6,460 research outputs found

    An Ontology for Product-Service Systems

    Get PDF
    Industries are transforming their business strategy from a product-centric to a more service-centric nature by bundling products and services into integrated solutions to enhance the relationship between their customers. Since Product- Service Systems design research is currently at a rudimentary stage, the development of a robust ontology for this area would be helpful. The advantages of a standardized ontology are that it could help researchers and practitioners to communicate their views without ambiguity and thus encourage the conception and implementation of useful methods and tools. In this paper, an initial structure of a PSS ontology from the design perspective is proposed and evaluated

    Requirements analysis in the implementation of integrated PLM, ERP and CAD systems

    Get PDF
    Product Lifecycle Management (PLM) system implementation is a major investment when the technology is used in manufacturing companies. This paper provides an analysis of the requirements for the integration of PLM systems with Enterprise Resource Planning (ERP) systems incorporating the design aspects of Computer Aided Design and Manufacturing (CAD/CAM) within the product development process. PLM implementation deals with various existing product data and information generated over years both from CAD and ERP systems. Data integration is very challenging and has important impact on future decisions while creating new processes. The information management plays very important role not only in PLM implementation but also in the way this will be used in future production. Therefore it is very important to analyse how product information is transferred to PLM system. It also need to be investigated that what, when and how the data will flow from and to PLM systems

    Integrating Closed-loop Supply Chains and Spare Parts Management at IBM

    Get PDF
    Ever more companies are recognizing the benefits of closed-loop supplychains that integrate product returns into business operations. IBMhas been among the pioneers seeking to unlock the value dormant inthese resources. We report on a project exploiting product returns asa source of spare parts. Key decisions include the choice of recoveryopportunities to use, the channel design, and the coordination ofalternative supply sources. We developed an analytic inventory controlmodel and a simulation model to address these issues. Our results showthat procurement cost savings largely outweigh reverse logistics costsand that information management is key to an efficient solution. Ourrecommendations provide a basis for significantly expanding the usageof the novel parts supply source, which allows for cutting procurementcosts.supply chain management;reverse logistics;product recovery;inventory management;service management

    Ethical Dimensions in Clothing Purchase

    Get PDF
    It is widely reported that consumer interest in environmental and ethical issues is growing. Evidence suggests that ethical considerations are now impacting on a broad range of consumption decisions. The focus of this paper is the impact such concerns may hold in clothing purchase decision making. Through an inductive qualitative approach, clothing purchase decision making has been explored before discussing consumers’ knowledge and concern of ethical issues within the supply chain. Any impact that these concerns may exert has been discussed. It is identified that although there is widespread knowledge and understanding of the ethical issues that may be present in the manufacture of clothing, these concerns do not play a primary role in consumers’ selection of items. Product attributes such as colour, style and fit dominate the decision making process in most cases. Despite this, ethical considerations can be seen to impact on the consumer in three key ways: initial boycott of particular products or brands; influencing final purchase decisions if items are similar on other criteria and, impacting on post-purchase satisfaction with the product

    Cascade Use and the Management of Product Lifecycles

    Get PDF
    This paper explores the challenges related to the End-Of-Life phase of products and circular systems of reuse and recycling within the commonly established frameworks of product lifecycles. Typically, Original Equipment Manufacturer-centric supply chain perspectives neglect the complexity at the End-Of-Life where many third-parties are involved in reuse and recycling activities. Based on a review of product lifecycle and related recycling literature, this study proposes the application of ‘cascades’, a term originally coined within the biomass domain. We propose and subsequently apply the ‘cascade use methodology’ and identify additional and value-adding End-Of-Life solutions for products and materials. The adoption of cascade utilization into product lifecycles is analyzed and critically discussed using case studies from independent remanufacturing and tire recycling, focusing on the End-Of-Life while excluding business models as renting or sharing. Although theoretically feasible, we argue that the practical adoption of ‘cascade use’ deserves more attention from researchers and practitioners in order to become an integral part of the comprehensive management of product lifecycles

    Remanufacturing and product design: designing for the 7th generation

    Get PDF
    The following is taken directly from the research report. This report investigates Design for Remanufacture in terms of both detailed product design and the business context in which Design for Remanufacture may operate. Key Study Objectives • To understand the link between design and remanufacture • To understand how Design for Remanufacture can lead to increased innovation and Sustainable Development (SD) • To identify proactive strategies to further Design for Remanufactur

    Managing design variety, process variety and engineering change: a case study of two capital good firms

    Get PDF
    Many capital good firms deliver products that are not strictly one-off, but instead share a certain degree of similarity with other deliveries. In the delivery of the product, they aim to balance stability and variety in their product design and processes. The issue of engineering change plays an important in how they manage to do so. Our aim is to gain more understanding into how capital good firms manage engineering change, design variety and process variety, and into the role of the product delivery strategies they thereby use. Product delivery strategies are defined as the type of engineering work that is done independent of an order and the specification freedom the customer has in the remaining part of the design. Based on the within-case and cross-case analysis of two capital good firms several mechanisms for managing engineering change, design variety and process variety are distilled. It was found that there exist different ways of (1) managing generic design information, (2) isolating large engineering changes, (3) managing process variety, (4) designing and executing engineering change processes. Together with different product delivery strategies these mechanisms can be placed within an archetypes framework of engineering change management. On one side of the spectrum capital good firms operate according to open product delivery strategies, have some practices in place to investigate design reuse potential, isolate discontinuous engineering changes into the first deliveries of the product, employ ‘probe and learn’ process management principles in order to allow evolving insights to be accurately executed and have informal engineering change processes. On the other side of the spectrum capital good firms operate according to a closed product delivery strategy, focus on prevention of engineering changes based on design standards, need no isolation mechanisms for discontinuous engineering changes, have formal process management practices in place and make use of closed and formal engineering change procedures. The framework should help managers to (1) analyze existing configurations of product delivery strategies, product and process designs and engineering change management and (2) reconfigure any of these elements according to a ‘misfit’ derived from the framework. Since this is one of the few in-depth empirical studies into engineering change management in the capital good sector, our work adds to the understanding on the various ways in which engineering change can be dealt with
    corecore