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Abstract

Movement data from marine animals tagged with electronic tags are becoming
increasingly diverse and plentiful. This trend entails a need for statistical meth-
ods that are able to filter the observations to extract the ecologically relevant
content. This dissertation focuses on the development and application of hid-
den Markov models (HMMs) for analysis of movement data from fish. The main
contributions are represented by six scientific publications.

Estimation of animal location from uncertain and possibly indirect observations
is the starting point of most movement data analyses. In this work a discrete
state HMM is employed to deal with this task. Specifically, the continuous
horizontal plane is discretised into grid cells, which enables a state-space model
for the geographical location to be estimated on this grid.

The estimation model for location is extended with an additional state repre-
senting the behaviour of the animal. With the extended model can migratory
and resident movement behaviour be related to geographical regions. For popu-
lation inference multiple individual state-space analyses can be interconnected
using mixed effects modelling. This framework provides parameter estimates at
the population level and allows ecologists to identify individuals that deviate
from the rest of the tagged population.

The thesis also deals with geolocation on state-spaces with complicated geome-
tries. Using an unstructured discretisation and the finite element method tor-
tuous shore line geometries are closely approximated. This furthermore enables
accurate probability densities of location to be computed.

Finally, the performance of the HMM approach in analysing nonlinear state-
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space models is compared with two alternatives: the AD Model Builder frame-
work and BUGS, which relies on Markov chain Monte Carlo estimation.

Key words: Atlantic cod, behaviour switching, electronic tags, hidden Markov
models, movement data, nonlinear mixed effects models, nonlinear state-space
models, southern bluefin tuna, stochastic differential equations.



Resumé

Bevægelsesdata fra marine dyr mærket med elektroniske mærker bliver til sta-
dighed mere forskelligartet og rigelig i mængde. Denne tendens medfører et
behov for statistiske metoder, som er i stand til at filtrere observationerne for
at udtrække det økologisk relevante indhold. Denne afhandling fokuserer p̊a
at udvikle og anvende skjulte Markov modeller (SMM) til at analysere bevæg-
elsesdata fra fisk. De primære bidrag er repræsenteret af seks videnskabelige
publikationer.

Estimation af dyrets lokation fra usikre og muligvis indirekte observationer er
udgangspunktet for de fleste bevægelsesdataanalyser. I denne tese anvendes en
diskret-tilstand SMM til at h̊andtere denne opgave. Mere specifikt inddeles det
kontinuerte horisontale plan i et antal af celler, hvilket muliggør estimation af
en tilstandsmodel for den geografiske lokationen p̊a dette diskrete net.

Estimationsmodellen for lokationen udvides med en tilstand yderligere, der
repræsenterer dyrets adfærd. Med den udvidede model kan migratorisk og
residerende adfærd relateres til geografiske omr̊ader. Ang̊aende populations-
inferens kan miksed effekt modellering anvendes til at sammenkæde et antal
individuelle tilstandsanalyser. Denne tilgang giver parameterestimater p̊a po-
pulationsniveau og tillader økologer at identificere individer, som afviger fra den
resterende mærkede population.

Tesen omhandler ogs̊a geolokalisering p̊a tilstandsrum med komplicerede ge-
ometrier. Ved at anvende en ustruktureret diskretisering og finit element meto-
den kan snørklede kyststrækningsgeometrier approksimeres tæt. Dette muliggør
ydermere beregning af nøjagtige sandsynlighedstætheder.
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Slutteligt sammenlignes ydeevnen af SMM tilgangen til at analysere ikke-lineære
tilstandsmodeller med to alternativer: AD Model Builder og BUGS, som bygger
p̊a Markov chain Monte Carlo estimation.

Nøgleord: Atlantisk torsk, adfærdsskift, elektroniske mærker, skjulte Markov
modeller, bevægelsesdata, ikke-lineære miksede effekt-modeller, ikke-lineære til-
standsmodeller, sydlig bl̊afinnet tun, stokastiske differentialligninger.
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Abbreviations and symbols

Abbreviations

ADMB Automatic Differentiation Model Builder
BUGS Bayesian inference using Gibbs sampling
DST Data storage tag
FD Finite difference
FEM Finite element method
HMM Hidden Markov model
iid. Independent and identically distributed
KF Kalman filter
ML Maximum likelihood
MCMC Markov Chain Monte Carlo
PDE Partial differential equation
PF Particle filter
PSAT Pop-up satellite archival tag
RD Residency distribution
SDE Stochastic differential equation
SMC Sequential Monte Carlo
SSM State-space model
SST Sea surface temperature
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Symbols

· Dot-product between two vectors.
� Element-wise product between vectors or matrices of same size.
� Element-wise division between vectors or matrices of same size.
∆k Time interval between two observations, ∆k = tk+1 − tk.

D Diffusivity of location.
e, e Observation noise.
ε, ε Process noise.
Φ Full posterior distribution for states.
φk Vector with state probabilities at time tk.
φ Elements of φ.
G Generator matrix of a continuous-time Markov chain.
Ik Behavioural state.
L Data likelihood vector.
λij Rate for jumping from i to j.
N(µ, σ2) Gaussian (normal) distribution with mean µ and variance σ2.
Ω State-space.
Pk Probability transition matrix related to ∆k.
S∆t Expected step length over the time step ∆t.
tk The k’th time point in data.
θ Parameter vector.
u Advection vector.
wi Random effects related to individual i.
W Covariance of random effects.
X Vector containing longitudinal and latitudinal location coordinates.
XT Transpose of X.
Zk All data taken at or before time tk.
zk Observed data at tk.
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List of publications vii

Abbreviations and symbols ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aims of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Movement data 5
2.1 Archival data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Pop-up data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Argos data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Acoustic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Methods and models for the analysis of movement data 13
3.1 Geolocation problem . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Movement behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Individual based population inference . . . . . . . . . . . . . . . 17

4 State-space models 19
4.1 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Discrete-time dynamical model . . . . . . . . . . . . . . . . . . . 21



xiv Bibliography

4.3 Continuous-time dynamical model . . . . . . . . . . . . . . . . . 23
4.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Hidden Markov models 27
5.1 Discrete-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Continuous-time . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Visualising results . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Markov switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Hierarchical modelling . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Results and discussion 47
6.1 Methodological contributions . . . . . . . . . . . . . . . . . . . . 47
6.2 Ecological contributions . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusions 63

A Geolocation of North Sea cod (Gadus morhua) using hidden
Markov models and behavioural switching 73

B Geolocating fish using hidden Markov models and data storage
tags 87

C Nonlinear tracking in a diffusion process with a Bayesian filter
and the finite element method 107

D Estimating animal behavior and residency from movement data121

E Estimation methods for nonlinear state-space models in eco-
logy 149

F Individual based population inference using tagging data 165



Chapter 1

Introduction

1.1 Background

The large scale movement1 of marine species is difficult to monitor in situ.
Therefore, little is known about the biological motifs for the movement and
behaviour of these animals. The location of migration corridors and residency
areas in relation to habitat characteristics inform about the environmental pref-
erence of a species. Thus, access to this type of knowledge would increase the
biological understanding of life in the oceans and provide valuable insights into
possible climate change responses of fish and other marine animals.

The stocks of numerous commercially targeted marine species are declining.
Differences in abundance and size composition of predator species indicate that
a likely reason for the decline is overfishing (Ward and Myers, 2005). It is
therefore important for scientists and conservation commissions to understand
the movement and behaviour of these species to determine the actions required
to obtain sustainable levels for industrial fishing.

The prime example is the Atlantic bluefin tuna (Thunnus thynnus), which is
heavily targeted by commercial fisheries. In managing the fisheries of the species

1In the context of this work, movement refers to the animal’s locomotion (in contrast with
movement of body parts).
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it was, until recently, believed that no mixing occurred between the East At-
lantic and the West Atlantic bluefin tuna stock. Block et al. (2001), however,
confirmed that individuals tagged in the west performed trans-Atlantic migra-
tions to the Mediterranean Sea. This result prompted a change in the manage-
ment of the Atlantic bluefin tuna stock and underlines the fact that knowledge
about movement is key in spatial management.

Historically, assessments of fish movement and stock size have relied on data
from conventional tagging studies (mark-recapture), from reportings of com-
mercial catches, and scientific surveys. During the 1990’s electronic data log-
gers were introduced providing a new type of data. By attaching electronic tags
to free-ranging fish, detailed information about the individual’s ambiance, for
example sea temperature and depth, can be retrieved from the tag through re-
capture or satellite transmission. Electronic tagging data related to movement
(in short movement data) are particularly useful in the assessment of marine
animal movement (Metcalfe and Arnold, 1997).

State-space models are the most popular modelling framework for the analysis
of movement data (Patterson et al., 2008b). The quality and type of movement
data vary depending on the species of interest and the type of electronic tag used
for data collection. Thus, a variety of methods have been employed to estimate
state-space models for movement, for example the Kalman filter (Sibert et al.,
2003), Markov chain Monte Carlo (Jonsen et al., 2005), and the particle filter
(Andersen et al., 2007).

1.2 Aims of the thesis

This thesis focuses on the development and application of hidden Markov mo-
dels (HMMs) for analysing nonlinear state-space models. The thesis is primarily
concerned with modelling of movement data from fish in scenarios where stan-
dard approaches are insufficient. Specifically, the work encompasses:

• Using HMMs and data from electronic tags to estimate the geographical lo-
cation (geolocation) of fish. Such methodology is particularly useful when
individual location is observed indirectly and Gaussian error distributions
are inappropriate.

• Developing an HMM which estimates movement and behaviour simulta-
neously using Markov switching. With such a model it is possible to relate
individual behaviour to geographical regions, a feature of the results, which
aids the understanding of the animal’s use of space.
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• The use of advanced numerical tools for approximating state-space models
in continuous time and space with special attention to boundary condi-
tions. These tools are needed for geolocating fish in waters with a compli-
cated shoreline geometry such as the western Baltic Sea.

• Combining data from multiple individuals in an integrated framework with
mixed models and HMMs. Such a framework can, for example, be useful in
discerning individuals that deviate from the rest of the tagged population.

• Investigating the use of HMMs in more general nonlinear state-space mo-
dels within ecology.

1.3 Outline

Chapter 2 and 3 give a thorough introduction to the data and the methods that
have previously been used within the analysis of movement data. Chapters 4
and 5 describe the modelling and statistical methods used in this thesis. The
chapters overview the methodology used in the papers and therefore contain
some recapitulation. Chapter 6 focuses on the results obtained from applying
the methods to synthetic and real data. Furthermore, it discusses the different
studies in broader terms and considers the future prospects of movement data
analysis from the perspective of a modeller. Finally, Chapter 7 concludes the
study.
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Chapter 2

Movement data

This chapter clarifies some of the terms and abbreviations that are prevalent
within the analysis of movement data. The term movement data simply covers
data that relate to the movement of an individual animal either by direct obser-
vations of location or by some proxy that relates to the location. For example,
a dataset of daylight intensities taken at the individual can be used to roughly
estimate its location via day-length and times of dawn and dusk (Musyl et al.,
2001). Because data often come from tags attached to the animal, movement
data are sometimes referred to as tagging data.

The most primitive type of movement data come from conventional tags. These
tags are used for identification of the animal e.g. by simple numbering and
have no electronics. Conventional tagging of bluefin tuna (Thunnus thynnus)
was initiated in 1954 by Frank J. Mather III who also published some of the
first statistical modelling of tagging data (Mather et al., 1974). At the time,
such experiments were a major advance to the study of fish migrations. The
conventional tag itself is cheap so for the decades following 1960 thousands of
tags were deployed. Still, conventional tags only provide information about the
release and recapture of the fish and very little if any about its behaviour. In
addition, the time and location of recapture is fisheries dependent which biases
the data and makes discovery of unexpected fish migration improbable.

During the 1950’s the first studies of fish movements using sonic tracking tech-
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nology were published (Trefethen, 1956). In sonic tracking a transmitter is
mounted on the fish or implanted. This allows a research vessel to follow the
fish at the surface by receiving transmissions emitted by the tag. See e.g. Yuen
(1970) for an in-depth description of the sonic tracking procedure. In contrast
with conventional tagging data this approach gives detailed information about
the movement of an individual fish. The technique, however, is expensive owing
to the required amount of equipment and personnel. Thus, it is infeasible to
follow an individual for more than a couple of days.

In the 1980’s and 1990’s micro-processor technology was reaching a stage where
the size of a chip was small enough to allow implementation on board a tag. Such
a development allowed researchers to record information in the time period be-
tween tag attachment and recapture without the need for a monitoring research
vessel. The vast amount of information accumulated by tags equipped with
electronic data loggers was in stark contrast to the relatively sparse datasets re-
trieved from conventional and sonic tags. Naturally, the first electronic archival
tags were large compared with those of today and their application was therefore
limited to larger fish species or marine mammals. Since then, the development
of electronic tags has been rapid.

Many branches of electronic tags have evolved each of which is highly specialised
in collecting a certain type of data. Below, the most common types of electronic
tag data are mentioned.

2.1 Archival data

Archival data are recorded by tags equipped with data storage facilities. This
type of data are retrieved from so-called archival tags or, equivalently, data stor-
age tags (DSTs). Archival tags are mostly used for species that are likely to
be recaptured by commercial fisheries because tags need to be recollected phys-
ically for the full data record to be downloaded. Some archival tags (PSATS)
have the added ability to transmit data via satellite (see below), however sub-
stantial battery requirements only allows a subset of the full archival record to
be transmitted.

Archival tags without satellite transmission functionality are relatively moderate
in size (1-2 cm) and are therefore mostly used to study smaller animals. Their
size enables tags to be either mounted externally on the fish (see Figure 2.1) or
surgically implanted to reduce swimming drag (see Figure 2.2).

An archival tag typically records ambient water temperature, pressure (a proxy
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Figure 2.1: Atlantic cod tagged externally with an archival tag. Photo credit:
Line Reeh, DTU Aqua.

for depth), light intensity, and sometimes salinity. Data are collected at high
sample rates (minutes or even seconds if required) and potentially for many
years if the animal avoids recapture. Because of the high sampling frequency,
archival data are useful for studying both horizontal and vertical animal move-
ment and behaviour. Archival data have previously been used in the study of
plaice (Metcalfe and Arnold, 1997; Hunter et al., 2003), Atlantic cod (Andersen
et al., 2007), Atlantic bluefin tuna (Block et al., 2001), bigeye tuna (Sibert et al.,
2003), and more.

2.2 Pop-up data

Pop-up data are recorded by pop-up satellite archival tags (PSATs) that are
preprogrammed to detach themselves from the individual and float to the surface
to transmit data via satellite (see Figure 2.3). PSATS are larger tags (10-20 cm)
because a considerable battery capacity is required for the data transmission.
Thus, PSATS are primarily used in the study of large pelagics such as tuna
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Figure 2.2: Internal tagging of an Atlantic cod. Photo credit: Junita Karlsen,
DTU Aqua.

(Patterson et al., 2008a), marlin (Graves et al., 2002), shark (Nielsen et al.,
2006), and recently even on eel (Aarestrup et al., 2009).

Movement analysis of pop-up data is normally based on observation of daylight
intensities and sea surface temperature recordings. Owing to bandwidth limita-
tions data have normally been preprocessed and summarised on board the tag.
Often, the preprocessed data have a reduced sample frequency which is suited
mainly for analysis of horizontal movement on a larger scale. Unfortunately, the
propagation of measurement uncertainty through the proprietary software used
for the data preprocessing is unknown.

Some PSATs only take measurements when the animal is close to the sea surface
because observations of sea surface temperature (SST) are key in geolocation
algorithms. Such data have inherent uneven sample intervals, a feature which
must be accounted for in the modelling phase. Pop-up data is independent of the
focus of commercial fisheries, which is a major advantage and critical property
if unforeseen animal behaviour is to be revealed. In fact, data can be collected
from species that are not targeted by commercial fisheries at all.



Argos data 9

Figure 2.3: A juvenile southern bluefin tuna. Note the pop-up satellite archival
tag mounted on the dorsal side of the tuna. Photo credit: CSIRO MAR.

2.3 Argos data

Argos data are direct1 (but noisy) observations of location transmitted via the
Argos satellite system. Argos tags are also capable of measuring water salinity,
temperature, pressure, etc. For transmission to be possible the tag must be
above the sea surface. Therefore, the use of Argos tags is restricted to marine
animals that frequent the surface, for example seals (Jonsen et al., 2005), log-
gerhead turtles (Polovina et al., 2000), whale sharks (Wilson et al., 2007), and
more.

As for pop-up data from PSATs, Argos data are fisheries independent. The
main concern when working with Argos data is that the location uncertainty is
heterogeneous in time. However, Argos data are categorised into quality classes,

1In fact, locations are derived by Argos processing centers from the Doppler shift of trans-
mission signals, however it is common to regard Argos data as direct.
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Figure 2.4: Three acoustic transmitters from Lotek. Similarly to some archival
tags (see Figure 2.2) the acoustic tags are attached internally to the fish. The
larger tag is, in addition to acoustic positioning, equipped with depth and tem-
perature sensors. The smaller tags only have tracking capabilities. Photo credit:
Henrik Baktoft, DTU Aqua.

which quantify the uncertainty of the observations. Argos tags are also prone
to produce outlying locations. Therefore, the use of robust estimation methods
is important when analysing these data.

2.4 Acoustic data

Acoustic data are transmitted by acoustic tags and collected by so-called lis-
tening stations or hydrophones. Acoustic tags do not require large storage or
battery capacity. Thus, data can be collected from a wide range of marine ani-
mals of different sizes. Acoustic tags have some data storage capabilities and
transmit depth and temperature along with a presence/absence signal when
detected by a hydrophone (see Figure 2.4).
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More advanced setups can provide direct observations of location by triangu-
lating signals from multiple hydrophones. Hydrophones have a relatively lim-
ited listening range and many units are therefore required for triangulation se-
tups. Thus, direct positioning using acoustics would typically be used to analyse
smaller ecosystems such as those found in lakes or on reefs.

Acoustic positioning data can be sampled at very high frequencies (2 sec inter-
vals) with high spatial accuracy allowing for observation of feeding or spawning
behaviour. Acoustic data contain outliers because it is rarely possible to evenly
cover the entire movement range of the animal with the hydrophone grid. There-
fore, as for Argos data, robust estimation methods are required.

Some studies using acoustic data include the species bigeye thresher shark
(Nakano et al., 2003), nurse and Caribbean reef shark (Chapman et al., 2005),
and more.
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Chapter 3

Methods and models for the
analysis of movement data

Analysis of movement data from electronic tags is a maturing field of research.
Initially, direct manual inspection of the data was possible because the amount
of data was moderate. As the price for an electronic tag gradually dropped
and data accumulated the need for automated analysis tools became pressing.
Below, some of the methodology for movement data analysis is reviewed.

3.1 Geolocation problem

With noisy movement data the most fundamental problem is the estimation of
animal location, i.e. the geolocation problem.

3.1.1 Geolocation techniques

The choice of approach to solving the geolocation problem depends on the type
of movement data. For Argos and acoustic data the problem is predominantly
an exercise in reducing the influence of outliers as observations are already of
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location. On the other hand, for archival and pop-up data, animal location
must somehow be inferred from monitored quantities that can be related to
geographical regions. The choice of which environmental variables to measure
depends on the characteristics of the relevant waters. Generally, however, only
variables with significant spatial gradients are useful for geolocation.

In waters with a significant amphidromic system (e.g. the North Sea) the phase
and amplitude of tidal fronts recorded via depth can be utilised to pinpoint the
location of a tagged individual. This technique also requires that the species
of interest spends enough time at the sea bed for the archival tag to record
a significant part of the tidal cycle. This technique is referred to as the tidal
location method (Hunter et al., 2003) and has previously been used to track
plaice (Metcalfe and Arnold, 1997), thornback ray (Hunter et al., 2005), and
more. If tidal variations are not present depth can still be used to roughly
estimate location by comparison with bathymetry maps (Andersen et al., 2007).
Depth can be supplemented with water temperature and salinity to increase the
accuracy of the estimated location (Neuenfeldt et al., 2007).

Large pelagic species are typically studied using PSATs. With transmitted
recordings of light intensity location is estimated from day length (latitude) and
time of sunrise and sunset (longitude) (Sibert et al., 2003). Light-based geolo-
cation, however, suffers from large uncertainties in the estimation of latitude in
particular around the two equinox periods because day length is constant for
all latitudes (Musyl et al., 2001). If available, recordings of sea surface temper-
ature (SST) are used to improve the latitude estimate by comparing observed
temperature with remotely sensed maps of the SST distribution (Nielsen et al.,
2006).

3.1.2 Statistical implementations

While many heuristic methods have been used to solve the geolocation problem
using the above techniques the focus here will be on the statistically based
methods which employ state-space models (SSMs).

Today, SSMs have become the dominant statistical approach for solving geolo-
cation problems (Patterson et al., 2008b). The versatility of SSMs, it turns out,
is yet unrivaled by any other method when it comes to inferring location from
movement data. The reason, as explained by Patterson et al. (2008b), is clear:
the ability of SSMs to simultaneously model the stochasticity of the movement
process and the observation process allows for separation of the noise at these
two levels. This property is important because it mimics the actual features
present in the biological system and the data acquisition process.
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SSMs are suited for analysing observations of light intensity from tags attached
to large pelagic species. Sibert et al. (2003) employed the Kalman filter (KF)
to estimate location of bigeye tuna from archival data records of light. Using an
extended KF (EKF) Nielsen et al. (2006) combined light and SST data to im-
prove the uncertain latitude estimate. While the EKF handles mild departures
from linearity through a first-order Taylor expansion, the unscented KF (UKF)
is a derivative free second-order approximation (Julier et al., 2000). Lam et al.
(2008) implemented the UKF to further improve light and SST-based geoloca-
tion in handling nonlinearities.

Jonsen et al. (2005) formulated an SSM using a correlated random walk (random
walk on the velocity) for describing the movement of seals observed directly with
Argos tags. To handle the occasional outliers in the Argos location data a t-
distribution was used for modelling the observation error. The same model was
applied to Argos data from leatherback turtles in Jonsen et al. (2007). The
SSM was implemented in WinBUGS (Spiegelhalter et al., 1999), which is a
free software for Bayesian analysis. The Bayesian modelling approach requires
prior distributions to be specified for all parameters and is therefore tailored to
problems where a priori information is available.

Argos data are collected opportunistically when the transmitter surfaces, a pro-
perty which renders the time-intervals between successive observations nonuni-
form. Jonsen et al. (2005) linearly interpolated the Argos locations to obtain
uniform time-intervals. An elegant alternative was presented in Johnson et al.
(2008) where the correlated random walk model was analysed in continuous-
time thus bypassing the need for interpolation. This method, however, requires
Gaussian distributed errors and can therefore not exploit the t-distribution for
robust handling of outliers.

The choice of geolocation method depends also on the environment of the
species. For example, tuna in the Pacific Ocean rarely encounter dry land.
In contrast, cod and other demersal species that live on the continental shelf are
much more likely to be found in the vicinity of land masses. For these species,
geolocation with KF techniques is inappropriate because a Gaussian distribu-
tion for location would often place the fish on land with non-zero probability.
In a study of Atlantic cod in the Baltic Sea, Andersen et al. (2007) applied a
particle filter method to estimate fish locations. Particle filters or equivalently
sequential Monte Carlo methods (SMC, Cappé et al., 2007) are one of the most
advanced and general implementations of SSMs. SMC is based on Monte Carlo
simulations and free of distributional and linearity assumptions. This makes
them appropriate for geolocation in areas with a complex shoreline geometry
such as the Baltic Sea. However, despite being methodologically promising, a
full SMC implementation requires much work and have therefore only gained
moderate popularity as geolocation method.
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The geolocation is the first step from which to proceed when analysing movement
data. As will be apparent from the following sections, the geolocation serves as
a building block for higher level inference regarding behaviour and population
dynamics.

3.2 Movement behaviour

The term movement behaviour covers the types of behaviour that can be related
to particular movement patterns, for example migratory behaviour or searching
behaviour.

Animals alter their movement behaviour as a response to seasons and changes
in their ambient environment, e.g. increased prey abundance or risk of preda-
tion (Bowler and Benton, 2005; Bestley et al., 2008). Movement can typically be
roughly categorised as either fast and directed or slower and entangled. Ecologi-
cally, the former movement type would be interpreted as a display of migration
to a more favourable habitat whereas the interpretation of the latter is less
clear. Searching, foraging, and spawning behaviour would all classify as en-
tangled movements, which are difficult to distinguish when animal location is
observed on a relatively large spatial and temporal scale. Still, much information
about behaviour can be inferred from the movement. It is therefore important
that geolocation models incorporate animal behaviour to avoid bias in location
estimates and uncertainty.

Movement data from terrestrial animals are often from accurate GPS tags.
Therefore, modellers concerned with terrestrial data have somewhat bypassed
the geolocation problem and focused more on the steps beyond, such as the
analysis of behaviour. Morales et al. (2004) analysed GPS movement data from
elk with an accuracy of 10-20 m and showed that the movement behaviour of
these animals could be classified as either “encamped” or “exploratory”. Similar
patterns have been observed in movement data from marine animals. A study
of Argos data from seals (Jonsen et al., 2005) succeeded in classifying movement
into migratory and foraging behaviour. The occasional outliers and uncertainty
of Argos locations relative to GPS fixes demanded more care in the modelling
phase with respect to robustness.

Recently, Patterson et al. (2009) considered movement behaviour classification
of juvenile southern bluefin tuna from archival data. Data were summarised
into daily position fixes by combining light and sea surface temperature infor-
mation. Their study presented a comprehensive statistical machinery based
on hidden Markov models for behaviour estimation using environmental data
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as covariate information for the switching probabilities of the Markov process.
Such an analysis enables ecologists to relate the estimated animal behaviour to
characteristics of their ambiance. However, as discussed by the authors, their
model did not include the location uncertainty, which for this species can be
quite significant (Teo et al., 2004).

3.3 Individual based population inference

Although an electronic tag solely provides information about its host, analy-
sis of single individual animals is rarely of great interest. In fact, the aim of
most tagging studies is to achieve inference at the population level, which can
provide answers to fundamental biological questions related to the species and
is useful for management purposes. Thus far, however, the number of publica-
tions presenting individual based population inference related to marine animals
has been limited. The main reason for this is that although much data from
electronic tags have been collected, data from different studies and also data
within studies are heterogeneous. Differences in data are present even for a sin-
gle species, e.g. with respect to tag type, sample rate, observation uncertainty,
time and location of deployment, length of time series etc. This emphasises the
importance of proper experimental design prior to any tagging mission. How-
ever, even carefully planned studies cannot avoid the irregular sample rate of
opportunistically transmitting tags, observations outliers, premature pop-ups
etc. Instead such difficulties must be ameliorated in the modelling phase. Ad-
vanced models for handling these issues do exist and it is theoretically possible
to build an integrated model which combines multiple tags. Yet, a joined model
is challenging to implement and likely to be computationally cumbersome to
work with.

One of the most developed models for analysing conventional tagging data
from multiple individuals was presented in Sibert et al. (1999), which used
the diffusion-advection-reaction equation for modelling the dispersal of skipjack
tuna (Katsuwonus pelamis) in the southern Pacific Ocean. The data spanned
the years 1977-1982 and encompassed more than 94000 releases and about 5300
recaptures. This vast amount of data from different individuals enabled the
model to predict the probable spread of the population, and allowed for statis-
tical tests of alternative hypothesis such as for the number of seasons evident
in the data. Modelling of movement data from electronic tags cannot immedi-
ately follow a similar model because data collections of sufficient size are not
yet available.

Using feeding data from archival tags and generalized linear mixed models, Best-
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ley et al. (2008) assessed differences in behaviour among a group (n = 19) of
juvenile southern bluefin tuna as a function of time of day and moon quarter.
A similar approach could be taken to population analysis of movement data.
In a study on simulated Argos turtle data, Jonsen et al. (2003) presented a hi-
erarchical Bayesian model for joining state-space analyses of individual animal
movement. Inference was on a parameter which related sea surface temperature
to the movement rate of the animal. The authors showed that weak datasets
with few observations could be analysed by borrowing strength from more in-
formative datasets. They applied the hierarchical framework to real Argos data
from n = 14 leatherback turtles to investigate diel variation in migration speed
(Jonsen et al., 2006). This modelling framework incorporates many of the un-
certainty aspects associated with movement data. It is implemented in the free
MCMC based modelling software WinBUGS, which relies on a Bayesian model
formulation.

Aarts et al. (2008) discussed the challenges related to using individual telemetry
data for estimation of population space use. In addition, they presented a
model which combined individual datasets to produce a map of presence. The
model was fitted to telemetry (Argos location) and simulated data under a so-
called case-control design. Specifically, their approach for the individual data
assigns a probability of presence to each spatial unit of a gridded geographical
region. Then, the individual models are joined using mixed effects modelling.
The technique tackles many of the challenges of population modelling, however
it does not account for temporal and spatial autocorrelation in the data. As
discussed by the authors, future advancements in CPU technology should allow
extending the framework to include SSMs.



Chapter 4

State-space models

Movement is a dynamical process. Consequently, movement datasets are al-
ways time series, i.e. composed of repeated observations of certain time-varying
variables on the same individual. Biological processes that vary in time com-
monly display elements that can be explained theoretically and elements that
appear random. For example, a migration path of an animal is directed but
also perturbed by small scale movements that are not directed. There are many
possible biological explanations for these perturbations, however explicit mod-
elling at this level requires accurately observed data. Instead, small movements
that are indistinguishable from observation noise are modelled as random.

Acquiring movement data from marine animals involves observing (with error)
a dynamical system which displays a degree of randomness. State-space models
(SSMs) formalise this procedure in a natural and intuitive manner by separating
the biological process from the observation process.

An example of a simple, but often very useful movement model is the random
walk, where the location Xk of an individual evolves according to

Xk+1 = Xk + εk, (4.1)

where εk are independent and identically distributed (iid). The random walk is a
Markov process since future states of the random process are independent of past
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states conditional on the present state. A process with this characteristic is said
to have the Markov property and is therefore a Markov process. Equivalently
(in discrete-time), if P (Xk+1|X1, . . . , Xk) = P (Xk+1|Xk) for all values of k then
{Xk}k∈{1,2,...} is a Markov process.

Observation errors are present when monitoring any biological process. Say a
biological process (e.g. movement) Xk is monitored. What is actually observed
is

Zk = Xk + ek (4.2)

where ek is the error inherent in the procedure of observing Xk. Often, when
tracking terrestrial animals with accurate GPS telemetry, ek will be small and
sometimes negligible. Conversely, in studying marine animal movement, ek often
has significant influence on retrieved data. Failure to acknowledge this will most
likely lead to false or biased conclusions about the location of the animal.

The two equations (4.1) and (4.2) constitute an example of an SSM. In general,
though, SSMs can have other forms and do not necessarily include processes that
are Markov or even random. This chapter outlines the class of SSMs that are
relevant to the modelling of movement data from marine animals and describes
the general theory behind state and parameter estimation.

4.1 General notation

The animal location at time tk is Xk = (X, Y )Tk , where X is longitudinal
coordinate, and Y is latitudinal coordinate. The state-space is denoted Ω, which
in this chapter is equivalent to the model domain. Later Ω also encompasses
behavioural states. The vector of observed/measured quantities at time tk is
zk with k ∈ {1, . . . , N}, i.e. observations are available at N different points in
time. The time interval between two observations is ∆k = tk+1 − tk.

The observation vector zk is a generic way to refer to observations of any nature.
For example, zk can be a set of location coordinates, a measure of temperature
or day light intensities etc. If data are sampled at a frequency higher than
the time-stepping of the model, zk can encompass multiple measurements that
are related to time tk. This is often the case for models using archival data.
Then, say 60 measurements of depth can be gathered in a single observation, zk
related to tk. The composition of zk is specified separately for each model. All
observations taken at or prior to tk are jointly referred to as Zk = {z1, . . . ,zk}.
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· · · Xk−1 Xk Xk+1 · · ·

Zk−1 Zk Zk+1

Figure 4.1: Dependence structure of a state-space model. Xk are unobservable
states, Zk are observed data.

4.2 Discrete-time dynamical model

Commonly, SSMs are specified in discrete-time in which case the general formu-
lation of the process model (4.1) and observation model (4.2) is

Xk+1 = g(tk,Xk, εk), (4.3)

Zk = h(tk,Xk, ek), (4.4)

where g and h are possibly nonlinear mappings of the location Xk. The noise
terms εk and ek are mutually independent, iid., and have arbitrary but known
distributions. The SSM in (4.3) and (4.4) is a way to formalise the dependence
structure between the unobservable states Xk and the data Zk (see Figure 4.1).

Often, when the objective is to estimate location, some simplifying assumptions
are reasonable and necessary to implement and analyse the SSM. In this work
the preferred process model is a biased random walk or, equivalently, a random
walk with a drift term. Discussion of the choice of movement model is found in
Chapter 6. With a biased random walk (4.3) becomes

Xk+1 = Xk + uk + εk, (4.5)

where uk = u∆k and εk ∼ N(0, 2D∆k). In general, the two movement compo-
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Figure 4.2: Simulated biased random walks with isotropic diffusion. All four
simulated tracks have the same expected squared displacement. Clearly, as the
advection becomes the dominating term the tortuosity of the path decreases.

nents take the form

u =

(
ux
uy

)
, D =

(
Dxx Dxy

Dxy Dyy

)
. (4.6)

The deterministic part of the movement is represented by the advection or drift
u, whereas the random part of the movement is controlled by D, which is the
location diffusivity. It is assumed that Dxy = 0 unless stated otherwise.

Mixing deterministic and random components makes the interpretation of the
movement parameters somewhat unclear. One way to summarise the movement
is by the square root of the expected squared displacement S∆t over the time
interval ∆t: S∆t = {E[(∆X)2] + E[(∆Y )2]}1/2, where ∆X is the step length
in the X-direction in ∆t. This quantity is denoted the expected step length.
Using the definition of variance

S∆t =
{

2Dxx∆t+ (ux∆t)2 + 2Dyy∆t+ (uy∆t)2
}1/2

. (4.7)

On small time scales the displacement is dominated by diffusive terms whereas
on larger time scales the drifts become the main contributing factors (see Fig-
ure 4.2). This formula also applies to continuous-time models.



Continuous-time dynamical model 23

4.3 Continuous-time dynamical model

Time intervals between movement observations are often uneven. Modelling of
such data with a discrete-time model is difficult and often requires some sort
of interpolation of data. More appropriate is the use of an SSM formulated in
continuous-time. In this thesis the following class of continuous-time models is
considered

dXt = f(t,Xt)dt+ g(t,Xt)dBt, (4.8)

Zt = h(t,Xt, et), (4.9)

where Bt is a standard two-dimensional Brownian motion. Equation (4.8) is in
general termed a stochastic differential equation. For modelling movement (4.8)
is often simplified

dXt = udt+ σdBt. (4.10)

With a formulation in continuous-time the model handles time intervals between
observations of arbitrary length seamlessly. In (4.10) the advection parameter
u appears directly, whereas the diffusion parameters appears indirectly as D =
1
2σσ. Then the expected step length can be calculated via (4.7).

4.4 Estimation

This section describes estimation of the probability density of the unobservable
state and estimation of the model parameters.

4.4.1 State estimation

For state estimation it is assumed that all model parameters are known. Then,
a complete analysis of an SSM would compute the full posterior density of the
states conditional on all data

p(x1,x2, . . . ,xN |ZN ). (4.11)
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However, the full posterior density can only be computed accurately when sim-
plifying assumptions such as Gaussianity can be justified. Furthermore, even for
moderate dimensional full posteriors it is impossible to visualise all the informa-
tion it holds. Instead, state-space analyses focus on estimating time-marginal
densities of the full posterior, that is

p(xk|ZN ) =

∫
p(x1,x2, . . . ,xN |ZN )dXk, (4.12)

where Xk = {x1, . . . ,xk−1,xk+1, . . . ,xN}. In this work, the collection of p(xk|ZN )
for all k are referred to as the posterior density and (4.11) is termed the full
posterior density.

State estimation of the marginal densities is carried out in a filtering and a
smoothing procedure. The filtering recursions for the general SSM described by
(4.3) and (4.4) are

p(xk+1|Zk) =

∫
p(xk+1|xk)p(xk|Zk)dxk, (4.13)

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)∫
p(zk|xk)p(xk|Zk−1)dxk

(4.14)

see e.g. Kitagawa (1987). Here, all densities are given for fixed parameters (θ)
although this has been omitted from the equations for simplicity. In the context
of tagging data the initial state density p(x1|z1) is usually known since the
release location of the tag is known. The two steps in the recursion are often
termed the time-update and data-update respectively.

The smoothing step iterates backward in time and produces state densities that
appear “smoother” than the filtered densities. The smoothing recursion is

p(xk|ZN ) = p(xk|Zk)

∫
p(xk+1|xk)

p(xk+1|ZN )

p(xk+1|Zk)
dxt+1. (4.15)

The smoothing recursions start with p(xN |ZN ) which is the final filtered esti-
mate and the first smoothed estimate. See e.g. Kitagawa (1987) for derivation
of the smoothing step. When the smoothing step is finalised the smoothed state
estimates p(xk|ZN ) are available for k ∈ {1, . . . , N}. Note that the density is
conditional on all available information in the data.
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4.4.2 Parameter estimation

The model parameters are collectively referred to as θ = {D,u}. The observa-
tion noise et also has related parameters, however, these parameters can often
be estimated from independent data and thus be omitted from θ. The likelihood
function for the model parameters evaluated at θ is given directly by the filter
recursions since

L(θ|ZN ) = p(ZN |θ) = p(z1|θ)

N∏

k=2

p(zk|Zk−1,θ), (4.16)

where p(zk|Zk−1,θ) =
∫
p(zk|xk,θ)p(xk|Zk−1,θ)dxk which is the denominator

of (4.14). Now, the maximum likelihood (ML) estimate of θ is

θ̂ = arg max
θ
L(θ|Z). (4.17)

Closed-form solutions to (4.13-4.17) are not available in general because the
integrals are intractable. In the special case where ek and εk are Gaussian dis-
tributed and the process and observation equations are linear, the smoothed
state estimates are also Gaussian and their mean and covariance have exact
expressions. Likewise, an exact expression is available for θ̂. Analysis of some
types of movement data lead to scenarios where Gaussian assumptions on the er-
rors can be justified (Sibert et al., 2003), in which case the filtered and smoothed
state estimates are given by the Kalman filter (KF, Harvey, 1990).

Regarding nonlinear and/or non-Gaussian SSMs where the KF is inappropriate,
other approaches must be taken. Here is named a few alternatives which have
been employed within movement data analysis: the extended Kalman filter
(Nielsen et al., 2006), the unscented Kalman filter (Lam et al., 2008), particle
filter methods (Andersen et al., 2007; Cappé et al., 2007) or Markov chain Monte
Carlo methods using WinBUGS (Jonsen et al., 2005; Gilks et al., 2001). The
approach taken in this work relies on hidden Markov models and is similar to
that of Kitagawa (1987), however motivated differently, see Chapter 5.

4.4.3 An alternative estimation approach

The analysis of a state-space model seeks to estimate the unobservable process
and the model parameters from the information in the observed data. This
setup is equivalent to a mixed effects statistical model where the set of all states
X = {x1, . . . ,xN} comprises the random effects. Say the joint conditional
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probability density p(X ,ZN |θ) can be computed. Then, the ML estimate for θ
is found by optimising

L(θ|Z) = p(ZN |θ) =

∫
p(X ,ZN |θ)dX . (4.18)

This integral of dimension N is difficult to compute in general. Instead, the
integrand must be approximated. To this end, the state estimates are computed

X̂ (θ) = arg max
X
{log p(X ,ZN |θ)} , (4.19)

Now, the log of the integrand in (4.18) can be approximated by a quadratic

function q
(
X , X̂ (θ),H(θ)

)
with peak in X̂ (θ) and curvature H(θ), where

Hij(θ) =
∂2

∂θi∂θj
log p(X ,ZN |θ)

∣∣∣
X=X̂

are the elements of the Hessian matrix H(θ). Then, the integral reduces to

L(θ|Z) '
∫

exp
[
q
(
X , X̂ (θ),H(θ)

)]
dX = p

(
X̂ ,ZN |θ

)
√

(2π)M

detH(θ)
, (4.20)

where M is the number of model parameters. Now, (4.20) is a known function of
θ and therefore simple to optimise. The technique of approximating p(X ,Z|θ)
by a quadratic function is called Laplace’s method or Laplace’s approximation
(Wolfinger and Xihong, 1997).

In summary, the estimation of θ involves iteration between an inner estimation
(4.19) and an outer estimation of θ by optimisation of (4.20). That is, for
estimating X the parameters θ are fixed to the previous estimate and vice
versa. The iterations start with some initial guess on θ. Such an alternating
estimation procedure is standard (albeit involved) when estimating nonlinear
mixed models (Pawitan, 2001).

