion
detection is related to techniques of grid and paradigms of distributed detection.

7. Conclusions and Future Work

In this paper, various approaches based on the classical techniques of ML and DL
were discussed in detail, by which attacks were detected in SDN. The paper also included
explanation about the weaknesses of traditional methods based on ML and their poor
performance. It was emphasized that vulnerabilities are detected and the network is
monitored using approaches of ML/DL in a platform known as SDN. In SDN, specific
methods are needed to define data by classification into frameworks and techniques to
implement ML approaches. The need for updated datasets was identified, as the latest
attacks are used to learn models. Based on this study, the usage of methodologies based on
DL were shown to improve NIDS effectiveness and performance in terms of FAR reduction
and accuracy of detection. DL approaches were used in about 80% of the proposed solutions
with AE and DNN, and these algorithms were used frequently.

It is worth noting that the high speed infrastructure and critical infrastructure of the
network did not use any approaches where SDN-based NIDS was implemented. In this
area, the future research scope should be to propose an efficient framework of NIDS using
fewer complex DL algorithms for a more effective detection mechanism. This knowledge
could be used to design an effective, lightweight, and innovative NIDS-based DL. Moreover,
intruders could be effectively detected by using these within the network.

Author Contributions: Conceptualization, N.A., A.b.N., J.M.S., S.H., M.S.R., J.I., M.A., S.S.U. and
F.T.Z.; methodology, N.A., S.H., M.S.R., J.I., R.A. and F.T.Z.; investigation, N.A., M.U., M.S.R., J.I.,
M.A., R.A., S.S.U. and F.T.Z.; supervision, A.b.N. and J.M.S., resources, N.A., A.b.N., J.M.S., M.U.,
M.S.R., J.I., M.A. and R.A.; data creation, N.A., S.H., M.A. and S.S.U.; funding acquisition, M.A., R.A.
and S.S.U.; writing—original draft preparation, N.A., A.b.N., J.M.S., S.H., M.U., M.S.R., J.I. and S.S.U.;



Sensors 2022, 22, 7896 27 of 34

writing—review and editing, N.A., A.b.N., J.M.S., S.H., M.U., M.S.R., J.I., M.A., R.A., S.S.U. and F.T.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project Number
(PNURSP2022R97), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Notations Descriptions
AI Artificial Intelligence
AP Application Plane
API Application Programming Interface
BMU Best Matching Unit
CP Control Plane
CNN Convolutional Neural Network
CPS Cyber-Physical Systems
DA Deep Autoencoder
DL, TLS Deep Learning, Transport Layer Security
DP Data Plane
DBN Deep Belief Network
DNN Deep Neural Networks
DRL Deep Reinforcement Learning
DoS Denial of Service
DDoS Distributed Denial of Service
ELM Extreme Learning Machine
FFDNN Feature Fusion Depth Neural Network
GPUs Graphics Processor Units
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