203 research outputs found

    The impact of VMI on performance in manufacturing company

    Get PDF
    The purpose of this paper is to shed the light on the impact of VMI element that lead to high performance of VMI in Malaysia manufacturing company.The VMI elements consist of inventory location, inventory ownership, demand visibility, replenishment decisions, and inventory control limits.Questionnaire was the main instrument for the study and it was gathered from 101 staff in departments of purchasing, planning, logistics and operation.Data analysis was conducted by employing descriptive analysis (mean and standard deviation), reliability analysis, Pearson correlation analysis and multiple regressions. The findings show that there are relationships exist between inventory location, level of demand visibility, inventory control limits and service performance of VMI, but not for inventory ownership and replenishment decisions.Meanwhile, for cost performance of VMI, only inventory location had significant relationship. Visibility of demand is the main predictor of service performance, followed by inventory control limits. However, only inventory location contributes to cost performance of VMI.It is recommended that future study to determine additional VMI element that are pertinent to firms’ current VMI practices. Logic suggests that further study to include more integration issues, other nature of businesses and research instruments

    A comparison between lean and visibility approach in supply chain planning

    Get PDF
    Nowadays, competition increases more and more in the market and it is moved from firm vs firm to supply chain vs supply chain. Therefore, supply chains (SC) are always looking to improve their efficiency to excel in the market. In order to do that, SC managers pay much attention to the coordination among SC members. SC planning allows the coordination among the SC players. In the literature, many SC planning approaches have been developed and analyzed, but up to now, the debate on which is the best approach is an open issue. On the other hand, lean approach is becoming more and more popular among SC managers. Both practitioners and academics have recognized the importance of Lean approach for single firm efficiency. This paper aim at evaluating the impact of Lean approach implementation in supply chain planning tasks. It provides an in-depth analysis of Lean SC planning policy impact on SC performances and compare it with traditional EOQ and Visibility policies. The influence of SC planning policies and of external parameters is assessed in a DES simulation study. The simulation model tests a multi-product three-echelon supply chain. Lean "pull" principle is developed through Kanban system implementation and Lean "create the flow" principle is developed through setup time and batch size reductions. The simulation study analyses inventory level, transportation performance and service level performances. According to simulation outputs a total SC logistic costs have been evaluated for each scenario. The results provide new insights suggesting that Lean supply chain planning policy gives competitive advantages. The results have important consequences for implementation of Lean concepts in practice in SC planning tasks

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications

    Evaluating vendor managed inventory systems: how incentives can benefit supply chain partners

    Get PDF
    In a vendor managed inventory (VMI) system, the effects of financial incentives on the entire supply chain (SC) and on the individual firms are investigated in this study. To this end, order management, order replenishment and inventory control activities of a two-echelon SC are examined via modeling using discrete event simulation. By determining the appropriate parameters for the incentives with scenario analysis, balanced profit distribution between buyers and a supplier in VMI is established. Simulation outputs of the traditional model, VMI only and VMI with incentives models are compared based on profits with paired comparisons. In VMI with incentives, both buyers, and the supplier experience higher benefits than the traditional system. This study provides a new method which eliminates the unbalanced benefit distribution due to VMI and offers almost equal benefits to the participating firms. With financial incentives, firms are encouraged to share information with each other to work in a coordinated SC

    Scheduling Coordination in a Supply Chain Using Advance Demand Information.