For SSMs, it is common that N > 100. Thus, the optimisation in (4.19) is not
straightforward to compute. Using automatic differentiation, however, and the
fact that the autocorrelation of Xk has a certain structure, the optimisation
can be carried out surprisingly fast. The open-source AD Model Builder soft-
ware provides an integrated framework which exploits these features (Skaug and
Fournier, 2006).
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Hidden Markov models

A model where the distribution of observed quantities depends on an unobserv-
able Markov process is a hidden Markov model (HMM, Zucchini and MacDon-
ald, 2009). Following this definition the state-space models (SSMs) mentioned
in Chapter 4 are indeed also HMMs. HMMs can operate in both continuous and
discrete time and space. However, as encountered in the literature, HMMs are
predominantly used to model phenomena with a finite and discrete state-space,
for example in speech recognition (Rabiner, 1989). An advantage of discrete
state HMMs is that exact analysis is possible. That is, closed-form expressions
for state probabilities and the most probable state sequence are available.

Animal movement is a dynamical process in continuous space. However, a pro-
cess in discrete space is obtained by restricting the possible locations of the
animal to a finite number of cells in a grid. This procedure enables the move-
ment process to be analysed using discrete state HMM theory. In addition, it
increases modelling flexibility since aspects such as outlying observations, un-
even data sampling, behaviour switching, hierarchical modelling, and avoidance
of dry land, can be incorporated. As described in Chapter 3, many of these
issues have been addressed by previous studies, however only by separate mo-
dels. Moreover, discrete state HMMs enable illustrative visualisation of the
estimation results.

In this thesis, the method of discretising a continuous state HMM is denoted the
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HMM method. So, to analyse a continuous state SSM using the HMM method
is to discretise the state-space of the SSM and use discrete state HMM theory
for the analysis. Onward from here, the term HMM refers to an HMM with
discrete and finite state-space. The remainder of this chapter details the HMM
method with extensions and their use in the context of movement data.

5.1 Discrete-time

The principle of the HMM method as outlined above is now put into math-
ematical terms. The HMM appears when the continuous model domain (Ω)
is partitioned into a finite number of grid cells. The grid cell with center in
x = (x, y)T is denoted Ωx. In a uniform grid the number of grid cells in the
longitudinal and latitudinal directions are nx and ny respectively. Therefore the
total number of grid cells is nxy = nxny. The width of a grid cell is dx. HMMs
with nonuniform grids are discussed in Section 5.2.1 and Chapter 6.

With the location of the animal resolved on a discrete grid movements on a scale
finer than dx are no longer discernible. Still, with a sufficiently fine grid other
sources of error will become the limit for the location accuracy.

The discrete analogue of the probability density p(xk|Zk) is the row vector
φ(tk,Zk). Each of the nxy elements in φ(tk,Zk) corresponds to a cell in the
(x, y) grid such that φx(tk,Zk) is the probability that the animal is at location
x at time tk conditional on Zk. In other words φx(tk,Zk) = P (Xk = x|Zk).

With the discrete grid the filter recursions become

φx(tk+1,Zk) =
∑

xk

P (Xk+1 = x|Xk = xk)φxk
(tk,Zk), (5.1)

φx(tk,Zk) =
P (Zk = zk|Xk = x)φx(tk,Zk−1)∑
x P (Zk = zk|Xk = x)φx(tk,Zk−1)

(5.2)

analogous to (4.13) and (4.14). For short-hand reference the denominator of
(5.2) is written

ψk = P (Zk|Zk−1) =
∑

x

P (Zk = zk|Xk = x)φx(tk,Zk−1). (5.3)
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This quantity is used for parameter estimation in (4.16) and (4.17). The smooth-
ing equation (4.15) on the discrete state-space is

φx(tk,ZN ) = φx(tk,Zk)
∑

xk+1

P (Xk+1 = xk+1|Xk = x)
φxk+1

(tk+1,ZN )

φxk+1
(tk+1,Zk)

. (5.4)

The main difference between continuous and discrete state-space is that integrals
have been replaced with sums.

The transition probabilities in (5.1), (5.2), and (5.4) are computed by integrating
the density of the movement process over the grid cells. The density of the
movement process is given by (4.5) and (4.10). Steps of equal length have equal
transition probability because the movement process is homogeneous in space.
With w = adx for any integer a, the probability of a transition from x to x+w
in a time period of ∆k is then

P (Xk+1 = x+w|Xk = x) =

∫

Ωw

Npdf (s,u∆k, 2D∆k)ds, (5.5)

where Npdf (x,µ,Σ) is a Gaussian probability density function with mean µ
and covariance Σ evaluated at x. Recall that Ωw is the grid cell with center
at w. In general, the integral needs to be solved numerically which can be
done with a quadrature algorithm. Less accurate but faster algorithms (e.g.
the trapeziodal rule) can be employed if parameters are time-varying and the
transition probabilities need to be recalculated in each time step. If movement
in the x and y-directions is independent, (5.5) can be computed by simply
evaluating the Gaussian cumulative distribution function at the boundaries of
the grid cell.

The term P (Zk = zk|Xk = x) in (5.2) is the probability of observing zk given
the location x. Computing this as a likelihood (i.e. as a function of x) for all
states, highlights the likely locations at time tk. The complexity of computing
P (Zk = zk|Xk = x) depends on the data type and the function in (4.4) which
links x and zk.

As explained by Pedersen (2007), the sums in (5.1) and (5.4) are in fact con-
volutions. The time-update (5.1) has the two-dimensional discrete Gaussian
convolution kernel Kk which is a matrix with the transition probabilities (5.5)
as elements (see Figure 5.1 for an example). The range for w should be chosen
such that the smallest elements of Kk are close to zero, e.g. < 10−6. The sum
of all elements in Kk must, of course, be 1.
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Figure 5.1: Convolution kernel with transition probabilities. Parameter values
are ∆k = 1, dx = 1, u = 0 and (Dxx, Dyy) = (0.5, 0.5)T . In this case, if
w = (wx, wy)T = (0, 0)T say, then P (Xk+1 = x+w|Xk = x) = 0.0398

Then (5.1) can be written on a compact form

φx(tk+1,Zk) = Kk ? φxk
(tk,Zk),

where ‘?’ is the convolution operation. The data-update (5.2) remains the same
while the smoothing step (5.4) becomes

φx(tk,ZN ) = φx(tk,Zk)

[
Jk ?

(
φxk+1

(tk+1,ZN )

φxk+1
(tk+1,Zk)

)]
,

where Jk is constructed from (5.5), however with u replaced by −u, i.e. Jk is
the mirror image of Kk.

In Matlab, an implementation of the filter and smoother with the convolution
formulation requires very little computation time because the built-in conv2

function makes efficient use of the fast Fourier transform. The main drawback
of the convolution approach is the accuracy of the solution in the vicinity of
land areas. The convolution does not distinguish between dry land and sea.
Therefore, for distributions close to shore lines probability mass is likely to be
convolved into states on land. This is not as disastrous as it seems, since the
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data-update step (5.2) assigns zero weight to states that are invalid and thus
removes the probability mass on land. Still, this has the effect that the probabil-
ity distribution is “repulsed” from the shores. If data are informative, however,
this is of minor concern. In the alternative case where only vague informa-
tion is available the estimated probability distributions become less reliable and
alternative solution approaches should be considered (see below).

5.2 Continuous-time

While the continuous-time formulation of the SSM (see Section 4.3) is more
complex to analyse it is also more flexible. Furthermore, for unevenly sam-
pled data results turn out to be more accurate as compared to a discrete-time
analysis.

Given the movement process (4.8) in continuous time and space the evolution of
p(xt|Zk) for t > tk is described by the Kolmogorov forward equation (Øksendal,
2007)

∂p

∂t
= −∇ · (up−D∇p) (5.6)

where ∇ is the two-dimensional spatial gradient operator. The solution do-
main is the relevant geographical region with land masses excluded. Thus, the
boundaries of the domain are the shorelines. The appropriate boundary con-
ditions for (5.6) are Neumann boundary conditions, which reflect probability
mass and therefore ensures that the solution (a probability density) integrates
to unity.

On a discrete spatial grid like the one outlined in Section 5.1 a partial differential
equation (PDE) is reduced to a system of ordinary differential equations (ODEs).
In PDE terminology the technique of discretising all spatial dimensions is the
method of lines (Schiesser, 1991). With a second-order central scheme for the
spatial derivatives the rates of moving (jumping) a distance of dx to the east
and west are Dxx

dx2 ± ux

2dx respectively. For moving a distance of dx to the north

and south the rates are
Dyy

dx2 ± uy

2dx respectively. It can be confirmed that for a
process with these rates the expected movement in a time-interval dt is udt with
covariance 2Ddt as stated by (4.8). Since negative jump rates are not allowed
(i.e. boundedness of the solution must be preserved) the resolution of a uniform
grid must fulfill the requirement that
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dx < min

{
2Dxx

|ux|
,

2Dyy

|uy|

}
.

The jump rates are organised in the generator matrix G with the diagonal
elements of G equal to the negative row sum of the corresponding row (see
Figure 5.2). Now, the time evolution of the discrete state vector for t > tk is

d

dt
φ(t,Zk) = Gφ(t,Zk). (5.7)

This formulation is recognised from the theory of continuous-time Markov chains
on a discrete state-space (Grimmett and Stirzaker, 2001). Using the generator
to describe the movement process is a powerful approach because the rate of
moving to states on land can be set to zero (Figure 5.2). Consequently, the
boundaries (shore lines) are reflective to the animal, and non-zero probabilities
are never assigned to dry land areas. In fact, states on dry land areas can be
completely omitted from the state space thereby saving computing time since
the size of G is reduced.

When data have been collected, all time-intervals ∆k between observations are
known. Then, the transition probability matrices Pk which describe the evo-
lution of the state probability distribution can be calculated by solving (5.7).
Theoretically, it is straightforward to compute Pk (Grimmett and Stirzaker,
2001) since

Pk = exp(G∆k).

The exponential of a matrix is defined as an infinite sum

exp(Ah) =

∞∑

i=0

1

i!
(Ah)i. (5.8)

Thus, approximations are required to calculate the matrix exponential. Many
numerical methods are available to this end, see Moler and Van Loan (2003).
The preferred method of this thesis is to use the uniformization approximation
which exploits that the generator of a continuous-time Markov chain on a large
state-space is in general sparse and banded. The technique will not be detailed
here, but see Grassmann (1977).

The continuous-time filter and smoothing recursions are respectively
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Figure 5.2: Top: An example of a discretised domain with nx = 8 and ny = 4.
Blue indicates sea and green indicates land states. Bottom left: Dots are non-
zero elements of G. Here rates for moving to and from land states have not
been set to zero. Bottom right: Dots are non-zero elements of G. Here rates
for moving to and from land states are zero. In G linear indexing of the states
is used. For example, state (x, y) = (1, 4) in the grid is number 4 in linear
indexing, state (2, 1) equals linear state 5 etc.
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φ(tk+1,Zk) = φ(tk,Zk)Pk, (5.9)

φ(tk,Zk) = ψ−1
k φ(tk,Zk−1)� L(zk), (5.10)

φ(tk,ZN ) = φ(tk,Zk)�
[
{φ(tk+1,ZN )� φ(tk+1,Zk)}PT

k

]
, (5.11)

where � and � are element-wise product and division respectively. The data
likelihood vector L(zk) of length nxy has elements P (Zk = zk|Xk = xk) for all
xk. The normalisation constant ψk = φ(tk,Zk−1) · L(zk) is used for maximum
likelihood estimation of parameters as in (5.3). Here, ‘·’ is the dot-product.

This formulation of the continuous-time filter and smoother is compact and
relatively simple to implement because all sums are replaced with vector and
matrix operations. It is, however, more computationally costly than the convo-
lution approach. In theory, Pk are dense, however for small time-intervals or
movement rates the majority of the elements of the matrices are close to zero
(< 10−6 say). By setting these transitions to zero Pk become sparse. As a
consequence, the computational expense of the recursions (5.9-5.11) is reduced
significantly since optimised sparsity algorithms can be employed.

5.2.1 Filtering from a PDE perspective

As discussed there are several numerical approaches to solving the filtering equa-
tion. This is because the problem can be viewed as a that of solving an integral
(4.13), or as that of solving a partial differential equation (PDE), i.e. (5.6). Both
topics are heavily studied in the literature on numerical analysis. Approaches to
solving integrals include quadrature rules, Monte Carlo simulation, functional
approximations (such as Laplace’s approximation), and more. Approaches to
solving PDEs include finite difference methods, finite volume methods, finite
element method and more.

The convolution approach described above is strongly related to the method
of finite differences (FDs, see Mitchell and Griffiths, 1980). In FD methods
(as for the convolution approach) it is cumbersome to implement boundary
conditions. In addition, the FD method is mostly suited for problems dominated
by diffusive terms. When advection is present in the problem it is important
to compensate the solution for the “artificial” or numerical diffusion which is
induced. Sometimes, however, numerical diffusion cannot be avoided unless the
grid is altered.

An alternative to FD is the finite element (FE) method which is widely used
for solving the PDEs that arise in structural mechanics (Cook et al., 2001).
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The main advantage of FEM is its ability to handle boundaries with a complex
geometry and to implement the conditions that apply to these boundaries in a
simple manner. FEM works on an unstructured mesh, so the mesh can be refined
in areas of particular importance and coarsened elsewhere. Note that refining
the mesh will not (necessarily) make the estimate of the state more accurate, but
it will provide a better approximation to the probability density of the location.
The FE method in relation to movement data analysis is discussed further in
Chapter 6.

5.3 Visualising results

When the filtering and smoothing recursions are completed in either discrete
or continuous-time the estimated state probability vectors φ(tk,ZN ) can be
used for answering ecologically relevant questions about the animal. To this
end, the large amount of information contained in the posterior distribution
can be visualised either as surface plots of the two-dimensional marginal state
distributions or as sequence plots showing the animal’s movement path.

5.3.1 Movement trajectories

The most common means to visualise movement is a trajectory. In the HMM
framework a movement trajectory is the concatenation of all locations X =
{x1, . . . ,xN}.

5.3.1.1 Simple trajectory estimation

Two basic, but often encountered approaches to trajectory estimation are sketched
here.

The mean track is calculated by connecting the means of the smoothed distri-
butions φ(tk,ZN ). The means in the x and y-directions are respectively
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Figure 5.3: Viterbi, mean, and mode track estimated using the same dataset
from a southern bluefin tuna. Green circle is release location and orange square
is pop-up location of the PSAT tag. The tracks are similar close to A. At B and
C the Viterbi track diverges from the two other tracks in that it moves north
of Tasmania. The three tracks differ in estimating the timing of the south-ward
migration from D: The mode track makes a sudden jump of approximately
six degrees latitude in one time step (12 hours), the mean track averages this
movement over many small steps, and the Viterbi track takes larger steps and
then pauses before it moves on.

x̄k =
∑

x

x

[∑

y

φx,y(tk,ZN )

]
,

ȳk =
∑

y

y

[∑

x

φx,y(tk,ZN )

]
.

So the mean track X̄ is comprised of the means related to each time point,
i.e. X̄ = {x̄1, . . . , x̄N}, where x̄k = [x̄k, ȳk]T (see Figure 5.3 for an example).
Using the mean track has some pitfalls which should be mentioned: The means
x̄k may refer to locations with zero probability, for example between modes
of the distribution or even on dry land. The mean track relies on the time-
marginal distributions and thus ignores transition probabilities. So jumps with
zero probability can occur in the mean track.

The mode track is identical to the mean track with the exception that the means
are replaced with modes of the smoothed distributions. At time tk the mode is
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x̃k = arg max
x

φ(tk,ZN ),

leading to the mode track X̃ = {x̃1, . . . , x̃N}. In contrast to x̄k, x̃k are guar-
anteed to be a location with non-zero probability. However, the mode track
should still be employed with caution (see Figure 5.3). In the multimodal case
if φ(tk,ZN ) have alternating maxima the mode track will jump between the
maximum points because transition probabilities are not accounted for. Such a
scenario would result in an invalid track. Thus, it important to inspect φ(tk,ZN )
and ensure unimodality before using either the mean or the mode track.

5.3.1.2 Generating a likely movement trajectory

Given a probability distribution one can generate random outcomes of this dis-
tribution with a random number generator. Therefore, random outcomes can
be generated from φ(tk,ZN ). An outcome V = {v1, . . . ,vN} generated from
φ(tk,ZN ) for all k represents a likely movement trajectory of the animal.

The recursions for generating a random trajectory are initialised by sampling a
random state vN from φ(tN ,ZN ). Then, starting with k + 1 = N , iterate over
the following four steps:

1. Create a distribution (δk+1) with all probability mass concentrated at the
location vk+1.

2. Compute the evolution of δk+1 backward in time by

πk = φ(tk,Zk)� [{δk+1 � φ(tk+1,Zk)}PT
k ].

This equation is identical to the smoothing step (5.11) with φ(tk+1,ZN )
replaced with δk+1.

3. Sample a random state, vk, from πk.

4. Set k = k − 1. If k > 1 go to step 1 otherwise stop.

When the recursion is finalised at k = 1 the random trajectory is V = {v1, . . . ,vN}.

Sampling of random trajectories is a versatile instrument that can be used to
answer questions that do not seem quantifiable at first. Questions such as: what
is the probability that the animal resided in a particular area during the summer
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months? or: when was the most probable time the animal initiated a migration
toward a specific habitat? Generating multiple random tracks from the poste-
rior distribution and jointly analysing these answers the questions posed. Say
800 out of 1000 random trajectories resided in an area of interest during the
summer months and the remaining 200 did not. Then, the probability of the
animal residing in that area during the summer months is estimated to 80%
with standard deviation 0.013% (using the variance of a Bernoulli distributed
random variable). For estimating the timing of migrations e.g. the departure
time from a habitat, the say 1000 random tracks are analysed and the individual
departure times assessed. The timing of the migration is then estimated e.g. as
the mean of the individual departure times. Alternatively can the distribution
of departure times be inspected to reveal possible bimodality. Random track
analysis evidently posseses great potential for dealing with biologically relevant
and seemingly complex scenarios.

5.3.1.3 Most probable movement trajectory

The likelihood of a trajectory is

L(X ) = P (Z1 = z1|X1 = x1)

N∏

k=2

P (Xk = xk|Xk−1 = xk−1)P (Zk = zk|Xk = xk),

(5.12)
where P (Xk = xk|Xk−1 = xk−1) can be found by look-up in the transition
matrix Pk−1 and P (Zk = zk|Xk = xk) is the data likelihood. The most

probable trajectory X̂ is the one that maximises L(X ), i.e.

X̂ = arg max
X

L(X ).

The trajectory X̂ is the most likely of all possible sequences generated by the
HMM. Determining this sequence is carried out with the Viterbi algorithm
(Viterbi, 2006) which relies on principles from dynamic programming. The
Viterbi algorithm is outlined below:

Define the branch metric related to time tk

Bk(x,y) = logP (Xk = y|Xk−1 = x) + logP (Zk = zk|Xk = y).
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The branch metric can be interpreted as the log-likelihood of the branch leading
from location x to location y. Using the branch metric, define the state metric
related to time tk

Sk(xk) = max
x1,...,xk

{
logP (Z1 = z1|X1 = x1) +

k∑

l=2

Bl(xl−1,xl)

}
,

which is the log-likelihood of the most likely of all possible state sequences
leading to xk at time tk. This optimisation is complicated to carry out directly.
Fortunately, the state metric can be formulated as a recursion which exploits
the Markov property of the HMM. Then

Sk(xk) = max
xk−1

{Sk−1(xk−1) +Bk(xk−1,xk)}. (5.13)

This optimisation uses the state metric from the previous time step which al-
ready contains the log-likelihood of the most likely sequence at tk−1. Still,
computing the state metric is a demanding operation since it must be carried
out for all locations in the state-space, i.e. (5.13) must be computed nxy times
for each time step. When the final time step is reached the state metric of the
most probable trajectory is

SN (x̂N ) = max
xN

SN (xN ).

To get the actual trajectory there are two approaches: By storing the most
likely sequence leading to each location throughout the recursion, along with
the state metric, the most probable trajectory can simply be picked out as the
one related to SN (x̂N ) at the final time step. This approach requires that all
intermediate sequences are stored in the memory. The memory requirement,
however, is unlikely to become a prohibitive factor.

The alternative approach is to do an additional recursion which runs in reverse
time and starts with x̂N :

x̂k = arg max
xk

{Sk(xk) +Bk(xk, x̂k+1)}.

This approach requires more computation, but minimal memory. In this work,
the former of the two approaches has primarily been used.

Computing the most probable trajectory is involved when compared to comput-
ing the mean or the mode track. However, the drawbacks of both of the simple
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tracks are avoided because by including transition probabilities it is guaranteed
that X̂ is a valid track (see Figure 5.3).

If location uncertainty is heterogeneous in time, which is often the case for
HMMs, it is difficult to visualise trajectory and location uncertainty simulta-
neously. Furthermore, for long data series adding uncertainty information to a
trajectory plot is more likely to confuse than guide the reader since confidence
bounds may overlap. Instead, by generating a number of likely trajectories, the
variation around the estimated track can be visualised.

5.3.2 Distribution plots

The full posterior probability density of an SSM is the density of all locations
conditional on all observations, i.e. p(x1, . . . ,xN |ZN ). The dimension of the full
posterior is 2N . For HMMs, where the state-space is discretised, φ(tk,ZN ) is a
vector containing the marginal distribution of the location at time tk. Say the
full posterior distribution Φ = P (X1 = x1, . . . ,XN = xN |ZN ) was calculated
and stored in a vector; the length of this vector would be nNxy. Even for small
problems (say nxy = 1000, N = 100) it would not be possible to store Φ.

Fortunately, the stochastic process underlying the posterior distribution is Mar-
kov. Consequently, the information in Φ can be accessed through its time-
marginals φ(tk,ZN ) provided by the HMM smoothing recursions. For example,
random outcomes of Φ can be generated (Section 5.3.1.2) and the mode of Φ
can be determined (Section 5.3.1.3).

An alternative to trajectory plots are distribution plots which highlight the
spatial variability of the the posterior distribution. The simplest distribution
plot is to view the time-marginals φ(tk,ZN ) in succession for increasing k, i.e. as
an animation. Alternatively a map of the space usage of the animal in the time
interval τ = {a, a + 1, . . . , b} ⊆ {1, . . . , N} can be constructed. The expected
time spent at a location xk in the time interval ∆k is ∆kφx(tk,ZN ). Therefore,
the vector containing the expected time spent for all locations in τ is

Rτ =
∑

k∈τ
∆kφ(tk,ZN ).

The residency distribution rτ is the normalised cumulative distribution related
to Rτ . The residency distribution (RD) indicates the space usage of the animal
by assigning a number between 0% and 100% to each location in the spatial
grid. Then, the contour line of the RD at, say, 15% encloses the smallest region
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Figure 5.4: Residency distribution rτ for a southern bluefin tuna. Green circle
is release location and orange square is pop-up location of the PSAT tag. The,
say, 50% contour (orange colour) encloses the smallest region where the animal
was expected to spend 50% of its time.

where the animal was expected to spend 15% of its time (see Figure 5.4). The
following commands in Matlab compute rτ from Rτ :

R_normalised = R_tau/sum(R_tau);

[R_sort,indices] = sort(R_normalised,’ascend’);

R_sum = cumsum(R_sort);

r_tau = zeros(size(R_tau));

r_tau(indices) = R_sum;

Distribution plots are useful in showing the spatial variability of the animal’s
location while disregarding temporal patterns. Conversely, trajectory plots high-
light temporal correlation of the movement. It is therefore important to always
consult both trajectory and distribution plots when synthesising the posterior
distribution.

5.4 Markov switching

Marine animals adapt their movement in response to environmental and phy-
siological factors. To obtain reliable movement estimates it is important to
implement a model which includes different types of movement behaviours such
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as migratory or resident. This increases the flexibility of the model and provides
a higher level of inference since focus is not only on the animal’s location, but
also on its behaviour.

Markov switching is a technique known from the analysis of regime shifting time
series, i.e. data for which the underlying model dynamics appear to shift between
n separate models. The switching dynamics is modelled by a Markov process
with n states. In the HMM framework Markov switching is incorporated by
simply adding a new hidden state Ik which represents the internal behavioural
state of the animal at time tk. The switching HMM has nnxy states. Typically
n = 2 with a state representing slow movements and a state representing fast
movements. This has a clear biological interpretation as resident and migratory
behaviour. Estimation of a model with n > 2 requires highly informative and
frequently sampled data and is not necessarily tractable in practice.

The general movement model including the behavioural state is

Xk+1 = g(Xk, Ik, εk). (5.14)

Often, the behavioural state is “fully hidden”, because it must be inferred con-
ditional on the estimated movement (see Figure 5.5). If available, auxiliary data
of the physiological state of the animal can be used to indicate possible shifts
in movement behaviour. As of yet, only few tags provide this type of data. So
in this work the behavioural state is always fully hidden.

The switching HMM has a set of movement parameters for each of the n be-
havioural states. In continuous-time the behavioural process is parametrised by
the switching rates λij , which are the probability of switching from behavioural
state i to j in an infinitesimal time-step. The forward Kolmogorov equation
including behavioural switching is

∂pi
∂t

= −∇ · (uipi −Di∇pi) +
∑

j

λjipj , (5.15)

where pi, Di, and ui are the density and parameters related to behavioural state
i. Analogous to the non-switching model, the generator G of the movement
and behaviour process can be constructed from (5.15). Since G is a nnxy ×
nnxy matrix this approach may not be computationally feasible. Instead the
behaviour and movement processes can be treated separately by their respective
generator matrices Gb and Gm

i and corresponding transition matrices Pb
k and

Pm
i,k for the time-interval ∆k. The time-update step of the filter (5.9) is then

split into a behaviour and a movement update
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· · · Ik−1 Ik Ik+1 · · ·

· · · Xk−1 Xk Xk+1 · · ·

Zk−1 Zk Zk+1

Figure 5.5: Dependence structure of a state-space model with behavioural
switching. Ik are fully hidden behavioural states because they can only be esti-
mated conditional on Xk (the unobservable location states) which are estimated
from Zk (observed data).

Ψi(tk,Zk) =

n∑

j=1

φj(tk,Zk)Pb
k(j, i), behaviour (5.16)

φi(tk+1,Zk) = Ψi(tk,Zk)Pm
i,k, movement (5.17)

where φj(tk,Zk) is the vector of spatial states related to behaviour j, and
Pb
k(j, i) is probability of jumping from j to i during ∆k. The updated state

probability vectors φi(tk+1,Zk) related to i ∈ {1, . . . , n} are then concatenated
to form φ(tk+1,Zk). The smoothing step (5.11) is changed analogously. This
separation approach involves taking the matrix exponential n times of a nxy×nxy
matrix and once of a n × n matrix. The alternative is to take the matrix
exponential once of a nnxy × nnxy which is more computationally costly.

Including the behavioural state has many advantages with respect to the infer-
ential potential of the model. The posterior distribution can still be visualised
using trajectories and distribution plots. A state sequence now also includes
the behavioural state. So the Viterbi sequence also provides the most likely be-
haviour switching sequence, however the fundamentals of the algorithm remain
the same. The smoothed estimate of the behavioural state can be visualised as
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Figure 5.6: Probability of a southern bluefin tuna displaying migratory be-
haviour estimated using pop-up data simultaneously with estimating location
(see Figure 5.3).

a simple line plot, which shows the probability of a certain behaviour through
time (see Figure 5.6). Moreover, the posterior distribution can be marginalised
in different ways similar to the residency distribution to reveal links between
behaviour and spatial regions. This is discussed further in Chapter 6.

5.5 Hierarchical modelling

Hierarchical models are used to capture the variability between individuals of
a population. In the context of tagging experiments the term population is
frequently used, but its meaning is somewhat ambiguous since it can refer to
both the population comprised by the tagged individuals of the specific study,
or to the population of which the tagged individuals are a sub-sample. Here,
the population term refers to the group of tagged individuals in the experiment.

Hierarchical modelling can be tackled from two angles: Jonsen et al. (2003) take
a Bayesian approach, where the hierarchical dependencies are modelled with
prior distributions. Models with mixed effects are the frequentist alternative
to the hierarchical Bayesian approach and relies on random effects to describe
the individual variability. The use of mixed effects models with HMMs is the
approach taken here.

Say data are available from M individuals of the same population. If the popu-
lation has parameter vector θ, then the parameter vector of individual i is

θi = θ +wi,
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θi|θ ∼ N(θ,W)
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Figure 5.7: Structure of a hierarchical model. The individual parameters θi are
generated from the population parameters θ and W.

where it is assumed that wi ∼ N(0,W). The random effects vector (wi) repre-
sents the deviation of individual i from the population. With this setup the aim
is to estimate θ, W, and wi for all i ∈ {1, . . . ,M} with maximum likelihood.

Now, Ni refers to the number of observations from individual i and Z(i)
Ni

refers
to all the Ni observations from i. The joint probability density of the random
effects and individual observations conditional on θ and W is

p
(
wi,Z(i)

Ni
|θ,W

)
= p

(
Z(i)
Ni
|θ,wi

)
p (wi|W) , (5.18)

by the definition of conditional densities and where p
(
Z(i)
Ni
|θ,wi

)
for each in-

dividual is given by (4.16) since θi = θ + wi (see Figure 5.7). The density in
(5.18) can be regarded as a likelihood function if it is viewed as a function of
random effects and the model parameters, i.e.

L(θ,W,wi) = p
(
wi,Z(i)

Ni
|θ,W

)
.

It is not straightforward to maximise L(θ,W,wi) so an iterative approach is
taken instead. With fixed θ and W the ML estimate of the random effects for
individual i is

ŵi = arg max
w

L(θ,W,wi). (5.19)

The contribution from individual i to the likelihood function for the population
parameters is found by marginalising over the random effects
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L
(
θ,W|Z(i)

Ni

)
= p

(
Z(i)
Ni
|θ,W

)
=

∫
p
(
wi,Z(i)

Ni
|θ,W

)
dwi.

Since individuals are conditional independent given θ and W, the likelihood
function conditional on data from all individuals is the product of the individual
likelihood contributions

L (θ,W|Z) =

M∏

i=1

∫
p
(
Z(i)
Ni
|θ,wi

)
p (wi|W) dwi,

where Z =
{
Z(1)
N1
, . . . ,Z(M)

NM

}
. Thus, the ML estimate of θ and W is

(θ̂,Ŵ) = arg max
θ,W
{L(θ,W|Z)} . (5.20)

A possible algorithm for the optimisations in (5.19) and (5.20) is outlined in
Pawitan (2001) and basically iterates between the two optimisation problems
similarly to the procedure of an expectation-maximisation algorithm. Some
modifications to this approach are required, however, because here the uncer-
tainty of the individual parameter estimates θ̂i vary among individuals.



Chapter 6

Results and discussion

This chapter summarises and discusses the main results documented in Pa-
pers A-F. The aim of the thesis was to investigate the use of theory from hid-
den Markov models (HMMs) in analysing general nonlinear state-space models
(SSMs) with emphasis on the analysis of movement data from fish. Therefore,
focus in this chapter will be on both the methodological and technical contri-
butions as well as the ecological results. Potential areas for future research are
also mentioned.

6.1 Methodological contributions

This section summarises the most interesting technical solutions that have emerged
during the course of this work.

6.1.1 General nonlinear state-space analysis

SSMs are used in the analysis of dynamical systems where some of the system
states of interest are observed with noise via related quantities. Monitoring
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dynamical systems in ecology always involves some uncertainty and these sys-
tems are therefore suited for state-space analysis. The work of this thesis was
motivated by the analysis of nonlinear ecological models for movement data. A
technique of discretising the continuous state-space and solving the filtering and
smoothing problem on the grid was used to deal with nonlinearities. Here, this
approach is termed the HMM method.

Paper E explains how the HMM method can be used to solve general non-
linear SSMs with Gaussian process and observation errors. The distributional
assumption is, in fact, not a requirement for the HMM to operate. Instead, the
main limitation of the HMM method is that the dimension of the state-space
must be below, say, four. This is because discretisation of a high-dimensional
state-space entails a large number of grid cells, which leads to prohibitively high
computational demands.

The Automatic Differentiation Model Builder (ADMB, Skaug and Fournier,
2006) framework is another alternative to state-space analysis (see Paper E).
The ADMB approach is efficient and is not restricted to low dimensional SSMs.
ADMB relies on two techniques: 1) the integrals in the filtering and smooth-
ing equations (4.13) and (4.15) are computed using Laplace’s approximation
(Wolfinger and Xihong, 1997). For this approximation to be valid the shape of
the integrands must be close to quadratic in the log-domain. If the log inte-
grands deviate from the quadratic form, ADMB can instead employ importance
sampling to estimate the integrals at the expense of computing time. 2) in
optimising the likelihood function automatic differentiation is utilised to signif-
icantly increase accuracy and computing speed. Note, however, that ADMB
is less suited for the movement and behaviour problems of this thesis since
boundaries to the state-space (shore lines) and discrete distributions (behaviour
switching) cannot be incorporated.

The purpose of Paper E was to assess the estimation performance of the HMM
method, ADMB, and BUGS (which is a Markov chain Monte Carlo approach).
For the theta logistic population growth model (a nonlinear SSM), the timing
results pointed toward ADMB as the advantageous analysis framework. The
HMM method gave identical estimation results to ADMB, whereas BUGS was
less accurate in its parameter estimates. Judging from the conclusion of this
study, it is somewhat surprising that ADMB and HMM have been largely over-
looked by published state-space analyses. The reason, as argued in Paper E,
is probably that larger effort has been invested into making BUGS generally
accessible via the user friendly WinBUGS (Spiegelhalter et al., 1999). In ad-
dition BUGS has fewer assumptions (e.g. state dimension, quadratic form of
integrands) that limit its applicability.

Approaches similar to the HMM method have previously been considered by
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other authors (Bucy and Senne, 1971; Kitagawa, 1987; Zucchini and MacDon-
ald, 2009). However, its use in the literature on nonlinear time series analy-
sis has thus far been outshone by sequential Monte Carlo (SMC) methods or,
equivalently, particle filters (PFs). In future work it would be interesting to in-
vestigate how PFs perform in comparison with the three alternatives mentioned
above. Such a study should encompass a wide range of SSMs that challenge the
assumptions of the different approaches, for example the widely analysed SMC
benchmark problem (Example 1 in Cappé et al., 2007), and the four dimensional
bearings-only tracking problem (Gordon et al., 1993).

6.1.2 State-space analysis with the finite element method

The stochastic differential equation (4.8) is a possible model for the movement
of an individual in continuous time. Since the movement, to some degree, is
random its evolution must be described in probabilistic terms via for example
expectations and variances. However, because the relation between movement
and observed data, as defined by the observation equation (4.9), is nonlinear a
moment representation is insufficient. Instead, a non-parametric version of the
probability density of the location is more appropriate.

The temporal evolution of the probability density of the state is expressed by
the Kolmogorov forward equation (5.6), which is a partial differential equation
(PDE). As noted in Section 5.2.1, there are several methods available to solve
PDEs. Paper C investigated the use of the finite element (FE) method to
solve (5.6). An advantage of the FE method is that it operates on an irregular
discretisation of the state-space. This feature is beneficial if it is important to
accurately model boundaries to the state-space (see Figure 6.1). With the FE
method it is also simple to implement any type of boundary conditions (e.g.
reflecting, absorbing).

Using the FE method in a filtering and smoothing context is uncomplicated
once the FE machinery is set up. All the HMM procedures remain the same
with the exception that forward and backward time updates are handled by the
FE solver. Setting up the FE solver, however, is a non-negligible task. The
irregular mesh increases flexibility and accuracy of the solution, but can, for the
same reason, be demanding to construct.

Paper C used the open-source software Triangle (Shewchuk, 1996) to triangulate
the model domain. Boundary geometry (shorelines) was extracted from the
mapping package in Matlab and imported into Triangle. It is advisable to start
with a relatively coarse grid to compute a crude solution to the smoothing
problem. Then, using Triangle the mesh can be refined in regions that require
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Figure 6.1: Probability density of the location of a cod in the Baltic Sea cal-
culated with the finite element method. Note that the triangulated mesh ac-
curately reproduces the geometry of the landmasses. Note also that the mesh
has been refined in the sound between Denmark and Sweden (Øresund) because
the external data fields (salinity and bathymetry) have large gradients in this
region that need to be accurately resolved.

higher accuracy (see Figure 6.1).

The idea of using the FE method in filtering and smoothing of continuous-time
nonlinear SSMs is novel. Paper C showed that the FE method was superior to a
PF in approximating the state probability density of an SSM. The performance
in estimating mean and variance for the two methods was identical.

In general, the FE computing time depends on the number of nodes in the
mesh, which in turn grows exponentially in the state-space dimension for a
fixed resolution. Consequently, the technique is limited to state-spaces with
dimension below four. The FE approach therefore has its primary application in
the analysis of one to three dimensional problems, where one wishes to compute
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the full probability density.

The highly nonlinear geolocation scenario analysed in Paper C is an example of
a problem which is advantageous to handle with the FE method. A somewhat
different application illustrating the potential of the method is the tracking of
persons inside houses (Kjærgaard et al., 2010). Here, the FE method’s ability
to handle boundaries is important to realistically capture the geometry of the
space where movement is possible. In the case of emergency situations (e.g.
conflagration, earthquake) where the interior of the building may shift, the FE
method could (possibly) be used to estimate the modified interior arrangement
from observed person movements inside the building. Such information would
be particularly valuable in planning the line of approach for entering rescue
personnel.

6.2 Ecological contributions

This section emphasises the ecological relevance of the methods developed in this
work. Focus is on the geolocation problem, behaviour estimation and population
level analysis.

6.2.1 The geolocation problem

Estimating the geographical location of an individual is the most fundamental
problem of movement data analysis and is often termed the geolocation problem.
In analysing movement data with the purpose to estimate individual location
it is important to acknowledge that observations are noisy and autocorrelated.
SSMs not only account for autocorrelation in data, but use it to propagate
strength from informative observations to uncertain observations. In addition,
SSMs separate data uncertainty into movement related uncertainty and obser-
vation related uncertainty. As discussed in Section 3.1 many different types of
SSM analyses have been proposed to tackle the geolocation problem. Paper B
explains how the HMM method can be used to analyse SSMs for individual
animal movement.

One of the main advantages of the HMM approach is that the filtering and
smoothing equations are solved non-parametrically on a spatial grid. This fea-
ture is useful when geolocating movement data with spatially or temporally
heteroskedastic errors as in tidal or sea surface temperature (SST) data. With
these types of data the observation equation (4.4) or (4.9) becomes nonlinear
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which prohibits the use of Kalman filter (KF) approaches unless approximations
are made (Nielsen et al., 2006). Often, oceanographic data such as SST or tidal
variations are already provided non-parametrically on a spatial grid. It is there-
fore straightforward to use such data with the HMM method without the need
for (further) approximations.

Paper A applied the HMM framework explained in Paper B to Atlantic cod
(Gadus morhua) in the North Sea. The North Sea has a complex amphidromic
system, i.e. there are large spatial differences in the tidal pattern, which en-
able accurate geolocation of bottom dwelling species. Previously, good location
estimates were obtained with a heuristic approach, the tidal location method,
although geolocation uncertainties were not quantifiable with this method (Met-
calfe and Arnold, 1997; Hunter et al., 2004). The use of HMMs was in this
respect a major advance in particular because tidal data are ambiguous, i.e.
identical tidal patters can occur at multiple separate locations simultaneously
(see Figure 4, Paper A). If possible the HMM method eliminates multimodal-
ity in the estimated probability distributions by supplementing information at
tk with information from before and after tk. In this way the autocorrelation
between observations becomes an advantage.

A feature of the HMM method is that random tracks can be generated from the
posterior distribution. This was utilised in Paper A to estimate the probability
of a cod moving between different management regions. The inferential potential
of random track generation is considerable because ecological events, which from
a modelling perspective seem unmanageable, can be assigned a probability of
occurring. Another example in this respect is the timing of migrations from one
habitat to another. This can be estimated by generating a batch of random
tracks and then calculating the empirical distribution of the time the fish leaves
the region of interest. Figure 6.2 shows such a departure time distribution for the
southward migration from 118◦E, 36◦S for the southern bluefin tuna analysed
in Paper D (see also Figure 6.3).

The only serious alternative to the HMM method in solving highly nonlinear
geolocation problems is the particle filter (PF) method described in Royer et al.
(2005); Andersen et al. (2007). The PF works in continuous space and does
not require a discrete gridding of the state-space. Thus, it is relatively simple
to implement in its basic form. Often, however, a complete analysis requires
estimation of parameters and smoothed state probabilities. While these features
are possible with the PF they require prudence to incorporate. Conversely,
for the HMM method the main effort lies in the implementation of the basic
components (time and data update steps) whereas incorporation of subsequent
parameter estimation and smoothing is simple but important.

