28,761 research outputs found

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    Optimization of a dynamic supply portfolio considering risks and discount’s constraints

    Get PDF
    Purpose: Nowadays finding reliable suppliers in the global supply chains has become so important for success, because reliable suppliers would lead to a reliable supply and besides that orders of customer are met effectively . Yet, there is little empirical evidence to support this view, hence the purpose of this paper is to fill this need by considering risk in order to find the optimum supply portfolio. Design/methodology/approach: This paper proposes a multi objective model for the supplier selection portfolio problem that uses conditional value at risk (CVaR) criteria to control the risks of delayed, disrupted and defected supplies via scenario analysis. Also we consider discount’s constraints which are common assumptions in supplier selection problems. The proposed approach is capable of determining the optimal supply portfolio by calculating value-at-risk and minimizing conditional value-at-risk. In this study the Reservation Level driven Tchebycheff Procedure (RLTP) which is one of the reference point methods, is used to solve small size of our model through coding in GAMS. As our model is NP-hard; a meta-heuristic approach, Non-dominated Sorting Genetic Algorithm (NSGA) which is one of the most efficient methods for optimizing multi objective models, is applied to solve large scales of our model. Findings and Originality/value: In order to find a dynamic supply portfolio, we developed a Mixed Integer Linear Programming (MILP) model which contains two objectives. One objective minimizes the cost and the other minimizes the risks of delayed, disrupted and defected supplies. CVaR is used as the risk controlling method which emphases on low-probability, high-consequence events. Discount option as a common offer from suppliers is also implanted in the proposed model. Our findings show that the proposed model can help in optimization of a dynamic supplier selection portfolio with controlling the corresponding risks for large scales of real word problems. Practical implications: To approve the capability of our model various numerical examples are made and non-dominated solutions are generated. Sensitive analysis is made for determination of the most important factors. The results shows that how a dynamic supply portfolio would disperse the allocation of orders among the suppliers combined with the allocation of orders among the planning periods, in order to hedge against the risks of delayed, disrupted and defected supplies. Originality/value: This paper provides a novel multi objective model for supplier selection portfolio problem that is capable of controlling delayed, disrupted and defected supplies via scenario analysis. Also discounts, as an option offered from suppliers, are embedded in the model. Due to the large size of the real problems in the field of supplier selection portfolio a meta-heuristic method, NSGA II, is presented for solving the multi objective model. The chromosome represented for the proposed solving methodology is unique and is another contribution of this paper which showed to be adaptive with the essence of supplier selection portfolio problemPeer Reviewe

    Effective Multi-echelon Inventory Systems for Supplier Selection and Order Allocation

    Get PDF
    Successful supply chain management requires an effective sourcing strategy to counteract uncertainties in both the suppliers and demands. Therefore, determining a better sourcing policy is critical in most of industries. Supplier selection is an essential task within the sourcing strategy. A well-selected set of suppliers makes a strategic difference to an organization\u27s ability to reduce costs and improve the quality of its end products. To discover the cost structure of selecting a supplier, it is more interesting to further determine appropriate levels of inventory in each echelon for different suppliers. This dissertation focuses on the study of the integrated supplier selection, order allocation and inventory control problems in a multi-echelon supply chain. First, we investigate a non-order-splitting inventory system in supply chain management. In particular, a buyer firm that consists of one warehouse and N identical retailers procures a type of product from a group of potential suppliers, which may have different prices, ordering costs, lead times and have restriction on minimum and maximum total order size, to satisfy stochastic demand. A continuous review system that implements the order quantity, reorder point (Q, R) inventory policy is considered in the proposed model. The model is solved by decomposing the mixed integer nonlinear programming model into two sub-models. Numerical experiments are conducted to evaluate the model and some managerial insights are obtained with sensitivity analysis. In the next place, we extend the study to consider the multi-echelon system with the order-splitting policy. In particular, the warehouse acquisition takes place when the inventory level depletes to a reorder point R, and the order Q is simultaneously split among m selected suppliers. This consideration is important since it could pool lead time risks by splitting replenishment orders among multiple suppliers simultaneously. We develop an exact analysis for the order-splitting model in the multi-echelon system, and formulate the problem in a Mixed Integer Nonlinear Programming (MINLP) model. To demonstrate the solvability and the effectiveness of the model, we conduct several numerical analyses, and further conduct simulation models to verify the correctness of the proposed mathematical model

    A GENETIC ALGORITHM APPROACH FOR DYNAMIC SUPPLIER SELECTION

    Get PDF
    Supplier selection has a great impact on supply chain management. This decision considers many factors such as price, order quantity, quality, and delivery performance. We address a dynamic supplier selection problem (DSSP) which a buyer should procure multiple product from multiple supplier in multiple periods. Furthermore, transportation cost has significant impact in the procurement decision. However, only a few researchers consider transportation cost in their model. This paper proposes a dynamic supplier selection problem considering truckload shipping. A mixed integer non-linear programming (MINLP) model is developed to solve dynamic supplier selection problem. The purpose of model is to assign the best supplier that will be allocated products and to determine the right time to order that can minimize total procurement cost. In addition, constraints such as suppliers’ capacity, truck capacity, inventory balance, service level, and buyer storage are taken into consideration in the model. Due to the complexity of the problem, the formulated problem is NP-hard in nature so a genetic algorithm (GA) is presented to solve dynamic supplier selection problem. Finally numerical example has been solved by the proposed GA and the classical method using Lingo 16. The results illustrate an understandable slight errors in total cost when GA is compared to commonly used classical method

    Optimization Based e-Sourcing

    Get PDF

    Supplier selection under disaster uncertainty with joint procurement

    Get PDF
    Master of ScienceDepartment of Industrial & Manufacturing Systems EngineeringJessica L. Heier StammHealth care organizations must have enough supplies and equipment on hand to adequately respond to events such as terrorist attacks, infectious disease outbreaks, and natural disasters. This is achieved through a robust supply chain system. Nationwide, states are assessing their current supply chains to identify gaps that may present issues during disaster preparedness and response. During an assessment of the Kansas health care supply chain, a number of vulnerabilities were identified, one of which being supplier consolidation. Through mergers and acquisitions, the number of suppliers within the health care field has been decreasing over the years. This can pose problems during disaster response when there is a surge in demand and multiple organizations are relying on the same suppliers to provide equipment and supplies. This thesis explores the potential for joint procurement agreements to encourage supplier diversity by splitting purchasing among multiple suppliers. In joint procurement, two or more customers combine their purchases into one large order so that they can receive quantity discounts from a supplier. This research makes three important contributions to supplier selection under disaster uncertainty. The first of these is the development of a scenario-based supplier selection model under uncertainty with joint procurement. This optimization model can be used to observe customer purchasing decisions in various scenarios while considering the probability of disaster occurrence. Second, the model is applied to a set of experiments to analyze the results when supplier diversity is increased and when joint procurement is introduced. This leads to the third and final contribution: a set of recommendations for health care organization decision makers regarding ways to increase supplier diversity and decrease the risk of disruption associated with disaster occurrence

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications
    • 

    corecore