626 research outputs found

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure

    Architectures and GPU-Based Parallelization for Online Bayesian Computational Statistics and Dynamic Modeling

    Get PDF
    Recent work demonstrates that coupling Bayesian computational statistics methods with dynamic models can facilitate the analysis of complex systems associated with diverse time series, including those involving social and behavioural dynamics. Particle Markov Chain Monte Carlo (PMCMC) methods constitute a particularly powerful class of Bayesian methods combining aspects of batch Markov Chain Monte Carlo (MCMC) and the sequential Monte Carlo method of Particle Filtering (PF). PMCMC can flexibly combine theory-capturing dynamic models with diverse empirical data. Online machine learning is a subcategory of machine learning algorithms characterized by sequential, incremental execution as new data arrives, which can give updated results and predictions with growing sequences of available incoming data. While many machine learning and statistical methods are adapted to online algorithms, PMCMC is one example of the many methods whose compatibility with and adaption to online learning remains unclear. In this thesis, I proposed a data-streaming solution supporting PF and PMCMC methods with dynamic epidemiological models and demonstrated several successful applications. By constructing an automated, easy-to-use streaming system, analytic applications and simulation models gain access to arriving real-time data to shorten the time gap between data and resulting model-supported insight. The well-defined architecture design emerging from the thesis would substantially expand traditional simulation models' potential by allowing such models to be offered as continually updated services. Contingent on sufficiently fast execution time, simulation models within this framework can consume the incoming empirical data in real-time and generate informative predictions on an ongoing basis as new data points arrive. In a second line of work, I investigated the platform's flexibility and capability by extending this system to support the use of a powerful class of PMCMC algorithms with dynamic models while ameliorating such algorithms' traditionally stiff performance limitations. Specifically, this work designed and implemented a GPU-enabled parallel version of a PMCMC method with dynamic simulation models. The resulting codebase readily has enabled researchers to adapt their models to the state-of-art statistical inference methods, and ensure that the computation-heavy PMCMC method can perform significant sampling between the successive arrival of each new data point. Investigating this method's impact with several realistic PMCMC application examples showed that GPU-based acceleration allows for up to 160x speedup compared to a corresponding CPU-based version not exploiting parallelism. The GPU accelerated PMCMC and the streaming processing system can complement each other, jointly providing researchers with a powerful toolset to greatly accelerate learning and securing additional insight from the high-velocity data increasingly prevalent within social and behavioural spheres. The design philosophy applied supported a platform with broad generalizability and potential for ready future extensions. The thesis discusses common barriers and difficulties in designing and implementing such systems and offers solutions to solve or mitigate them

    Hidden Markov modelling of movement data from fish

    Get PDF

    Active Inference in Simulated Cortical Circuits

    Get PDF

    Monitoring dugongs within the Reef 2050 Integrated Monitoring and Reporting Program: final report of the dugong team in the megafauna expert group

    Get PDF
    The objectives of this report are to determine for the dugong: An assessment of the current status of the relevant elements of the Great Barrier Reef (the Reef), including an evaluation of primary drivers, pressures and responses using the Driving Forces, Pressures, States, Impacts, Responses (DPSIR) Framework; Identification of priority indicators for monitoring the key values associated with these elements; Summary of potential sources of data; Evaluation of adequacy of existing monitoring activities within each theme to achieve the objectives and requirements of RIMReP; Recommendations for the design of an integrated monitoring program as a component of RIMReP, specifically considering: The information requirements for each key element of the Reef to ensure that appropriate data and information are being collected to meet the fundamental objectives of RIMReP; The spatial and temporal sampling design to ensure that greatest value can be extracted from the data collected; The logistics of the design to ensure that it can be implemented efficiently; Likely funding required to implement the recommended monitoring design.An accessible copy of this report is not yet available from this repository, please contact [email protected] for more information

    Echolocation-based foraging by harbor porpoises and sperm whales, including effects of noise and acoustic propagation

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2008.In this thesis, I provide quantitative descriptions of toothed whale echolocation and foraging behavior, including assessment of the effects of noise on foraging behavior and the potential influence of ocean acoustic propagation conditions on biosonar detection ranges and whale noise exposure. In addition to presenting some novel basic science findings, the case studies presented in this thesis have implications for future work and for management. In Chapter 2, I describe the application of a modified version of the Dtag to studies of harbor porpoise echolocation behavior. The study results indicate how porpoises vary the rate and level of their echolocation clicks during prey capture events; detail the differences in echolocation behavior between different animals and in response to differences in prey fish; and show that, unlike bats, porpoises continue their echolocation buzz after the moment of prey capture. Chapters 3-4 provide case studies that emphasize the importance of applying realistic models of ocean acoustic propagation in marine mammal studies. These chapters illustrate that, although using geometric spreading approximations to predict communication/target detection ranges or noise exposure levels is appropriate in some cases, it can result in large errors in other cases, particularly in situations where refraction in the water column or multi-path acoustic propagation are significant. Finally, in Chapter 5, I describe two methods for statistical analysis of whale behavior data, the rotation test and a semi-Markov chain model. I apply those methods to test for changes in sperm whale foraging behavior in response to airgun noise exposure. Test results indicate that, despite the low-level exposures experienced by the whales in the study, some (but not all) of them reduced their buzz production rates and altered other foraging behavior parameters in response to the airgun exposure.Work presented in this thesis was supported by a National Science Foundation Graduate Research Fellowship, the WHOI Ocean Life Institute (Grant Numbers 32031300 and 25051351), the Office of Naval Research, the U.S. Department of the Interior Minerals Management Service (Cooperative Agreement Numbers 1435-01-02-CA-85186 and NA87RJ0445; WHOI Grant Number 15205601), the Industry Research Funding Coalition, and the WHOI/MIT Joint Program in Oceanography/Applied Ocean Science & Engineering (including a Fye Teaching Fellowship)

    A comparative phylogenetic approach to Austronesian cultural evolution

    Get PDF

    Computational explorations of semantic cognition

    Get PDF
    Motivated by the widespread use of distributional models of semantics within the cognitive science community, we follow a computational modelling approach in order to better understand and expand the applicability of such models, as well as to test potential ways in which they can be improved and extended. We review evidence in favour of the assumption that distributional models capture important aspects of semantic cognition. We look at the models’ ability to account for behavioural data and fMRI patterns of brain activity, and investigate the structure of model-based, semantic networks. We test whether introducing affective information, obtained from a neural network model designed to predict emojis from co-occurring text, can improve the performance of linguistic and linguistic-visual models of semantics, in accounting for similarity/relatedness ratings. We find that adding visual and affective representations improves performance, especially for concrete and abstract words, respectively. We describe a processing model based on distributional semantics, in which activation spreads throughout a semantic network, as dictated by the patterns of semantic similarity between words. We show that the activation profile of the network, measured at various time points, can account for response time and accuracies in lexical and semantic decision tasks, as well as for concreteness/imageability and similarity/relatedness ratings. We evaluate the differences between concrete and abstract words, in terms of the structure of the semantic networks derived from distributional models of semantics. We examine how the structure is related to a number of factors that have been argued to differ between concrete and abstract words, namely imageability, age of acquisition, hedonic valence, contextual diversity, and semantic diversity. We use distributional models to explore factors that might be responsible for the poor linguistic performance of children suffering from Developmental Language Disorder. Based on the assumption that certain model parameters can be given a psychological interpretation, we start from “healthy” models, and generate “lesioned” models, by manipulating the parameters. This allows us to determine the importance of each factor, and their effects with respect to learning concrete vs abstract words
    • …
    corecore