Paper B uses the convolution approach to propagate state probabilities in time
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Figure 6.2: Departure time distribution of a southern bluefin tuna from a resi-
dency region at (118◦E, 36◦S). A total of 10000 random tracks were generated
and for each track the departure time in the interval from 17 December 2003 to
22 January 2004 was noted. Clearly there is a higher probability that the fish
departed the region toward the end of the time interval.

(see Section 5.1). This method is only advantageous to use if boundary con-
ditions can be ignored because then the fast Fourier transform can provide an
accurate approximate solution. Ignoring boundary conditions actually implies,
in the context of the convolution operation, that absorbing boundaries are im-
posed at the coast lines. This leads to “leaking” of probability mass at these
boundaries which is unfortunate. Reflective boundaries preserve probability
mass in the domain and thus gives a more realistic solution. However, these
cannot be easily implemented with the convolution approach. Having the cor-
rect boundary conditions is particularly important when data is uninformative
because this increases the likelihood that boundary leaking will occur. An ex-
ample of this is tracking of cod in the Baltic Sea (Paper C). Because spatial
gradients in the observed data (depth and salinity) are relatively insignificant
there will be a tendency to boundary leaking. Furthermore, the shoreline ge-
ometry, particularly in the Western Baltic, is tortuous with many islands and
straits, which complicate matters for the convolution based HMM approach. As
discussed in Section 6.1.2 the FE method is a novel technique to correctly deal
with complicated boundary geometry in geolocation problems.

The distributional approach to visualising movement as presented in Paper D
adds a new degree of detail to the analysis of geolocation results. The so-
called residency distribution (RD, see Figure 5.4) can be calculated by summing
time marginals of the posterior distribution over time. The RD summarises the
overall movement of the individual and provides regional bounds corresponding
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Figure 6.3: Residency distributions at different time periods for a southern
bluefin tuna south of Australia. The temporally divided plots highlight the
tuna’s seasonal usage of space.

to the expected proportions of time spent. The RD can be separated into
multiple shorter time periods to identify geographical regions that are important
during different seasons (see Figure 6.3).

There is a general consensus among ecologists that the main challenges involved
in the geolocation problem have been overcome by now, and that further im-
provements to geolocation precision are more likely to be obtained through new
types of data rather than more developed methodology (Patterson et al., 2009).
So, while researchers wait for acoustic, magnetic, and accelerometer data, focus
in modelling has gradually shifted to the use of geolocation as a building block
for behaviour and population estimation.
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6.2.2 Behaviour estimation

While the location of a fish conveys ecologically useful knowledge it is also
important to assess possible motifs for the animal to visit this location. Paper A
categorized depth data of Atlantic cod (Gadus morhua) into different behaviour
types prior to the geolocation analysis. This was possible because data were
frequently sampled (10 minute intervals) and highly informative. For other
data types (e.g. pop-up data) the situation is not so fortunate and behaviour
must be estimated simultaneously with geolocation.

Methods for estimating behaviour have been developed for terrestrial animals
(Morales et al., 2004) and marine mammals (Jonsen et al., 2005) that can be
tracked with GPS or Argos techniques. The switching HMM method presented
in Paper D is inspired by these approaches, but also works with indirect (non
positional) and/or ambiguous data from archival and pop-up tags.

The simplest categorization of horizontal movement behaviour is as either resi-
dent or migratory. Commonly in the literature, behaviour estimation results are
illustrated with colour coded movement trajectories. This representation does
not convey the location uncertainty, which is always present in state-space mod-
elling. Paper D conditioned the estimated RD on different behavioural states
and computed realistic regional confidence bounds, which explicitly linked be-
haviour and location. As shown, resident behaviour often occurs in relatively
confined “hot spots” whereas migratory behaviour entails higher uncertainty
in location estimates and therefore wider regional bounds (see Figure 3 in Pa-
per D).

In estimating behaviour from movement it is common in the literature to restrict
estimation to only two different states even though expanding the behaviour
state-space is theoretically straightforward. The migratory state has a clear
biological interpretation as a transition toward a new habitat. The resident
state, on the other hand, can represent several types of more specific behaviour
such as localised search, spawning, resting, foraging etc. How categorization of
the resident state into possible sub-states should proceed is likely to be species
and data dependent. Dividing the resident behaviour into a foraging state and a
resting state, would require highly detailed movement data or auxiliary covariate
data (Patterson, 2009). The majority of marine animal studies lack such data,
but tags with physiological sensors are becoming increasingly common.

Paper F considered a simple three state behaviour model. While the main focus
of that report was on population modelling, the accurate and highly detailed (1
minute interval) acoustic telemetry data enabled pike behaviour to be catego-
rized into “resting”, “cruising” or “aggressive” (without simultaneous estimation
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of movement). As in Patterson et al. (2009), the stationary distributions of the
switching Markov chain was used to summarise the overall behaviour of the
individuals. Resting and cruising states were much easier to detect since they
are processes with longer duration and low energy cost. In contrast, aggressive
movements happen in short bursts. Thus, frequent sampling is essential if such
patterns are to be captured.

In the analysis of movement data the combination of SSMs and switching mo-
dels is a natural way to incorporate behaviour. Since the HMM method already
uses hidden discrete states in estimating location it is simple to extend it with a
discrete behavioural state. It is advantageous that the switching HMM provides
a probability distribution of the behavioural state instead of a strict categoriza-
tion. The behaviour probabilities ensure a “soft” classification of behaviour, i.e.
that the effective behaviour of the animal is a weighted average of the diffe-
rent behavioural states. This enables the model to capture a display of mixed
behaviour.

Using covariate data (e.g. environmental, physiological, time, space) improves
the ability of the framework to predict animal behaviour in different regions
but under similar conditions. Estimation of increasingly complicated behaviour
models, however, will entail higher computational demands and raise issues with
respect to convergence and identifiability of parameters. These are important
topics to address in future studies.

6.2.3 Population analysis

Ecologists are interested in jointly analysing tagging data from multiple individ-
uals to capture population patterns. How to model a population with individual
data depends on the specific purpose of the study. This thesis focused on po-
pulation modelling with mixed effects models to explain variability between
individual HMMs. The principle of mixed models is that when individuals from
the same population are spawned they inherit the population characteristics
(the fixed effect) with some individual perturbation (the random effect).

A major challenge of mixed effects modelling is how to parameterise the in-
dividual model. The simulation study in Paper F assigned random effects to
the movement parameters of a biased random walk. This parameterisation
was convenient in verifying the estimation properties of the mixed model HMM
framework. When analysing real data, however, it can be difficult to ecologically
interpret the diffusivity and advection parameters. In the three state HMM for
acoustic telemetry data in Paper F the stationary state probabilities were the
parameters used for population inference. These parameters can be ecologically
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interpreted as indicators for the time spent in each behavioural state. With
the mixed model framework it was furthermore possible to statistically identify
individuals that deviated in behaviour from the rest of the tagged population.
This feature is useful in the study of possibly mixed populations.

One way to link behaviour to space is via spatially dependent covariates such
as spatial coordinates, SST, bathymetry, sediment type, salinity, oxygen con-
centration, prey availability, risk of predation etc. Which of these quantities
that are relevant depends on the specific study. As shown by Patterson et al.
(2009), covariate data are theoretically simple to incorporate into HMMs by
allowing the transition probabilities (or transition rates in continuous time) of
the Markov chain to be a function of for example SST. Including covariate in-
formation, however, leads to an increase in the number of model parameters
and thus to growing computational requirements. This issue will diminish as
computer technology advances, though.

An HMM supported by spatial covariates could potentially be used to iden-
tify similarities in behavioural responses to these variables among and between
groups of tagged individuals. Furthermore, using covariates, population be-
haviour can be linked to spatial regions. All spatial covariate data are observed
with error and may also be partially or entirely unobservable (for example prey
field). Unfortunately, the magnitude of the observation error is rarely known
except in certain cases where it can be estimated empirically (Musyl et al., 2001;
Patterson et al., 2010). In addition, many of the potentially useful covariates are
unevenly sampled dynamical processes with large temporal and spatial variation.
For example, SST fields monitored by satellites require temporal and spatial in-
terpolation owing to cloud cover interference. Moreover, the heterogeneity of
the SST field (fronts, eddies, etc.), necessitates spatial smoothing of the satellite
observations to even out small scale disturbances. Obviously, the induced error
from these operations propagates through the estimation procedure and inflates
the uncertainty of estimated individual movement. Unfortunately, these issues
are difficult to ameliorate. Instead, their presence must be acknowledged and
dealt with in the modelling phase.

Movement and behavioural processes of individual animals are also influenced by
intrinsic processes (Nathan et al., 2008). The majority of the intrinsic physiolo-
gical processes (at least for fishes and marine mammals) remains unobservable.
However, advances in tag technology are made which, for example, enable vis-
ceral warming to be monitored and used as a covariate in behaviour modelling
(Bestley et al., 2008). In this way a link between the physiological state of the
animal and different environmental covariates can be mobilised and utilised for
population inference.

In tagging marine animals, it is difficult, if at all possible, to take a represen-
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tative sample of the population one wishes to study. Therefore, it is doubtful
whether it is reasonable to make inference outside the population of sampled
individuals. Still, several sub-population studies providing similar results would
make extrapolation beyond the tagged population increasingly fair. Variabil-
ity between individuals can be significant even at the sub-population level. It
is therefore important in the design phase of the experiment to ensure that a
statistically sufficient number of individuals is tagged. The problem of an insuf-
ficient sample size is crucial because if the information one seeks is not available
in the data then one can never hope to extract it.

6.3 General discussion

Here, a couple of general topics relevant to the statistical analysis of movement
data will be discussed.

6.3.1 Movement models

Statistical models for describing marine animal movement is a fundamental topic
related to state-space modelling of movement data. In the literature the two
most prevalent movement models are

• The biased random walk (BRW) (Andersen et al., 2007; Jonsen et al.,
2006; Lam et al., 2008; Nielsen et al., 2006; Sibert et al., 2003). This is
the movement model used in this work, see Chapter 4 and Papers A-D.

• The correlated random walk (CRW) (Johnson et al., 2008; Jonsen et al.,
2005; Royer et al., 2005), which incorporates directional correlation of the
movement.

The CRW has been presented as a natural descriptor of animal movement (Jon-
sen et al., 2005) and is sometimes parameterised by the step length and turning
angle of the individual (Morales et al., 2004). An alternative parameterisation of
the CRW is to extend the BRW model so the future location not only depends
on the present, but also the location before that, i.e. a second-order Markov
process. The step length and turning angle or alternatively the velocity are
ecologically intuitive quantities. In contrast, the diffusion and advection pa-
rameters of the BRW can be more difficult to interpret, although it is possible
to relate these parameters to an expected step length via (4.7).
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An important difference between the two movement models is that the CRW
is able to capture directional persistence. This property is advantageous in
time periods where the animal displays migratory behaviour. The BRW has
a similar feature in that the drift (advection) parameter will impose a trend
in the movement. The difference is that the trend is constant, which makes it
an inappropriate model for cyclic movements. Allowing the drift parameter to
be a function of time (e.g. piecewise constant) would give more flexibility but
also increase the total number of model parameters. Alternatively, by using the
switching model described in Paper D temporal variation in the parameters is
allowed thus increasing the realism of the model.

While the CRW is the preferred model from an ecological viewpoint it is some-
what more complicated to implement than the BRW. Using the CRW with the
HMM method is possible, but requires that both location and velocity domains
are discretised. Gridding four state dimensions results in a large total number
of states. Even if the velocity can be coarsely discretised, memory requirements
and calculation time of a CRW HMM are likely to be prohibitively high.

The simplicity of the BRW may seem an inadequate descriptor of animal move-
ment. However, the BRW is flexible and therefore able to accommodate rapid
changes in location. This makes it particularly powerful in estimating location.
On the other hand, for prediction and simulation without data the BRW is too
naive. Yet, by maintaining the simplicity of the fundamental building block (the
movement model), estimation of complicated problems as in Paper A, C, and D
is made possible.

When the information content in data increases the estimated movement is
largely determined by the observations and to a smaller extent the specific model
for movement. With tidal data, and to some degree pop-up data, it is unlikely
that the estimated overall movement would change significantly if estimated
using a CRW instead of the BRW. For the data in Paper A and Paper D though,
this is a hypothetical situation since no alternative methods are able to carry
out such analyses unless the problem nonlinearities are mitigated.

A third movement model also deserves attention: it has been argued that Lévy
walks (random walk with Lévy distributed steps) in certain scenarios represent
the optimal search strategy for animals (Viswanathan et al., 1999). The valid-
ity of this conclusion has been questioned by other authors (Benhamou, 2007;
Plank and Codling, 2009) and is a topic of an ongoing debate among movement
ecologists. Irrespectively, it should be noted that Lévy walks can be used in
an SSM context (Sornette and Ide, 2001), however thus far no state-space anal-
yses of marine animal movement data using Lévy walks have been published.
Also, though observed movement may in some cases fit well with a Lévy model,
the ecological interpretation of the estimated parameter (the Lévy exponent) is
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somewhat unclear. Conversely, a switching random walk model, which is the
frequently suggested alternative to the Lévy walk (Benhamou, 2007), intuitively
represents two types of behaviour: extensive and intensive searching. A further
advantage of switching models is that, if available, covariate data can be in-
cluded to identify possible environmental or physiological triggers of behaviour
shifts.

6.3.2 Prospects of tag development

Forthcoming advances in tag technology are expected to (yet again) revolu-
tionise ecologists’ understanding of the movement and behaviour of marine ani-
mals. Tags measuring magnetic field strength in three dimensions are already
available and can, if gradients in the magnetic field are available, provide sup-
plementary information to improve geolocation estimates. Along the same lines,
including recordings of compass direction will relax the need to estimate turning
angle when using a CRW movement model. This reduction of the state vector’s
dimension may significantly improve the practicability of the CRW in relation
to the HMM method.

Recent developments in accelerometer technology enable electronic tags to record
the acceleration of the individual and therefore also the orientation in relation
to the gravity vector. This feature can aid geolocation estimates because by in-
tegrating the accelerometer signal one obtains estimates of velocity and location
(Wilson et al., 2008). This, so-called dead reckoning technique, has the disad-
vantage that location errors cumulate over time. Therefore, correct modelling
of estimation uncertainty is crucial. Accelerometer recordings could also lead
to more detailed behaviour estimation since, for example for fishes, tail beat
frequency could be calculated and potentially linked to different activities such
as foraging or spawning.

Currently, the only way to retrieve acoustic data is via transmission to a lis-
tening buoy. Therefore, acoustic tags are primarily deployed on marine species
which have a relatively limited movement range. However, recent developments
have allowed tags to both transmit and receive data. These so-called business
card tags (BCTs) are able to detect other acoustic tags (including BCTs) in
their proximity and store the tag IDs and time of detection on board (Holland
et al., 2009). Unfortunately, at the current stage of development the BCTs
have considerable battery requirements. In addition the tags must be recovered
physically to access the recorded data. Yet, when the technology matures these
impediments are likely to be mitigated.

A BCT records encounters with other tags but is not able to spatially pinpoint
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where these events occurred. Including BCT data in the geolocation method
presented in this thesis would enable investigators to obtain an estimated loca-
tion for the detection event. Further advances to the BCT technology would
allow tags to share their information and thereby improve the probability of
retrieving data from both tags. Moreover, since observations from the two tags
would be correlated a joint analysis could improve individual estimates. Ulti-
mately other tag types such as archival tags or PSATS could benefit significantly
from the business card technology and greatly enhance the cost effectiveness of
future tagging studies.

Studies using tags with the ability to monitor physiological variables are emerg-
ing (Bestley et al., 2008; Papastamatiou et al., 2007). Supplementing a move-
ment and behavioural analysis with for example feeding data could potentially
allow sub-categorization of the behavioural model. Then, using the visualisation
techniques presented in Paper D, regional bounds for possible feeding grounds
could be highlighted.

The many novel types of data also entail a growing requirement for careful
experimental design of tagging studies. To facilitate the statistical analysis
ground truthing and uncertainty assessment of the new data types are important
to realistically evaluate the potential inference of tagging projects. Using the
HMM method it is in fact relatively straightforward to assess the expected
geolocation uncertainty in a region of interest prior to tagging. This can be done
by discretising the region and the computing the data likelihood distribution
for a hypothetical but probable observation. While this approach is simplistic
it could be a first step toward rigorous methods for planning future tagging
missions.
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Chapter 7

Conclusions

The analysis of data from electronic tags related to the location of marine ani-
mals is a developing field of research. Numerous methods have been developed
for specific species, specific types of data or specific geographical regions. Still,
the field lacks a framework which integrates the facilities of the specialised meth-
ods. This thesis illustrated the versatility of hidden Markov models (HMMs) as
a statistical framework for analysing movement data from electronic tags. The
use of HMMs in this context also led to investigations of the relationship be-
tween stochastic differential equations (SDEs), HMMs, and partial differential
equations (PDEs).

An SDE observed with noise is equivalent to an HMM in continuous-time. Thus,
theory from both fields can be used in the analysis of the SDE/HMM. The
Kolmogorov forward equation is a PDE which describes the evolution in time of
the state probability density of an SDE. Discretising and solving this PDE with
numerical methods is identical to the time-stepping procedure of a finite-state
Markov chain which, in turn, is the driving mechanism of an HMM. In this
work the technique of employing HMM theory to analyse a discrete state SDE
observed with noise is termed the HMM method.

The HMM method was employed to analyse simulated movement data (depth
recordings) to demonstrate the its ability to estimate geographical location (ge-
olocation). Using the HMM method, a study of highly informative real data
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from cod in the North Sea allowed location to be accurately estimated from tidal
cycles present in the depth record retrieved from an archival tag. Furthermore,
the study utilised the technique of generating random movement trajectories
from the posterior distribution of the fish’s location. This technique is useful
for estimating the probability of events that are otherwise somewhat intangible.
For example, the probability that the fish enters a specific geographical region
within a certain time period.

The finite difference method is the simplest approach to solve the Kolmogorov
forward equation. For geolocation problems, however, it is not always suffi-
ciently accurate. Especially for regions close to shore lines, when analysing
uninformative movement data, the probability density can be poorly approx-
imated. Therefore, the use of the finite element (FE) method to solve the
Kolmogorov equation was investigated as an alternative to finite differences.
The FE method is suited for solving PDEs on irregular grids which are able to
closely approximate complex boundary geometries. The approach of using the
FE method to analyse SDEs is novel and is particularly suited for state-space
dimensions below four.

The performance of the FE method for density estimation was compared to a
sequential Monte Carlo method (particle filter) on a simple Brownian bridge
problem. Archival data from a cod in the Baltic Sea contain limited movement
information since gradients of depth and salinity are either small or scarce in
number. Also, the shore line geometry of the western Baltic Sea is complex with
numerous islands and narrow sounds. The FE method was used to analyse this
difficult problem and improved the results as compared to alternative methods.

Estimation of animal movement behaviour is a complex task in general. By
analysing an HMM which simultaneously estimates movement and behaviour
it is possible to highlight the periods in time where the animal displays either
resident or migratory behaviour. Specifically, the probability of being in either
of the behavioural states can be estimated and simultaneously linked to spatial
regions. This methodology was employed to classify the movement of southern
bluefin tuna to reveal possible migration routes.

Most tagging studies are conducted with the intention to clarify hypotheses
about certain species. Analysis of individual fish can provide this at some level.
However, simultaneous analysis of data from multiple fish of the same species
admits inference directly at the population level. Mixed effects modelling is
an appropriate statistical method for joining individual HMM analyses. This
approach was taken to gain insights into the behaviour of pike using “time of
day” as covariate.

The work with HMMs inevitably branched into the study of alternative methods
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for analysing nonlinear state-space models (SSMs). Arguably the most popular
method within the field of ecological modelling is Markov chain Monte Carlo
owing to its availability in the free software WinBUGS, which builds on the mod-
elling language BUGS. The open-source software AD Model Builder (ADMB) is
an overlooked alternative for analysing nonlinear SSMs. In a comparison of the
estimation accuracy of BUGS, HMM, and ADMB it was concluded that the two
latter outperformed the former. As for computational efficiency, ADMB proved
to be superior.

Overall, this work illustrated the use of HMMs for advanced analysis of move-
ment data from marine animals. In the near future increasingly informative
data will be available as tag technology advances. Including physiological mea-
sures such as stomach temperature and tail beat frequency can add a new degree
of detail to the estimation of behaviour. Accelerometer and compass data can
improve geolocation accuracy and aid in classifying apparent resident behaviour
into sub-categories such as foraging and spawning. Incorporation of such new
information into existing HMM methods is uncomplicated and will hopefully
provide the ecological knowledge needed to aid threatened species.
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Geolocation of North Sea cod (Gadus morhua)
using hidden Markov models and behavioural
switching

M.W. Pedersen, D. Righton, U.H. Thygesen, K.H. Andersen, and H. Madsen

Abstract: When geolocating fish based on archival tag data, a realistic assessment of uncertainty is essential. Here, we de-
scribe an application of a novel Fokker–Planck-based method to geolocate Atlantic cod (Gadus morhua) in the North Sea
area. In this study, the geolocation relies mainly on matching tidal patterns in depth measurements when a fish spends a
prolonged period of time at the seabed with a tidal database. Each day, the method provides a nonparametric probability
distribution of the position of a tagged fish and therefore avoids enforcing a particular distribution, such as a Gaussian dis-
tribution. In addition to the tidal component of the geolocation, the model incoporates two behavioural states, either high
or low activity, estimated directly from the depth data, that affect the diffusivity parameter of the model and improves the
precision and realism of the geolocation significantly. The new method provides access to the probability distribution of
the position of the fish that in turn provides a range of useful descriptive statistics, such as the path of the most probable
movement. We compare the method with existing alternatives and discuss its potential in making population inference
from archival tag data.

Résumé : Lorsqu’on fait la géolocalisation de poissons à partir de données provenant d’étiquettes à archivage, il est essen-
tiel d’obtenir une évaluation réaliste de l’incertitude. Nous décrivons ici l’utilisation d’une méthode nouvelle basée sur
l’équation de Fokker-Planck pour faire la géolocalisation des morues franches (Gadus morhua) dans la région de l’Atlan-
tique Nord. Dans notre étude, la géolocalisation se base principalement sur l’appariement des patrons de marées dans les
mesures de profondeur lorsqu’un poisson passe une période de temps prolongée sur le fond de la mer avec la banque de
données sur les marées. Chaque jour, la méthode fournit une distribution non paramétrique de la position du poisson mar-
qué et ainsi elle évite l’imposition d’une distribution particulière, par exemple la gaussienne. En plus de la composante ti-
dale de la géolocalisation, le modèle incorpore deux états comportementaux, soit une activité forte et une activité faible,
estimés directement à partir des données de profondeur, qui affectent le paramètre de diffusivité du modèle et améliorent
significativement la précision et le réalisme de la géolocalisation. La nouvelle méthode donne accès à la distribution de
probabilité de la position du poisson qui, à son tour, fournit une gamme de données statistiques descriptives utiles, telles
que la piste la plus probable de déplacement. Nous comparons notre méthode avec les méthodes de rechange actuellement
disponibles et discutons de son potentiel pour faire des déductions à partir de données provenant d’étiquettes à archivage.

[Traduit par la Rédaction]

Introduction

The application of advanced statistics when analysing
data for tracking of marine animals has become increasingly
popular during recent years. This trend is closely linked to
the growing deployment of archival tags as data collectors
attached to or within the tagged individual. Tags deliver

highly accurate and oftentimes detailed information of the
immediate environment of the host animal in the form of,
e.g., depth, salinity, temperature, light, or oxygen content.
These data can be used to estimate location of individuals,
and so the introduction of electronic tags to the community
of marine biology has spawned several geolocation studies.
Heuristic methods vary in approach but typically focus on
narrowing down the ensemble of possible locations by com-
parison of observations with outputs from environmental
models (Metcalfe and Arnold 1997; Hunter et al. 2003; Neu-
enfeldt et al. 2007). The heuristic approaches to geolocation
yield reasonable and at times accurate position estimates but
do not fully exploit the autocorrelation of the observations,
which, in turn, may limit the applicability of the methods
when data quality is reduced.

Stochastic geolocation methods, i.e., methods assuming
that the individual moves according to some stochastic pro-
cess, have enabled the development of statistical tools to es-
timate horizontal movement of tagged fish and other animals
(Nielsen 2004). The random walk process is prevalent
within modelling of behavioural ecology (Okubo 1980) and
has proven to be proficient in describing marine animal
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movements (Deriso et al. 1991; Sibert et al. 1999). Geoloca-
tion based on light measurements is commonly used for pe-
lagic animals equipped with light-sensing tags (Welch and
Eveson 1999) but suffers from excessive variation in latitude
at periods of time close to the equinox (Musyl et al. 2001).
To this end, the Kalman filter can be used to exploit the cor-
relation of successive observations (Harvey 1989) and pro-
vide improved estimates of position. Furthermore, in
assessing the uncertainty of each daily position estimate, the
filter incorporates all observations to extract the maximum
amount of information from the available data material (Si-
bert et al. 2003).

The Kalman filter relies on a Gaussian error assumption
and therefore has the great advantage that it suffices to esti-
mate the mean and variance of the position to describe the
probability distribution on a given day. For geolocation of
marine animals in the open ocean, the Kalman filter works
well, but for fish moving close to shores, the parametric
method is inadequate because it is likely to assign nonzero
probability to dry land. A solution is the nonparametric par-
ticle filter method (Ristic et al. 2004), which simulates a
large number of particles (fish) according to behavioural as-
sumptions and environmental limitations, i.e., fish cannot
move onto land, thereby avoiding the problem that the Kal-
man filter has. The framework has for geolocation purposes
been applied to synthetic temperature measurements of the
bluefin tuna (Thunnus thynnus) in the eastern Atlantic Ocean
(Royer et al. 2005) and also Atlantic cod (Gadus morhua) in
the Baltic Sea (Andersen et al. 2007). A drawback of the
method is the enormous computational demands that arise
owing to the number of particles that need to be simulated
to obtain reliable parameter estimates (Andersen et al. 2007).

Methods of geolocation that are not based on light levels
have yielded some of the longest time series of positional
data to date (Hunter et al. 2005). Observations of wave pat-
terns in depth records owing to tidal variations have proven
to yield very accurate geolocations of, e.g., plaice (Pleuro-
nectes platessa) (Metcalfe and Arnold 1997; Hunter et al.
2004), thornback ray (Raja clavata) (Hunter et al. 2005),
and Atlantic cod (Righton et al. 2007; Gröger et al. 2007).
These methods are based on a comparison of the observed
tidal range and phase retrieved from the archival tag data
with predictions from a tidal forecast model. Detection of a
tidal pattern in the depth record from the tag implies an in-
active fish dwelling at or very close to the seabed: the tag is
thus recording the changing depth of the water column as
the tide rises and falls over the fish. At other times, when
fish are more active, tidal patterns are usually absent or dif-
ficult to detect with precision. Information about activity
levels and changes in geographic location is fundamental to
the analysis of behaviour modulation in demersal species
(Righton et al. 2000) and greatly aids with objective classi-
fications and interpretation of temporal and spatial differen-
ces in behaviour of individuals or populations (Hobson et al.
2007). It is at this point evident that, because cod and other
demersal fish exhibit considerable seasonally dependent
shifts in activity level (Turner et al. 2002), geolocating
methods require greater sophistication to allow for time-
varying changes in the behavioural state.

In the present study, we apply a direct Fokker–Planck-
based methodology (FPM) using hidden Markov models to

data from archival depth recorders attached to Atlantic cod
in the North Sea (Pedersen 2007; Thygesen et al. 2008).
The calculations were carried out on a laptop PC with the
HMM geolocation toolbox (available from www.imm.dtu.
dk/~mwp) for Matlab. Our aim was to obtain the most accu-
rate recontruction of the geographic movements of cod and
to describe these in terms of the estimated probability distri-
bution of the position of the fish during its time at liberty
and an estimate of the most likely route of migration. The
geolocation method uses the detectable tidal patterns to par-
tition the observed behaviour of the fish into two activity
states, each with separate movement parameters that are esti-
mated with the maximum likelihood method. Inferences on
foraging–migration behaviour can then be made from the
estimated parameter values, and the significance of the two-
parameter model compared with the usual one-parameter
model can be tested statistically in a likelihood ratio test. Us-
ing this method, we show that the uncertainty involved in
fish tracking can be reduced considerably, enabling the fine-
scale reconstruction of fish movements with a level of detail
and information that could ultimately be used in behaviour-
based models in fisheries assessment and management.

Materials and methods

In short, the geolocation technique applied here follows
the principle of state–space modelling and Kalman filtering
with time and data update steps but with the deviation that
no assumptions are made about linearity or Gaussianity of
the distribution of the states (Harvey 1989; Sibert et al.
2003; Patterson et al. 2008).

We assume that the fish performs a random walk in two-
dimensional space with diffusivity D. We take the random
walk to be isotropic (so that D is a scalar); we have no prior
reason to believe that the fish should have a direction pref-
erence, so we elect to keep the model simple and leave the
question of anisotropy to future studies. At time t, the fish
has position Xt in two dimensions and we represent the esti-
mate of this position explicitly by its probability density
function f(x, t), a function of two-dimensional position x =
(x1, x2) and time t. We discretize space on a quadratic grid
over the North Sea; details will be given in the following
section. In the filter, the time update propagates the proba-
bility density f from the time of one measurement to the
time of the next by solving the Fokker–Planck equation:

@�

@t
ðx; tÞ ¼ D @2�

@x2
1

ðx; tÞ þ @
2�

@x2
2

ðx; tÞ
� �

This equation is solved numerically by finite-differences
using the distribution at the previous time step as the initial
condition. At time t of the next observation, some quantity
Y is measured to have the value y. In this paper, Y will ty-
pically be depth readings over the tidal cycle; details will be
given in the following section. The filter then performs a
data update using Bayes’ formula to modify the probability
distribution according to the information in the observation:

�ðx; tÞ7! 1

�t
�ðx; tÞLðY ¼ yjXt ¼ xÞ

Here, �t is a normalization constant, while L(Y = y|Xt = x)
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is termed the data likelihood and describes the probability
of the observation for each possible position. We shall ela-
borate on this term in the following section.

The two update steps are run recursively in a manner
analogous to the Kalman filter: first forward in time and
then backward to smooth the estimates (Harvey 1989). The
geolocations presented here rely on observations of depth
and tide (Hunter et al. 2003) complemented by the release
and recapture positions. The outcome of such a geolocation
is the probability distribution of the position of the fish at all
time steps throughout its time at liberty. For a mathematical
walk-through of the method, the reader is referred to Peder-
sen (2007) and Thygesen et al. (2008). Given the probability
distribution, it is possible to assess simply the most probable
track that the fish took during its time at liberty, i.e., the
mode of the joint distribution of all positions. To this end,
the Viterbi algorithm (Viterbi 2006) is applied; this recur-
sive algorithm provides the path through the states of a hid-
den Markov model that has the largest overall probability
given the observations.

Data
The archival tags used to collect the data material for this

study were of the type DST-Centi manufactured by Star-
Oddi (www.star-oddi.com) and the slightly larger LTD
1200 manufactured by LOTEK (www.lotek.com). The reso-
lution of depth measurements from the tags is approximately
0.05 m. The tags were programmed to record temperature
and pressure (converted to depth upon download) every
10 min. The temperature records were not used in the
present study. Fish to be tagged were caught by hook and
line and anaesthetized before tagging to minimize the trau-
matization of the individual. The tagging procedure is de-
scribed in greater detail in Righton et al. (2006). Data were
retrieved from the tags after return through the commercial
or recreational fishery.

The quantity and quality of tidal patterns in the resulting
cod depth records show large variation between and within
individuals. For example, the data record of cod No. 2255
(Fig. 1a) contains periods with smooth tidal patterns, periods
with noisy tidal patterns, and periods without tidal patterns,
making the tag well suited for the illustrative purpose of this
paper. The cod was released on 3 April 2001 at 52.448N,
1.788E and recaptured 87 km away on 6 February 2002 at
52.008N, 2.858E, yielding a total time at liberty of
311 days. To show the versatility of the method, a less opti-
mal data set from cod No. 1186 is also geolocated, which
was released on 11 March 2005 at 50.38N, 0.58E and recap-
tured 395 km away on 19 January 2005 at 538N, 48E, yield-
ing a total time at liberty of 315 days.

Tidal prediction model
The tides observed in the North Sea are mainly due to

forcing from the Atlantic Ocean through the English Chan-
nel and north of the British Isles. At a particular location
and time, the tide can be predicted by numerical forecast
models. Such models split the tidal variation into a number
of constituents that represent the characteristic modes of the
system. A superposition of all modes yields the resulting
wave that approximates the one observed in practice. For a
constituent k, the depth variation zk(t, x) at a fixed position,
x, is fully represented by the function

ð1Þ zkðt; xÞ ¼ AkðxÞ cos½!kt � �kðxÞ þ Gk�

where Ak(x) and qk(x) are amplitude and phase, respectively,
associated with this position x, uk is the angular velocity,
and Gk is the phase lag relative to time zero.

A forecast database from the Proudman Oceanographic
Laboratory that included seven constituents (M2, S2, N2,
K2, O1, K1, and M4) was used to predict tidal variations ac-
cording to eq. 1. The database covers an area from 488N to
608N latitude and from 128W to 88E longitude with a reso-

Fig. 1. Example of archival tag data and illustration of the tidal and behaviour classification. (a) Depth record from tag No. 2255. (b) Part
of the depth record for No. 2255 classified with respect to tidal information where the shaded regions mark the detected tidal patterns.
(c) Depth record classified with respect to activity level, where shaded area denotes low activity level, and open area denotes high activity
level. Note that the fish can have a high activity level although a tidal pattern is detected, e.g., around 24 October.
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lution of 1/98 latitude and 1/68 longitude, approximately a
12 km � 12 km grid. The North Sea tidal system is roughly
illustrated by observing its dominant constituent M2, which
has a period of 12.42 h (Fig. 2).

Tidal extraction method
The observed time series was preprocessed to identify

the time intervals in the depth record that contained a tidal
pattern (Fig. 1). The extraction algorithm worked by slid-
ing a 10 h window across the data and successively esti-
mating the best least-squares fit of a sine function to the
observations. The choice of window length is a trade-off:
a shorter window length increases the number of successful
fits but reduces the quality of each fit whereas a longer
window length generates fewer fits but each with more
statistical power. The window length of 10 h was chosen
because it captures most of the dominant 12.4 h tidal cycle
but also allows periods with tidal transport to be extracted.
Of the 144 possible fits within each 24 h interval, the sum-
mary statistics root mean square error (rmse), R2, and
amplitude were extracted and the best fit (lowest rmse)
was used as representative for this day. If the extracted
summary statistics of the best fit fulfilled the criteria that
rmse < 0.42 m, R2 > 0.85, and amplitude > 0.6 m, the cor-
responding observed tidal pattern was stored for use in the
data likelihood computation (see below). These limit values
are hand-tuned parameters that were chosen so that the
quality of extracted tidal signals was optimized. This tidal
extraction technique bears strong resemblance to the meth-
ods applied in Hunter et al. (2003) and Gröger et al.
(2007). If the criteria were not fulfilled, the maximum
depth observation within the 24 h interval was stored to
provide a means to confine the possible positions of the
fish on the given day.

Behaviour classification
Previous studies have shown that the behaviour of cod

tends to be divided into intervals of high and low activity
(Righton et al. 2001). Modelling this dual-state behaviour
with a single constant diffusivity would force the geoloca-
tion model to overestimate the uncertainty of the geoloca-
tion in some parts and underestimate it in other parts. In
addition, if the different periods of high and low activity
are not taken into account in the model, the diffusivity esti-
mate for the entire data set will depend on the quality and
type of the depth data and therefore make comparison of in-
dividuals difficult. As a partial solution to this, we extended
the state–space of the system with a new state variable de-
scribing the activity level of the fish, thus making compari-
sons between individuals much less subjective.

The activity state is a time-dependent indicator function
that, on a daily basis, is classified as either high or low.
The state is, in principle, hidden (not directly observable),
but to preserve the tractability of the problem, we estimated
the activity state directly from the observed depth record be-
fore the actual geolocation step.

For each day in the time at liberty, the activity state of the
fish is determined by testing the following hypotheses: H0:
the fish has a high level of activity (large value of diffusiv-
ity) and H1: the fish has a low level of activity (small value
of diffusivity). Only when H0 is rejected at a sufficiently
high level of significance can the small value of diffusivity
be applied.

Following this thread, we construct a test to determine
whether H0 can be rejected. The test works in a way similar
to the tidal extraction method by fitting a sine wave function
to the observed depth in a 16 h sliding window rather than
the 10 h window required for tidal data fitting. A fit con-

Fig. 2. Amphidromic system of the North Sea here illustrated by the M2 constituent. The thick lines emanating from the amphidromic
points are positions with a constant tidal phase relative to their numbering (hours). Intersecting perpendicular thin lines are positions with
constant tidal range, i.e., difference between high water and low water in metres.
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forming to the predefined limit values (see above) of rmse
and R2 rejects H0 and implies a low level of activity in the
current 24 h interval (Fig. 1). If H0 cannot be rejected, a
high level of activity is applied.

The algorithm relies on the assumption that a fish can
only perform a limited migratory movement within a 24 h
interval if it stays at the seabed for a continuous period of
at least 16 h. Often, however, it is the case that the fish
makes minor vertical excursions into the water column re-
sulting in spikes in the tidal pattern. This makes the simple
test fail, which in some cases will reject instances where a
low activity would safely apply. To overcome this, the influ-
ence statistics of the 16 h fit are analysed to spot and ex-
clude these outlying observations that deviate largely from
the tidal pattern. This procedure greatly increases the detect-
able number of intervals with low activity within the time
series and thus improves the uncertainty assessment.

Reconstructing the migration trajectory: building a data
likelihood model

The data likelihood is a value computed for each position
in the discrete grid describing the likelihood of the fish
being in that position given the observation on the current
day. The data likelihood is computed differently depending
on the type of observation, i.e., it is computed either from
the best extracted tidal pattern or from the maximum depth
during that day if no tidal pattern was available.

Using the tidal pattern
The observed tidal pattern, denoted by the vector Yj at

day j, from a demersal fish consists of 60 depth observations
(10 h fit sampled at a 10 min rate) and is assumed to follow
a Gaussian distribution;

Yj � N 60ðbzjðxÞ;�ðxÞÞ
where bzjðxÞ is the predicted tidal pattern from the database
at position x in the domain and S(x) is the covariance ma-
trix that is a sum of four contributions:

�ðxÞ ¼ SE þ S" þ S�ðxÞ þ SeðxÞ

where SE has a white noise structure, S3 has an autoregres-
sive structure of first order, and Sh(x) and Se(x) are the un-
certainty following the discretization of the domain for the
bathymetry and tide, respectively (Fig. 3). The covariance

matrices are estimated from the available data material prior
to maximum likelihood estimation of the movement para-
meters (Pedersen 2007).

The white noise term (Fig. 3a) with a variance of (0.2 m)2

describes the uncertainties invoked by the sensor resolution
of the tag, by noise from environmental influences such as
waves, and by other sources of error that are unknown and
not explicitly modelled. The variance of the white noise
was estimated by comparing observations from moored tags
with the predicted tidal variations on the known location. In
this way, the movement-related uncertainties were elimi-
nated.

For a resident fish and a sample rate of 10 min, succes-
sive observations of depth will be correlated. Uncertainty
owing to small-scale movements around rocks and holes in
the seabed may therefore be modelled as an autoregressive
process, Yi ¼ �Yi�1 þ "i (Fig. 3b). As the statistical estima-
tion of the parameter values, � and the variance of 3i, is not
immediately feasible, we used heuristic estimates based on
the assumption that the small-scale movement of the fish
has decorrelated (reached an autocorrelation of <0.05) after
7 h. This results in � ¼ 0.93. For minor depth variations ow-
ing to small-scale movement, we conservatively set the var-
iance of 3i equal to (0.4 m)2. More work is required to
analyse the small-scale movements to confirm these assump-
tions, but the spatiotemporal dependence of fish movements
makes this exercise complex and is best supported by more
sophisticated observations, e.g., from an accelerometer; this
study is beyond the scope of this paper.

A bottom-dwelling fish is likely to record a mean depth
several metres off the prediction of the bathymetry when
positioned in an area with a large depth gradient. This
bathymetry uncertainty is estimated by comparing the depth
of each grid cell with the maximal depth of its neighbouring
grid cells. The estimated bathymetry variance, Sh(x), accounts
for the large-scale variation by adding a spatial-dependent
but time-constant variance to the observations (Fig. 3c) in
the range from *0 m2 to (750 m)2. A large value of the
bathymetry variance means that the confidence of the ob-
served depth level is reduced and hence that the geoloca-
tion at this position relies only on the tidal pattern if one
is available. Analogous to the bathymetry variance, uncer-
tainty in the tidal predictions is imposed owing to the spa-
tial discretisation. The difference within a grid cell
between tidal predictions of two distinct positions will

Fig. 3. Assumed autocorrelation contributions to the covariance structure of the observed 10 h tidal patterns: (a) white noise (SE); (b) auto-
regressive (S

3
); (c) bathymetry uncertainty (S

h
(x)); (d) tidal prediction uncertainty (Se(x)).
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show a sinusiodal waveform because of slight differences
in amplitude and phase (Fig. 3d). This is accounted for by
computing the variance of the tidal prediction, Se(x), and
including this in S(x). The tidal prediction uncertainty is
computed by comparing neighbouring cells in a way simi-
lar to the bathymetry uncertainty. The range of Se(x) is
from *0 m2 to (0.97 m)2.