    Get PDF
    In an environment of mass customization where demand information can be placed in advance with sequencing orders, the question of the best use of this information arises in a supply chain. This situation led the authors to analyze the efficiency of current mechanisms of scheduling coordination when suppliers' processes are not completely reliable. Policies such as periodic replenishment or the kanban system, characterized by a replacement of the items to consume, cannot be exploited effectively with the current rules. This paper presents and justifies new scheduling coordination rules allowing synchronous production in an unreliable environment. This new approach has been benchmarked in the automotive industry as an appropriate method to avoid stockouts and decrease the safety stock.Chaîne logistique; Synchronisation de la production dans une chaîne logistique; kanban; Production synchrone; Point de Pénétration de commande;

    Vendor Managed Inventory for Multi-Vendor Single-Manufacturer Supply Chain: A Case Study of Instant Noodle Industry

    Get PDF
    This paper develops a vendor-managed inventory (VMI) model for a multiple-vendor, single-manufacturer supply chain, in which the first stage members can be traders and/or producers and the second stage member is a manufacturer. The model utilizes a realistic transportation cost which is dependent on the sizes (small- or medium-sized) of trucks. It can determine suitable sizes and numbers of trucks that minimize the transportation cost. A genetic algorithm (GA) technique, implemented in MATLAB software, is used to determine the best solution to the problem. A case study in the instant noodle industry is conducted to demonstrate the usefulness of the proposed model. Based on the experimental results, the VMI model has reasonable behaviors using sensitivity analysis. To reduce the inventory level of raw materials, the penalty cost may be set at a relatively high level or the upper inventory limits may be set at relatively low levels, without significantly affecting the average total cost per period of the entire supply chain. When the vendors are allowed to make decision independently, the solution is still the same as the solution from the proposed VMI model, which means that the manufacture does not take advantage of the vendors

    Optimising replenishment policy in an integrated supply chain with controllable lead time and backorders-lost sales mixture

    Get PDF
    This paper aims to optimize the inventory replenishment policy in an integrated supply chain consisting of a single supplier and a single buyer. The system under consideration has the features such as backorders-lost sales mixture, controllable lead time, stochastic demand, and stockout costs. The underlying problem has not been studied in the literature. We present a novel approach to formulate the optimization problem, which is able to satisfy the constraint on the number of admissible stockouts per time unit. To solve the optimization problem, we propose two algorithms: an exact algorithm and a heuristic algorithm. These two algorithms are developed based on some analytical properties that we established by analysing the cost function in relation to the decision variables. The heuristic algorithm employs an approximation technique based on an ad-hoc Taylor series expansion. Extensive numerical experiments are provided to demonstrate the effectiveness of the proposed algorithms

    The problem of production-distribution under uncertainty based on Vendor Managed Inventory

    Get PDF
    In this paper, a problem of managed inventory by the vendor in the production-distribution supply chain is presented based on the scenario. The main purpose of presenting the model of maximizing producer profit in a three-level supply chain network consisting of various strategic and tactical decisions under uncertainty. Due to the nonlinearity and NP-Hardness of the problem, meta-heuristic genetic algorithms, Whale optimization algorithm and league champions algorithm have been used. The results of problem solving show the high efficiency of meta-heuristic algorithms compared to accurate methods in solving the above model. So that the maximum percentage of relative differences between the methods mentioned with GAMS is less than 1%.Also, by solving the sample problems in larger sizes, it was observed that the league champions algorithm has the highest efficiency in terms of achieving the optimal value of the target function in a shorter time than the other algorithms used, with a useful weight of 0.998

    A rolling horizon simulation approach for managing demand with lead time variability