The result of a data likelihood computation is an array of
size equal to the discrete domain containing the likelihood
of each position given the observed data (Fig. 4). Owing to
the ambiguity of the amphidromic system, multiple positions
typically appear equally likely although they are spatially
separated. The statistical filter (Thygesen et al. 2008) and in
particular the smoothing step will remove most of this mul-
timodality by conditioning the resulting estimated probabil-
ity distribution on future as well as past observations within
the time at liberty.

The data likelihood at position x is written formally as

LðYj ¼ yjjX ¼ xÞ ¼ 1

ð2�Þ30
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det �ðxÞ

p
�exp � 1

2
yj �bzjðxÞ� �T

�ðxÞ�1½yj �bzjðxÞ�� �
i.e., the probability density function of a 60-dimensional
Gaussian distribution.

Using the maximum depth
In the absence of a tidal pattern in the observations on a

given, day there remains valuable information in the depth
record that can be used for geolocation. Previous studies
have simply excluded positions shallower than the maxi-
mum observed depth in the tag within some uncertainty
bounds (Ådlandsvik et al. 2007). Instead of a threshold, we
assign in the data likelihood a value between 0 and 1 to
each position dependent on its depth and bathymetry var-
iance compared with the observed depth. This provides a

more informative data likelihood than the simple indicator
and exploits the important information in the bathymetry
variance. This is of particular importance, as the variance of
the bathymetry strongly depends on the position in that the
depth of a grid cell on a slope has a high variance compared
with the depth of a grid cell in a flat area.

The data likelihood computation method, inspired by the
one applied in Andersen et al. (2007), assumes that the ob-
served depth at a given position is Gaussian distributed with
mean equal to the depth of the bathymetry, z(x), and var-
iance equal to the estimated bathymetry variance, Sh(x).
The likelihood of a position given a maximum observed
depth (Fig. 5), zj, is found by

ð2Þ LðYj ¼ yjjX ¼ xÞ ¼ �
zj � zðxÞffiffiffiffiffiffiffiffiffiffiffi

S�ðxÞ
p" #

�
�zðxÞffiffiffiffiffiffiffiffiffiffiffi

S�ðxÞ
p" #�1

where F is defined as the cumulated density function of a
standardized Gaussian distribution with the constraint (trun-
cation) zj < 0 and z(x) < 0; hence, the normalization, at
zj ¼ 0, in eq. 2 is required because we cannot observe posi-
tive depths, and therefore, an observed depth of >0 m must
always result in a data likelihood value of 1.

Supplementing with the recapture position
Typically, a recapture position is reported at the retrieval

of the tag. This position may be subject to misreporting or
inaccuracy. Regardless, the recapture position is of particu-
lar importance if tidal information is scarce and will effec-
tively rule out dead ends and narrow down the estimated
probability distribution towards the end of the time at lib-
erty.

We modelled the reported recapture position as an un-
biased measurement, where the error is bivariate Gaussian.
We chose the variance in this distribution subjectively but
conservatively. The choice of a Gaussian distribution is
purely arbitrary owing to a lack of information about this

Fig. 4. Principle of the data likelihood computation when a tidal pattern is present. (a) Observed depth compared with the corresponding
predictions from the tidal model at three distinct positions marked in Fig. 4b. (b) The light grey areas are the 95% confidence areas for the
data likelihood. It is evident that multiple predictions fit the observed tidal signal because of the ambiguous nature of the amphidromic
system. In this particular example, locations 1 and 2 fit well with the observed signal, whereas location 3 clearly does not.
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distribution. One might in some cases consider applying a t
distribution with a small number of degrees of freedom to
increase the probability of extreme deviations between the
actual and the reported recapture.

By conditioning on the position, the depth observations
and the reported recapture position become independent sto-
chastic variables. Therefore, the likelihood contributions
from the two terms are simply multiplied to obtain the data
likelihood function.

Results

Tag No. 2255
The cod was captured, tagged, and released close to Low-

estoft, UK, and, according to the most probable track, imme-
diately began a migration to the north, settling down after a
month at approximately 54.58N, 0.58W (Fig. 6a). Here, it
stayed for another month before relocating a bit farther
north to an area around 558N, 18W, where it stayed for a
prolonged period until late September at a constant depth of
around 90 m (Fig. 6b). Then the activity level gradually in-
creased and eventually a southwards migration brought the
cod to a position at 51.758N, 2.58E, around 9 January and
was recaptured a month later at approximately this position
(Fig. 6c). The cod showed many long periods of inactivity,
particularly during the summer when a continuous smooth
tidal signal was measured spanning more than a month
from late July until early September. The tidal extraction al-

Fig. 5. Principle of the data likelihood computation when a tidal pattern is absent. (a) The maximum depth within the 24 h interval is used
when a tidal pattern is undetectable. (b) Data likelihood computation for a candidate position. To determine the likelihood value, the max-
imum observed depth value is compared with a truncated Gaussian cumulated density function with mean and variance equal to the depth
and bathymetry variance at the given position.

Fig. 6. Most probable track of tag No. 2255; the solid circle is the initial position of partial track and the shaded circle is the end position of
the partial track. (a) The fish was released off Lowestoft on 3 April and migrated north to its summer residence by 30 April. (b) Here, it
stayed until 18 November and performed only minor swimming activity during this period. (c) Then the fish returned to the southern North
Sea and was recaptured close to the English channel on 6 February of the following year.
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gorithm found a total of 198 days with a tidal pattern of suf-
ficient quality out of the 311 days that the fish was at lib-
erty.

The maximum likelihood estimates (MLEs) of the diffusiv-
ities were 17.4 and 149 km2�day–1 for low and high activity,
respectively, with a standard deviation of 2.69 and
28.5 km2�day–1, respectively. The MLEs were found using
the simplex search method. The likelihood surface was
smooth around the optima, which enabled us to estimate the
uncertainty of the MLEs from the Fisher information. For
comparison, we carried out a calculation with only one move-
ment parameter, i.e., one behavioural state. This resulted in a
MLE of the diffusivity of 57.6 km2�day–1 with a standard de-
viation of 6.6 km2�day–1. The statistical difference of the two
parameterizations can be quantified by a likelihood ratio test.
This essentially determines if a two-diffusivity model im-
proves the likelihood of the MLE significantly compared
with a one-diffusivity model, i.e., it determines whether the
fish showed at least two different types of behaviour. The
likelihood ratio test statistic is ZLR ¼ 2½‘ðbDÞ � ‘ðbD0Þ� ¼ 68,
where ‘ðbD0Þ is the log-likelihood value of the MLE in the
one-diffusivity case, and ‘ðbDÞ is the log-likelihood value of
the MLE in the two-diffusivity case. The test statistic ZLR is
c2 distributed with 1 degree of freedom resulting in a p value
for the test of p < 10–15, which is highly significant at all rea-
sonable levels. This result provides evidence that No. 2255
switches its activity level in a way that is well estimated by
the classification algorithm.

The uncertainty of the marginal distributions estimated on
a daily basis depends on the diffusivity estimate and on the
type and quality of data. At times, particularly in the first
half of the data set when the activity level was low, the mar-
ginal distributions were very narrow (Fig. 7a). Often, in this

period, the precision of the geolocation was limited by the
discretisation (12 km � 12 km) of the domain rather than
of the quality of the data. In the latter part of the data set
where activity was high, the estimated marginal distributions
widened owing to the lack of tidal information in the depth
record (Fig. 7b), an unavoidable uncertainty of the position
given the low quality of the information available.

Access to the probability distribution of the position al-
lows us to sample random outcomes of this distribution,
i.e., random tracks that the fish might have swum. By sam-
pling of a batch of tracks, we can estimate the probability of
the fish having visited some specific region, e.g., crossed the
border of a marine protected area or the probability of the
fish having picked one of many possible routes to reach a
destination (Ådlandsvik et al. 2007, their figure 5b). Here,
we sampled 1000 random paths of tag No. 2255 and found
that 54 of the random paths entered ICES area VIId in the
eastern English Channel towards the end of its time at lib-
erty. Crudely, this equates to a 5.4% probability of this
event, although a more robust statistical framework would
be required to evaluate the significance of this result in a
fisheries management context. Nonetheless, it is an indica-
tion that summary statistics of this type may be relevant to
estimate if one wishes to investigate the mixing of popula-
tions and the behaviour of individuals in relation, e.g., to
ICES areas.

Tag No. 1186
The estimated movement of this cod shows a similar type

of periodicity as tag No. 2255 (Fig. 8). The fish was at lib-
erty for 315 days and spent its first 3 months migrating west
from its release position in the eastern English Channel
(Fig. 8a). For 6 months, it resided at the western end of the
English Channel in the Celtic Sea (Fig. 8b) before returning

Fig. 7. Probability distributions of the position of tag No. 2255 on (a) 23 June 2001 and (b) 6 December 2001 estimated in the two-mode
behaviour model. Light shading is the 95% confidence region, dark shading is the 50% confidence region, and the circle is the mode of the
distribution. (a) The distribution off the northern English coast is narrow owing to the high quality of tidal information and low activity
mode of the fish in this time step. (b) Distribution at a time step where the fish was pelagic, i.e., no observed tidal information, thus causing
the distribution to widen. The maximum recorded depth is used to exclude positions on the Dogger Bank, enforcing a hole in the distribu-
tion. This illustrates the ability of the method to estimate distributions that take on arbitrary forms.
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east and continuing the migration to the southern North Sea
(Fig. 8c).

The movement away from the English Channel into the
Atlantic Ocean where tidal variation is less pronounced re-
sulted in high values of the diffusivity estimates and with
large variance. In such a case of reduced data quality, it
may be reasonable to use, as prior information, the diffusiv-
ity estimates from a high-quality depth record (such as No.
2255) geolocated in areas with prominent tidal variation to
improve the geolocation. Without applying this correction,
the apparent movement in the residing period (Fig. 8b) may
be due to uncertainty in the tidal forecast model. To correct
for this, it would be required to also consult the estimated
probability distribution that expresses the geolocation uncer-
tainty.

Again, the nature of the track with clear periods of high
and low activity emphasizes the need for at least two re-
gimes in the behaviour model. This matter is well illustrated
by the return migration where a distance of 900 km is cov-
ered in 41 days as compared with the much lower activity in
the middle part of the time at liberty.

Discussion
The geolocation method that we have described, termed a

direct FPM, is a considerable evolution of the tidal geoloca-
tion method (TLM) described in Hunter et al. (2003). We
made two fundamental advances: (i) successive geoloca-
tions, even those separated by many days, were linked to-
gether to create a continuous estimate of geographic
location, and (ii) correlation of position estimates was im-
plemented rather than treating singular positions as inde-
pendent observations. This has the benefit that not only are
reconstructions of migrations more precise, the reconstruc-
tions provide a genuine assessment of certainty that a se-
quence of independently reconstructed geographic locations
can sometimes falsely convey. In addition to these advances,
our method achieved greater accuracy of geolocation by tak-
ing the behaviour of individuals into account.

Accuracy of the FPM
Errors in the FPM can occur at one or more of the stages

of the reconstruction process, and a considerable advantage

of the method is that most of these errors can either be con-
trolled or reported on so that an integrated assessment of the
reliability of the migration reconstructions can be made. The
errors that are most likely to occur are estimation of tidal
parameters in the data record, error in the tidal database it-
self (Hunter et al. 2003), estimation of the (two different)
diffusion coefficients, and error during the filtering process
(Thygesen et al. 2008). For example, the mean positional er-
ror of the TLM varies between 10 and 80 km, depending on
location, with the greatest errors found at locations midway
between amphidromic points.

Overall, however, the errors generated by estimating tidal
parameters and the uncertainty that can arise when suitable
tidal data cannot be extracted are likely to be the greatest
source of uncertainty in reconstructing migration pathways
(Hunter et al. 2003), i.e., fish spend only brief periods of
time close to the seabed and are highly mobile at other
times (Hunter et al. 2006; Righton et al. 2007). In the ab-
sence of a tidal pattern, the FPM only uses the maximum
depth on the given day to give some coarse geolocation.
The FPM therefore addresses the problem of low informa-
tion implicitly by using what knowledge that can be ex-
tracted from the depth record, and the information on prior
and succeeding geolocations, to adjust the uncertainty of the
geolocations. The geolocation of a given day is therefore
conditioned on the information of all days and uncertainty
is reduced even when the data information on the specific
day is weak.

The FPM also addresses the problem that animals tend to
move in irregular patterns with many small movements in-
terspersed with the occasional large movement (Benhamou
2007; Sims et al. 2008). Our method, if necessary, derives
two diffusivity values related to different activity levels of
the fish to directly adjust the uncertainty of geolocation at
different times. At other times, if the observations do not
imply that the fish has two behaviours, the maximum likeli-
hood estimate of the two diffusivity parameters is reduced to
one diffusivity parameter. Our results show that this method
is statistically robust and provides a more accurate measure
of position on any given day than by using a single parame-
ter. The model also shows that multiple activity levels are a
feature of cod behaviour and migration. For data sets in
which the distinction between different behaviours is less

Fig. 8. Most probable track of tag No. 1186; the solid circle is the initial position of partial track and the shaded circle is the end position of
the partial track. (a) The fish was released in the eastern English Channel on 11 March and migrated west through the Hurd Deep area over
a period of 3 months. (b) From 1 June to 5 December, it stayed just west of the English Channel within a relatively limited area. (c) Then it
executed a migration east through the English Channel and into the southern North Sea in a time span of just over a month, being recap-
tured eventually on 19 January of the following year.
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obvious, it should still be possible to include and estimate
the activity level as a hidden state within the hidden Markov
model filter. However, this approach complicates matters
significantly in terms of statistical implementation and com-
putational demands and is far from a trivial task. Addition-
ally, in theory, there is no reason why the model could not
be extended to include several more levels of activity at the
expense of run time, although it would not be likely to add
much more information than the two-parameter model cur-
rently provides and may be very difficult to parameterize
and validate. As it is, the model is already capable of pro-
viding a much more accurate and precise estimate of loca-
tion and movement rate than was previously possible.

Ultimately, it is not trivial to give a single standardized
measure of the accuracy of the FPM in reconstructing the
migrations of cod because of the lack of data against which
to validate the positional estimates. Initial studies showed
that geolocation analyses of moored tags yielded consistent
position estimates that were in correspondence to their true
geographical position (Pedersen 2007). In this sense, the
FPM produces accurate results, even though temperature
data were not used to validate positional estimates. In addi-
tion, the method also produces qualitatively similar results
to reconstructions made with a simulation method (Righton
and Mills 2008) that uses depth and temperature data to es-
timate geoposition and therefore successfully captures the
same overall pattern of movements of individual cod, as
have been described previously (Turner et al. 2002; Righton
et al. 2007). However, the relative simplicity (depth only)
and transparency of the FPM gives it an advantage over the
simulation method because it requires only bathymetry and a
tidal database rather than a temporally and spatially resolved
temperature database.

Application of the FPM
The TLM has been used to describe the migrations of

plaice in the North Sea (Hunter et al. 2004), but the applica-
tion of the method to other species has been limited because
few other species that are large enough to be fitted with elec-
tronic tags spend sufficient time close enough to the seafloor
for similar analyses to be undertaken. In addition, the TLM
can be time intensive and produce multiple estimates of loca-
tion that can be difficult to discriminate between. Together,
these problems can hamper the reconstruction of migration
pathways in cod (or any species that spends significant time
away from the seabed) because suitable algorithms for proc-
essing the uncertainty have not, until now, been available
(Turner et al. 2002; Hunter et al. 2003). Reconstructions of
migrations of, e.g., cod to date have therefore been necessa-
rily simplistic (Righton et al. 2007). Our reconstructions of
cod migrations with the FPM showed that, even though there
may be long periods of time when individuals cannot be lo-
cated using the TLM, the inferential power of the FPM pro-
vides valuable daily estimates of position and the uncertainty
of those estimates. The quality and frequency of the posi-
tional estimates are sufficient enough that it is easy to imag-
ine their use within individual-based models of fish
movement, therefore enabling simulations of the effect of
stock movements or mixing. The nonparametric representa-
tion of the estimated probability distribution also makes the
FPM a source for interesting new applications of archival

tag data. The ability of the method to handle any type of ar-
chival tag data and a free choice of data likelihood computa-
tion technique can make the FPM a building block for more
advanced statistical geolocation such as implementation of
complex behaviour models or incorporation of robustness to-
wards outlying position estimates, e.g., from GPS tags or
from light-based tags that provide raw geolocations as out-
put. In turn, these advances make possible new analyses of
migration mechanisms and behaviours and will help to shed
light on the underlying behavioural processes that govern
habitat selection or foraging behaviour (Sims et al. 2006).

Models of population movement used to delineate the
structure of fish stocks or changes in abundance in space
and time are becoming increasingly sophisticated (Metcalfe
2006; Metcalfe et al. 2008). This has been encouraged by
the requirement for ‘‘evidence-based’’ fisheries policies. A
recurring theme of these policies, considering the difficulty
of characterizing accurately the features of the marine envi-
ronment, is the need for assessments of how reliable the in-
formation is and to attach an estimate of certainty to any
evidence that may be used to define or support policies. At
a basic level, estimating the likelihood that an individual
visits a delineated area is an important first step because
this has an immediate application to identifying stock iden-
tity and the risk of capture as well as to the potential utility
of closed areas. A direct link to population-level models has
yet to be developed for the FPM method, but a crude ap-
proach that simply averages multiple distribution estimates
could be used as a first approach (Andersen et al. 2007).
However, high-quality representative data sets are needed to
create a statistical population model with a large number
(>100) of reconstructed migrations that capture the appropri-
ate spatial and temporal scales (Hunter et al. 2005). This ap-
plies not only at the individual level but also with respect to
the experimental design of the tagging study, i.e., data span-
ning all seasons and possibly stratified spatially as well as
with respect to age and species. One should therefore bear
in mind the application of geolocation techniques when
planning new studies and enhancing existing studies.
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Geolocating Fish Using Hidden Markov Models
and Data Storage Tags

Uffe Høgsbro Thygesen, Martin Wæver Pedersen and Henrik Madsen

Abstract Geolocation of fish based on data from archival tags typically requires
a statistical analysis to reduce the effect of measurement errors. In this paper we
present a novel technique for this analysis, one based on Hidden Markov Models
(HMM’s). We assume that the actual path of the fish is generated by a biased ran-
dom walk. The HMM methodology produces, for each time step, the probability
that the fish resides in each grid cell. Because there is no Monte Carlo step in our
technique, we are able to estimate parameters within the likelihood framework. The
method does not require the distribution to be Gaussian or belong to any other of the
usual families of distributions and can thus address constraints from shorelines and
other nonlinear effects; the method can and does produce bimodal distributions. We
discuss merits and limitations of the method, and perspectives for the more general
problem of inference in state-space models of animals. The technique can be applied
to geolocation based on light, on tidal patterns, or measurement of other variables
that vary with space. We illustrate the method through application to a simulated
data set where geolocation relies on depth data exclusively.

Keywords Fish migrations · Geolocation uncertainty · Hidden Markov
Model · State-space models

Introduction

A fundamental question in spatial ecology is where animals move; its answer is
a prerequisite for understanding observed patterns, predicting future scenarios, or
providing a knowledge base for nature management. Since movements of individ-
ual fish can rarely be observed directly on the relevant scales, we rely on indirect
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measurements and infer positions from measurements of light, pressure, tempera-
ture, salinity, or any other environmental parameter that varies with position.

Because measurements of animal movements are indirect and often quite noisy,
a geolocation algorithm is needed to infer movements from measurements. In many
situations it is possible to obtain reasonable results without a formal statistical model
(Metcalfe and Arnold, 1997; Shaffer et al., 2005), but even in this situation we may
still prefer the statistical model because it also yields a measure of the accuracy of
the geolocation.

Statistical models for geolocation are comprised of a model of movements and
a model of measurements. Choosing the right model of movements is a challenge:
simple models are typically unable to mimic the complex behavioral patterns of
animals, while complex models typically have more parameters than can be esti-
mated confidently. A state-space approach (Patterson et al., 2008) has the concep-
tual advantage that the model can be extended with additional states besides those
directly linked to position, such as condition or current occupation. So far, most
studies have taken the conservative approach, and used a biased random walk, e.g.
(Sibert et al., 1999; Morales et al., 2004).

The statistical model of measurements depends on which parameters are mea-
sured, but specifies the likelihood of each observation for each possible position.
In light-based geolocation, the measured parameter is typically the raw (unfiltered)
estimate of position, which is modeled as the true position subject to a random Gaus-
sian distributed measurement error (Sibert et al., 2003; Jonsen et al., 2005). More
generally, the observation is a measurement of some parameter that varies with posi-
tion, such as temperature and salinity (Andersen et al., 2007) or light levels (Nielsen
and Sibert, 2007). In this case the measurement model specifies at each position a
predicted measurement, and a distribution of measurement error.

When the model of movements and measurements has been formulated, the
objective of the analysis is to compute the posterior distribution of the position,
given the available measurements. The simplest and most efficient framework for
this analysis is the linear Kalman filter (Sibert et al., 1999; see also Thygesen, 2009).
The Kalman filter is restricted to the case of linear state dynamics and Gaussian
errors, such as is the case when combining a biased random walk with standard
light-based geolocation.

To overcome this restriction on model structure, one may use Monte Carlo
methods. These techniques are, in general, flexible and straightforward, but also
computer intensive. Jonsen et al. (2003) applied the Markov Chain Monte Carlo
technique to geolocation. The appeal of the approach is its generality, but the result-
ing Markov chain may display exceedingly long mixing times. This is particularly
true when the posterior probability distribution has several isolated local maxima,
i.e. the animal may have followed one of several distinct routes. This means that
simulation runs must be long and diagnostics must be analyzed carefully to make
sure that they are long enough.

This problem is avoided with the method of particle filtering (Ristic et al., 2004;
Royer et al., 2005). This is a simulation-based approach in which the distribution at
each time step is represented by an ensemble of possible positions and during the
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simulation, candidate positions may be removed if they do not agree well with the
current observation. The method is flexible with respect to alternative movement
models, but requires a large number of particles, in particular when the final posi-
tion of the animal (pop-up or recapture) is known. A similar but somewhat simpler
method is proposed by Ådlandsvik et al. (2007), and applied to Northeast Arctic
cod.

Monte Carlo methods have an additional disadvantage when the model con-
tains unknown parameters such as the bias (advection) and intensity (diffusion) of
the random walk. In this case, we would like to do likelihood-based inference of
these parameters, but Monte Carlo methods do not evaluate the likelihood function.
Rather, we get a noisy measurement of the likelihood based on the stochastic sim-
ulation. In this case parameter estimation is most conveniently done in a Bayesian
setting (Andersen et al., 2007).

In this paper, we discuss a different computational approach to geolocation, based
on Hidden Markov Models. Our method relies on a discretisation of the state space,
i.e. dividing the region of interest into small discrete cells. We model animal move-
ment with a biased random walk and solve the corresponding advection-diffusion
equations numerically on the grid. Thus, we obtain a numerical non-parametric rep-
resentation of the probability distribution of the animal’s position. This probability
distribution illustrates the uncertainty of the estimated movement with a high degree
of detail. Finally, we can draw inference about parameters in a likelihood frame-
work, compute the most probable track of the animal, and sample random tracks
that the animal may have traveled.

The technique may include information from any type of measurement. Pedersen
et al. (2008) describes the details of an application to the tidal method of geoloca-
tion, but also light levels, temperature, or even recordings at listening buoys may be
incorporated. In this paper, to avoid the details of the measurement process itself, we
illustrate the method by applying it to a simple hypothetical example by simulating
observations of pressure (depth) from a fish in the Baltic Sea.

The paper is organised as follows: In Section ‘A Simulated Cod in the Baltic’
we introduce the simulation model, in the context of which we shall discuss the
use of Hidden Markov Models for geolocation. In Section ‘The Filter Explained’
we go through the steps of the filter: (1) The predictive filter, (2) the likelihood
maximisation, and (3) the smoothing filter. Section ‘Track Estimation’ concerns
estimation of tracks, i.e. the sampling of random tracks conditional on data, and
the computation of the most probable track. Finally Section ‘Discussion’ offers a
discussion.

Notation

The computational core of our method is matrix algebra. We use a matrix notation
to reduce the number of subscripts and to have formulas mirror the implementa-
tion in high-level programming languages such as Matlab or R. In our notation,
a function φ(x, y) of two spatial variables is discretized as a matrix Φ. See Section
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‘A Simulated Cod in the Baltic’ for details of the discretisation. We use ‘∗’ to denote
convolution, e.g.

(H ∗ Φ)i j =
∑

s,t

HstΦi−s, j−t .

We use ‘×’ to denote element-wise multiplication, (H × Φ)ij = HijΦij, whereas
‘/ ’ denotes element-wise division, (H/Φ)ij = Hij/Φij. |Φ| denotes the sum of the
absolute value of all elements in a matrix Φ.

A Simulated Cod in the Baltic

We consider a simulated data set, describing a demersal fish such as a cod moving
in the Baltic Sea. The fish is tagged and released at a known position, after which
it performs a biased random walk. We simulate the track of the fish (Fig. 1a) and
construct a sequence of noisy pressure ‘measurements’; since the fish is demersal
this corresponds to the depth at the current position (Fig. 1b). In the end, the fish is
caught at a position which is also known.

Afterwards, when we reconstruct the track, each observation thus restricts the
position of the fish to the proximity of an isobath. This is a simplification of the tidal
method for geolocation (Hunter et al., 2003, 2004) where pressure measurements are
taken on the fish and stored in an archival tag (Righton et al., 2006).

To be more specific, we use a stochastic state-space model of the fish, where
the state is the two-dimensional position X(t). The displacements, or increments,
X(t + h) – X(t) are random vectors which are independent and each follow a Gaussian
distribution with mean u · h and variance 2Dh on each coordinate. Here u is the
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Fig. 1 The simulation model. (a) Bathymetry with the simulated track. Black dot is release posi-
tion, gray dot is recapture position. The bathymetry contours are in steps of 20 m, the darkest gray
area is −95 m. (b) True depth record (solid line) related to the simulated track and the observed
depth with added noise (dots)
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mean movement velocity vector, with units length per time, and D is the diffusivity
or dispersal with units length squared per time. In general, D is a matrix or tensor,
but in this paper we assume isotropic dispersal and thus D is a scalar. We use a
rejection method to avoid the fish moving onto dry land.

The model can also be given in terms of the probability density φ(x, t) which
determines the probability that the animal is in a given region at a given time. In
absence of dry land, the time evolution of this probability distribution φ(x, t) is
described by the partial differential equation

φ̇ = −∇ · (uφ − D∇φ). (1)

This equation is known as the Fokker-Planck equation, forward Kolmogorov equa-
tion, or the advection-diffusion equation. See Okubo (1980) for background mate-
rial. Here φ̇ denotes time derivative while ‘∇’ is the spatial gradient operator.

The data set contains observations of depth, z(tk), at discrete times 0 = t1 < . . .

< tk < . . . < tN = T. The measurements are simulated by adding random noise, uni-
formly distributed between −10 m and +10 m, to the actual depth-at-position. The
main source of uncertainty is in the bathymetry database rather than in the pressure
gauge or in the conversion from pressure to depth. We take the measurements to be
evenly spaced in time although this is not required by our filtering method. This is
important because, for example, some electronic tags are programmed to change the
sample rate while deployed to optimize the use of data storage space.

The Filter Explained

In this section we turn to the question: Given a data set such as the one constructed
in Section ‘A simulated Cod in the Baltic’, how can we estimate the actual trajectory
of the fish?

To achieve this, we use a filter that follows the standard paradigm from Kalman
filtering (Harvey, 1989). However, whereas traditional Kalman filtering parameter-
izes probability distributions in terms of mean and covariance, we discretize space
and model probability distributions non-parametrically, in terms of the probability
associated with each grid cell. The resulting discrete filtering problem belongs to
the class of Hidden Markov Models (Cappé et al., 2005), but has a special structure
because the Markov chain is a two-dimensional biased random walk.

To obtain a self-contained presentation, we describe the filtering steps explicitly.
The filter involves a predictive component, running in a forward sweep over the
measured time series, consisting at each time step of a time update and a data update.
At the end of the forward sweep, we are able to evaluate the likelihood function of
the model’s unknown parameters. To perform Maximum Likelihood Estimation,
we construct an outer loop around the predictive filter, maximising numerically the
likelihood function. With the final estimates of the parameters, we employ the so-
called smoothing filter, which performs a backward sweep over the time series. The
result of this is the posterior probability distribution of the position at each time step,
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based on all observations, and assuming the true parameters equals the estimated
parameters. Next, we simulate random tracks from the model, conditional on the
data. Finally, we compute the most probable track, which is an appropriate statistic
that summarizes the data analysis.

Discretisation of the Advection-Diffusion Equation

The central element in our technique is that the equation (1) is discretised in space
and time, thus obtaining a finite-state Markov chain. We discretise space using a
regular quadratic grid, which means that we approximate the motion of the animal
with a biased random walk on a two-dimensional lattice. At time t, the probability
distribution of the position is given in terms of a matrix Φ(t) whose (i, j)-element
is the probability that the individual is in cell (i, j), and which approximates the
integral of the probability density function φ over the cell surrounding the grid point
(i, j).

Since u and D are independent of position x, the probability matrix Φ(t) is gov-
erned by an evolution equation

Φ(t + Δ) = H (t, t + Δ) ∗ Φ(t),

where ‘∗’ denotes convolution in 2 dimensions and H(t, t + Δ) is a matrix containing
transition probabilities. This is the discrete version of the partial differential equa-
tion (1). For each grid cell, it redistributes the probability in that cell to its neighbors
according to the transition probabilities in H.

We assume that the time interval is short enough that the animal can only move
one cell per time step, either East, West, North or South. In this case H is a 3-by-3
matrix and it is convenient to let the row and column indeces run from −1 to +1.
The elements of H are found from (1) by a standard finite difference discretization
(Versteeg and Malalasekera, 1995)

H (t, t + Δ) =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ + DΔ

h2

⎡

⎣
0 1 0
1 −4 1
0 1 0

⎤

⎦ + Δ

2 h

⎡

⎣
0 uy 0

−ux 0 ux

0 −uy 0

⎤

⎦ ,

(2)
where h is the spatial increment and Δ is the temporal increment. For example,
the center element in the right column is H0,1 (t, t + Δ) = D Δ/h2 + ux Δ/2h and
is the probability that the animal moves East during one time step. Since all tran-
sition probabilities must be non-negative, we require that the discretisation fulfills
|ux| h/D < 2, |uy|h/D < 2, and 4ΔD/h2 < 1. When measurements are frequent, it
is natural to take the time step equal to the distance in time between subsequent
measurements, i.e. Δ= tk+1 –tk, but we may also use smaller time steps.

In the convolution, the boundary must be treated separately. Convolving Φ(t)
with the 3-by-3 matrices H(t, t + Δ), we obtain a matrix with an extra row to the
North and to the South, and an extra column to the East and to the West. We assume
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that the domain is chosen large enough, so that we can neglect the probability that
the fish passes the boundary. Thus, these extra fields are simply clipped from the
matrix.

The Predictive Filter

The predictive filter is a recursion in time, running in a forward sweep. At each point
of time tk it involves two conditional probability distributions. Firstly, the distribu-
tion conditional on all observations taken at or before time tk. We use Φ (tk|tk) to
denote this distribution and note that it corresponds to the state estimate in Kalman
filter terminology. Secondly, the distribution conditional on all observations taken
strictly before time tk. We use Φ (tk|tk–1) to denote this distribution which corre-
sponds to the state prediction in Kalman filter terminology.

The forward recursion in the predictive filter is as follows: At time tk, we have
the distribution of the estimate Φ (tk|tk) (Fig. 2a). The next observation is available
at time tk+1. We first perform a time update, which determines the next prediction
(Fig. 2b)

Φ(tk+1|tk) = H (tk, tk+1) ∗ Φ(tk |tk). (3)

This corresponds to solving (1) numerically by marching time forward from tk to
tk+1. Note, by comparing panels a and b in Fig. 2, that the resulting prediction Φ

(tk+1|tk) is more diffuse than the estimate Φ (tk|tk).
We next perform a data update, which turns the prediction Φ (tk+1|tk) into an

estimate Φ (tk+1|tk+1) (Fig. 2d). This data update takes the observation at time tk+1

into account. To this end, we first construct the likelihood of the actual observation
z(tk+1), as a function of position, here termed the ‘data likelihood’ (Fig. 2c). With
discretised space, this a two-dimensional matrix L(tk+1) whose (i, j)-element is

Li j (tk+1) = P(Z (tk+1) = z(tk+1)|X (tk+1) = (i, j)).

If the observed quantity Z(tk+1) is continuous, then this should be read as the con-
ditional probability density function. In our case, we have measured depth with a
maximal uncertainty of 10 m, and assuming that the measurement error is uniformly
distributed, we obtain

Li j (tk+1)

{
1, if depth - at - position (i, j) differs at most 10 m from z(tk+1)
0, else.

.

Note that L is a likelihood function, not a probability mass function, so needs not
sum to one. Likewise, the scale of L is insignificant, so the 1 could be replaced
by any other positive number. The method requires that this matrix L is available,
but does not depend on how it is computed. Therefore, the method can incorporate
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Fig. 2 The steps in the predictive filter. The tag measured at time tk + 1 a depth of 64 meters. In (a),
(b) and (d) dark gray is 50% confidence areas, dark and light gray combined is 95% confidence
areas, and the black dot is the mode of the distribution. (a) Contour of Φ(tk|tk). (b) Contour of
Φ(tk + 1|tk), the time-update of Φ(tk|tk), before next observation is available. The probability field
is significantly widened from (a) to (b). (c) The data likelihood matrix L(tk + 1). (d) Contour of
Φ(tk + 1|tk + 1), the data-update of Φ(tk + 1|tk). The probability field is narrowed down due to the
update of the data likelihood in (c)

measurements of light, tidal patterns, temperature, or any other variable that con-
tains information about position.

Given this data likelihood, Bayes’ theorem provides the conditional distribution
of the state X(tk+1), given also the new observation Z(tk+1):

Φ(tk+1|tk+1) = L(tk+1) × Φ(tk+1|tk)

λ(tk+1)
. (4)
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Here, λ(tk+1) = |L(tk+1) × Φ (tk+1| tk)|. This normalization constant is needed for the
maximum likelihood estimation of the model parameters, and can be interpreted as
the probability of the new observation z(tk+1) given the observations preceding tk+1.

Note that in the case of missing data, we may set all elements of L to the same
constant. In this case Φ(tk+1|tk+1) equals Φ(tk+1|tk) and the data update does nothing.

The previous describes one step in the forward iteration. We can summarize the
entire predictive filter with the following:

1. Initialize Φ(t1|t1) with a 1 at the known position of release, and zero elsewhere.
2. Set k = 1.
3. Compute Φ(tk+1|tk) from Φ(tk|tk) and H(tk, tk+1) using the time update step (3).
4. Compute Φ(tk+1|tk+1) from Φ(tk+1|tk) and L(tk+1) using the data update step (4)
5. Set k := k + 1
6. If k < N, go to step 3. Else, stop.

Likelihood Estimation of Parameters

The underlying stochastic model typically contains unknown parameters that must
be estimated. In our simulated case we use a mean swimming velocity vector u
that is zero and a diffusivity D, which we shall attempt to estimate. The uncertainty
parameter of ±10 m used in the data likelihood computation is treated as known,
although in real applications also such parameters must be estimated (Andersen
et al., 2007).

The likelihood of a candidate parameter vector θ = (ux, uy, D) is

L(θ ) = P(Z1 = z1, . . . , Z N = zN ; θ ) =
N∏

k=1

λ(tk),

where λ(tk) is the normalization constant obtained from a predictive filter as in Sec-
tion ‘The Predictive Filter’ based on the parameter θ (Brockwell and Davis, 1987).
This normalisation constant, in turn, is an indication of how well the observation at
time tk was predicted. Maximum likelihood estimation thus corresponds to tuning
the one-step predictor.

In our simulation case, where the only unknown parameter is θ = D, the max-
imum likelihood estimation yields an acceptable result in terms of bias and uncer-
tainty. A more detailed study of the estimator and its statistical properties can be
found in Pedersen (2007).

Smoothing of the Position

In the Kalman filtering terminology, the smoothing filter gives posterior distri-
bution of the states X(tk) conditional on all data, not just previous observations.
The smoothing refines the position estimate Φ(tk|tk) by taking all subsequent
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observations into account (Fig. 3), and thus obtaining the smoothed position
Φ(tk|∞). This is a matrix, the (i, j) element of which is the probability of being
in the grid cell (i, j), conditional on all observations. Φ(tk|∞) is obtained as

Φ(tk |∞) =
{

Φ(tk |tk) if k = N
Φ(tk |tk) × [K (tk, tk+1) ∗ {Φ(tk+1)|∞)/Φ(tk+1|tk)}] otherwise.

. (5)
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Fig. 3 The effect of the smoothing step at times t56 and t143. Light gray is 95% confidence areas,
dark gray is 50% confidence areas and the black dot is the mode of the distribution. (a) Con-
tour of Φ(t56|t56). (b) Contour of Φ(t56|∞). Note that apparent ‘dead-ends’ and outlying areas of
probable positions are removed in the smoothing step due to the use of future observations. (c)
Contour of Φ(t143|t143). (d) Contour of Φ(t143|∞), note that the distribution is narrowed consid-
erably and shifted following the smoothing step. Some parts of the 50% confidence region of
Φ(t143|∞) were not even within the 95% confidence region of Φ(t143|t143) which confirms the
importance of smoothing the estimates
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These Φ(tk|∞) are computed iteratively in a backward sweep, i.e. starting with tN
and ending with t1.

In our case, the convolution kernel K is the mirror image of H, i.e. Ki,j(tk, tk+1) =
H–i,–j(tk, tk+1). This corresponds to flipping the matrix first along columns, then along
rows. In general, when the mean swimming velocity u or the dispersal D varies in
space, this convolution is replaced by numerical solution of Kolmogorov’s backward
equation.

The smoothing step can be explained as follows: At time tk, let Λ(tk) be the
likelihood function of all strictly future observations, viewing the position at time tk
as an unknown parameter. Then we can iterate Λ backwards in time as

Λ(tk) = K (tk, tk+1) ∗ (Λ(tk+1) × L(tk+1)).

Here, the multiplication with L(tk+1) takes the measurement at tk+1 into account
while the convolution with K propagates the result backwards in time, from tk+1

to tk, in a discrete version of Kolmogorov’s backward equation. Now, from these
likelihoods we may generate the smoothed position estimates from Bayes’ rule by
combining the ‘prior’ probability Φ(tk|tk) with the likelihood Λ(tk):

Φ(tk |∞) = Φ(tk |tk) × Λ(tk)

|Φ(tk |tk) × Λ(tk)|

The iteration (5) does exactly this, but eliminates Λ, which makes it slightly easier
to implement.

Track Estimation

Although the posterior distributions Φ(tk|∞) of the position at time tk are useful
results, they do not contain all information. For example, from these distributions
it is not possible to determine the probability that the fish ever entered a certain
region of interest, or the probability that the fish passed a certain island to the North
rather than to the South. Such questions concern the entire trajectory, not just the
position at one fixed point of time, and therefore they cannot be answered from the
conditional probability distributions Φ. To answer such questions, we describe in
this section how to draw random samples from the joint posterior distribution, i.e.
how to simulate random tracks. Given a number of such tracks, we may for example
use the fraction of simulated tracks where the fish enters the region of interest as an
estimate of the probability that this event happened.

A complementary problem is that the posterior distributions contain too much
information; for one thing, they cannot all be displayed in a single plot panel!
When the geolocation is sufficiently accurate, it is desirable to summarize the results
in one single track. To this end, we describe how to compute the most probable
track.
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Sampling a Random Track

The movement model and the measurements in combination assign a posterior prob-
ability to each trajectory, i.e. the joint distribution of the position at all times. A ran-
dom track is simulated from this joint distribution using a backward sweep:

1. Set k = N and define Ψ(tN) = Φ(tN | ∞).
2. Sample a random position (Ik, Jk) from the distribution Ψ(tk).
3. Set k: = k – 1
4. Compute the conditional distribution of the position at time k, where the condi-

tioning is on previous data and on the sampled position at time k + 1:

Ψ(tk) = Φ(tk |tk) × [K (tk, tk+1) ∗ {δ(tk+1)/Φ(tk+1|tk)}].

where

δi j (tk+1) =
{

1 if i = Ik+1, j = Jk+1

0 otherwise

5. If k > 1 then go to step 2.

When the sweep concludes with k = 1, we have obtained one simulated trajectory,
and we can then check if it enters a specific region, or if it passes a specific island to
the North or to the South. To estimate the probability that this event happened, we
simulate a number of trajectories, and use the fraction of trajectories for which the
event occurred. The number of simulated trajectories should be chosen so that suffi-
cient statistical accuracy is obtained. To assess this it may be used that the variance
on the estimated probability is p(1 – p)/M where p is the true probability and M is
the number of simulated tracks.

The Most Probable Track

Our objective is now to find the track that maximizes the total probability, i.e. we
find the mode of the joint posterior probability distribution of all positions (Fig. 4).
Finding this track is a dynamic optimization problem; in the context of Hidden
Markov Models the algorithm for solving such problems is known as the Viterbi
algorithm (Viterbi, 2006).

First, consider a candidate track (x1, x2, . . ., xN) where each position xk is in the
discrete two-dimensional grid, xk = (ik, jk), and x1 is the known position at release.
The joint probability of this track and the observations can be written

N−1∏

k=1

P(X (tk+1) = xk+1|X (tk) = xk)Lxk+1 (tk+1)
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Fig. 4 True simulated track (black solid, irregular), most probable track (dark grey, smooth) and
two typical tracks sampled at random from the posterior distribution (light grey, irregular). The
most probable track is a smooth track which represents the overall behaviour of the fish whereas
the sampled tracks show the likely variations of this general trend. This is particularly evident in
the part where the fish moves south of the island. The slight spatial variation of the bathymetry
in this area increases the uncertainty of the geolocation and allows the sampled tracks to display
appreciable deviations from the most probable track

The first term corresponds to the state transitions, while the second term corresponds
to the observations. Up to a normalization constant, this probability is identical to
the conditional probability of the track given the observations. Take logarithms and
define the branch metric as

Bx,y(k) = log P(X (tk) = y|X (tk−1) = x) + log L y(tk).

Now, finding the most probable track means to solve the maximization problem

max
x2,...,xN

N−1∑

1=2

Bxk ,xk+1 (k + 1)



290 U.H. Thygesen et al.

Instrumental in the solution is the state metric S, defined as the log-probability of
the first part of a track, x1, . . ., xn, with n ≤ N:

Si j (n) = max
x2,...,xn−1

n∑

k=2

Bxk−1,xk (k) with xn = (i, j)

What allows us to solve the optimization problem is that this function satisfies Bell-
man’s dynamic programming equation (Bertsekas, 1995):

Slm(n + 1) = max
i j

{Si j (n) + Bi j,lm(n)}.

This leads to the following recursive algorithm: First, we initialize Sij (1) to be
0 at the known position of release, and −∞ elsewhere. Next, we let n iterate from
n = 1 to N – 1, at each step computing S(n + 1) according to (6). This yields the
state metric S(N) and from this we find the end point of the most probable track:

(IN , JN ) = arg max
i, j

Si j (N )

Finally, we find the rest of the most probable track, letting n iterate downwards from
N – 1 to 1, at each step finding the position at time tn as

(In, Jn) = arg max
i j

(Si j (n) + Bi j,In+1 Jn+1 (n))

This iteration stops at n = 1 and yields the most probable track.
As is evident, the computation of the most probable track is somewhat involved,

and it is therefore worthwhile to consider simpler alternatives. In the case of the
linear Kalman filter, the most probable track at time tk coincides with the condition-
ally expected position. However, since the original motivation for departing from
the linear Kalman filter was harsh non-linearities, such as dry land, one should use
caution when summarising the posterior distribution with its expectation. Indeed,
multimodal distributions are often seen in real world applications. In Fig. 2d the fish
is likely to be on the slopes around the ledge Southwest of the island of Bornholm
(compare with the bathymetry in Fig. 1a), but the fish is too deep to be on the ledge
itself. The expected position, which is at the middle of the ledge, is a bad represen-
tation of the most probable position. The same phenomenon is seen when using the
tidal method to geolocate cod in the North Sea (Pedersen et al., 2008) when the fish
migrates past shallow banks.

An alternative could be to use the mode of the distribution at each time step.
But when connecting these modes, the resulting track can be very improbable. For
example, it can display large jumps over short time intervals, when the posterior
distribution has several competing local minima.

In summary, when the geolocation problem is reasonably close to linear, then
plausible tracks can be obtained by combining either the posterior means or the
posterior modes. These tracks should always be inspected carefully and treated
with suspicion if they display residence in unlikely regions, or discontinuities.
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Particular in such situations, but also in general when non-linearities effect the
geolocation problem, it is recommendable to compute the most probable track as
described here, and compare with simulated typical tracks to examine the accuracy
of the geolocation.

Discussion

In this paper we have considered the reconstruction of fish tracks based on data
storage tags. We have proposed a method based on direct numerical solution of the
advection-diffusion equation by discretizing the two-dimensional space. The dis-
cretised problem is then solved using standard methodologies for Hidden Markov
Models. The new contributions in a geolocation context are the computation of the
probability distributions for the position of the animal at each point of time, in typi-
cal tracks sampled from the joint posterior distribution, and in the single most prob-
able track as the mode of the joint distribution.

The resulting framework has several advantages when compared to previously
used techniques. The non-parametric representation of the posterior distribution
makes is particularly well suited to fish approaching coastal regions. In such sit-
uations the posterior distributions are not well approximated by Gaussians, as an
extended Kalman filter would assume. Compared to a particle filter, it is an advan-
tage to avoid the stochastic simulation, as such a simulation step makes it difficult
to maximise the likelihood function. With a particle filter it is also not at all trivial
to perform the steps of smoothing, sampling typical tracks, and identifying the most
probable track. In turn, all these techniques do offer a consistent statistical assess-
ment of the accuracy in geolocation, in contrast to early deterministic approaches.

In our simulation study we based the geolocation on depth records. We made this
choice to stress that the method does not require ‘raw’ position estimates. Indeed,
the method is able to include and combine information from different sources, such
as light, temperature, tidal patterns, and presence/absence, similarly to other state-
space methods (Patterson et al., 2008). The filtering method can also be used to
remove outliers from otherwise accurate position measurements, such as obtained
by GPS, a problem that has been considered by Jonsen et al. (2005).

The crucial part in our model framework is the Fokker-Planck equation (1). For
conceptual and computational simplicity, we took the parameters in this model to be
constant in space and time. This prior model of movements may seem oversimplistic
as one would anticipate bias, spatial heterogeneity, temporal patterns, as well as
temporal autocorrelation on multiple scales. Although this is a reasonable objection,
it should be kept in mind that the actual behaviour of fish is far more complex
than any model posed so far, and that this complexity cannot be estimated with
confidence. Now, and in the foreseeable future, there is a trade-off between fidelity
and identifiability of models.

If the advective velocity u, or the diffusivity D, in (1) had changed with space
or time, then the time update (3) would consist of solving the advection-diffusion
equation (1) numerically. Using the finite element method or the finite volume
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method (Versteeg and Malalasekera, 1995) would allow for irregular gridding of
space, making the computational mesh follow coast lines and be refined in specific
areas of interest. However, it is difficult to parameterize the dependence of u and
D with space and time with enough flexibility to fit real patterns while maintain-
ing statistical feasibility. For this reason Pedersen et al. (2008) used vertical move-
ments to distinguish between ‘idle’ and ‘active’ periods with different diffusivity,
thus improving geolocation.

A particularly important question from an ecological and management point of
view is how to synthesize the geolocation of several individuals. For example, are
they synchronised in time, or in space, or neither? Which patterns are consistent
over the population, and which are specific to the individual? One approach is to
consider the individual movement parameters as a realisation of random variables
related to the population to which they belong (Jonsen et al., 2003). This leads to a
hierarchical random-effects model. A similar question is how to combine the pos-
terior distributions of several individuals to draw conclusions on a population level.
The obvious first step is to compute population densities by averaging individual
probability distributions (Andersen et al., 2007): it is less clear how to move beyond
this. In summary, it remains a formidable challenge to disentangle the many fac-
tors affecting a tagging experiment, and to draw conclusions about the species and
the population. To meet this challenge requires efforts in both statistical design of
experiments as well as analysis of results.

A fundamental challenge for fisheries oceanography is our limited knowledge
of the actual movements and behaviour of marine fish. This impairs our ability to
predict the response of marine ecosystems to changed environmental conditions,
for example due to human exploitation or climate. With the technological develop-
ment of data storage tags, and with the growth in numbers and size of tagging pro-
grammes, it is reasonable to predict that fisheries oceanography in the future will
rely increasingly on knowledge obtained with data storage tags. This underlines the
need for analysis tools which are statistically firm, yet operational. We believe that
the framework proposed in this paper is one such tool.
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a b s t r a c t

A new approach to nonlinear state estimation and object tracking from indirect
observations of a continuous time process is examined. Stochastic differential equations
(SDEs) are employed to model the dynamics of the unobservable state. Tracking problems
in the plane subject to boundaries on the state-space do not in general provide analytical
solutions. A widely used numerical approach is the sequential Monte Carlo (SMC)
method which relies on stochastic simulations to approximate state densities. For off-
line analysis, however, accurate smoothed state density and parameter estimation can
become complicated using SMC because Monte Carlo randomness is introduced. The
finite element (FE) method solves the Kolmogorov equations of the SDE numerically on a
triangular unstructured mesh for which boundary conditions to the state-space are simple
to incorporate. The FE approach to nonlinear state estimation is suited for off-line data
analysis because the computed smoothed state densities, maximum a posteriori parameter
estimates and state sequence are deterministic conditional on the finite element mesh
and the observations. The proposed method is conceptually similar to existing point-mass
filtering methods, but is computationally more advanced and generally applicable. The
performance of the FE estimators in relation to SMC and to the resolution of the spatial
discretization is examined empirically through simulation. A real-data case study involving
fish tracking is also analysed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since the introduction of the Kalman filter (Kalman, 1960), state-space models (SSMs) have been widely used to solve
object tracking problems and have undergone constant development. Initially, tracking problems were mostly related to
radar observations (Pearson and Stear, 1974), but more recent applications now range from animal tracking, based on e.g.
observations of daylight (Sibert et al., 2003), to object tracking in surveillance camera recordings (Comaniciu et al., 2003).
TheKalman filter and its variants are suitable for linear andmildly nonlinear tracking problems owing to their computational
simplicity. However, the majority of the Kalman filter variants build on a parametric representation of the probability
density, thus limiting their use when problems become complex and non-Gaussian. Hence, for highly nonlinear problems,
nonparametric Bayesian filtering techniques must be applied.
A common approach to filtering nonlinear SSMs is the use of simulation methods such as Markov chain Monte Carlo

(Golightly and Wilkinson, 2008) and sequential Monte Carlo (SMC) (Creal, 2008; Ristic et al., 2004). The SMC methodology
is intuitive and applies to virtually all SSMs regardless of order or type. One drawback of the method is that randomness is
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introduced into the filter, which can complicate matters of smoothing and parameter estimation for certain problems. For
example, it can be difficult to obtain maximum likelihood estimates of model parameters because the randomness makes
the likelihood function non-differentiable. Advanced algorithms have been devised to ameliorate this issue, although more
work is still required in this respect (Doucet and Tadić, 2003). SMCmethods are particularly appealing for high-dimensional
problems because they suffer minimally from the curse of dimensionality when evaluating the integrals of Bayesian filters
(Cappé et al., 2005).
Another approach to nonlinear state estimation is to deterministically discretize the continuous state-space and then

solve the governing partial differential equations and related integrals numerically on this discretization (Bucy and Senne,
1971; Kitagawa, 1987). The method is feasible for SSMs with a low-dimensional state-space, up to dimension 3, say. This
paper focuses on the case of a planar (two-dimensional) state-space, but themethod is applicable to scalar and theoretically
also to higher-dimensional situations although the required computational effort in such cases becomes substantial. Planar
problems are common inmany applications, for examplewhen tracking individuals on the surface of the Earth, and therefore
deserve special attention.
The discretized SSM can be solved by the framework of discrete hidden Markov models (HMMs) (Cappé et al., 2005).

Historically, HMMs have been applied in cases where the state-space is discrete by nature, e.g. for digital signals, and
therefore discretized continuous SSMs are rarely labeled as HMMs even though HMM theory applies. Other common names
formethods that operate on the discretized problemare ‘‘point-mass’’ filters or direct Fokker–Planck-basedmethods (FPMs).
Previous studies that have considered discretized SSMs have opted for the simplest and most obvious discretization

approachwhich is a uniform gridding of the state-space (Šimandl et al., 2006; Thygesen et al., 2009). As a result, the solution
to the forward Kolmogorov equation or, synonymously, the Fokker–Planck equation can be obtained by finite differencing.
The finite difference (FD) solution scheme is easy to implement yet gives powerful results. It comes, however, with some
critical drawbacks such as lack of a standard procedure for imposing boundary conditions and non-conformity of the
discretization to curvatures in the boundary geometry beyond one dimension. As a consequence of the rectangular uniform
grid, the computational resources are distributed evenly over the state-space, which is rarely appropriate as some stateswill
have close to zero probability. To this end there have been attempts to focus computer power to the relevant parts of the
state-space by adaptively changing the discrete grid during the filtering process (Šimandl et al., 2006). This improvement
reduces the computational burden, but severely complicates matters of smoothing and state sequence estimation and
consequently limits the application of the method to filtering problems.
In this study we introduce an alternative non-uniform discretization of a continuous SSM and a method suited for

obtaining smoothed state estimates and maximum a posteriori estimates of model parameters on this grid. In the two-
dimensional case the discretization, that remains unchanged during computations, consists of a number of differently sized
triangular shaped elements that are joined at the vertices to form a mesh. The lack of uniformity gives the mesh the ability
to conform to curved boundary geometries that arise in many applications of geographical tracking, which is our primary
focus. Also, the unstructured mesh allows for finer discretization of important parts of the state-space, thereby utilizing
computer resources more efficiently. Within this framework the solutions to the Kolmogorov equations are provided by
the finite element (FE) method, reviewed in Clough (1980). The performance in relation to SMC is illustrated by a simple
Brownian bridge example and numerical properties are assessed through synthetic and real data sets.
The paper is composed such that Section 2 establishes the state-space model. Section 3 presents the details of the

Bayesian filter while Section 4 details the discretization of the state-space. Section 5 examines parameter and state sequence
estimation and Section 6 illustrates the application of themethod through examples. Section 7 provides concluding remarks.

2. The stochastic model

The dynamic system that we are considering is described by a two-dimensional stochastic differential equation
dXt = f (t,Xt)dt + g(t,Xt)dBt , (1)

where Xt ∈ R2 is the state at time t , f : R1+2 → R2, Bt is two-dimensional Brownian motion and g : R1+2 → R2×2. We
assume Xt to be reflected at boundaries according to (10) in the Appendix. We have observations indexed by k ∈ {1, . . . ,N}
with the observation pertaining to the interval [tk−1, tk] denoted by zk ∈ Rp. We will refer to a set of observations as
Zk = (z1, . . . , zk)T . There are no restrictions on the type and nature of zk. The observation equation relates the noisy time-
discrete observations to the continuous process

zk = h(tk,Xk,wk), (2)
where wk ∈ Rq is a random perturbation and Xk is short for Xtk . No assumptions are made about the form of the possibly
nonlinear mapping h : R1+2+q → Rp. The two-dimensional state-space can be written explicitly as Xk = (Xk, Yk)T . The
observation errors,wk, are assumed to be independent and identically distributed and can have any type of distribution.

3. The Bayesian filter and smoother

In this section we describe the filtering and smoothing recursions required for predicting, updating and smoothing the
state estimates given data and the stochastic model. We assume here that the parameters of the model are known; in
Section 5 we address estimation of these parameters.
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3.1. Filtering

We apply a Bayesian filter to estimate the probability density of the state. The density conditional on Zk is given by
φ(t, xt |Zk)dxt = P(Xt ∈ dxt |t,Zk) for t ≥ tk. The filter consists of two steps, the time update and the data update, that
are performed recursively. The time update is related to the system Eq. (1), and has the purpose of predicting the evolution
of φ(t, xt |Zk) throughout the elapsed time between observations. The time evolution of φ(t, xt |Zk) is described by the
Kolmogorov forward equation (or Fokker–Planck equation) (Øksendal, 2007) in two dimensions

φ̇ = −∇ · (uφ − D∇φ), (3)

with φ = φ(t, xt |Zk), φ̇ denoting ∂φ∂t , ∇ =
(
∂
∂x ,

∂
∂y

)
, and where D = 1

2gg
T and u = f − ∇D are the diffusion and advection

parameters respectively. No-flux boundary conditions are imposed to ensure conservation of probability mass within the
domain. The initial condition for (3) is φ(tk, xk|Zk) and the solution, φ(tk+1, xk+1|Zk), is obtained by solving the equation
over the time period [tk, tk+1].
The data update step consists of applying the information in zk to φ(tk, xk|Zk−1) using Bayes’ rule

φ(tk, xk|Zk) = ψ−1k φ(tk, xk|Zk−1)L(zk|xk), (4)

where ψk =
∫
φ(tk, xk|Zk−1)L(zk|xk)dxk, i.e. a normalization constant. The term φ(tk, xk|Zk−1) comes from solving (3) and

the term L(zk|xk) is the likelihood of zk given xk. We will refer to L(zk|xk) as the ‘‘data likelihood’’ to avoid confusion with
the likelihood of model parameters introduced later.
By recursively solving Eqs. (3) and (4) the density φ(tk, xk|Zk) is computed for all k ∈ {1, . . . ,N}. The filter is initialized

by computing φ(t1, x1|z1) from (4) with a prior distribution that reflects information available about the initial state.

3.2. The smoother

The smoothing recursions run in reverse time using the results of the filter and give the smoothed estimates,φ(tk, xk|ZN),
by assuming full knowledge of ZN for all k ∈ {1, . . . ,N}. At tk the unused observations in φ(tk, xk|Zk) are Wk+1 =

(zk+1, . . . , zN)T . The information contained in these observations is given by

Λ(tk+1,Wk+1|xk+1) =
φ(tk+1, xk+1|ZN)
φ(tk+1, xk+1|Zk)

. (5)

Smoothing involves the use of the Kolmogorov backward equation (Øksendal, 2007) which describes the reverse time
evolution ofΛ(t,Wk+1|xk+1) according to

− Λ̇ = u∇Λ+∇ · (D∇Λ), (6)

where Λ = Λ(t,Wk+1|xk+1) and with the Neumann boundary condition n · ∇Λ = 0, where n is a vector normal to the
boundary of the state-space. The result of solving (6) withΛ(tk+1,Wk+1|xk+1) as the terminal condition over the time period
[tk, tk+1] we denote Λ(tk,Wk+1|xk), which can be interpreted as the data likelihood of the observationsWk+1 at tk. This is
perhaps clearer when it is realized that

Λ(tk,Wk|xk) = Λ(tk,Wk+1|xk)L(zk|xk) (7)

and therefore thatΛ(tk,Wk+1|xk) for any k can be calculated from a recursion of (6) and (7). Finally the smoothed estimate
satisfies

φ(tk, xk|ZN) = φ(tk, xk|Zk)Λ(tk,Wk+1|xk).

The smoothing recursions are initialized with the final filter estimate φ(tN , xN |ZN)which is also a smoothed estimate.

4. Discretization of the state-space

The primary computational burden of the smoothing problem is the need to solve (3) and (6). The partial differential
equations can be solved numericallywith the finite element (FE)method. The FEmethod uses an unstructured discretization
of the state-space, referred to as themesh, defined byM <∞ nodes (vertices) with states (locations) x(j) for j ∈ {1, . . . ,M}.
Associated with the nodes are basis functions vj(x) that act as interpolants via

φ(t, x) ≈
M∑
j=1

βj(t)vj(x), (8)

where βj(t) = φ(t, x(j)). The shape and form of the basis function depend on the mesh element type as explained by Cook
et al. (2001). We use a three-node triangular element which is the simplest two-dimensional element. The technical details
of the FE algorithm for this application are reviewed in the Appendix. For amore in depth coverage see e.g. Cook et al. (2001).
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The mesh can be created and modified by importing the geometry of the state-space, e.g. a landscape, into mesh
generating software. We used the open-source meshing tool Triangle (Shewchuk, 1996). The initial mesh should be coarse
with uniformly sized elements to achieve a quick but rough estimate of the posterior distribution. The mesh can then be
refined in important regions and coarsened in unimportant regions according to the posterior distribution. In Section 6.2
we examine empirically how the mesh fineness influences the accuracy of results.
Solving (3) requires T = (tk+1 − tk)/δ FE iterations, where δ is the FE time step. The computational complexity of

(3) is therefore O(TM2) since the solution is obtained by a simple matrix vector multiplication. However, matrix sparsity
algorithms can be employed that significantly reduce computation time and memory requirements. For a band matrix with
bandwidth K the complexity becomesO(TKM)where TK � M . For SMCmethods (e.g. the particle filter of Cappé et al., 2007)
the complexity isO(M∗) for the timeupdate,whereM∗ is the number of particles. The FE smoothing recursion has complexity
O(TKM) as for the filtering recursion. Marginal smoothing for SMC methods requires O(M2

∗
) per recursion (Doucet et al.,

2000); hence for smoothing problems, when accurate density estimation is required, i.e. when M and M∗ become large,
SMC methods suffer from a significant increase in computation time compared to the FE approach.

5. Parameter and state estimation

In Section 3 the parameters of the model were assumed to be known. In practice this assumption rarely holds and
parametersmust therefore be estimated. In this sectionwe describe howmaximum likelihood (ML) ormaximum a posteriori
(MAP) parameter estimates can be obtained and we discuss estimation of the optimal state sequence given the posterior
distribution.

5.1. Parameter estimation

We focus on off-line parameter estimation and let θ denote the parameters that we wish to estimate. In filter-based
likelihood inference the recursions of Section 3.1 executed with a given set of parameters provide the likelihood function
evaluated at those parameters (Ljung, 1997). Specifically, the log-likelihood function of θ is given by the joint density of the
observations

l(θ|ZN) = log

{
φ(z1)

N∏
k=2

φ(zk|Zk−1)

}
.

By storing ψk = φ(zk|Zk−1) given by (4) for all k ∈ {1, . . . ,N} we obtain a log-likelihood value of θ. Assuming that we
have a priori information about θ quantified by the prior density π(θ) the MAP estimate of θ is obtained by maximizing the
posterior density, i.e.

θ̂ = argmax
θ
{l(θ|ZN)π(θ)} . (9)

Note that (9) gives the ML estimate of θ if π(θ) is uninformative. The log-likelihood function is a deterministic function
of θ conditional on ZN and the mesh. In this study we use the fmincon function in the Matlab optimization toolbox to find
θ̂. The optimizer evaluates the gradients numerically which can be computationally cumbersome, so optimization using
analytically derived gradients is an important subject of future research.

5.2. State sequence estimation

For tracking problems we are typically more interested in a state sequence or synonymously a track, supplemented by
the probability density of the state, rather than the density alone. Consider the restricted FE state-space where we have the
discrete states ξk for ξk ∈ {x(1), . . . , x(M)}. We define a track on the mesh nodes4 = (ξ1, . . . , ξN) and express the posterior
mean 4̄ = (ξ̄1, . . . , ξ̄N) by its marginals

ξ̄k =
∑
ξ

ξφ(tk, ξ|ZN).

The posterior mean is a robust and L2 optimal estimator of4 but cannot be guaranteed to lie within the state-space, e.g.
when the state-space is not convex. An alternative is to calculate the posterior mode

4̂ = (̂ξ1, . . . , ξ̂N) = argmax
4
L(4),

where the track likelihood is given by

L(4) = L(z1|ξ1)
N∏
k=2

P(Xk = ξk|Xk−1 = ξk−1)L(zk|ξk).

The Viterbi algorithm (Viterbi, 2006) is an efficient way of computing the posterior mode. For skewed posterior
distributions the mode does not necessarily capture the overall trends in the posterior distribution because it is based on
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Table 1
Metrics describing the quality of the estimates of the Brownian bridge for the FE approach and SMC method respectively. The SMC results are calculated
as the average of 50 runs with the standard deviation in parenthesis. Computing times Tfilt and Tsmoo have the unit of seconds.

t = 0.5 e(x)µ × 10
−4 e(y)µ × 10

−4 e(x)
σ 2
× 10−4 e(y)

σ 2
× 10−4 D(Φ ‖ φ) eL1 × 10

3 Tfilt (s) Tsmoo (s)

FE 3.0 −1.47 −1.45 0.40 103 4.2 3.3 2.3
SMC −13.2 (24.1) 1.72 (19.3) 0.70 (1.81) −0.30 (1.50) 3413 (792) 28.4 (4.3) 0.1 (0.0) 5.3 (0.9)

a single outcome. However, in contrast to the posterior mean case it always holds that ξ̂k ∈ {xk(1), . . . , xk(M)} for all k.
The suitable choice of track depends on the specific application. For the tracking applications considered here we use the
posterior mode to avoid invalid state estimates. We note that is also possible to draw random tracks from the posterior
distribution, using a recursive algorithm similar to that of Thygesen et al. (2009).

6. Examples

In this sectionwe illustrate the properties of the FE approach in comparison to an SMCmethod (Section 6.1), with respect
to numerics (Section 6.2) and a real-data application (Section 6.3).

6.1. Comparison of FE with SMC

We set up a simple smoothing problem for tracking a particle in two state dimensionsX = (X, Y )T . We assume the initial
state at t1 = 0 is known, X1 = (0.6, 0.5)T , and that we have observed the state z2 = (0.4, 0.5)T of the particle without
uncertainty at t2 = 1.We also assume that u = 0, i.e. that themotion of the particle is Brownian. The aim is now to estimate
the state probability density of the particle at t = 0.5 conditional on z2. The smoothing problem, known as a Brownian
bridge, can be solved analytically and has a Gaussian posterior density with mean µx = 0.6− 0.2t , µy = 0.5 and variance
σ 2 = 2Dt(1−t), whereD = 0.01 is the diffusion coefficient of the Brownianmotionwhich is assumed known and isotropic.
The example resembles the situation where one wants to estimate the smoothed density between two observations which
is often the case, in particular when analyzing sparse tracking data.
We compute the smoothed densitywith the FE approach as described in this text and compare it to the density estimated

with an SMC method. Since resampling is not required we let the SMC implementation follow a sequential importance
sampling scheme as in Cappé et al. (2007), their algorithm 2, using the prior kernel as the importance distribution and with
marginal smoothing as proposed by Doucet et al. (2000). We setM∗ = M = 2665, i.e. the number of SMC particles is equal
to the number of nodes in the FE mesh. We construct a uniformly sized triangular FE mesh over the domain x ∈ {0, . . . , 1}2.
We define the FE time step δ = 0.014 to obtain close to equal computation times for the two schemes. Observationswithout
uncertainty are difficult to handle for both methods so the analyses are started at t = 0.01 and ended at t = 0.99 while
adjusting the initial condition and the data likelihood to match the analytically known mean and variance at these times.
We compute a number of metrics that detail the comparison of the two methods. The deviation from the true mean and

variance in the x direction are respectively

e(x)µ = µx − E(X), e(x)
σ 2
= σ 2 − V (X),

and similarly for the y direction we have

e(y)µ = µy − E(Y ), e(y)
σ 2
= σ 2 − V (Y ).

The Kullback–Leibler divergence, which can be regarded as an asymmetric distance between two probability densities,
is

D(Φ ‖ φ) =
∑
x
Φ(t, x|z2) log

Φ(t, x|z2)
φ(t, x|z2)

.

The L1 distance is

eL1 =
∑
x
|Φ(t, x|z2)− φ(t, x|z2)|,

where | · |means absolute value.
For the FE approachwe obtainφ(t, x|z2) by interpolation of the nodal values via the linear basis functions to a rectangular

grid x ∈ {0, . . . , 1}2 with nx = ny = 501 grid points. For the SMC method we used kernel density estimation on the same
gridwith a two-dimensional Gaussian kernel with isotropic variance 0.0005. The kernel bandwidthwas chosen to obtain the
best approximation of the kernel density estimation to the true pdf (i.e. smallest L1 and Kullback–Leibler divergence). The
accuracy of the kernel density estimate is rather sensitive to the choice of bandwidth. It is therefore important in practice
to employ some objective bandwidth selection protocol.
The results with computing times for filtering (Tfilt) and smoothing (Tsmoo) are summarized in Table 1. The SMC results

are values averaged over 50 runs with corresponding empirical standard deviations. The FE solution gave slightly better
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Fig. 1. Left: Coarsely meshed geometry of the artificial cityscape with the ‘‘true’’ simulated track of the test person. The solid circle represents the starting
location; the shaded square represents the end location. White areas represent buildings, i.e. areas that are inaccessible to the test person. Right: Negative
log-likelihood functions for D for meshes of different fineness indicated by α, the average element area, and n, the number of elements. It is noted that the
ML estimates show convergence towards some value that is close to the true value of D.

estimates of the means while the SMCmethod was marginally better at estimating the variances. The density function itself
was significantly better represented by the FE solution (by a factor of 33 for the Kullback–Leibler divergence and a factor
of 7 for the L1 distance). The SMC computing time was largely dominated by the smoothing step whereas the FE approach
spent the time more evenly on the two steps. Owing to the O(M2

∗
) scaling, the computing effort of the SMC smoothing step

may become prohibitively large for the SMC solution to reach a desired density accuracy. In such cases the FE approach is
expected to deliver superior results. In fact, increasing M∗ by a factor of 10 only led to an improvement in D(Φ ‖ φ) by a
factor of 2.5, and an improvement in eL1 by a factor of 1.5 while increasing the total computing time of the SMC method by
a factor of 100.

6.2. Synthetic data example

Now we address the behavior of the estimator in relation to the mesh fineness. For clarity we disregard the advection
term, i.e. u = 0. We estimate the horizontal location Xk of a moving object, e.g. a human, for k ∈ {1, . . . ,N}, N = 100. Data
consist of readings from an attached GPS device with constant time step. We thus have the observation equation

zk = Xk +wk,

where wk ∼ N(0, 0.012I). The movements of the object are Brownian with D = 0.03I and boundary behavior is
implemented by disallowing steps outside of the model domain. Fig. 1 shows the artificial cityscape and the true simulated
trajectory of the object.
We investigate how the posterior mode estimate and the likelihood function of D behave as functions of the fineness of

the mesh quantified by the average element area α. We set θ = D, thus assuming that σ 2w is known, and investigate the
behavior of l(θ|ZN) as a function of α; see Fig. 1. An indication of convergence towards a value close to the true value of D is
observed as the mesh is refined. Furthermore, the likelihood of the parameter increases, an effect arising owing to the fact
that the data likelihood is resolved more accurately. A coarse mesh results in overdispersion of the data likelihood which
leads to a higher parameter estimate and a smaller likelihood value.
For each of the increasingly fine meshes we fix the value of D to the true value and compute the posterior mode. Define

the track error metric

ε = 1/N
N∑
k=1

(̂Xk − Xk)2,

where X̂k is the x coordinate of the posterior mode at tk. The track error metric is computed analogously for the y coordinate.
Fig. 2 shows how ε behaves as a function of α. Linear regression lines in the log–log domain fitted to the sloped part of the
curves show an approximately linear order of convergence with visually estimated cut-offs that lie at α ≈ 0.2 · 10−4. The
analytical variance of the posterior mode at tk for Gaussian infinite domain problems (Thygesen and Nielsen, 2009) is given
by

σ 2MPT = σ
2
w
U(U +

√
U2 + 4)

4+ U(U +
√
U2 + 4)

= 0.997 · 10−4,
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Fig. 2. Convergence plots of the track error metric of the posterior mode as a function of the resolution of the mesh (average element area, α) shown for
the x and y coordinates. The four points highlighted with circles correspond to the likelihood curves in Fig. 1. With coarse grids (α > 2 · 10−4), the track
error is determined by the grid resolution. With fine grids, the error is largely independent of the grid and determined by the randommeasurement errors.

where U =
√
2Dh/σw , with constant time step h and σ 2w being the variance of the Gaussian noise, wk. The posterior

distribution is not resolved accurately on the coarsemesh indicated by the values of ε becoming larger than their analytically
expected value. As the mesh is refined this effect diminishes, as seen in Fig. 2, and ε converges to σ 2MPT .

6.3. Real-data example

Finally we give a real-data application of the FE approach. We consider a geolocation problem which consists of
estimating the large-scale horizontal movements of a fish based on observations from an electronic data storage tag
(DST) attached to the fish while at liberty (Righton et al., 2006). The observations are readings of depth and salinity from
which the horizontal movements of the fish can be inferred by comparing with databases that contain bathymetry and
hydrographically modeled information for the salinity field. Here, a N = 294 data set from a cod in the Baltic Sea is
analyzed. Fig. 3 depicts the FE mesh; note the highly complex boundary geometry which makes the governing partial
equations difficult to solve for other methods. The mesh consists of 12706 elements with a total of 7703 nodes and was
refined recursively through two solutions of the problem. Again, we disregard the drift term, i.e. u = 0.
The data likelihood on a given day is computed by assuming that the observation zk = (sk, dk)T , of salinity and depth

respectively, is given by

zk = h(Xk)+wk,

wherewk is Gaussian distributed with zero mean and covariance matrix

Σw =

[
σ 2s 0
0 σ 2d

]
.

The values of σ 2s and σ
2
d are considered as known and defined on the basis of themeasurement uncertainty in the DST and

the uncertainty within the databases. Including these in the estimation procedure is straightforward, although this leads to
an increase in computation time.
The data likelihood for j ∈ {1, . . . ,M} is

L(zk|x
(j)
k ) =

1
2π
√
detΣw

exp
{
−
1
2
[zk − ẑk(x

(j)
k )]

TΣ−1w [zk − ẑk(x
(j)
k )]

}
,

where ẑk(x
(j)
k ) is the expected observation of salinity and depth at location x

(j)
k given by the databases. In the data likelihood

at t1 and tN we include information about the known release and recapture locations respectively.
MAP estimation of D using a uninformative prior converged at

D̂ =
[
21.1 −2.1
−2.1 48.3

]
km2 day−1,

with sd(̂Dxx) = 8.33 km2 day−1, sd(̂Dyy) = 19.2 km2 day−1 and sd(̂Dxy) = 10.6 km2 day−1 estimated by the inverse Hessian
of the likelihood function, i.e. the observed Fisher information.
The posterior mode is depicted in Fig. 4. Note that the track, most prominently in the final part, at times crosses tounges

of dry land. These steps seem unlikely and result from coarse temporal resolution which allows the fish to move around
narrow tongues of land within the time span of two observations. A simple remedy is to increase the temporal resolution of
the track estimation procedure. Still, the posterior mode gives an overall sensible impression of the movements of the fish.
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Fig. 3. The FE-triangulatedmesh. Refinements to themesh have beenmade in the central part of the Baltic Sea and around Zealand, particularly in Øresund,
the sound between Zealand and Sweden. The mesh consists of 12706 elements with a total of 7703 nodes.

Fig. 4. Fish movements illustrated by the posterior mode estimated with the Viterbi algorithm suggesting that the fish, released at the solid circle at
55°15′N, 15°E and recaptured at the shaded circle at 55°30′N, 11°E, resided in the Baltic Sea at 13°E before migrating around Zealand via a northerly route.

A feature of this problem is that much information is contained in the recapture location at the end of the track, and thus the
filtered locations differ markedly from the smoothed locations. As a result of this feature, an SMC method for this problem
would require a large number of particles for smoothing.
The calculations were conducted on a laptop PC with a 1.4 GHz Centrino CPU and 2 GB RAM. Matlab 7.4 was used as

computing environment leading to computation times on the scale of minutes for the smoothed posterior density, hours for
parameter estimation and days for track estimation.

7. Conclusion

The FE approach to nonlinear state estimation problemspresented is an alternative to existing SMCandpoint-mass filters.
It is a deterministic method for solving the Kolmogorov equations with the ability to refine the numerical discretization at
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complex boundary geometries and in areas where a more accurate solution is required. The discretization remains fixed
throughout the computations, thus simplifying the estimation of smoothed state densities and MAP parameter values. The
FE method differs markedly from SMC in terms of the effort required for implementation. While simple particle filters are
straightforward to implement, greater effort is required for accurate smoothing and parameter estimation, in particular for
problems such as the real-data example of Section 6.3. In contrast, with the FE method, the majority of the effort is spent
at an early stage when implementing the solution scheme for the governing Kolmogorov equations. For some applications,
for example oceanography which motivated this work, discretizing and solving partial differential equations is standard
and optimized code may even be available. This would argue in favour of the FE method. On the other hand, for high state
dimensions, the FE method becomes increasingly complex to implement and expensive to compute and is therefore best
suited for problems on lower-dimensional state-spaces.
The two-dimensional Brownian bridge example showed that the SMC and FE smoothing methods performed equally

well for moment estimation but for density estimation, the FE approach was superior by a factor of 33 with respect to the
Kullback–Leibler divergence and a factor of 7 with respect to the L1 distance for equal computation times. It is expected
that the FE method will be preferable for smoothing problems, in particular when high density accuracy is required. The
synthetic data example illustrated the convergence properties of the FE estimators where an approximately linear relation
was observed for themean square error of the posteriormode in relation to the average element area in the sloped part of the
curve. Unlike SMC methods, the FE approach provides a deterministic likelihood function of the model parameters which,
conditional on the fixed mesh, is simple to optimize numerically. On refining the mesh, the likelihood function converged
towards the true value until plateauing when the optimally resolved density was reached. The real-data example showed
how a simple implementation of the FE approach was used to solve a tracking problem involving complex state-space
boundary geometry, parameter estimation and state density smoothing which would have been challenging to do with
other available methods.
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Appendix

This Appendix summarizes the use of the FEmethod for advection–diffusion partial differential equations (PDEs). To solve
(3) with the FE method, we derive its weak formulation. For transparency we consider only the case where parameters are
homogeneous in time and space. Comprehensive treatment of the FE method can be found in e.g. Cook et al. (2001) and
Reddy and Gartling (2001).
For the PDEs (3) and (6) we assume no-flux boundary conditions, i.e. it holds for u that

(uφ − D∇φ) · n = 0, (10)

at any boundary point where n is a vector normal to the boundary ∂Ω . The weak formulation of (3) is obtained by
constructing the inner product with vi:

〈vi, φ̇〉 = 〈vi,−∇ · (uφ − D∇φ)〉. (11)

This equation is reduced by first considering the LHS of (11) and inserting (8), thereby obtaining after simplifications

〈vi, φ̇〉 =

M∑
j=1

β̇j(t)〈vi, vj〉.

The diffusion part of the RHS becomes

〈vi,∇ · (D∇φ)〉 =
M∑
j=1

βj(t)〈vi,∇ · (D∇vj)〉

=

M∑
j=1

βj(t)
[
−〈∇vi,D∇vj〉 +

∫
∂Ω

viD∇vjdn
]
.
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Due to the no-flux boundary condition, the term
∫
∂Ω
viD∇vjdn vanishes. The advection part of the RHS becomes

〈vi,∇ · (uφ)〉 =
M∑
j=1

βj(t)〈vi,∇ · (uvj)〉

=

M∑
j=1

βj(t)
[
−〈∇vi, uvj〉 +

∫
∂Ω

viuvjdn
]
.

Again, due to the no-flux boundary condition, the term
∫
∂Ω
viuvjdn vanishes. Collecting the above terms we obtain

M∑
j=1

β̇j(t)〈vi, vj〉 =
M∑
j=1

βj(t)
[
〈∇vi, uvj − D∇vj〉

]
, (12)

which is a system of ordinary differential equations that can be solved for βj(t)with standard numerical methods. With

cij = 〈vi, vj〉

and

aij = 〈∇vi,D∇vj − uvj〉,

we can express (12) in matrix notation as

C β̇(t) = −Aβ(t), (13)

with

β(t) =

β1(t)...
βj(t)

 , C =

c11 · · · c1j...
. . .

...
ci1 · · · cij

 , A =

a11 · · · a1j...
. . .