    Full text link
    [EN] This paper proposes a rolling horizon (RH) approach to deal with management problems under dynamic demand in planning horizons with variable lead times using system dynamics (SD) simulation. Thus, the nature of dynamic RH solutions entails no inconveniences to contemplate planning horizons with unpredictable demands. This is mainly because information is periodically updated and replanning is done in time. Therefore, inventory and logistic costs may be lower. For the first time, an RH is applied for demand management with variable lead times along with SD simulation models, which allowed the use of lot-sizing techniques to be evaluated (Wagner-Whitin and Silver-Meal). The basic scenario is based on a real-world example from an automotive single-level SC composed of a first-tier supplier and a car assembler that contemplates uncertain demands while planning the RH and 216 subscenarios by modifying constant and variable lead times, holding costs and order costs, combined with lot-sizing techniques. Twenty-eight more replications comprising 504 new subscenarios with variable lead times are generated to represent a relative variation coefficient of the initial demand. We conclude that our RH simulation approach, along with lot-sizing techniques, can generate more sustainable planning results in total costs, fill rates and bullwhip effect terms.This work was supported by the European Commission Horizon 2020 project Diverfarming [grant number 728003].Campuzano Bolarin, F.; Mula, J.; Díaz-Madroñero Boluda, FM.; Legaz-Aparicio, Á. (2020). A rolling horizon simulation approach for managing demand with lead time variability. International Journal of Production Research. 58(12):3800-3820. https://doi.org/10.1080/00207543.2019.1634849S380038205812Agaran, B., W. W. Buchanan, and M. K. Yurtseven. 2007. “Regulating Bullwhip Effect in Supply Chains through Modern Control Theory.” in PICMET ‘07 – 2007 Portland International Conference on Management of Engineering & Technology, 2391–2398. IEEE. http://doi.org/10.1109/PICMET.2007.4349573.Baker, K. R. (1977). AN EXPERIMENTAL STUDY OF THE EFFECTIVENESS OF ROLLING SCHEDULES IN PRODUCTION PLANNING. Decision Sciences, 8(1), 19-27. doi:10.1111/j.1540-5915.1977.tb01065.xBhattacharya, R., & Bandyopadhyay, S. (2010). A review of the causes of bullwhip effect in a supply chain. The International Journal of Advanced Manufacturing Technology, 54(9-12), 1245-1261. doi:10.1007/s00170-010-2987-6Boulaksil, Y., Fransoo, J. C., & van Halm, E. N. G. (2007). Setting safety stocks in multi-stage inventory systems under rolling horizon mathematical programming models. OR Spectrum, 31(1). doi:10.1007/s00291-007-0086-3Brown, M. E., & Kshirsagar, V. (2015). Weather and international price shocks on food prices in the developing world. Global Environmental Change, 35, 31-40. doi:10.1016/j.gloenvcha.2015.08.003Campuzano, F., Mula, J., & Peidro, D. (2010). Fuzzy estimations and system dynamics for improving supply chains. Fuzzy Sets and Systems, 161(11), 1530-1542. doi:10.1016/j.fss.2009.12.002Campuzano-Bolarín, F., Mula, J., & Peidro, D. (2013). An extension to fuzzy estimations and system dynamics for improving supply chains. International Journal of Production Research, 51(10), 3156-3166. doi:10.1080/00207543.2012.760854De Sampaio, R. J. B., Wollmann, R. R. G., & Vieira, P. F. G. (2017). A flexible production planning for rolling-horizons. International Journal of Production Economics, 190, 31-36. doi:10.1016/j.ijpe.2017.01.003Díaz-Madroñero, M., Mula, J., & Jiménez, M. (2014). Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. International Journal of Production Research, 52(23), 6971-6988. doi:10.1080/00207543.2014.920115Díaz-Madroñero, M., Mula, J., & Peidro, D. (2017). A mathematical programming model for integrating production and procurement transport decisions. Applied Mathematical Modelling, 52, 527-543. doi:10.1016/j.apm.2017.08.009Disney, S. M., Naim, M. M., & Potter, A. (2004). Assessing the impact of e-business on supply chain dynamics. International Journal of Production Economics, 89(2), 109-118. doi:10.1016/s0925-5273(02)00464-4Dominguez, R., Cannella, S., & Framinan, J. M. (2015). The impact of the supply chain structure on bullwhip effect. Applied Mathematical Modelling, 39(23-24), 7309-7325. doi:10.1016/j.apm.2015.03.012Fransoo, J. C., & Wouters, M. J. F. (2000). Measuring the bullwhip effect in the supply chain. Supply Chain Management: An International Journal, 5(2), 78-89. doi:10.1108/13598540010319993Geary, S., Disney, S. M., & Towill, D. R. (2006). On bullwhip in supply chains—historical review, present practice and expected future impact. International Journal of Production Economics, 101(1), 2-18. doi:10.1016/j.ijpe.2005.05.009Giard, V., & Sali, M. (2013). The bullwhip effect in supply chains: a study of contingent and incomplete literature. International Journal of Production Research, 51(13), 3880-3893. doi:10.1080/00207543.2012.754552Hosoda, T., & Disney, S. M. (2018). A unified theory of the dynamics of closed-loop supply chains. European Journal of Operational Research, 269(1), 313-326. doi:10.1016/j.ejor.2017.07.020Hussain, M., & Drake, P. R. (2011). Analysis