...
ai1 · · · aij

 .
There are various ways of solving (13) numerically. To avoid unstable, oscillating, and possibly negative solutions for the

density, we utilize a simple implicit Euler scheme

1
δ
(βtk+(m+1)δ − βtk+mδ) = −C

−1Aβtk+(m+1)δ m ∈ {0, . . . , T − 1}, (14)

where βt = β(t), δ is the FE time step and Tδ = tk+1 − tk. The choice of δ and the fineness of the mesh determines the
magnitude of the approximation error of the solution as discussed in Cook et al. (2001). The appropriate value of T depends
on the required accuracy of the solution and on the computing speed. Reformulating and simplifying (14) gives

βtk+(m+1)δ = R−1Cβtk+mδ, (15)

whereR = C+δA is called the coefficientmatrix. Thematrices involved are sparse for large systems. It is therefore important
to exploit this in the implementation to save memory and reduce the number of trivial computations.
In order to solve (6), close to identical derivations can be made.
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Abstract

We present a process-based approach to estimate residency and behavior from uncertain and

temporally correlated movement data collected with electronic tags. The estimation problem is

formulated as a hidden Markov model (HMM) on a spatial grid in continuous time, which allows

straightforward implementation of barriers to movement. Using the grid to explicitly resolve

space, location estimation can be supplemented by or based entirely on environmental data

(e.g. temperature, daylight). The HMM method can therefore analyze any type of electronic

tag data. The HMM computes the joint posterior probability distribution of location and

behavior at each point in time. With this, the behavioral state of the animal can be associated

to regions in space, thus revealing migration corridors and residence areas. We demonstrate

the inferential potential of the method by analyzing satellite-linked archival tag data from a

southern bluefin tuna (Thunnus maccoyii) where longitudinal coordinates inferred from daylight

are supplemented by latitudinal information in recorded sea surface temperatures.

Keywords: animal movement analysis, behavior switching, electronic tagging, hidden Markov

model, residency, southern bluefin tuna, state-space model.
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1 Introduction

Movements of individual animals constitute important and highly complex processes which influence

the outcome of many large-scale ecological processes. For many species, individual movements

can now be assessed empirically using electronic tracking and logging techniques (Cooke et al.,

2004). Such information is increasing our understanding of both individual species and ecosystems.

However, several problems invariably arise in the resulting data which require a statistical solution.

Namely, the need to correct for location uncertainty (Vincent et al., 2002), handle missing or

irregular data (Johnson et al., 2008) and the incorporation of barriers to movement (Ovaskainen,

2004).

The most immediate problem facing empirical measurement of movement is noise in the ob-

servations of location. The noise is mainly a result of two factors: uncertainty inherent in the

observation process, and the fact that observations are a discrete sub-sample of the underlying

continuous movement process. This error structure necessitates statistical models that are able to

separate the two noise contributions to estimate the most likely location of an animal at any point

in time. State-space models (SSMs, Patterson et al., 2008b) have recently become the favored tool

for this (e.g. Jonsen et al., 2006; Pedersen et al., 2008; Patterson et al., 2010). As an alterna-

tive to SSMs Sumner et al. (2009) suggests a Bayesian approach which merges an unconventional

underlying movement model with a likelihood model for the observed data.

Recently, models have been investigated which incorporate different movement modes reflecting

shifts in the underlying behavioral state of the animal (e.g. Morales et al., 2004). Behavioral

states, being unobserved, are often vaguely defined. Commonly the labels attached to each state

reflect predictions from optimal foraging theory. Thus, animals should search more intensively in

productive habitats and minimize time in other areas. The labels used for the different behavior

states include “migrating”, “ballistic”, or “extensive” for fast, directed movements and “diffusive”,

“foraging”. or “intensive” for slow movements with many direction changes and increased proba-

bility of foraging. Such behaviors driving movement are typically hidden to the observer and may

only be inferred from the movement data itself (Patterson et al., 2009).

Data from tracking technology is often non-spatial (e.g. data from a temperature logger) yet

can be mobilized in a spatial context. As demonstrated below, data from a temperature sensor can

be used to inform about spatial location if synoptic spatial coverage of similar data is available.

Fortunately, spatial data (e.g. remote sensing data) is often available, and can provide exactly this.

Such data have been used by Nielsen et al. (2006) to improve location estimates from an SSM.

Animal movements are often constrained by barriers or edges. For example, the sea is a barrier

to terrestrial animals, as is land for aquatic animals. Such restrictions provide useful information

in that certain movement trajectories can be ruled out. This is an aspect which has not been

included in many SSMs, in particular those that rely on linear-Gaussian models which cannot

incorporate hard constraints. With Monte Carlo simulation methods (Sumner et al., 2009) it is

possible to implement barriers using rejection sampling, however this has a tendency to bias the

location distribution near barriers because naively proposed movement paths encountering barriers

are removed. Methods using reflective barriers (Pedersen et al., 2011) on the other hand allow

obstructed movements to be reoriented and remain inside the model domain to avoid rejection

bias.

This paper presents a method that combines all of the above mentioned features in an integrated
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Bayesian state-space approach using so-called hidden Markov models (HMMs). The aim of any

Bayesian state-space analysis is to estimate the posterior distribution of the state (in our case

the state is location and behavior of the animal). Previous approaches to Bayesian analyses of

tracking data have disregarded the state posterior distribution and restricted their attention to

reconstructed movement trajectories (typically the posterior mean, e.g. Jonsen et al., 2005). A

track representation, however, does not express the uncertainty of the estimated locations. The

full posterior distribution on the other hand, provides this insight and is therefore instrumental in

assessing which features of the estimated movement that can be trusted.

The paper is composed as follows. The next section contains the continuous-time formulation of

the SSM comprising location and behavior and explains parameter estimation and model selection

in the context of HMMs. By simultaneously estimating location and behavior we are able to use the

posterior distribution to link certain behavior types to certain locations. In the section following we

analyse satellite tracking data from a southern bluefin tuna (Thunnus maccoyii). We demonstrate

how the posterior distribution can be used to reveal geographical areas of residency and migration

while accounting for data uncertainty. The final section discusses the pros and cons of the method

and its potential for estimation of residency.

2 Materials and methods

Using a state-space model (SSM) the animal tracking problem is governed by two parts. The system

process describes the animal movement and behavior, and the observation model links the process

(i.e. movements) to the data (Harvey, 1992). Inference regarding the unobservable system process

can then be established via this link using statistical methodology (filtering) which updates location

and behavior estimates with observed data. Table 1 includes a reference list for the mathematical

symbols used in the paper.

2.1 Model formulation in continuous time

Since animals change their movement patterns through time as a response to changing environ-

mental factors, prey abundance, habitats etc. (Morales and Ellner, 2002), it is necessary to regard

the system as a hierarchy of two sub-processes: An underlying behavior process that controls the

switching between a number of different movement states; and a derived process that describes the

movement dynamics conditional on the behavioral state. Formally we model the behavior process

as a continuous-time Markov chain, It, with a finite state-space, It ∈ {1, 2, . . . , n}, where t denotes

time. State switching of the behavior process is described by the generator matrix, Gb (superscript

b for behavior), which contains the switching rates, λij, of jumping from behavior state i to behavior

state j (Ibe, 2009).

The movement of the animal in continuous time is a (biased) brownian motion in the longitudinal

(x) and latitudinal (y) direction. Given the current behavior state It of the animal, the Brownian

motion is decribed by a drift uIt = (ux, uy)
T
It

with unit km · day−1and a diffusivity matrix DIt

with unit km2 · day−1, where superscript T means transpose. Diffusion processes of this type are

well established for modeling animal movement, both within analysis of tagging data (Sibert et al.,

1999; Pedersen et al., 2008) and in ecology in general (Okubo, 1980).

To proceed with the analysis of the joint process of movement and behavioral shifts, we introduce

the probability density φi(x, y, t) which describes the probability that the animal at time t is located
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Symbol Description

i Behavioral state index.

x Longitudinal state index.

y Latitudinal state index.

n Number of behavioral states.

N Number of observations.

tk k’th sample time.

∆k Length of time interval [tk, tk+1].

zk Data observed at time k.

Zk All observations available by tk.

λij Rate of switching from behavior i to j.

u Advection parameter, unit: km · day−1.

D Diffusion parameter, unit: km2 · day−1.

Gb Generator matrix for behavioral process.

Gm
i Generator matrix for movement process in behavior state i.

Pk Probability transition matrix related to ∆k.

φi Probability density of the animal’s location in behavior state i.

φ Vector containing state probabilities.

θ Model parameter vector.

Table 1: Symbol overview.

at (x, y) and at the same time is in behavioral state i. In Okubo (1980) it is shown that the time

evolution of the probability density of a particle performing Brownian motion follows a diffusion-

advection equation, which is a partial differential equation (PDE). Therefore, by including behavior

switching dynamics the PDE describing the time evolution of φi is a diffusion-advection equation

augmented with a term representing the behavior switching dynamics of the animal:

∂φi

∂t
= −∇ · (uiφi︸︷︷︸

adv.

− Di∇φi︸ ︷︷ ︸
diffusion

) +
∑

j

λjiφj

︸ ︷︷ ︸
behav. switch

, (1)

where ∇ is the two-dimensional spatial gradient operator. The diffusion and advection terms

describe the flow of probability between regions in space. The behavior switching term is a weighted

sum over the switching rates that jump into state i, i.e. this term represents the net flow of

probability into behavioral state i. Recall from theory of continuous-time Markov chains (Grimmett

and Stirzaker, 2001) that λii are always negative while λji ≥ 0 for j 6= i. Thus, in Eq. 1 the term

λiiφi is negative and represents the probability that the animal jumps away from the behavioral

state i while the terms λjiφj for j 6= i represents jumps into the behavioral state i. Together, the n

coupled PDEs in Eq. 1 describe the underlying dynamics (movement and behavior) of the system

in continuous time and continuous space.

To solve Eq. 1 some form of numerical approximation is required. Our approach discretizes the

continuous spatial state-space into a finite, albeit large, number of uniformly sized squares (states)

(Thygesen et al., 2009). The size of a grid cell is denoted dx. On a discrete state-space, φ is no longer

a probability density, but is instead represented by a vector φ containing the state probabilities

φα, where the state index α = (x, y, i) is composed of location in x and y and the behavior state
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i. The discretized state-space allows us to derive the generator matrices, Gm
i (superscript m for

movement), related to the movement processes i ∈ {1, 2, . . . , n} (see Appendix A.1 for derivation

of Gm
i ).

It is simple to manipulate Gm
i to explicitly exclude locations from the state-space that are not

accessible to the animal by setting the rate of jumping to these states to zeros. In PDE terminology

this is a “reflecting” boundary condition, which is a simple but natural way to incorporate barriers

to movement. The ecological interpretation of reflecting boundaries is that animals that encounter

barriers reorient themselves and move on. Thus, steps into and steps through obstacles are avoided.

Observations are assumed to be generated through a function h of the true animal location Xt

and a random perturbation or error wt which is related to the uncertainty of the measurement

process. Formally the observation equation is written

Zt = h(t,Xt,wt) (2)

where Zt is a vector containing the observations available at t. Note that the behavior state

i is not part of the observation equation and is therefore fully hidden. This formulation does

not require h to be linear and there are no restrictions on the form of the distribution of wt.

For example non-Gaussian errors on satellite telemetry location estimates (Jonsen et al., 2005)

or animal locations derived from radio-tracking triangulation (Anderson-Sprecher, 1994) are often

heavy tailed in distribution. This necessitates a non-Gaussian distribution of wt such as the t-

distribution to accommodate outliers and stabilize estimation. However, the non-linear form of h

may also allow for more subtle relations between observations and state, e.g. linking observations

of daylight intensity to location (Nielsen et al., 2006). For marine animals, the lack of constraints

on h is particularly useful as observations are rarely of location itself but rather of light intensity,

depth, temperature etc. and so h becomes strongly nonlinear (Pedersen et al., 2008).

With tracking data we have observations at N points in time, i.e. tk is the time point of the k’th

observation and the set of observations available by this time is Zk = {zt1 , . . . ,ztk}. The length

of a sampling interval is ∆k = tk+1 − tk. For irregularly sampled data or data sets with missing

observations these time intervals have different lengths. For a given time interval length ∆k we can

compute the probability transition matrices Pk of the combined behavior and movement process

using the generator matrices Gm
i and Gb (see Appendix A.1). Visualizing the structure of a simple

transition matrix illustrates the hierarchical dependency between the movement and the behavior

processes (Fig. 1).

2.2 Estimation and model selection with HMM

A hidden Markov model (HMM) filter (Zucchini and MacDonald, 2009) provides the probability

distribution of the states forward in time conditional on data, φ(tk|Zk) (hereafter termed “state

estimates”). State estimates are calculated successively by alternating between so-called time and

data updates of the current state. Time updates predict the state at the next time given the

current state, while data-updates use the next observation available to correct the time-updates.

Similar recursions are well known from other algorithms such as the Kalman filter or particle filter

(Andersen et al., 2007) and are generally referred to as filtering recursions. In addition to the

state estimates, the filter returns a likelihood measure which indicates how well the model fits the

data. Thus, the likelihood function, L, of the unknown parameters θ (drift, diffusion, switching
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Figure 1: Probability transition matrix of a one-dimensional movement process with 10 spatial

states combined with a two state behavior switching process leading to a 20 × 20 matrix. Darker

colors represent state transitions with higher probability. The matrix consists of four 10 × 10 sub-

matrices: the top two represent movement in behavior state one (e.g. foraging) and the bottom

two represent movement in behavior state two (e.g. migration). The values of the sub-matrices are

scaled by the probabilities of switching between the two behavior states.

rates) can be evaluated at, say, θ0 by running the filter using the parameter values in θ0 (Thygesen

et al., 2009). Details of evaluating the likelihood function are given in Appendix A.2. Maximum

likelihood (ML) estimation of model parameters is then straight forward:

θ̂ = arg max
θ

L(θ|ZN ). (3)

This optimisation problem can be solved by most standard numerical optimizers which typically

also provide an approximation to the Hessian matrix (i.e. curvature) of the likelihood function from

which the uncertainty of θ̂ can be assessed (Pawitan, 2001). For the parameter estimation in this

work the optimization toolbox included in Matlab (Mathworks, Natick USA) was used. In a

Bayesian context it is common to introduce a priori information about the parameters through the

prior density π(θ). The maximum a posteriori (MAP) estimate of the parameters is therefore the

value of θ which maximizes the posterior density L(θ|ZN )π(θ). In practice, however, substantial

prior information is rarely available (Jonsen et al., 2005) in which case the MAP and the ML

estimates are close to identical. Furthermore, for model selection purposes the maximum value of

the likelihood function is required and we therefore use the ML estimate in this study. Selection

among alternative models in a Bayesian context would typically employ the Bayesian Information

criterion (BIC). Unfortunately, calculating the BIC involves integrals without analytical solutions

which therefore must be approximated (see Wasserman, 2000). The assumptions required by this

approximation impose restrictions on the priors thus reducing the relevance of the BIC in context

of the present problem. Instead we calculate Akaike’s Information criterion, AIC = −2`max + 2M

where `max is the maximum value of the log-likelihood function and M is the number of unknown

model parameters. The model having the lower AIC is more likely and therefore ranked higher.

When parameters have been estimated only one step remains which is the so-called HMM
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smoothing step (Thygesen et al., 2009). The recursions of the smoothing step work backwards in

time using the filtered state estimates and all available data to determine the smoothed state esti-

mates, φ(tk|ZN ). The smoothed state estimates are more accurate and generally appear “smoother”

than the filtering estimates because they exploit the full data set (ZN ). When fitting an SSM in a

Bayesian context the smoothing step provides the posterior distribution of the state. By posterior

distribution we mean the probability distribution of all states at all times given all data. Obvi-

ously, this distribution has a high dimension and is quite complex. For post-processing purposes it

is therefore common to use time marginals of the posterior distribution (i.e. probability distribu-

tions of all states at specific times) which, in fact, are the state estimates returned from the HMM

smoothing algorithm.

See Appendix A.2 for the mathematical and algorithmic details regarding filtering, smoothing,

and parameter estimation.

2.3 Visualizing results

The posterior distribution obtained from the HMM smoothing procedure allows detailed informa-

tion about behavior and location to be extracted through time. For visualizing details of short-term

animal movements we sum the posterior distribution over the behavioral state, i.e.

V (x, y, t) =
n∑

i=1

φ(x,y,i)(t|ZN ), (4)

which is the probability distribution of the location at time t. Viewing V (x, y, t) in succession

for increasing time t (i.e. as an animation) presents an illustrative description of how the location

of the animal and its uncertainty changes in time on a day-to-day basis (see Video appendix VA.1

for an example). The animation gives particularly important insights when observation errors are

non-Gaussian or indirect (e.g. of daylight) since in this case the variance of the location is no longer

sufficient to describe the spatial correlation patterns.

It is often of interest to examine the amount of time spent by the animal within a spatial region

(e.g. Walli et al., 2009). As a necessary simplification, previous approaches to calculating the

time spent in a region of interest often ignore the fact that the observed location of the animal is

uncertain (Aarts et al., 2008). However, Monte Carlo based alternatives incorporating observation

uncertainty are available (Sumner et al., 2009). Within the HMM framework the time spent can

be expressed as a statistical expectation. At first glance this is not a straightforward calculation

because the true locations are always observed with error and, effectively, hidden. Fortunately, the

posterior distribution can be used to give a reasonable estimate of the time spent at location (x, y)

in the time interval τ . This time is calculated as the expectation given data and is computed as

R(x, y) =
∑

l∈τ

n∑

i=1

φ(x,y,i)(tl|ZN ), (5)

where l indexes time uniformly. This is to avoid that the possibly uneven sample intervals

given by the index k lead to a bias in the expectation. Using l means that φ(x,y,i)(tl|ZN ) must

be computed at time points that have no related observation, however at these times the data-

update step is simply omitted. So, by summing over the time and behavior indices of the posterior

distribution (which incorporate the data induced spatial variability), we get R(x, y) which is a

distributional estimate of residence time.
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We prefer to normalize R(x, y) and view its cumulative distribution where grid cells are assigned

a number between 0% and 100%, so that the 15% contour line, say, contains the smallest region

where the animal was expected to spend 15% of its time. This “residency distribution” (RD) is

conceptually similar to the utilization distribution (“UD: The name given to the distribution of

an animal’s position in the plane” cf. Worton, 1989). However, as noted by Royle and Dorazio

(2008), this and other concepts such as home-ranges (Burt, 1943), activity centers etc. (Dixon and

Chapman, 1980), are often vaguely defined. Despite being notionally similar, the quantity in Eq. 5

should not be directly interpreted as a UD in the usual sense. Nor should it necessarily be related to

any sort of home-range, which, in any case, would not make sense for the highly migratory animals

we consider here (see Fig. 3 bottom panel).

In general we may decide to sum over other variables and variable ranges of interest to obtain

information about the movement or behavior over a specific time period or for a specific location.

Behavior switching results may be visualized by summing over space

B(i, t) =
∑

x,y

φ(x,y,i)(t|ZN ) (6)

to get the probability of each behavioral state at all time points (see Fig. 3 top panel, green

line). Viewing B(i, t) with the animation may reveal links between behavior and certain spatial

regions (Video appendix VA.1, top panel). An alternative approach to relating behavior to space

is the expected total time spent in a given region and behavioral state, i.e.

M(x, y, i) =
∑

l∈τ

φ(x,y,i)(tl|ZN ). (7)

These distributions are useful for identifying e.g. migration corridors or residency hot spots

while, at the same time, quantifying the spatial uncertainty for these different behaviors (see Fig. 3).

Track estimation is another way to visualize the posterior distribution. A track is an outcome of

the posterior distribution and is in the context of this paper defined by a vector a = (αT
1 , . . . , αT

N ).

A track in the sense of a not only contains the estimated geographical coordinates of the animal, but

also the most probable switching sequence through the behavior states (see Fig. 3 top panel, black

line, for an example). Random tracks, conditional on data, can be simulated from the posterior

distribution as described in Thygesen et al. (2009); this is useful for examining a range of possible

tracks and for estimating statistics such as the probability that the individual enters certain regions.

Similarly, the most probable track is the outcome that returns the highest value of the posterior

distribution. In technical terms it is a maximum a posteriori estimate, i.e. the state sequence that

maximizes the posterior distribution. The probability distribution and the most probable track

estimate are different ways of decoding the HMM (cf. Zucchini and MacDonald, 2009) and may

deviate at times when data are weak (Fig. 3 at the transition from the Tasman Sea to the Southern

Ocean).

The algorithm (Viterbi, 2006) used to calculate the most probable track is detailed in Ap-

pendix A.3. The performance of the HMM approach with respect to state estimation, parameter

estimation and model selection was validated in a simulation study which is in Appendix A.4.
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Figure 2: The dataset from the southern bluefin tuna as transmitted from the PSAT tag. Top:

Longitude as estimated on-board the tag from observed daylight intensity. Bottom: Sea surface

temperature measured by the tag when the tuna visited the surface. Notice that data is not sampled

uniformly. This is most clear in the final part of the dataset (mid January).

2.4 Data analysis

To demonstrate the described framework, the model was applied to field data from PSATs attached

to southern bluefin tuna (SBT, Thunnus maccoyii). Complete details of the data collection pro-

cedure are given in (Patterson et al., 2008a). The PSAT (Wildlife Computers PAT-3, Redmond,

USA) was deployed on a 168cm/13 year old SBT captured off the east coast of Australia in the

Tasman Sea in July 2003. The known start location was used to initialize the HMM filter. The

PSAT detached from the SBT 177 days later, south of Western Australia in the Southern Ocean.

Longitude estimates (Fig. 2, top) were generated from the PSAT data using the WC-GPE.1.02.0000

software (Wildlife Computers). Measurements of sea surface temperature (SST, Fig. 2, bottom)

were taken from the temperature sensors on the tag. The PSAT was programmed to measure

SST and longitude twice per day. However, it was not always the case that the SBT visited the

surface in every sample interval. Thus, the returned data were sampled irregularly in time which

necessitated a continuous-time analysis.

For the described observation scheme, Eq. 2 becomes

(
Tt

Lt

)
= h(t,Xt) +

(
εT

εL

)
,

where h is a non-linear function that describes how SST (Tt) and longitude (Lt) inferred from

daylight intensity vary as function of location and time. This relation is expressed by hydrographical

SST prediction models (six day composite images of remotely sensed SST constructed from Ad-

vanced Very High Resolution Radiometer (Armstrong and Vazquez-Cuervo, 2001), CSIRO Marine

and Atmospheric Research) and astronomical models of sunlight exposure (Hill and Braun, 2001).

Both white noise terms, εT and εL, were assumed to be Gaussian distributed with standard devia-

tions σT = 0.71 ◦C and σL = 35km estimated based on independent data sets (see Appendix A.5)

and were therefore omitted from parameter estimation. For the final results we used a grid size

of 111 × 201 grid cells equating to square cell size of dx = 25.52 km. This grid size was limited

by computer memory requirements and to keep run times at feasible levels (estimation took 10-40

hours depending on the specific model; see below for model configurations).

9



Model acronym Model parameters No. of parameters

D D1 1

DA D1, ux, uy 3

SD D1, D2, p11, p22 4

SDA D1, D2, ux, uy, p11, p22 6

Table 2: The four models and their parameter configurations. Model acronyms mean D: diffusion,

DA: diffusion-advection, SD: switching diffusion, SDA: switching diffusion-advection.

We considered four movement-behavior models (see Table 2) that were different parameter

configurations of the SSM and analyzed their relative performance using AIC-based model selec-

tion. To maintain focus on the model’s ability to estimate behavior we assume that the x and y

components of the diffusion terms are uncorrelated. Thus Di = diag{[Di, Di]}.
Parameters were estimated for each of the four models listed in Table 2. To ease interpretation

we converted the behavior switching rates estimated in continuous-time to transition probabilities

for a fixed time step, ∆k = 0.5 day (12 hours). To summarize the movement rate of the SBT we

calculated the square root of the expected squared distance moved in a time period of length dt = 1

day (24 hours):

Si =
√

E(X2
t ) + E(Y 2

t )

=

√
2D̂idt + (ûxidt)2 + 2D̂idt + (ûyidt)2,

which we refer to as the expected movement with unit km · day−1. This formula comes from

the definition of variance, i.e. that E(A2) = V (A) + [E(A)]2, where A is a random variable. The

quantity Si is a useful gauge of the level of activity in behavior state i.

3 Results

Model selection clearly favored switching models over non-switching models (see AIC values, Ta-

ble 3), a difference which was also highlighted by a 297 km RMS discrepancy between estimated

trajectory locations of the diffusion-advection model (DA) and the switching diffusion-advection

model (SDA). The estimated values of the advection parameters ux and uy for models DA and SDA

were of moderate size and their estimated variance relatively large indicating a reduced influence of

these parameters on the tracks and a limited support for these parameters by the data. Similarly,

pairwise comparison of the AIC for the pure diffusion models (D, SD) versus diffusion-advection

models (DA, SDA) reported only a slight advantage when the advection parameters were included.

However, the SDA model did have the lowest AIC and therefore showed the best fit to data. Es-

timates of the behavior switching transition rates (presented here as transition probabilities) were

almost identical for the two switching models, again supporting the conclusion that the advection

contribution to the migratory behavior state for this data was of minor importance. Also the RMS

difference in trajectories between the two switching models was small (88 km) and only four loca-

tions were classified into different states between the two models. Estimated parameter values and

associated uncertainties are given in Table 3.

Fig. 3 summarizes the movement and behavior estimation for the model with the lowest AIC,
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Model D Model DA Model SD Model SDA

AIC 2241.32 2239.04 2183.15 2180.27

Param. 0.025 MLE 0.975 0.025 MLE 0.975 0.025 MLE 0.975 0.025 MLE 0.975

D1 4923 6644 8365 4873 6739 8605 48 275 502 40 277 514

D2 – – – – – – 9519 15439 21360 9391 15577 21763

ux – – – −39.6 −22.2 −4.8 – – – −97.4 −53.3 −9.2

uy – – – −11.8 5.7 23.1 – – – −33.0 9.3 51.6

S1 – 163 – – 166 – – 33 – – 33 –

S2 – – – – – – – 248 – – 255 –

p11 – – – – – – 0.86 0.95 0.98 0.88 0.95 0.98

p22 – – – – – – 0.88 0.95 0.98 0.86 0.95 0.98

Table 3: Results of the data analysis. Maximum likelihood estimates (MLEs) of model parameter

values with 95% confidence intervals of the four models. Si is the expected movement per day.

Unit for Di is km2 · day−1, unit for ux and uy is km · day−1and unit for Si is km.

i.e. the SDA model. Initially, the SBT resided in the Tasman Sea, east of the Australian continent,

for about two months after tag deployment before it moved south to a region northeast of Tasmania.

From October and onwards an increased migration probability was apparent (see Fig. 3 top panel)

as the fish made a westerly migration into the Southern Ocean. The activity level dropped in

January as the SBT stayed resident off the Western Australian coast. The RD highlighted four

primary areas of residency (see Fig. 3 areas A–D). While the RD shown in Fig. 3 is only from

a single individual, these areas coincide with apparent residency areas for large SBT from other

studies (Patterson et al., 2008a). In the Tasman sea (areas A, B) large SBT have long been targeted

by Australian domestic fisheries (Caton, 1991). The RD also highlights an apparent residency phase

in an area off the southern coast of Australia, to the Northwest of Tasmania (area C). This area is

known as the “Bonnie Upwelling” (Schahinger, 1987) and has been characterized as a local hotspot

for a range of predator species, presumably due to the large concentrations of prey species.

4 Discussion

We presented a hidden Markov model (HMM) as an advanced and versatile approach to state-space

modeling. The method provides a unified solution to a number of important complications related

to the analysis of movement data: the need to explicitly account for movement uncertainty and the

entanglement of movement and behavior; accounting for barriers to movement; and accommodating

multiple sources of non-spatial and possibly irregular data with non-Gaussian error structures. The

method can, however, also be useful for mapping behavioral modes present in accurate location

data e.g. as recorded by telemetry devices. Output from the model is calculated using the posterior

distribution of the state of the animal. The results therefore have a form that allows detailed

biological insights to be obtained which have not previously been available from tracking data.

Additionally, the computation time and accuracy of the solution can be controlled by altering the

grid resolution. Thus, coarse results can be obtained rapidly in the implementation phase while

final results are computed with high accuracy using a fine grid with longer computation times.
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Figure 3: Top panel: the black line is the most probable behavior switching sequence and the green line

is smoothed probability of the migratory behavioral state. Shaded areas relate the behavior switching to

the corresponding spatial regions specified in the distribution plots below. Bottom panels: most probable

trajectory of the switching diffusion-advection model for the southern bluefin tuna from its release 29 July

2003 to pop-up 22 January 2004. Shaded circles indicate migrating behavior, blue circles indicate resident

behavior, green circle is release location and orange square is pop-up location. Underlaid are residency

distributions (top: both behaviors, middle: resident, bottom: migratory) showing the expected proportion

of time spent by the SBT within the contoured regions. Note that the trajectory deviates from the residency

distribution at the migration from the Tasman Sea to the Southern Ocean (details in Methods and Discussion

sections). Matlab’s contourf function was used to plot the matrices containing the residency distributions.
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4.1 Treatments of space and time

A key component of the HMM approach is the need to discretize space. At some level, this

requirement may be seen as a limitation since predictions of locations are indeterminate at scales

smaller than the model’s spatial units. However, if the size of a grid cell is smaller than the

uncertainty on the estimated position, this limitation is not critical. Also, in many situations

discretization of space is actually required and spatially continuous location estimates would need

to be discretized post-hoc. This applies for example when the objective is to determine residency

in a reserve, a habitat patch, or a management unit.

A cogent point for the data considered here is that the precision of an inferred location is much

higher than could be inferred from the data alone. Conversely, the scale of the spatial units in the

model is much smaller than the scale of migrations made by the animal. Moreover, in this method,

barriers to movement are easily included simply by setting the probability of moving to or through

impossible locations to zero. Thus any loss of realism stemming from spatial discretization may be

offset by ruling out impossible behaviors such as fish crossing land or terrestrial animals crossing

large bodies of water. Therefore, the utility of this approach is not significantly diminished by spatial

discretization and in fact may offer an integrated approach to aggregating location estimates up to

larger spatial scales.

The primary factor influencing the computing time of the method is the grid resolution. Other

important factors are the number of behavioral states, the number of parameters to be estimated,

and the values of movement parameters. The parameter values are influential because they deter-

mine the sparsity of the probability transition matrices (larger values lead to denser matrices and

therefore more computations). With the grid used for our final results the filter requires about one

minute to run for the switching model with advection and reasonable parameter values. Total time

required for estimation of parameters, tracks, and residency distributions is about a day. If parallel

computing facilities are available more models can be estimated simultaneously thus avoiding extra

computing time.

The switching HMMs presented here operate in continuous time. Electronic tag data is often

subject to regular or irregular gaps in the data stream. As other authors have pointed out (Johnson

et al., 2008; Patterson et al., 2010) continuous-time methods handle this seamlessly. Given that

PSAT data is actually a regular time series (twice daily locations) with gaps, a discrete-time

approach which handled missing data could equally have been applied. However, the continuous-

time approach is more general.

4.2 Behavior models and model selection

Model selection for switching Brownian motion models is a challenging process. The simulation

study (see Appendix A.4) confirmed that the correct model was selected if it were present in

the candidate set. Predictably, for the analysis of a real data set the situation was not so clear

cut. For the SBT track the most complex model (two-state with advection) was ranked highest.

From an ecological standpoint, a constant advection term is unlikely to model movement behavior

consistently. Future work should, therefore, consider some of the more advanced models that

can be formulated within the state-space framework (see below). While this excludes mechanistic

approaches for which a model likelihood cannot be computed, a viable future step could be to

incorporate time-varying advection in the Brownian motion model. For example, models including
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constant advection can be rejected when directed movements are present, yet do not exhibit an

overall trend through time. In this case a constant advection term would most likely be estimated

close to zero. Such a result would not however, entail the absence of advective processes in the

tuna’s motion but stems from positing sub-optimal models. Then, to incorporate the complexity

of the observed movement, the diffusivity parameters Di, could end up being spuriously large.

Potentially, model structure issues (such as the inclusion of advection terms or not) are impor-

tant as they may influence inference of biologically relevant quantities, such as estimates of the

percentage of time in each behavior mode. For instance, an advection-free model may need to

place more locations in the “fast” movement mode to accommodate directed movement phases.

A model with advection may be more flexible and thus able to move the animal faster between

locations. However, this did not appear to be a significant factor in the data set we examined. The

percentage of time in the migratory state was only slightly different between the model without

advection (9.8% of days) and the model including advection (9.6% of days). Nonetheless, we sus-

pect that further examination of the linkages between model structure, estimation, model selection

and subsequent inference of biological quantities is required.

4.3 Alternative movement models

As model for individual movement we used variants of Brownian motion, which is the continuous-

time equivalent to a random walk model. The correlated random walk (CRW) is an alternative

model, which is able to capture short-term persistence in the animal’s movement direction (Codling

et al., 2008). Thus, the CRW is expected to provide more realistic uncertainty contours for the

estimated locations as compared to the Brownian motion. Yet for relatively accurate data an

estimated movement path is largely determined by the observations and relies to a smaller extent

on the specific model for movement, while for inaccurate data it is not possible to reliably estimate

small-scale correlations in movement. Therefore, for the type of data presented here it is unlikely

that the estimated overall movement would change significantly if estimated using a CRW instead

of the advection-diffusion model. Implementing a CRW in the HMM framework is theoretically

possible, but requires gridding of four state dimensions (two-dimensional space and velocity), which

entails a substantial total number of states. Even if the velocity can be coarsely discretised, memory

requirements and calculation time of a CRW HMM will be immense and possibly impractical.

The Lévy walk (LW, random walk with Lévy distributed steps) is another movement model

which has received much attention from ecologists (Sims et al., 2008). It has been argued that LWs

in certain scenarios represent the optimal search strategy for animals (Viswanathan et al., 1999).

However, theoretical studies have shown (e.g. Plank and Codling, 2009) that Lévy type movement

patterns may arise by sub-sampling of composite random walks (similar to the switching model

presented here) and vice versa. Similarly, theoretical results of another study (Thygesen and

Nielsen, 2009) showed that even if the animal does follow a LW, estimation based on a simple

random walk will give only marginally poorer estimation accuracy. Using real data, the state-space

and model selection framework we have presented could in a future study be used to compare the

estimation performance of switching models versus Lévy models while accounting for observation

uncertainty. Such an assessment, while outside the scope of this study, would provide useful insights,

for example into the ecological relevance of LWs through statistical tests at the individual animal

level.

Our primary focus of this study was on behavior and residency estimation, and therefore we
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employed simple isotropic diffusive schemes in the simulation and real data analyses. Naturally,

this is a simplification since anisotropic diffusion is likely particularly in the presence of advective

terms (Codling et al., 2010). Thus, using the HMM approach presented here, or alternative state-

space modelling frameworks, to test the statistical significance of anisotropic diffusion with a larger

movement dataset would be an interesting topic in future studies.

4.4 Spatial patterns

4.4.1 Calculation of most-probable tracks

The most probable track (MPT) is an example of “global decoding” (see Zucchini and MacDonald,

2009) of the HMM and seeks to find the most likely path given the entire data series taken simulta-

neously. So-called “local decoding” would involve taking the most likely state from the smoothed

time marginal distributions at any particular point in time. Which is used depends on the goal for

the inference. For calculating a track the MPT is the most useful, however it can produce some

unexpected results. For example, in Fig. 3 the MPT at times deviated from the path that would

result from simply choosing the maximum of the time marginal distributions of locations at each

time. This can happen when the data for a particular time are uncertain. In this instance the MPT

assigns more weight to the distributions from times before and after, and accordingly down-weights

the uncertain intervening distribution. In such cases, the movement model dominates the MPT

and minimizes the rate of movement (depending on the estimated values). The analysis shown here

demonstrates that this phenomena may be particularly apparent during migration phases.

One further, useful aspect of the MPT for behavioral switching models is that it avoids the need

for ad hoc thresholds for deciding on a most likely behavioral mode. For example, Jonsen et al.

(2007) used 0.25 and 0.75 as threshold probabilities for foraging and searching states, respectively.

4.4.2 Mapping spatial uncertainty

Our estimation procedure is Bayesian and therefore gives an estimate of the posterior distribu-

tion i.e. the probability distribution of the animal’s location and behavior. Having access to the

posterior we can calculate the “residency distribution” (RD). As discussed previously, the RD is

conceptually, and to a degree mathematically, similar to the ecological concept of a utilization dis-

tribution (UD). However, the RD, as specified here, gives the expected total time the animal visits

a location. This is different to other measures such as the UD which assumes that the data provide

a representative (and accurate) snapshot of the distribution of an animal in space. Our RD, on

the other hand, accounts for the spatial uncertainty of an animal (see Fig. 3) and therefore has

certain similarities to the time spent estimation of Sumner et al. (2009) although the computational

approach is fundamentally different. Whilst the RD and UD are indeed different quantities, the

RD has implications for making spatial inferences from uncertain spatial data. To obtain the UD,

usage maps (Aarts et al., 2008; Matthiopoulos, 2003), or activity centers, from the model given

here, one would use the MPT and treat this as a known set of locations without error. Then,

kernel smoothing (e.g. Breed et al., 2006) or some other approach (e.g Gitzen et al., 2006) could

be used for a given sample of MPTs from multiple animals. However, doing this would neglect the

uncertainty in the animal’s true locations. Instead, specialized methods for calculating UD (e.g.

Benhamou and Cornélis, 2010) which also incorporate barriers to movement may be considered.

In calculating the RD, it may also be useful to marginalize over specific periods of the track.
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For instance, a researcher may be interested in determining spatial residency of tagged animals

over a particular month. Also, the RD may be calculated with respect to specific behavioral states

in order to assess which areas are most important as either residency areas or migration corridors

(see Fig. 3). Finally, by jointly considering the RD from multiple animals it is possible to assess the

degree of overlap in their movement paths while simultaneously accounting for uncertainty. These

sorts of approaches could be used to large tracking data sets and serve as an advanced alternative

to common kernel density estimation methods (e.g. Walli et al., 2009).

4.5 Conclusion

This paper has demonstrated advances to state-space methods for behavioral estimation. The

HMM approach can simultaneously estimate movement parameters, most likely behavioral state,

the most-probable track and demonstrates how some basic model selection and inference may be

carried out. Importantly, the paper provides a method for computing an index of residency which

explicitly accounts for the uncertainty and auto-correlation in both location and behavior. This is

an important and often neglected aspect of studies which examine the distribution of animals in

space and time using telemetry and electronic tracking data.
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A Appendix

A.1 Computing the generator and the probability transition matrices

The movement dynamics of the animal is described by a Brownian motion. As shown in Okubo

(1980) the time evolution of the probability density of the animal’s location is described by the

advection-diffusion equation

∂φi

∂t
= −∇ · (uiφi − Di∇φi). (1)

To derive the entries of the movement generator matrix we write Eq. 1 on its finite difference

form (Mitchell and Griffiths, 1980) in one dimension:

φ(tk, x) = (µ− v)dt φ(tk−1, x+ dx) + (1 − 2µdt)φ(tk−1, x) + (µ+ v)dt φ(tk−1, x− dx)

where µ = D
dx2 , v = u

2dx and dt = tk − tk−1. From this we gather that the probability of a step

of length ±dx approaches (µ± v)dt as dt ↓ 0. A stable finite difference scheme has the conditions

that dt < dx2

2D and |u| < 2D
dx where | · | means absolute value.

This leads to the one dimensional generator of the movement process having the entries

gij =





µ− v for j = i− 1

µ+ v for j = i+ 1

−2µ for j = i

0 otherwise

.

This generalizes to two dimensions with the generator having two additional entries in each row

except at boundary locations.

The dynamics of the behavior and movement in behavior state i are described in continuous

time by their generators Gb and Gm
i respectively. For a given time interval ∆k, probability tran-

sition matrices can be computed for the behavior process by Pb(tk) = exp(Gb∆k), where exp(·)
means the matrix-exponential operation (Grimmett and Stirzaker, 2001). Calculating transition

matrices for large state-spaces requires a matrix exponential implementation that utilizes the so-

called uniformization algorithm (Grassmann, 1977) which exploits the sparsity of the generator

matrix.

We write

Pb(tk) =




pb
1(tk)
...

pb
n(tk)


 (2)

where pb
i (tk) are row vectors containing transition probabilities conditional on state i. The probabil-

ity transition matrices of the movement processes are analogously given by Pm
i (tk) = exp(Gm

i ∆k).

We can assemble Pb(tk) and Pm
i (tk) into a probability transition matrix that describes the joint

process of behavior and movement

Pk =




pb
1(tk) ⊗ Pm

1 (tk)
...

pb
n(tk) ⊗ Pm

n (tk)


 (3)

1



where ⊗ is the Kronecker product operator. The matrix Pk has a block structure which is illustrated

for a simple case in Figure 1 in the main text.

A.2 State and parameter estimation

As described in Appendix A.1 the Pk matrices merge the two processes of movement and behavior

into a single Markov process in which all spatial and behavioral dynamics are captured. For this

process the symbol α = (x, y, i) is used to represent a state, where x and y refer to position in the

two-dimensional space and i indexes the n behavioral states. We have partitioned the longitudinal

and latitudinal directions into nx and ny cells and therefore the total number of spatial states is

nxy = nxny −nu, where nu is the number of cells inside the grid that are inaccessible to the animal

(such as land areas for marine animals). The probability distribution of the position and behavior

states at time tk is therefore a column vector φ(tk|Zk) of length nxyn since n vectors of length nxy

are concatenated. The vector φ(tk|Zk) has elements φα(tk|Zk).

A HMM filter recursion consists of a time and a data update step. The time update gives the

predicted distribution φ(tk+1|Zk) and the data update gives the estimated distribution φ(tk|Zk).

The time update of the probability distribution is a simple multiplication of the state probability

vector with the transition matrix

φ(tk+1|Zk)
T = φ(tk|Zk)

T Pk. (4)

In the data update step the predicted distribution φ(tk|Zk−1) is adapted to the observation zk

by applying Bayes’ rule

φ(tk|Zk) = ψ−1
k φ(tk|Zk−1) � L(zk|α), (5)

where � denotes elementwise multiplication, L(zk|α) is the likelihood of zk given the state and

ψk =
∑

α φ(tk|Zk−1)�L(zk|α). The data likelihood L(zk|α) has a value for all α and is computed

by comparing the observed data to the data expected to be generated in a given state. The way

to compute L(zk|α) depends on the form of the mapping function h in the observation equation

(Eq. 2 in the main text). For example if zk are noisy positions e.g. from satellite tags, h is linear

which makes computations simple

L(zk|α) = Npdf (zk, α,Σw), for all α

where Npdf is a Gaussian probability density function with mean α and covariance matrix Σw

evaluated at zk. For outlier-prone observations such as Argos positions, a heavy tailed t-distribution

may be applied instead of a Gaussian. Even more complex and non-linear links may be implemented

if needed, see for example Pedersen et al. (2008).

The likelihood value of a given parameter set, θ, is a product of the one-step prediction errors

L(θ|ZN ) =
N∏

k=1

ψk. (6)

Maximum likelihood estimates are obtained by optimizing L(θ|ZN ) with respect to θ.

To incorporate all observations in each state estimate, i.e. to get φ(tk|ZN ), the so-called smooth-

ing step is required. The smoothed state estimates are therefore not only conditioned on data

2



observed by tk but also on future measurements and are more accurate and appear “smoother”

than φ(tk|Zk).

We state the smoothing recursions, but omit derivation details. For supplements on the smooth-

ing step see Thygesen et al. (2009). The recursions are

1. Compute the vector

Ψ(tk+1) = φ(tk+1|ZN ) � φ(tk+1|Zk),

where � is elementwise division.

2. Right multiply with the transition matrix to step backwards in time

Λ(tk) = PkΨ(tk+1).

3. Get the smoothed estimate at tk by

φ(tk|ZN ) = φ(tk|Zk) � Λ(tk)

where � denotes elementwise multiplication.

The recursion is initiated with the last estimated distribution from the final iteration of the

forward filter, φ(tN |ZN ) which is also a smoothed estimate.

A.3 Finding the most probable track

The likelihood of a track (an outcome of the posterior distribution), a = (α1, . . . , αN ), can be

computed as

L(a) = L(z1|α1)

N∏

k=2

pαk−1,αk
L(zk|αk),

where pαk−1,αk
is the entry in Pk−1 corresponding to the transition from αk−1 to αk. For

summarizing movement and behavior switching we use the track that maximizes L(a) denoted

â. For HMMs, estimating â is an often occurring problem that can be solved by the Viterbi

algorithm (Viterbi, 2006) which relies on principles from dynamic programming and is proved to

be a maximum likelihood estimator (Forney, 1973).

We define the branch metric

Bαk−1,αk
(tk) = log pαk−1,αk

+ logLαk
(zk|αk).

An intermediate step in the maximization algorithm uses the state metric, Sαk
(tk), which is the

log-likelihood of the most likely of all possible tracks leading from the initial state to state αk. The

state metric is given by

Sαk
(tk) = max

α1,...,αk

{
logLα1(z1|α1) +

k∑

l=2

Bαl−1,αl
(tl)

}
.

This maximization problem can be solved recursively forward in time when it is realized that
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Sαk
(tk) = max

αk

{
Sαk−1

(tk−1) +Bαk−1,αk
(tk)

}
.

The procedure exploits the Markov property of the HMM to reject all but the most likely paths

after each recursion. The final state of the overall most probable track is given by

α̂N = arg max
αN

SαN
(tN ).

By continuously storing the most probable tracks for each iteration of the recursion the overall

most probable track, â, is simply given by extracting the track related to α̂N when iterations are

finalized.

A.4 Simulation study with results

To better understand the performance of the HMM approach with respect to estimation and model

selection, we first applied the method to synthetic data sets. We examined if a relatively complex

model could be reliably differentiated from simpler, candidate models. The synthetic data sets were

generated with a two-state switching model comprised of a resident state with low diffusivity and

no advection and a migratory state with a higher diffusivity and advection (i.e. the SDA model,

see main text Table 1).

The simulation was intended to mimic the natural behavior of southern bluefin tuna (SBT)

(Thunnus maccoyii). These fish make long distance migrations into the Indian Ocean from the

Great Australian Bight (see Bestley et al., 2008). The parameter values of the data generating

movement model were (D1,D2, ux, uy, p11, p22) = (300, 1000,−50, 0, 0.95, 0.95) and the initial lo-

cation of the fish (35.5◦S, 126.7◦E) was considered as known. The synthetic data of sea surface

temperature (SST) and longitude were collected daily for 183 days from the simulated horizontal

movements of the fish (see main text for details on error model).

The quality of the estimated most probable tracks was quantified using the root mean square

(RMS) error of the residuals, σMPT (as compared to the true track). To evaluate the model’s ability

to correctly estimate the behavioral state, the average number of misclassified states avg(nmis) was

calculated. A total of 50 synthetic data sets were generated. For each data set maximum likelihood

parameter estimation, model selection between the four models listed in the main text Table 1,

state estimation and estimation of the most probable track was undertaken.

A.4.1 Results

AIC based model selection of the synthetic data sets resulted in 50 out of the 50 analyses arriving

at the correct model (SDA) as the final model. The significant advection term made the data

generating model easily distinguishable from the simpler switching model, SD, for which the average

of the maximum likelihood estimates of D2 was 2358 km2 · day−1. It was clear that the estimation

process compensated for the lack of advection by inflating the diffusivity estimate, thus decreasing

the likelihood value of this model. Generally estimation of models D, DA and SD did not result

in correct parameter values. This was expected since their model structures deviate from the

data-generating model. The correct model however, did provide parameter estimates that were

identifiable and consistent with the true parameters (Table 1).

The average numbers of misclassified states, avg(nmis), showed that state switching was sig-

nificantly better estimated by the SDA model as compared to the SD model, and in the optimal
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D1 D2 ux uy p11 p22 σMPT nmis

D avg 1353 - - - - 88.9 -

sd 58.9 - - - - 2.9 -

DA avg 1004 - −19.4 −0.1 - 84.1 -

sd 31.1 - 1.15 0.37 - 2.8 -

SD avg 276 2358 - - 0.94 0.94 84.7 39.6

sd 17.2 85.0 - - 0.006 0.009 2.8 2.4

SDA avg 307 1060 −48.4 −1.2 0.94 0.92 79.2 23.5

sd 15.1 36.0 1.23 0.85 0.008 0.009 2.3 1.7

Table 1: Simulation results. Empirical averages (avg) and standard deviations of the averages (sd)

of ML estimates and statistics from the 50 synthetic data sets. σMPT is the root mean square of

the residuals of the estimated most probable track compared to the true track with unit km. nmis

is the average number of misclassified state estimates. Unit for Di is km2 · day−1, unit for ux and

uy is km · day−1.

situation when the filter model is equal to the data generating model 87% of the behavior states

were correctly estimated. The average value of σMPT for the SDA model was not significantly dif-

ferent to the three other models, which indicates that reasonable track estimates was still obtained

even when the applied model differed from the data-generating model.

A.5 Estimation of data error variances

Using diagnostics data transmitted by the PSAT we were able to examine the relationship between

the remotely-sensed surface temperature and that measured by the PSAT. While there were a

few departures this relationship was strongly linear (Figure 1a). The residuals from the fit were

approximately Gaussian distributed (Figure 1b) and the residual variance, σ2
T = (0.71 ◦C)2, was

therefore used as estimate for the temperature error variance in the model.

An average of the empirical root mean square estimates determined in Musyl et al. (2001) was

used as longitude error variance, σ2
L = (35 km)2.

VA.1 Animation of time marginals

The animation is found via this link

http://www2.imm.dtu.dk/∼mwp/VA1 animated time marginals.avi
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Figure 1: Left: Plot of SST as measured by PSAT versus remotely sensed SST by satellite. A

strong linear relation is clear. Right: Histogram of the residuals of a linear regression model for

the SST data in the left pane. The errors are approximately Gaussian distributed with zero mean.
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1. Introduction

State-space models (SSMs) have become the favored approach in modelling time varying ecological phenomena
such as population dynamics (Wang, 2007; Gimenez et al., 2007), animal movement (Patterson et al., 2008) and
animal behavior (Morales et al., 2004). SSMs come in a variety of classes depending on the problem type (linear or
nonlinear) and the error structure of the data (Gaussian or non-Gaussian). In the linear and Gaussian case an exact
solution to the SSM can be found using the Kalman filter (KF), which is the optimal estimator (Madsen, 2008). In case
of minor departures from linearity, KF variants, such as the extended KF or unscented KF, can be employed. Both
methods are reviewed and discussed by Wang (2007). In cases where the state-space equations are highly nonlinear,
it is inappropriate to use any KF variant. For ecological problems Markov chain Monte Carlo (MCMC) is perhaps
the most common approach to accommodate model nonlinearities owing to its flexibility and general applicability.
In addition, free software for MCMC analysis is available, for example the widely used WinBUGS (Gimenez et al.,
2008). An example of non-WinBUGS MCMC population modeling is explained by Wang (2007).

We address three powerful methods for the analysis of nonlinear state-space models, two of which have only
gained moderate attention previously within the field of ecology compared to the third. The idea of the first method
we present is to discretize the continuous state-space and then reformulate the SSM as a hidden Markov model (HMM)
(see Zucchini and MacDonald, 2009). A similar approach was described by Kitagawa (1987). The second method
we consider is implemented in the open-source software AD Model Builder (ADMB-project, 2009a). In ADMB the
SSM is formulated as a statistical model with mixed effects. A major advantage of ADMB is that it makes efficient
use of available computer resources by so-called automatic differentiation. Thirdly, we apply OpenBUGS, which is
the open-source version of WinBUGS (Spiegelhalter et al., 1996). BUGS is flexible and therefore widely used in
modeling ecological systems (Gimenez et al., 2008).

To broaden the perspective of this study we apply the three methods to simulated data from the theta logistic
population model, which is a nonlinear SSM. The same example was analyzed by Wang (2007). The performance
of the three methods is summarized with respect to a range of aspects: complexity of implementation, computing
time, estimation accuracy, limiting assumptions, and algorithmic design. Algorithmic design refers to the amount of
subjective tuning required before actual estimation can begin. Because of reduced subjective influence, methods with
fewer tuning parameters are often preferable. Finally, we discuss some differences between Bayesian (BUGS) and
frequentist (HMM, ADMB) methods.

2. Methods

A state-space model describes the dynamics of a latent state (Xt) and how data (Yt) relate to this state. An
important feature of SSMs is their ability to model random variations in the latent state and in data. For t ∈ {1, . . . ,N}
the general system and observation equations of the SSM are respectively Xt = g(t,Xt−1, et), and Yt = h(t,Xt,ut),
where et ∼ N(0,Qt) is the system error and ut ∼ N(0,Rt) is the observation error. Here, “∼ N(·)” means Gaussian
distributed. Because of the possible nonlinearity of g and h, advanced filtering and smoothing methods must be
employed to gain meaningful estimates of Xt. In this respect, the extended Kalman filter, the unscented Kalman filter,
and Bayesian filtering e.g. using Markov chain Monte Carlo (MCMC) sampling or BUGS are common approaches.
Alternative methods for nonlinear state estimation are hidden Markov models (HMMs, Zucchini and MacDonald,
2009) and mixed effects models using the software AD Model Builder (ADMB). ADMB is freely available and open-
source (ADMB-project, 2009a).
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2.1. Benchmarking of estimation methods

The log-transformed theta logistic population growth model (Wang, 2007) was used as benchmark example for
assessing the estimation performance of HMM, ADMB and BUGS. The system and observation equations for this
model are

Xt = Xt−1 + r0

1 −
(

exp(Xt−1)
K

)θ + et, (1)

Yt = Xt + ut, (2)

where et ∼ N(0,Q) and ut ∼ N(0,R).
Following Wang (2007), two different tests of the methods were carried out:

1. State estimation performance with known parameter values, i.e. the ability of the methods to estimate the pop-
ulation level xt for all t. Obviously, this test is free of Bayesian prior assumptions on parameters.

2. Estimation of states and all five model parameters, λ = [log(θ), log(r0), K, log(Q), log(R)], simultaneously.
This situation is common in practice if model parameters cannot be estimated from independent data. Notice
that parameters that may yield estimates close to zero are log-transformed to avoid invalid parameter values.

Specifically for test 1, T = 2000 data replicates were simulated with N = 200, K = 1000, Q = 0.01, R = 0.04,
and the initial state x0 = 3 using twelve different sets of the θ and r0 parameters (see Table 1). The performance of the
methods was evaluated using an estimate of the state estimation error:

RMSE =
1
T

T∑

i=1


1
N

N∑

t=1

(x̂i,t − xt)2



1
2

, (3)

where x̂i,t is the state estimate for replicate i at time t, and xt is the true state at time t.
Specifically for test 2, two datasets were simulated using two other sets of parameter values : λ1 = (θ = 0.5, r0 =

0.1, K = 900, Q = 0.01, R = 0.04) and λ2 = (θ = 1.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04) with the number
of data points N = 200. Parameter estimates for these data using the three methods were found similarly to the study
of Wang (2007). We further used these two parameter configurations to generate plots of the joint profile likelihood
surfaces for r0 and θ, which were transformed to confidence contours via a χ2-distribution as in Polansky et al. (2009).
The simulated data sets for λ1 and λ2 are available in the supplementary material to enable comparison of our results
with future estimation methods. Additionally for test 2 we estimated all five model parameters along with 95%
intervals using T = 200 of the data sets simulated for test 1. Inspired by Lambert et al. (2005), the purpose here was
to evaluate the frequentist properties of the intervals provided by the three estimation methods.

2.2. Hidden Markov model with Matlab

The integrals involved in the prediction, filtering, and smoothing steps for nonlinear SSMs (see e.g. eq. 2.2, 2.3,
2.5 in Kitagawa, 1987) can, in general, not be solved analytically. However, by partitioning the continuous state-
space uniformly into n parts the solution can be computed using hidden Markov models (HMMs) (Zucchini and
MacDonald, 2009). See de Valpine and Hastings (2002) for an ecologically motivated study using a similar method.
A state is denoted Ωi, where i ∈ {1, 2, . . . , n}. The probability distribution of the state given the observations Yt is
P(Xt ∈ Ωi|Yt) = pt(i|Yt) which are collected in the row vector pt(Yt) = {pt(i|Yt)}. The transition probability of
jumping from Ωi to Ω j (see Figure 1) is
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fXt+1 |Xt (xt+1|Xt ∈ Ωi)

xt+1

Ωi Ω j

P(Xt+1 ∈ Ω j|Xt ∈ Ωi)

jump

Figure 1: Probability of a jump (transition) from the state Ωi to the state Ω j in the time interval from t to t + 1 in a HMM. The shaded area
corresponds to the integral in (4).

pt(i, j) = P(Xt+1 ∈ Ω j|Xt ∈ Ωi)

=

∫

Ω j

fXt+1 |Xt (xt+1|Xt ∈ Ωi) dxt+1. (4)

For one-dimensional problems Ωi are intervals on the line, in two dimensions Ωi are areas, and analogously for
higher dimensions. Note that the n × n probability transition matrix Pt = {pt(i, j)} is not homogeneous, i.e. the
transition probabilities may change as a function of time as indicated by (1). Now, the HMM prediction, filtering, and
smoothing equations are respectively

pt(Yt−1) = pt−1(Yt−1)Pt−1,

pt(Yt) = ψ−1
t pt(Yt−1) � L(yt),

pt(YN) = pt(Yt) �
[
{pt+1(YN) � pt+1(Yt)}PT

t

]

where ‘�’ and ‘�’ are elementwise matrix multiplication and division, respectively. The likelihood of the observations
L(yt) is a row vector with elements pt(yt |i) and ψt = pt(Yt−1) ·L(yt)T is a normalization constant with ‘·’ denoting dot
product. The estimate of the state given all N observations is simply the mean of the distribution pt(YN).

Using the above scheme we can estimate the unknown parameters (λ) of the SSM by maximizing the likelihood
function

L(λ|YN) = fYN (YN |λ) = [L(y1) · 1]
N∏

t=2

ψt, (5)

as in Kitagawa (1987), where 1 is a column vector of ones. The maximum likelihood (ML) estimate of the model
parameters λ̂ is found by optimizing (5) as a function of λ. The covariance matrix of λ̂ is approximated by the inverse
Hessian of the likelihood function at the optimum λ̂. This approximation is appropriate because the ML estimate is
asymptotically Gaussian under certain regularity conditions (Cappé et al., 2005). Thus, confidence intervals can be
constructed using the approximated covariance matrix. Under parameter transformations it is important to construct
the confidence intervals in the transformed parameters and then reverse transform the computed confidence limits.

When analyzing the theta logistic model we set n = 251. The bounds of the discrete state-space are chosen such,
that the probability of the true state falling outside the grid is negligible. That is, we use the observation model (2)
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to determine bounds that envelope the true latent state with a probability close to 1. This approach is similar to the
one used in de Valpine and Hastings (2002). Details on grid specification can be found in the supplementary material
containing model code.

The HMM code provided in the supplementary material was written in Matlab, but the method is not language
specific. Matlab was chosen because it is widely used and has a syntax which is relatively easy to understand even for
non-Matlab users.

2.3. Mixed effects model with AD Model Builder

Hierarchical mixed effects models are an alternative framework for analyzing nonlinear SSMs. The states are the
random effects of the model and are collectively referred to as X = {x1, . . . , xN}. Here, as in Madsen and Thyregod
(2010), we specify a model for the data conditional on the unobserved random effects, fYN |X(YN |X, λa) which corre-
sponds to (2). We also specify a model for the random effects, fX(X|λb) which corresponds to (1). The joint density
of random effects and observations conditional on the parameters is

fX,YN (X,YN |λ) = fX(X|λb) fYN |X(YN |X, λa).

To obtain the marginal likelihood for estimating λ = {λa, λb} we integrate over the unobserved random effects

L(λ|YN) = fYN (YN |λ) =

∫

RN
fX,YN (X,YN |λ)dX. (6)

The N-dimensional integral in (6) is generally challenging to solve, and for nonlinear mixed models we must resort to
numerical approximation methods for estimating the model parameters. An efficient and widely used method for this
is the Laplace approximation (Wolfinger and Xihong, 1997), which replaces the integrand with a second order Taylor
expansion around the optimum of the log-likelihood function. This allows for elimination of the integral, because
the second-order Taylor expansion can be formulated as a known constant multiplied by a multivariate Gaussian
density, which integrates to unity. For nonlinear models the distribution of the random effect may not be Gaussian.
Then the Laplace approximation is not exact. In particular for multi modal distributions one should use the Laplace
approximation with caution. Still, when analyzing nonlinear models with moderately skewed unimodal distributions
good results can be obtained with the Laplace approximation (Vonesh, 1996; Mortensen, 2009). In any case it is
important to investigate if the approximation is critically violated e.g. by Monte Carlo sampling from the random
effects distribution.

Even with the Laplace approximation maximization of the marginal log-likelihood with respect to λ is challenging.
A computationally efficient method is to combine the Laplace approximation with so-called automatic differentiation
(AD, Skaug and Fournier, 2006). AD is a technique for finding the gradient of a function h (in our case the log-
likelihood), provided that h can be expressed in computed code. Evaluating h using AD gives the function value along
with the gradient of h at the point of evaluation. The gradient is computed using the chain rule of calculus on every
operation in the code that contributes to the value of h. For efficient maximization of the Laplace approximation of
the marginal log-likelihood with respect to λ, up to third order partial derivatives must be found. Skaug and Fournier
(2006) show how this can be accomplished by repeated use of AD.

The above procedure is implemented in AD Model Builder (ADMB), which we use to analyze the theta logistic
model. ADMB is an open-source software package and programming language based on C++. It includes a function
minimizer for ML parameter estimation and a random effects module, which utilizes the Laplace approximation
for integration of random effects. Standard deviations for constructing confidence intervals are calculated using the
delta method (Oehlert, 1992) and automatically reported on all estimated quantities. The covariance matrix for all
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states in an SSM is a banded matrix (Skaug and Fournier, 2006). ADMB can exploit this property by using the
SEPARABLE FUNCTION construct (ADMB-project, 2009b) to gain significant speed improvements. Other than
this useful property ADMB has no tuning parameters as such.

2.4. Monte Carlo estimation with BUGS

Finally, we analyze the theta logistic model using the Bayesian modeling language BUGS, which is an MCMC
estimation method (Spiegelhalter et al., 1996). BUGS is a popular tool in ecological modeling (e.g. Gimenez et al.,
2007; Jonsen et al., 2005; Schofield et al., 2009). BUGS is best known in the WinBUGS form which has a graphical
user interface. Here, however, we use the open-source alternative OpenBUGS, yet the BUGS code provided in the
supplementary material is compatible with WinBUGS.

A Bayesian analysis requires that prior distributions are specified for the model parameters. The type of prior
distributions and parameter values related to these distributions should reflect the a priori knowledge that is available
about the model parameters. BUGS then uses Gibbs sampling (Casella and George, 1992) to explore the posterior
distribution of the parameter and state-space by incorporating the information specified by the priors, the state-space
model, and the observed data. The Gibbs algorithm exploits that sampling the posterior is sometimes simpler via its
conditional distributions rather than directly from the joint distribution. This is the case for state-space models where
direct sampling of the posterior for states and parameters is difficult. Instead, sampling model parameters from priors
and then sampling Xt conditional on model parameters and remaining states (X1, . . . , Xt−1, Xt+1, . . . , XN) for all t is
simple using (1). The sampling algorithm applied by BUGS in specific cases depends on the form and type of the
conditional distribution, and also on the composition of priors on model parameters (see Spiegelhalter et al., 1996,
2003, for details).

We consider the common practical situation where a priori knowledge is unavailable and estimation therefore
relies entirely on information in data. How to specify vague (or uninformative) priors is a topic of on-going research
(Gelman, 2006; Lambert et al., 2005), which is outside the scope of this study. One suggested vague prior is a uniform
distribution with wide support (Spiegelhalter et al., 1996). So, we choose a uniform prior for K, and uniform priors for
log θ and log r0 that were much wider than the natural biological bounds for the parameter values. By log-transforming
θ and r0 biological meaningful (i.e. positive) parameter values are ensured. The state-space formulation implies that
the variance parameters Q and R are non-zero and therefore also require prior distributions. It is common to assign
vague inverse-gamma distributed priors to variance parameters (Spiegelhalter et al., 2003; Lambert et al., 2005).
Gelman (2006), however, recommends using a uniform prior on the log-transformed standard deviation. Therefore,
to asses the sensitivity of the estimation results to the choice of prior we perform BUGS estimation in two separate
cases: BUGS1 using an inverse-gamma distribution for Q and R, and BUGS2 using a uniform distribution on the
log-transformed standard deviation, i.e. 0.5 log(Q) and 0.5 log(R).

Estimation using BUGS involves a number of tuning parameters: The initial values for the sampling scheme can
be found in the supplementary material online along with the specifics of the priors. The total number of generated
samples was 100,000 with 50,000 used for burn-in. The appropriate number of samples was found iteratively by
repeated application of Geweke Z score test for convergence (Geweke, 1992). The BUGS thinning rate was 50 (for
reducing sample autocorrelation, which was apparent for θ and r0 at lower thinning rates). With these values of the
tuning parameters we get an effective sample size of 1000. For summarizing the estimation results the maximum a
posteriori (MAP) parameter estimates along with 95% credible intervals are reported (where the lower bound equals
the 2.5% quantile and the upper bound equals the 97.5% quantile of the posterior distribution).

6



3. Results

State estimation results for the three methods using known parameter values were practically identical (Table 1).
ADMB was an order of magnitude faster than HMM, which, in turn, was an order of magnitude faster than BUGS
(Table 2). State estimation using estimated parameter values also gave practically identical results for all three methods
(Figure 2). Regarding ML parameter estimation and confidence intervals (CIs) for λ1 and λ2, HMM and ADMB
performed almost identically (Table 3). Likewise, MAP estimates and credible intervals provided by BUGS1 and
BUGS2 were overall similar in the λ2 case. In the λ1 case, however, BUGS1 MAP estimates of θ and r0 were markedly
lower and higher respectively than the estimates provided by HMM, ADMB, and BUGS2. Perhaps most surprisingly
was the upper limit of the credible interval for K seemingly quite sensitive to the choice of prior employed by BUGS,
and in both cases considerably higher than the HMM and ADMB CI upper limits. Some notable differences between
CIs and credible intervals were present for θ, K, and r0 in the λ1 case (Table 3), with BUGS generally being more
conservative and providing wider intervals (in the log domain). Inspection of the joint profile likelihood surfaces for
θ and r0 revealed that contour lines closely approximated elliptical shapes for λ2 (Figure 4, panel B), thus indicating
that the quadratic approximation used by HMM and ADMB was appropriate. For λ1, on the other hand, the quadratic
approximation was only appropriate until the 65% confidence limit where the contour shape started to diverge from
the elliptical shape (Figure 4, panel A). If comparing the limits of the intervals provided by all three methods for the
λ1 case (Table 3) with the extents of the likelihood surface (Figure 4, panel A), it is clear that neither credible intervals
nor CIs captured the actual range of plausible parameter values.

Visualizing the empirical distributions of the T = 200 parameter estimates (Figure 3) showed largely identical
results for all three methods. For all parameters the average 95% CIs provided by HMM and ADMB closely approx-
imated the 2.5% and 97.5% quantiles of the corresponding empirical distribution. Similar results were observed for
BUGS1 and BUGS2 for parameters R and Q. Regarding the three remaining parameters θ, K, and r0, on the other
hand, the average credible intervals were markedly wider than the corresponding quantiles of their empirical distri-
bution, and therefore also wider than their CI counterparts. The difference in results between the two vague priors
(BUGS1 and BUGS2) was minimal except for the credible intervals for K where BUGS2 gave wider intervals than
BUGS1. Since both priors have been regarded in the literature as vague their influence on the resulting intervals is
surprising. Computing times for parameter estimation showed that ADMB, again, was significantly faster than HMM
and BUGS (Table 2). Interestingly, BUGS1 was considerably (six times) faster than BUGS2. This results can most
likely be ascribed to BUGS using different sampling algorithms in the two cases.

4. Discussion

Dynamical processes are prevalent in ecology. State-space models are commonly used in the analysis of such
nonlinear processes because they join separate models of the ecological system and the observation process. This
paper assessed the performance of three methods for estimation in nonlinear state-space models: an approach using
hidden Markov models (HMM), the open-source AD Model Builder framework (ADMB), and the BUGS language.
HMM and ADMB are frequentist (non-Bayesian) methods, while BUGS is Bayesian. To facilitate a transparent
comparison among available estimation methods we considered the theta logistic population model, which Wang
(2007) analyzed with three other methods (extended Kalman filter, the unscented Kalman filter and a Metropolis-
Hastings approach). To increase accessibility, the computer code for our three methods can be found in the online
supplementary material.

The state estimation root mean square errors (RMSEs) of HMM, ADMB, and BUGS (Table 1) were lower than
those for the three methods presented by Wang (2007), his Table 1. The 95% intervals for the parameter estimates of θ
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Figure 2: State estimation of the theta logistic model with 95% intervals using the estimated parameter values in Table 3. True states were generated
using λ2 (θ = 1.5). Panel A is a zoom of a part of the full time series indicated by the small box in panel B. Clearly in this case, HMM, ADMB,
and BUGS gave close to identical state estimation results.

Sim. r0 θ RMSE
no. HMM ADMB BUGS
1 0.1 0.5 0.100 0.100 0.100
2 0.5 0.5 0.099 0.099 0.100
3 0.75 0.5 0.097 0.097 0.097
4 1.0 0.5 0.095 0.095 0.095
5 0.1 1.0 0.100 0.100 0.100
6 0.5 1.0 0.095 0.095 0.095
7 0.75 1.0 0.091 0.092 0.092
8 1.0 1.0 0.090 0.090 0.090
9 0.1 1.5 0.100 0.100 0.100
10 0.5 1.5 0.092 0.092 0.092
11 0.75 1.5 0.091 0.091 0.091
12 1.0 1.5 0.096 0.096 0.096

Table 1: Performance of state estimation as defined by Eq. (3) for HMM, ADMB, and BUGS.

HMM ADMB BUGS1 BUGS2
State est. 6.12 s 0.49 s 58 s 58 s
Par. est. 225 s 2.5 s 118 s 614 s

Table 2: Computing times for HMM, ADMB, BUGS1 (inverse-Gamma prior on variances), and BUGS2 (uniform prior on log-standard deviations).
All times are for a single dataset run on the same computer.
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Figure 3: Violin plots showing the empirical distribution of T = 200 parameter estimates. Data used for estimation were simulated with the
parameter configuration λ = (θ = 1.5, r0 = 0.1, K = 1000, Q = 0.01, R = 0.04). Crosses indicate the true parameter values, λ. Horizontal lines
indicate the average limits of the 200 individual 95% intervals.
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Figure 4: Joint profile likelihood surfaces for two simulated data sets of the theta-logistic model (see also Table 3). Panel A: Parameters used for
simulation λ1 = (θ = 0.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04). Panel B: λ2 = (θ = 1.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04). Following
Polansky et al. (2009) the joint profile log-likelihood surfaces have been transformed to confidence contours via a χ2-distribution of the profiled
models versus the model where all five parameters are estimated. Dots indicate the minima of the transformed surfaces equivalent to the maximum
likelihood (ML) point. Both surfaces have elliptically shaped contours in proximity to the ML point in which case a quadratic approximation as
used by HMM and ADMB is appropriate. While the surface for λ2 (panel B) is close to quadratic even at the 95% level, the surface for λ1 (panel
A) departs from the quadratic shape at the 65% level.

HMM ADMB BUGS1 BUGS2
ML est. 95% conf. intv. ML est. 95% conf. intv. MAP est. 95% cred. intv. MAP est. 95% cred. intv.

λ1
θ 0.588 0.134 – 2.588 0.583 0.129 – 2.640 0.374 0.0210 – 1.446 0.538 0.020 – 1.496
K 829.3 643.3 – 1015 829.5 639.2 – 1020 860.0 629.2 – 1900 834.0 638.3 – 4957
r0 0.116 0.046 – 0.298 0.117 0.045 – 0.305 0.135 0.053 – 1.667 0.118 0.045 – 1.666
R 0.041 0.032 – 0.053 0.041 0.032 – 0.053 0.042 0.031 – 0.054 0.041 0.031 – 0.052
Q 0.0092 0.0052 – 0.016 0.0092 0.0051 – 0.017 0.011 0.0055 – 0.017 0.0099 0.0060 – 0.018
λ2
θ 1.098 0.412 – 2.926 1.079 0.402 – 2.902 1.006 0.043 – 2.551 1.037 0.043 – 2.869
K 886.9 792.7 – 981.0 887.0 790.5 – 983.5 891.3 769.3 – 1121 910.0 774.9 – 1097
r0 0.128 0.082 – 0.201 0.129 0.081 – 0.203 0.127 0.078 – 1.136 0.134 0.074 – 1.032
R 0.043 0.032 – 0.056 0.043 0.032 – 0.056 0.043 0.031 – 0.056 0.044 0.032 – 0.056
Q 0.0082 0.0038 – 0.018 0.0081 0.0045 – 0.015 0.0094 0.0041 – 0.018 0.0086 0.0043 – 0.019

Table 3: Parameter values estimated by HMM, ADMB, BUGS1 (inverse-Gamma prior on variances), and BUGS2 (uniform prior on log-standard
deviations) with related 95% intervals. Data were simulated with the listed true parameter values: λ1 = (θ = 0.5, r0 = 0.1, K = 900, Q = 0.01, R =

0.04) and λ2 = (θ = 1.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04) of the theta logistic model.
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provided by our three methods all included the true values (Table 3). Note that they also included θ = 1, which means
that the models could not distinguish between a concave and convex relation between population size and growth rate.
This is in contrast with the credible intervals in Wang (2007), his Table 2, that excluded θ = 1, however three out of
six of his credible intervals also excluded the true parameter value, which is of some concern.

Recent studies have indicated that θ and r0 of the theta logistic model (1) can be difficult to identify for certain
data sets (Polansky et al., 2009). This is the case because given θ < 1 similar model dynamics can be generated
for different values of θ (Clark et al., 2010). Supporting this, a joint profile likelihood surface for log θ and log r0

showed that combinations of different values for the two parameters may fit data equally well, i.e. result in practically
identical model likelihoods (Figure 4, panel A, data generated with θ = 0.5). Still parameters estimated by HMM and
AMDB were reasonably accurate (Table 3, case λ1), however the confidence intervals (CIs) were too narrow when
compared to the contours of the confidence regions in Figure 4, panel A. This result underlines the importance of
validating the quadratic approximation to the log-likelihood function employed by HMM and ADMB before using it
to construct CIs. The credible intervals from BUGS were wider and therefore more realistic than the CIs provided by
HMM and ADMB, yet the interval bounds were narrower than the range of plausible models indicated by the profile
likelihood surface. A possible explanation for this difference is that a substantial Monte Carlo sample size may be
required to fully explore the posterior distribution when two parameters are highly correlated (Gamerman, 1997). If
complications with parameter identifiability as illustrated in Figure 4, panel A, are encountered in practical situations
it is recommended to switch to a simpler model with fewer parameters, e.g. by setting θ = 1 (Clark et al., 2010).

For the data set generated with θ = 1.5, the joint profile likelihood surface for log θ and log r0 was well approxi-
mated by a quadratic function (Figure 4, panel B). Thus, log-transforming θ and r0 in the theta-logistic model avoids
a boomerang-shaped likelihood surface (see e.g. Fig. 2 in Polansky et al., 2009), which deviates considerably from a
quadratic function. Thus, the CIs computed for HMM and ADMB in the log-transformed parameter space (Table 3,
case λ2) corresponded well to the confidence contours in Figure 4, panel B. For BUGS credible intervals the conclu-
sion was the same. Similarly to Lambert et al. (2005), the frequentist properties of the three estimation methods were
evaluated. To this end we used so-called violin-plots (Figure 3), where the empirical distribution of 200 parameter
estimates was compared with the average of the corresponding 200 95% interval bounds. In discussing our results it
is important to stress that CIs provided by frequentist methods (HMM and ADMB) and credible intervals provided
by Bayesian methods (BUGS) have fundamentally different interpretations. A 95% CI is an interval which contains
the true parameter in 95% of a large number of repeated experiments. Conversely, a 95% credible interval is an in-
terval which has a 95% posterior probability of containing the parameter for the experiment at hand. From Figure 3
it was evident that the CIs were consistent with corresponding quantiles of the empirical distributions. This further
confirms the validity of the quadratic approximation of the log-likelihood function. The empirical distributions of the
BUGS parameter estimates under vague prior assumptions were largely identical to their HMM and ADMB counter-
parts. However, Figure 3 showed that even when assigning vague priors it cannot be expected that credible intervals
coincide with frequentist CIs, which by definition do not incorporate a priori knowledge. In addition, considerable
differences in credible intervals were present between the two BUGS analyses using different vague priors (Figure 3).
Thus, it is crucial, when employing Bayesian methods in the absence of a priori knowledge, to assess the sensitivity
of credible intervals to the choice of distribution for the vague prior.

ADMB uses automatic differentiation to estimate the states and parameters of the model, which is the main reason
for its computing time superiority (Table 2). This advantage will only increase further as models become more
complex and the number of parameters grows. The main disadvantage of ADMB is, that the Laplace approximation
for the density of the random effects (here equivalent to the latent states) must be reasonable. In our test cases the
latent state estimation of ADMB was close to identical to the HMM and BUGS results (Figure 2), which justifies using
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the Laplace approximation. If results from alternative methods are not available, the quality of the approximation can
be assessed using the built-in importance sampling functionality (p. 35, ADMB-project, 2009b). Another possible
complication of ADMB is that some programming experience in C++ is required. The HMM approach, on the other
hand, has the advantage of being language independent, i.e. the method can be implemented in any programming
language, for which a function optimizer is available. The programming background of the modeler is therefore of
minor concern. The computing speed of the HMM approach is, at worst, proportional to the number of grid cells
squared, a number which grows rapidly with increasing state dimension. Thus, HMMs are best suited for one or
two-dimensional problems. BUGS depends less on state dimension because it is Monte Carlo based and it requires
no density approximations nor differentiability. Consequently, BUGS is flexible and applicable to the widest variety
of problems of the three methods we have examined. In addition, WinBUGS (Spiegelhalter et al., 2003) can be used
to view and produce BUGS code graphically. This further increases the accessibility of the method.

BUGS and Monte Carlo based methods in general have tuning parameters that cannot be estimated from data and
therefore require subjective input from the modeler. The tuning parameters include the number of samples, burn-
in time, thinning rate, convergence assessment, and choice of prior distribution, all of which influence the estimation
results significantly. This fact is underlined in the BUGS manual (Spiegelhalter et al., 1996, p. 1), and it is emphasized
that the modeler using BUGS must have a sound understanding of the Gibbs sampler. Our results supported this in
that computing times (Table 2) and interval estimation (Figure 3) were significantly influenced by the choice of prior.
In contrast, ADMB has no tuning parameters as such, but it does have certain options that are more or less relevant
depending on the type of problem, for example the SEPARABLE FUNCTION construct. HMM has two tuning
parameters: the extent of the grid and the grid resolution. Limiting the state-space involves a risk of truncating the
latent state path. To minimize this risk the approach of de Valpine and Hastings (2002) was followed, where bounds
are chosen so wide that the probability of latent path truncation is negligible. Naturally, wider grid extents and higher
grid resolution entail an increase in computation time. Thus, determining the value of these parameters is a tradeoff

between computing speed and accuracy of results. Generally, if one is uncertain about the grid specifications, we
recommend to start with a wide and coarse grid to get preliminary results, and then adapt extents and refine the grid
accordingly if needed. If the conclusion is unchanged on the adapted grid there is strong evidence that the latent path
is enclosed and properly resolved by the discretization.

5. Conclusion

In summary, the three methods considered in this paper are all powerful approaches to nonlinear state-space
modelling of ecological systems. ADMB is by far the fastest method owing to its use of the Laplace approximation
and automatic differentiation. This limits ADMB to problems where the state distributions are unimodal, which,
however, is the case in the majority of practical examples. In contrast, HMM and BUGS are more general and are
able to handle arbitrary state distributions. HMM requires specification of a spatial grid and is limited to problems
with low state dimensions, say below four. BUGS has fewest model restrictions, but requires specification of prior
information and other subjective input from the modeler in the form of algorithmic tuning parameters.

State-space methods provide a natural paradigm for ecosystem modeling. Thus, it is imperative that the ecological
community is alert to progress in other scientific fields where state-space models are used and developed. This
paper evaluated the performance, with respect to estimation accuracy and speed, of three advanced methods for state-
space analysis. The study showed that state and parameter estimation performance for all three methods was largely
identical, however with BUGS providing overall wider credible intervals for parameters than HMM and ADMB
confidence intervals.
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Abstract

A hierarchical framework for simultaneous analysis of multiple related individual datasets is pre-

sented. The approach is very similar to mixed effects modelling as known from statistical theory.

The model used at the individual level is, in principle, irrelevant as long as a maximum likelihood

estimate and its uncertainty (Hessian) can be computed. The individual model used in this text is

a hidden Markov model. A simulation study concerning a two-dimensional biased random walk is

examined to verify the consistency of the hierarchical estimation framework. In addition, a study

based on acoustic telemetry data from pike illustrates how the framework can identify individuals

that deviate from the remaining population.
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1 Introduction

The development and availability of electronic tags have revolutionised the study of individual animal

movement. Often, however, the purpose of tagging studies is to investigate movement and behaviour

patterns in the population rather than at the individual. Models with random effects is the common

statistical tool for population analysis of individual measurements. Unfortunately they are not straight-

forward to employ in the context of animal movement, since the movement of an individual is not easily

parametrised such that meaningful population level patterns are captured.

Some studies have integrated state-space models (SSMs) for individual analysis into population frame-

works. In drug development SSMs are used to model the dynamics of the concentration of chemical

compounds in the blood. Nonlinear mixed effects models have been used to provide improved param-

eter estimates because variability between individuals is captured. This enables joint analysis of data

from multiple and possibly unbalanced studies (Tornøe, 2005). It is therefore tempting to take a similar

approach and combine individual SSMs for animal movement to infer population trends.