of the bullwhip effect with order batching in multi‐echelon supply chains. International Journal of Physical Distribution & Logistics Management, 41(10), 972-990. doi:10.1108/09600031111185248Jakšič, M., & Rusjan, B. (2008). The effect of replenishment policies on the bullwhip effect: A transfer function approach. European Journal of Operational Research, 184(3), 946-961. doi:10.1016/j.ejor.2006.12.018Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365-378. doi:10.1016/s0305-0483(03)00059-8Li, J., Ghadge, A., & Tiwari, M. K. (2016). Impact of replenishment strategies on supply chain performance under e-shopping scenario. Computers & Industrial Engineering, 102, 78-87. doi:10.1016/j.cie.2016.10.005Lian, Z., Liu, L., & Zhu, S. X. (2010). Rolling-horizon replenishment: Policies and performance analysis. Naval Research Logistics (NRL), 57(6), 489-502. doi:10.1002/nav.20416D. Mendoza, J., Mula, J., & Campuzano-Bolarin, F. (2014). Using systems dynamics to evaluate the tradeoff among supply chain aggregate production planning policies. International Journal of Operations & Production Management, 34(8), 1055-1079. doi:10.1108/ijopm-06-2012-0238Moreno, J. R., Mula, J., & Campuzano-Bolarin, F. (2015). Increasing the Equity of a Flower Supply Chain by Improving Order Management and Supplier Selection. International Journal of Simulation Modelling, 14(2), 201-214. doi:10.2507/ijsimm14(2)2.284Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy Sets and Systems, 157(1), 74-97. doi:10.1016/j.fss.2005.05.045Mula, J., Poler, R., & Garcia-Sabater, J. P. (2007). Material Requirement Planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems, 158(7), 783-793. doi:10.1016/j.fss.2006.11.003Mula, J., Poler, R., & Garcia-Sabater, J. P. (2008). Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. International Journal of Production Research, 46(20), 5589-5606. doi:10.1080/00207540701413912Ostberg, S., Schewe, J., Childers, K., & Frieler, K. (2018). Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics, 9(2), 479-496. doi:10.5194/esd-9-479-2018Pacheco, E. de O., Cannella, S., Lüders, R., & Barbosa-Povoa, A. P. (2017). Order-up-to-level policy update procedure for a supply chain subject to market demand uncertainty. Computers & Industrial Engineering, 113, 347-355. doi:10.1016/j.cie.2017.09.015Nyoman Pujawan, I. (2004). The effect of lot sizing rules on order variability. European Journal of Operational Research, 159(3), 617-635. doi:10.1016/s0377-2217(03)00419-3Rafiei, R., Nourelfath, M., Gaudreault, J., Santa-Eulalia, L. A., & Bouchard, M. (2013). A periodic re-planning approach for demand-driven wood remanufacturing industry: a real-scale application. International Journal of Production Research, 52(14), 4198-4215. doi:10.1080/00207543.2013.869631Sahin, F., Narayanan, A., & Robinson, E. P. (2013). Rolling horizon planning in supply chains: review, implications and directions for future research. International Journal of Production Research, 51(18), 5413-5436. doi:10.1080/00207543.2013.775523Sahin, F., & Robinson, E. P. (2002). Flow Coordination and Information Sharing in Supply Chains: Review, Implications, and Directions for Future Research. Decision Sciences, 33(4), 505-536. doi:10.1111/j.1540-5915.2002.tb01654.xSahin, F., & Robinson, E. P. (2004). Information sharing and coordination in make-to-order supply chains. Journal of Operations Management, 23(6), 579-598. doi:10.1016/j.jom.2004.08.007Schmidt, M., Münzberg, B., & Nyhuis, P. (2015). Determining Lot Sizes in Production Areas – Exact Calculations versus Research Based Estimation. Procedia CIRP, 28, 143-148. doi:10.1016/j.procir.2015.04.024Simpson, N. . (1999). Multiple level production planning in rolling horizon assembly environments. European Journal of Operational Research, 114(1), 15-28. doi:10.1016/s0377-2217(98)00005-8Sridharan, S. V., Berry, W. L., & Udayabhanu, V. (1988). MEASURING MASTER PRODUCTION SCHEDULE STABILITY UNDER ROLLING PLANNING HORIZONS. Decision Sciences, 19(1), 147-166. doi:10.1111/j.1540-5915.1988.tb00259.xTaylor, D. H., & Fearne, A. (2006). Towards a framework for improvement in the management of demand in agri‐food supply chains. Supply Chain Management: An International Journal, 11(5), 379-384. doi:10.1108/13598540610682381Van den Heuvel, W., & Wagelmans, A. P. M. (2005). A comparison of methods for lot-sizing in a rolling horizon environment. Operations Research Letters, 33(5), 486-496. doi:10.1016/j.orl.2004.10.001Vargas, V., & Metters, R. (2011). A master production scheduling procedure for stochastic demand and rolling planning horizons. International Journal of Production Economics, 132(2), 296-302. doi:10.1016/j.ijpe.2011.04.025Wagner, H. M., & Whitin, T. M. (1958). Dynamic Version of the Economic Lot Size Model. Management Science, 5(1), 89-96. doi:10.1287/mnsc.5.1.89WEMMERLÖV, U., & WHYBARK, D. C. (1984). Lot-sizing under uncertainty in a rolling schedule environment. International Journal of Production Research, 22(3), 467-484. doi:10.1080/00207548408942467Zhang, C., & Qu, X. (2015). The effect of global oil price shocks on China’s agricultural commodities. Energy Economics, 51, 354-364. doi:10.1016/j.eneco.2015.07.01

    Vendor Managed Inventory: why you need to talk to your supplier

    Get PDF
    Purpose The purpose of this paper is to investigate the concept of Vendor Managed Inventory (VMI) from an inter-organisational perspective. Extant literature on VMI tends to investigate the concept from a focal perspective, even though VMI has originally been born as a collaborative arrangement. Design/methodology/approach The paper is based on a literature review and an empirical study. It provides a comprehensive literature review on VMI and an illustrative case study of a supplier and a buyer jointly implementing VMI. Findings The findings of this paper are twofold. First, a literature review uncovers that contemporary research has delimited the analysis of VMI to a focal company perspective as current VMI cost models tend not to capture the picture of the complete supply chain. Second, it demonstrates through an illustrative case study that adoption of an inter-organisational approach to VMI is vital if companies are to optimize their buyer-supplier relationships. Research limitations/implications Future research should test the implications proposed in the empirical section, as this piece of research can be seen as exploratory case study research with the aim of analytical generalizations. Practical implications The inter-organisational VMI cost perspective in supply chains should be emphasized in purchasing departments since such a perspective significantly raises the awareness of the costs incurred in a supply chain. Originality/value Existing research has not explicitly focused on inter-organisational costs incurred by companies implementing VMI. This study seeks to bridge this research gapPeer Reviewe
    corecore