Using Bayesian methods, Jonsen et al. (2003) implemented a hierarchical model for combining multiple

individual SSMs for simulated movement data. Their inference focused on a parameter which related

movement rate to the sea surface temperature experienced by turtles. The results of the study clearly

illustrated the inferential strength of sharing information between individuals to improve estimation. The

same hierarchical approach was taken in Jonsen et al. (2006) to reveal diel variation in travel rates of

migrating leatherback turtles. Few other studies are found in the literature that deal with the difficult

task of jointly analyse movement data from multiple individuals.

Aarts et al. (2008) present the, perhaps, most extensive (non state-space) attempt to model population

space use using individual tagging data. The paper examines grey seal habitat preference with a case-

control model. Outliers present in the telemetry data are removed with a heuristic scheme and the

remaining locations are smoothed temporally with a generalized additive model (GAM). A number of

static environmental variables (sediment type, depth, distance from haul-out) are related to the number

of observed locations in a region as covariates. Thus, the model can be used for predicting the spatial

usage of the species as a function of the covariates. The model, as discussed by the authors, ignores that

the location data used for estimation is autocorrelated.

The present text studies the use of mixed effects models to combine data from multiple electronic

tags with the aim to draw conclusions about the population. The focus is not on explicitly modelling

the movement of the population, but rather on parameters that are related to the population movement,

e.g. movement rate. First the theory for hierarchical models based on likelihood functions from multiple

individuals is reviewed. This framework is similar to the empirical Bayesian method presented by Efron

(1996) or the mixed effects framework as described in Pawitan (2001). In a simulation study the hierar-

chical model is used to merge individually estimated SSMs for movement data with observation error. In

another study accurate real acoustic telemetry data from pike were used to distinguish individuals that

displayed a deviating behaviour as compared to the remaining population.

2 The hierarchical model

The population has the parameter vector θ. Then, individual i ∈ {1, . . . ,M} of the population has a

parameter vector given by
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θi = θ + wi, (1)

where

wi ∼ N(0,W ).

In mixed-effects modelling θ are referred to as the fixed effects and wi are the mutually independent

random effects. The dataset related to individual i has Ni observations. A general model for the observed

data Z(i)
Ni

=
{
z

(i)
1 , . . . ,z

(i)
Ni

}
from individual i is

Z(i)
Ni

= f(θi,Θ), (2)

where Θ covers other parameters required to generate data. Here, we assume that Θ is known (i.e. it can

be estimated from independent data). The form of f is arbitrary, however here only models with noise

(randomness) are considered, for example f could be a stochastic SSM. In this case the parameters must

be estimated using the probability density of the data conditional on the parameters is p
(
Z(i)
Ni

|θi
)
. For

time series data the observation density is typically obtained by a filtering procedure.

When viewed as a function of θi the observation density is the likelihood function for the parameters

of individual i, i.e. we have

L(θi) = p
(
Z(i)
Ni

|θi
)
, (3)

and therefore that the maximum likelihood (ML) estimate of θi is

θ̂i = argmax
θi

L(θi), (4)

which can be determined independently of the other individuals. The uncertainty of θ̂i is described by

covariance Σi of the parameter estimate, which is computed as the inverse Hessian evaluated at the

optimum of the likelihood function.

The joint probability density of the random effects and individual observations conditional on θ and

W is

p
(
wi,Z(i)

Ni
|θ,W

)
= p

(
Z(i)
Ni

|θ,wi

)
p (wi|W ) , (5)

by the definition of conditional densities. In (5) the first term on the right-hand side is equal to (3) since

θi = θ + wi. The joint likelihood function related to the random effects and the model parameters is

therefore

L(θ,W ,wi) = p
(
wi,Z(i)

Ni
|θ,W

)
.

Then, the ML estimate of the random effects for individual i with fixed θ and W is

ŵi = arg max
w

L(θ,W ,wi). (6)

The population parameters are also of interest so we marginalise over the random effects and get
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p
(
Z(i)
Ni

|θ,W
)

=

∫
p
(
wi,Z(i)

Ni
|θ,W

)
dwi. (7)

This leads to the likelihood function for the population parameter given data from the i’th individual

L
(
θ,W |Z(i)

Ni

)
= p

(
Z(i)
Ni

|θ,W
)
. (8)

Individuals are conditional independent given θ and W . Thus, the full population likelihood, i.e. the

likelihood given data from all individuals, is the product of the individual likelihood contributions

L (θ,W |Z) =
M∏

i=1

∫
p
(
Z(i)
Ni

|θ,wi

)
p (wi|W ) dwi, (9)

where Z =
{
Z(1)
N1
, . . . ,Z(M)

NM

}
. Therefore, the ML estimate of the population parameters is

(θ̂, Ŵ ) = argmax
θ,W

{L(θ,W |Z)} . (10)

2.1 Excluding deviating individuals

Say a population of M individuals has been analysed with the framework described above. Then a new

dataset becomes available from a new individual, which possibly belongs to the same population. The

parameter estimate and parameter covariance matrix for the new individual are θ̂a and Σa respectively.

Two hypotheses are defined:

H0: The new individual comes from the same population as the other individuals.

H1: The new individual does not come from the same population as the other individuals.

Under H0 it holds that

θa ∼ N(θ,W ), θ̂a|θa ∼ N(θa,Σa),

which leads to

θ̂a ∼ N(θ,W + Σa),

using the rules for conditional mean and variance. The H0 hypothesis can be tested with

Sa = (θ̂a − θ)T (Σa + W )−1(θ̂a − θ) ∼ χ2(n),

where n is the number of parameters in θ, i.e. the dimension of the parameter space. So, H0 is rejected if

Sa > χ2(n)1−α,

where the conventional level of significance, α = 0.05, is chosen.

This simple test can be used to eliminate individuals that deviate from the population by setting

a = i and comparing with the population comprised by all individuals except i. This procedure is carried

out for all i. The individual that deviates the most (smallest p-value) is eliminated from the population.
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Then for the remaining M−1 individuals the procedure is repeated. The scheme runs until no individuals

deviate from the population. Before the population comprised by the remaining individuals is accepted

forward selection of the eliminated individuals may be performed. That is, using the above test to ensure

that none of all the eliminated individuals can be included in the reduced population. This might be the

case as the population composition has changed since the first individual was eliminated.

3 Algorithm for estimating the hierarchical model

It is difficult to estimate the random effects and the population parameters simultaneously because their

respective likelihood functions are coupled. That is, when estimating wi values of θ and W are required,

when estimating θ the value of W is required and finally for estimating W values for θ and wi for all i

are required. Instead of direct numerical optimisation of all parameters, an iterative algorithm (Pawitan,

2001) is employed:

1. Set W = Ŵ , where Ŵ is a starting guess.

2. Compute the estimate θ̂ using Ŵ .

3. Compute the estimate ŵi for all i using θ̂ and Ŵ .

4. Update Ŵ using θ̂ and wi.

5. Iterate step 2 to 4 until convergence.

It is clear, however, that step 2 and 4 require that the integral (7) over the random effects be com-

puted. This integral is the main challenge of parameter estimation in a nonlinear mixed-effects model.

The optimisation routine that maximises (9) requires for each function evaluation that (8) be computed

for all individuals. It not possible in general to compute the integral on closed form and therefore approx-

imation schemes must be employed. The computing effort required to evaluate (8) with quadrature based

algorithms grows rapidly in n (the number of parameters and dimension of the integral). Therefore, even

for moderate values of n these methods are not suitable. Alternative approaches to solving the integral

are Monte Carlo simulation, first-order conditional estimation (FOCE) and the Laplacian approximation.

Here, an approach similar to the latter is employed.

The individual log-likelihood function

l(θi) = log p
(
Z(i)
Ni

|θ,wi

)
(11)

is assumed to take a quadratic form, i.e. it satisfies

l(θi) = Ki + log
(
|2πΣi|1/2

)
− log

(
|2πΣi|1/2

)
− 1

2
(θi − θ − wi)

TΣ−1
i (θi − θ − wi), (12)

where Σi comes from the inverse Hessian of the individual likelihood function at θ̂i, i.e. the observed

Fisher information, and Ki is value of the individual log-likelihood function at its maximum. Note that

the two latter terms of (12) comprise a Gaussian density in the log-domain. The quadratic form is a

reasonable assumption since the likelihood function is asymptotically Gaussian around the maximum

likelihood estimate (Wasserman, 2005). Assuming a quadratic form for l(θi) is equivalent to developing
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the second-order Taylor expansion of l(θi) around its maximiser θ̂i. As mentioned above this technique

is similar to the Laplace approximation (Vonesh, 1996).

By assumption, the log-density of the random effects also has a quadratic form. Therefore, it is

evident that the log of (5) is

li = log
[
p
(
Z(i)
Ni

|θ,wi

)
p (wi|W )

]

= l(θi) + log p (wi|W )

= Ki + log
(
|2πΣi|1/2

)
− log

(
|2πΣi|1/2

)
− 1

2
(θi − θ − wi)

TΣ−1
i (θi − θ − wi)

− log
(
|2πW |1/2

)
− 1

2
wT
i W −1

i wi.

For θi = θ̂i and W = Ŵ , the estimate for the random effects is found by taking the derivative of li with

respect to wi:

∂li
∂wi

= −1

2
Σ−1
i (θ̂i − θ − wi) − 1

2
Ŵ −1

i wi.

Equating to the zero-vector and solving for wi gives the random-effects estimate

ŵi = (Σ−1
i + Ŵ −1)−1Σ−1

i (θ̂i − θ). (13)

The covariance of the random effects is therefore

Si = (Σ−1
i + Ŵ −1)−1.

Now, while dropping unimportant constant terms, the population likelihood (9) can be rewritten as

l (θ,W |Z) =

M∑

i=1

log

(∫
exp (li) dwi

)

=
M∑

i=1

−1

2
log (|Σi + W |) − 1

2
(θi − θ)T (Σi + W )−1(θi − θ). (14)

This log-likelihood is similar to that of a linear mixed-model with the exception that the individuals have

different covariance matrices Σi whereas for the standard linear model they are normally assumed equal

across individuals (Pawitan, 2001).

For known W = Ŵ and Vi = Σi+Ŵ , a closed-form expression for the maximum likelihood estimate

of θ is now available by
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0 =
∂

∂θ
l
(
θ, Ŵ |Z

)

0 =

M∑

i=1

−1

2
V −1
i (θ̂i − θ)

θ̂ =

[
M∑

i=1

V −1
i

]−1 [ M∑

i=1

V −1
i θ̂i

]
. (15)

The Hessian of l
(
θ, Ŵ |Z

)
at the optimum is

Hbθ =

M∑

i=1

V −1
i ,

so the covariance matrix of θ̂ is Σbθ = H−1
bθ

.

The estimation procedure for the variance component W is not immediately tractable via (14) owing

to the Vi terms which involve a sum of two covariances. With θ = θ̂, wi = ŵi, and using equation

(17.14) in Pawitan (2001), (14) can be rewritten as

l
(
θ̂,W |Z

)
=

M∑

i=1

− 1

2
log |Σi| − 1

2
(θ̂i − θ̂ − ŵi)

TΣ−1
i (θ̂i − θ̂ − ŵi)

− 1

2
log |W | − 1

2
ŵT
i W −1ŵi − 1

2
log |Σ−1

i + W −1|. (16)

It is not possible in general to find an expression for W from (16). Therefore W has to be estimated

numerically. Alternatively (16) can be simplified by assuming that W = σ2
wR, i.e. that the structure of

the covariance matrix of the random effects is known. Then (as in Pawitan, 2001) define the objective

function

Q =

M∑

i=1

− 1

2
log |Σi| −

1

2
(θ̂i − θ̂ − ŵi)

TΣ−1
i (θ̂i − θ̂ − ŵi)

− n

2
log σ2

w − 1

2σ2
w

ŵT
i R−1ŵi − 1

2
log |Σ−1

i + σ−2
w R−1|.

With n parameters

∂Q

∂σ2
w

=
M∑

i=1

− n

2σ2
w

+
1

2σ4
w

ŵT
i R−1ŵi

+
1

2σ4
w

tr{(Σ−1
i + σ−2

w R−1)−1R−1}. (17)

By equating (17) to zero it can be shown that σ2
w can be updated via
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Figure 1: Simulated data from M = 30 individuals with a biased random walk in two dimensions.

σ2
w =

1

Mn

M∑

i=1

ŵT
i R−1ŵi + tr{(Σ−1

i + σ−2
w R−1)−1R−1}. (18)

It is not necessarily straightforward to determine the structure matrix R. In the simplest case it may

be set to the identity matrix (I), however this may be a too rough approximation. An alternative and

somewhat heuristic approach to get a more reasonable R is to do one iteration of the loop described

in the beginning of this section with R = I. Then, using the estimated random effects it possible to

empirically calculate R, which can be used in subsequent iterations.

4 Examples

Here we use the presented methodology to analyse data from multiple individuals. First a simulation

study is considered. Then real tagging data is analysed.

4.1 Simulation

In the simulation study data were generated from a two-dimensional SSM for M = 30 individuals (see

Figure 1). The aim was to mimic an object moving in the plane. Specifically, data for the i’th individual

were simulated from a biased random walk model

x
(i)
k+1 = x

(i)
k + ui + ν

(i)
k , (19)
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Param. D ux uy σ2
ε σ2

w R M Ni
Value log(10) 1 0 1 0.32 I 30 200

Table 1: Parameter values used for generating data for the simulation study.

where x
(i)
k is the two-dimensional location vector at time tk, ui is the drift (or advection) vector and

ν
(i)
k ∼ N(0, 2DiIdt). The time-step dt is constant in time and for all individuals. The observation

equation is

y
(i)
k = x

(i)
k + ε

(i)
k , (20)

where y
(i)
k is the observed location at time tk and ε

(i)
k ∼ N(0, σ2

εI). In this example it is assumed that

σ2
ε is independent of i and known. Equations (19) and (20) comprise the mapping f in (2).

The individual parameters θi = {Di,ui} are generated from the population parameters θ = {D,u}
as described by (1), restated here

θi = θ + wi,

with wi ∼ N(0, σ2
wR) with R = I. Data were generated with the parameter values shown in Table 1.

4.1.1 Estimation scheme

The only known parameters are R = I and the variance of the observation noise σ2
ε . All other parameters

are estimated. First, all individual parameters θi are estimated separately and independently of each

other such that θ̂i and Σi is computed for all i, see (4). This estimation is carried out with a hidden

Markov model (HMM), which discretises the two-dimensional domain into grid cells and solves the filtering

equations on this grid. For further details see Thygesen et al. (2009). Note that the simple SSM considered

here could be estimated using the Kalman filter. However, the purpose of the simulation study is to show

the use of mixed effect modelling together with HMMs because this framework generalises to nonlinear

and non-Gaussian SSMs.

The model parameters are estimated with the recursive scheme described in Section 3. With the

starting guess σ2
w = 1 the population parameters are estimated with (15). The random effects are then

estimated with (13) using the previous values for θ̂ and σ2
w. The final step in the recursion is to update

the value of σ2
w with (18). This loop continues until the parameter values converge. The recursive

scheme is very similar to an Expectation-Maximization algorithm, which is a derivative-free approach to

ML estimation. It is guaranteed that the likelihood will increase with every iteration, however sometimes

the algorithm converges slowly. Fortunately, all the estimation steps in the algorithm have closed-form

solutions (subject to some assumptions). This allows the recursion to converge rapidly.

4.1.2 Estimation results

Estimation time of one individual was approximately three minutes on a standard desktop computer.

Obviously, this time depends on the resolution of the discrete grid in the HMM, which in turn depends

on the parameter values (or rather the path of the simulated data). The computing time spent to

estimate random effects, random effects variance, and population parameters was around one second.

This estimation was quick because only analytical expressions are part of the estimation procedure.
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Test D ux uy σ2
w

1 (8.85 9.87 11.02) (0.35 0.80 1.25) (−0.38 0.06 0.50) 0.272

Table 2: Results from simulation study. Estimated population parameter values with 95% confidence
bounds. Estimated of diffusivity are transformed back from log.
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Figure 2: Length distribution of the tagged pike.

Estimation of the individuals can be parallelised to obtain further speed-up since they are conditional

independent.

The estimation results for the simulation study are shown in Section A.1 and summarised in Table 2.

All confidence intervals for the population parameters contained the true parameter values. The 95%

confidence intervals for the individual parameters also behaved as expected (approximately 5% did not

contain the true parameter values). The individual estimates of the advection parameters were relatively

uncertain. The random effects therefore had a large influence on the updated estimates, i.e. the estimates

of ui. That is, ui were close to u in general. In contrast, the diffusivity estimates were only modified

slightly by the random effects. Overall the estimation performance of the HMM with mixed effects was

satisfactory.

4.2 Acoustic data from pike

Here we use the mixed effects framework to estimate the behaviour ofM = 20 pike with length distribution

as shown in Figure 2. Data are recorded using acoustic tags and hydrophones (listening stations) in a

lake. Via triangulation, the location of the pike is measured. The location data are accurate, but prone

to outliers. Therefore, data are pre-filtered with a robust SSM (using t-distributed observation noise).

After filtering we assume that locations are known without error.

The aim of the study is to investigate the movement behaviour of the pike and to identify individuals

that deviate from the rest of the population. Our approach is to set up a three-state HMM where each
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state corresponds to either “resting”, “cruising”, or “aggressive”. First, the location data is converted

to speed data by differencing. This is only possible when the location error is small, otherwise the speed

becomes uncertain. The speed data pertaining to individual i are denoted Z(i)
Ni

= {z
(i)
1 , . . . ,z

(i)
k , . . . ,z

(i)
Ni

}.

4.2.1 Estimation scheme

For each data point the likelihood of having one of the three behaviours can be computed using the

following scheme:

1. Resting (no movement),

L
(i)
1,k = 1 − Φ

(
z
(i)
k − µ1

σ1

)
,

where µ1 = 0.025 m/s and σ1 = 0.002 m/s.

2. Cruising,

L
(i)
2,k = Φ

(
z
(i)
k − µ2

σ2

)
− Φ

(
z
(i)
k − µ3

σ3

)
,

where µ2 = 0.03 m/s, µ3 = 0.25BLi m/s, σ2 = 0.01 m/s and σ3 = 0.02 m/s. Here BLi is the body

length of individual i.

3. Aggressive,

L
(i)
3,k = Φ

(
z
(i)
k − µ3

σ3

)
.

Here Φ(·) is the cumulative density function of a standard Gaussian distributed random variable. The

likelihood scheme is illustrated in Figure 3. The data likelihood (Thygesen et al., 2009; Zucchini and

MacDonald, 2009) vector to be used in the HMM is then

L
(i)
k = diag(L

(i)
1,k, L

(i)
2,k, L

(i)
3,k).

The data sampling interval was 45 seconds. However, with acoustic data many transmissions are

lost so the resulting data are very unevenly sampled. It is therefore necessary to formulate the HMM in

continuous time. Then the dynamics of the Markov process is described by its generator

G =




−λ12 − λ13 λ12 λ13

λ21 −λ21 − λ23 λ23

λ31 λ23 −λ31 − λ32


 ,

where λab is the rate of jumping from state a to state b.

We are also interested in if the fish display different behaviours at day and night so we setup an

HMM for the (approximately) twelve hours of darkness and one for the twelve hours of daylight. This

corresponds to considering time as a covariate with two levels (day and night). The generators pertaining

to daytime and night time are Gd and Gn respectively. The probability transition matrices needed in

the HMM iterations are Pk = exp(G∆k), where ∆k = tk+1 − tk. The parameter vectors of the model for

individual i for day and night are respectively
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Figure 3: The likelihood of each of the three movement behaviours as a function of the observed speed.

θdi = (λ12, λ13, λ21, λ23, λ31, λ32)
(d)
i

θni = (λ12, λ13, λ21, λ23, λ31, λ32)
(n)
i .

Thus the total parameter vector for individual i is θi = (θ
(d)
i , θ

(n)
i ).

The state probability distribution of the HMM at time tk conditional on Zk is φ(tk,xk|Zk) = φk|k.

This distribution is updated (omitting the i index) with

φk+1|k+1 = ψ−1
k φk|kPkLk, (21)

where

ψk = [φk|kPkLk] · 1n,

where 1n is a column vector of ones of length n and ‘·’ is the dot-product. The likelihood of the HMM

parameters (Zucchini and MacDonald, 2009) is then calculated using

p
(
Z(i)
Ni

|θi
)

= p
(
z

(i)
1 |θi

) Ni∏

k=2

ψk.

For a faster and more accurate likelihood estimation we also implement the recursion for calculating

the gradient of the likelihood function (see Section A.2).

Now, the mixed effects procedure explained in Section 3 can be utilised to estimate population param-

eters and random effects for the transition rates. However, we are interested in the stationary distribution

of the Markov chain rather than the state transition rates in the generators because these have a more

intuitive interpretation (Patterson et al., 2009). Note, though, that time series are not stationary. Still,

the stationary distributions can provide useful information on how the fish spent their time, but should

not be used for prediction under different conditions.
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The stationary distribution of a Markov chain is a function of the estimated transition rates. Specifi-

cally, the estimated stationary distribution is the vector µ̂, which fulfills

µ̂Ĝ = 0.

Knowing the uncertainty of Ĝ (from the Hessian of the likelihood function), the uncertainty of µ̂ can

be calculated with the delta method (Wasserman, 2005). Then, setting θ̂i = µ̂i with estimated covari-

ance matrix Σi found with the delta method, we perform mixed effects estimation on the stationary

distributions for day and night with the scheme of Section 3.

For this application it is unrealistic to assume that the elements of the stationary distribution are

uncorrelated. In other words R 6= I, but other than that the structure of R is unknown. Instead, the

empirical estimate of the covariance matrix W is used. Specifically, the first three steps of the algorithm

stated in Section 3 are performed using I as starting guess for W . After step 3 the empirical estimate of

W is computed from the residuals of the model. Thereafter W remains fixed to its empirical estimate.

Then the fixed and random effects are estimated as before. While this scheme is somewhat ad hoc it

does provide a much higher likelihood value than directly using the algorithm in Section 3.

4.2.2 Estimation results

The numbering and individual parameter estimates are shown in Section A.3. The backward-elimination

procedure outlined in Section 2.1 was used for the M = 20 pike with the estimated parameters for day

time and night time. For the day time parameters no deviating individuals were found. For the night time

parameters individuals were eliminated in the following order: #7, #2, #14, #18, #11. None of these

five individuals could be included in the remaining population by forward selection (see Section A.3).

It is important to note that the three largest fish and the two smallest were excluded from the group.

This suggests that the size of a pike influences its behaviour, which seems plausible from a biological

point of view. Further study of the excluded individuals and the remaining group is required to enable

detailed biological conclusions about the pike population to be made.

5 Discussion

The modelling framework presented here is similar to the hierarchical Bayes approach presented in Jonsen

et al. (2003) with (at least) two important differences: first, prior information about parameters is not

required, and second, our framework allows the investigator to test if individuals deviate from the rest

population using backward elimination and forward selection. A Bayesian alternative to the latter point

has been investigated by Efron (1996) based on so-called parameter relevance. The technique requires a

prior probability that an individual belongs to the population and then provides the posterior probability.

A limitation of our framework is that the individual log-likelihood functions must be approximatively

quadratic. The degree to which this assumption holds has not been dealt with in depth here, instead

the reader is referred to Vonesh (1996); Mortensen (2009). It is known, though, that the log-likelihood is

asymptotically quadratic as the number of observations approach infinity, however the order of conver-

gence is problem dependent.

Similar to previous individual based population models (Aarts et al., 2008) explanatory covariates

can be incorporated into the model presented here. In the study of pike this was done simplistically by
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letting parameters depend on time of day (night or day time). Naturally, functional links could also be

used as in Bestley et al. (2008). The use of environmental covariates improves the model’s ability to make

predictions in other but similar environments. Furthermore, can inference based on covariates provide

ecological insights into animal’s usage of space and indicate possible behavioural responses to changes in

the environmental variables.

As discussed by Aarts et al. (2008) the broader terms of the inference the higher the uncertainty

of the results. Inference within the estimation dataset can be carried out with high confidence in the

conclusions. Using the estimated model to predict behaviour for other populations of the same species in

a similar environment seems reasonably safe also. Extrapolation, on the other hand, to different environ-

mental properties, other species, different seasons etc. should only be carried out if this can be justified

empirically. One should also be aware than even within seemingly similar environments unmodelled co-

variates may differ such as prey distribution, risk of predation or other influential information, which is

unavailable to the modeller.

Explicit modelling of space use with data from electronic tags is difficult because data are temporally

and spatially correlated. Ignoring correlation will possibly bias conclusions. On the other hand, the

high temporal resolution of tagging data can, if correlation is accounted for, provide unique insights into

behavioural responses of the animal. Archival tags are becoming increasingly advanced measuring not

only temperature and depth, but also salinity, oxygen levels, magnetic field, and physiological variables

such as visceral warming, and heart rate. These explanatory variables will become important for future

studies of individual and population behaviour.
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A Appendix

A.1 Simulation results

sigma_b: 0.2727169 (0.300), niter: 86, likval: 72.4821775

- Pop D: [ 8.85 9.87 11.02]

# 1, w rand D: [10.24 12.76 15.91] (D indv: [10.20 13.08 16.77]) (true: 13.23)

# 2, w rand D: [10.10 12.56 15.62] (D indv: [10.28 13.06 16.60]) (true: 11.37)

# 3, w rand D: [ 7.44 9.46 12.03] (D indv: [ 7.16 9.37 12.26]) (true: 9.81)

# 4, w rand D: [ 6.17 8.01 10.40] (D indv: [ 5.54 7.47 10.08]) (true: 7.27)

# 5, w rand D: [ 5.38 7.02 9.17] (D indv: [ 4.62 6.28 8.55]) (true: 8.96)

# 6, w rand D: [ 7.34 9.35 11.90] (D indv: [ 7.01 9.19 12.05]) (true: 9.65)

# 7, w rand D: [ 8.71 10.90 13.64] (D indv: [ 8.43 10.81 13.86]) (true: 12.08)

# 8, w rand D: [12.61 15.67 19.47] (D indv: [13.57 17.21 21.83]) (true: 15.25)

# 9, w rand D: [10.17 12.58 15.57] (D indv: [10.43 13.16 16.60]) (true: 10.16)

#10, w rand D: [ 6.21 7.98 10.27] (D indv: [ 5.65 7.51 10.00]) (true: 6.95)

#11, w rand D: [ 7.22 9.13 11.53] (D indv: [ 6.92 8.98 11.66]) (true: 9.18)

#12, w rand D: [14.40 17.76 21.90] (D indv: [15.72 19.75 24.80]) (true: 18.19)

#13, w rand D: [ 6.33 8.12 10.42] (D indv: [ 5.80 7.69 10.19]) (true: 7.34)

#14, w rand D: [ 6.37 8.11 10.34] (D indv: [ 5.88 7.71 10.12]) (true: 8.09)

#15, w rand D: [ 6.62 8.55 11.04] (D indv: [ 6.12 8.20 10.98]) (true: 10.32)

#16, w rand D: [11.67 14.35 17.65] (D indv: [12.09 15.14 18.95]) (true: 14.17)

#17, w rand D: [ 7.47 9.67 12.52] (D indv: [ 7.16 9.62 12.93]) (true: 11.07)

#18, w rand D: [ 8.82 11.08 13.90] (D indv: [ 8.75 11.27 14.52]) (true: 10.92)

#19, w rand D: [ 7.77 10.02 12.93] (D indv: [ 7.52 10.05 13.43]) (true: 9.24)

#20, w rand D: [ 7.24 9.22 11.75] (D indv: [ 6.90 9.06 11.88]) (true: 8.08)

#21, w rand D: [ 7.02 9.04 11.64] (D indv: [ 6.61 8.81 11.73]) (true: 9.72)

#22, w rand D: [ 6.97 8.89 11.33] (D indv: [ 6.60 8.67 11.38]) (true: 8.47)

#23, w rand D: [ 7.89 10.01 12.70] (D indv: [ 7.80 10.19 13.31]) (true: 7.65)

#24, w rand D: [10.61 13.05 16.06] (D indv: [10.94 13.70 17.16]) (true: 12.41)

#25, w rand D: [ 5.72 7.58 10.05] (D indv: [ 4.92 6.86 9.55]) (true: 7.08)

#26, w rand D: [ 7.97 10.23 13.14] (D indv: [ 7.78 10.33 13.70]) (true: 10.30)

#27, w rand D: [ 6.69 8.49 10.78] (D indv: [ 6.25 8.16 10.66]) (true: 8.23)

#28, w rand D: [ 6.08 7.88 10.21] (D indv: [ 5.47 7.35 9.88]) (true: 8.52)

#29, w rand D: [ 4.24 5.67 7.58] (D indv: [ 3.17 4.48 6.34]) (true: 6.04)

#30, w rand D: [10.23 12.51 15.30] (D indv: [10.45 12.99 16.15]) (true: 13.31)

- Pop Ux: [ 0.35 0.80 1.25]

# 1, w rand Ux: [ 0.37 0.89 1.42] (Ux indv: [ 0.48 3.28 6.08]) (true: 1.54)

# 2, w rand Ux: [ 0.32 0.85 1.37] (Ux indv: [-0.86 2.24 5.34]) (true: 1.02)

# 3, w rand Ux: [ 0.27 0.79 1.31] (Ux indv: [-1.97 0.61 3.19]) (true: 1.11)

# 4, w rand Ux: [ 0.16 0.68 1.21] (Ux indv: [-4.16 -1.76 0.64]) (true: 0.59)

# 5, w rand Ux: [ 0.30 0.82 1.34] (Ux indv: [-0.76 1.23 3.22]) (true: 0.97)

# 6, w rand Ux: [ 0.24 0.75 1.27] (Ux indv: [-2.05 -0.02 2.01]) (true: 0.76)

# 7, w rand Ux: [ 0.36 0.88 1.40] (Ux indv: [ 0.57 3.09 5.61]) (true: 0.11)

# 8, w rand Ux: [ 0.32 0.85 1.37] (Ux indv: [-0.71 2.63 5.96]) (true: 0.93)

# 9, w rand Ux: [ 0.25 0.76 1.28] (Ux indv: [-1.68 0.31 2.30]) (true: 1.01)
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#10, w rand Ux: [ 0.33 0.85 1.37] (Ux indv: [-0.41 1.92 4.26]) (true: 0.90)

#11, w rand Ux: [ 0.33 0.85 1.37] (Ux indv: [-0.01 2.31 4.63]) (true: 1.39)

#12, w rand Ux: [ 0.23 0.76 1.29] (Ux indv: [-5.02 -1.27 2.48]) (true: 1.20)

#13, w rand Ux: [ 0.24 0.76 1.28] (Ux indv: [-1.76 0.20 2.16]) (true: 1.06)

#14, w rand Ux: [ 0.32 0.85 1.37] (Ux indv: [-0.67 1.78 4.23]) (true: 0.83)

#15, w rand Ux: [ 0.21 0.73 1.25] (Ux indv: [-2.68 -0.59 1.50]) (true: 1.00)

#16, w rand Ux: [ 0.32 0.85 1.38] (Ux indv: [-0.58 2.89 6.37]) (true: 0.99)

#17, w rand Ux: [ 0.30 0.83 1.35] (Ux indv: [-1.13 1.52 4.18]) (true: 1.36)

#18, w rand Ux: [ 0.23 0.75 1.28] (Ux indv: [-3.75 -0.78 2.20]) (true: 0.82)

#19, w rand Ux: [ 0.27 0.79 1.31] (Ux indv: [-1.34 0.86 3.05]) (true: 0.79)

#20, w rand Ux: [ 0.35 0.87 1.40] (Ux indv: [ 0.11 2.71 5.31]) (true: 0.96)

#21, w rand Ux: [ 0.29 0.81 1.33] (Ux indv: [-1.44 1.02 3.47]) (true: 0.47)

#22, w rand Ux: [ 0.21 0.73 1.25] (Ux indv: [-3.07 -0.71 1.65]) (true: 0.28)

#23, w rand Ux: [ 0.34 0.86 1.39] (Ux indv: [-0.38 2.46 5.30]) (true: 1.06)

#24, w rand Ux: [ 0.21 0.73 1.26] (Ux indv: [-5.10 -1.84 1.43]) (true: 0.93)

#25, w rand Ux: [ 0.30 0.82 1.34] (Ux indv: [-0.88 1.28 3.43]) (true: 0.88)

#26, w rand Ux: [ 0.31 0.83 1.35] (Ux indv: [-0.79 1.70 4.19]) (true: 1.15)

#27, w rand Ux: [ 0.28 0.80 1.32] (Ux indv: [-1.27 0.99 3.24]) (true: 0.96)

#28, w rand Ux: [ 0.26 0.78 1.30] (Ux indv: [-1.61 0.59 2.80]) (true: 1.22)

#29, w rand Ux: [ 0.26 0.77 1.28] (Ux indv: [-1.53 0.36 2.25]) (true: 1.02)

#30, w rand Ux: [ 0.24 0.76 1.29] (Ux indv: [-3.80 -0.64 2.52]) (true: 1.17)

- Pop Uy: [-0.38 0.06 0.50]

# 1, w rand Uy: [-0.46 0.06 0.59] (Uy indv: [-3.27 -0.45 2.38]) (true: 0.15)

# 2, w rand Uy: [-0.49 0.04 0.57] (Uy indv: [-3.75 -0.59 2.58]) (true: -0.12)

# 3, w rand Uy: [-0.44 0.08 0.60] (Uy indv: [-1.70 0.36 2.42]) (true: -0.24)

# 4, w rand Uy: [-0.42 0.09 0.61] (Uy indv: [-1.24 0.75 2.74]) (true: 0.08)

# 5, w rand Uy: [-0.60 -0.08 0.43] (Uy indv: [-4.71 -2.52 -0.33]) (true: -0.11)

# 6, w rand Uy: [-0.49 0.04 0.56] (Uy indv: [-3.30 -0.68 1.94]) (true: -0.45)

# 7, w rand Uy: [-0.38 0.14 0.66] (Uy indv: [-0.11 2.20 4.51]) (true: 0.09)

# 8, w rand Uy: [-0.44 0.09 0.62] (Uy indv: [-2.01 1.64 5.30]) (true: 0.18)

# 9, w rand Uy: [-0.49 0.04 0.57] (Uy indv: [-3.81 -0.62 2.57]) (true: -0.20)

#10, w rand Uy: [-0.41 0.10 0.62] (Uy indv: [-1.21 0.82 2.86]) (true: -0.13)

#11, w rand Uy: [-0.37 0.15 0.67] (Uy indv: [-0.22 2.05 4.32]) (true: 0.09)

#12, w rand Uy: [-0.39 0.14 0.67] (Uy indv: [ 0.41 4.25 8.09]) (true: -0.11)

#13, w rand Uy: [-0.45 0.07 0.59] (Uy indv: [-2.20 0.25 2.69]) (true: -0.11)

#14, w rand Uy: [-0.42 0.09 0.61] (Uy indv: [-1.42 0.54 2.50]) (true: 0.09)

#15, w rand Uy: [-0.52 -0.01 0.51] (Uy indv: [-3.61 -1.41 0.78]) (true: -0.06)

#16, w rand Uy: [-0.56 -0.04 0.49] (Uy indv: [-7.22 -3.84 -0.46]) (true: -0.45)

#17, w rand Uy: [-0.42 0.09 0.61] (Uy indv: [-1.40 0.67 2.73]) (true: -0.03)

#18, w rand Uy: [-0.44 0.09 0.61] (Uy indv: [-1.88 0.78 3.44]) (true: 0.05)

#19, w rand Uy: [-0.51 0.01 0.54] (Uy indv: [-3.66 -1.03 1.60]) (true: -0.02)

#20, w rand Uy: [-0.51 0.00 0.52] (Uy indv: [-3.10 -1.05 1.00]) (true: -0.29)

#21, w rand Uy: [-0.48 0.04 0.56] (Uy indv: [-2.45 -0.29 1.87]) (true: 0.11)

#22, w rand Uy: [-0.47 0.04 0.56] (Uy indv: [-2.82 -0.57 1.67]) (true: -0.34)

#23, w rand Uy: [-0.41 0.11 0.63] (Uy indv: [-1.34 1.13 3.60]) (true: 0.52)

#24, w rand Uy: [-0.49 0.04 0.57] (Uy indv: [-3.66 -0.53 2.59]) (true: 0.16)

#25, w rand Uy: [-0.39 0.13 0.65] (Uy indv: [-0.88 1.30 3.48]) (true: -0.09)
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#26, w rand Uy: [-0.51 0.01 0.53] (Uy indv: [-3.45 -1.09 1.27]) (true: -0.36)

#27, w rand Uy: [-0.49 0.02 0.54] (Uy indv: [-2.87 -0.61 1.64]) (true: -0.34)

#28, w rand Uy: [-0.43 0.09 0.61] (Uy indv: [-1.62 0.58 2.77]) (true: 0.24)

#29, w rand Uy: [-0.43 0.08 0.60] (Uy indv: [-1.53 0.40 2.34]) (true: 0.11)

#30, w rand Uy: [-0.52 0.01 0.54] (Uy indv: [-4.85 -1.69 1.48]) (true: -0.78)

A.2 Gradient of likelihood function for HMMs

The optimum (θ̂) found by a numerical optimising routine is only a value close to the true optimum θ,

that is

θ̂ = θ + e,

where e is the approximation error. The size of e depends on the termination criteria for the optimising

routine. The curvature of the likelihood function around θ is approximated by the Hessian calculated

around θ̂. For some problems the approximation of the Hessian is quite sensitive to the point around

which it is calculated.

For likelihood estimation it is common to optimise the likelihood function only using evaluations of

the function itself. However, in some cases it is possible to calculate the gradient of the likelihood function

analytically and provide this as input to the optimiser along with the function value. This will typically

lead to a faster and more accurate estimation of the optimum and therefore also a more accurate Hessian

estimate. Below, the recursions for calculating the likelihood value and its gradient with respect to the

model parameters are derived.

The parameter vector for individual i is θi = {θ1, . . . , θnpar}i. Define the short-hand notation

ψk = p
(
z

(i)
k |Z(i)

k−1,θi

)
,

for k > 1. The gradient of the likelihood function (3) with respect to θj is

∂l(θi)

∂θj
=

∂

∂θj

[
logψ1 +

Ni∑

k=2

logψk

]

=
1

ψ1

∂ψ1

∂θj
+

Ni∑

k=2

1

ψk

∂ψk
∂θj

, (22)

where ψ1 = p(z
(i)
1 |θi). The way to compute ∂ψk

∂θj
is through a recursion similar to that for computing the

likelihood value itself. For a continuous-time Markov chain the following relation holds

φ̇k|k = φk|kGk, (23)

where φ̇k|k =
∂φk|k
∂t . Taking the partial derivative of (23) with respect to θj gives

∂φ̇k|k
∂θj

=
∂φk|k
∂θj

Gk + φk|k
∂Gk

∂θj
.

Define the derivative of the state probabilities
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sk =
∂φk|k
∂θj

and concatenate φk|k and sk to get

πk =
(
φk|k , sk

)
.

The system of differential equations analogous to (23), but including sk is then

π̇k = πkΓk,

where

Γk =

(
Gk

∂Gk

∂θj

0 Gk

)
.

The matrix Γk is the generator for the augmented system comprising both φk|k and sk. Then the usual

relation holds

Πk = exp (Γk∆k) , (24)

where Πk is the transition matrix for πk. Thus, the time-evolution of the state probabilities (φk|k) and

the state probability derivatives (sk) is described by Πk. This matrix is not a transition probability

matrix because it can have element values below zero and larger than one.

As for the standard HMM filter (21), time and data-updates of πk are performed analogously

µk = πkΠkΛk, (25)

where Λk is the concatenated data likelihood matrix, i.e.

Λk =

(
Lk 0

0 Lk

)
.

Note that µk has not yet been normalised. The normalisation constants for µk are

(
ψk ,

∂ψk
∂θj

)
= µk

(
1n 0

0 1n

)
,

which are the ones required to calculate the sum (22). To complete the recursion the normalisation of

µk is given by

πk+1 = µkΨk, (26)

where

Ψk =

(
ψ−1
k 1n − 1

ψ2
k

∂ψk

∂θj
1n

0 ψ−1
k 1n

)
.

The matrix Ψk is found using the rules for differentiation of a fraction.
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The steps of the filter recursion are summarised by (25) and (26). The main concern with the recursion

is (24) which can be a computationally demanding operation depending on the size of Γk.

A similar recursive scheme can also be derived for the Hessian of the likelihood function.

A.3 Individual estimates of pike data

Below StatDay and StatNight refer to the stationary distribution for the day and night time periods

respectively.

# 1, Length: 578 mm, StatDay: [ 0.897 0.096 0.007], StatNight: [ 0.994 0.005 0.001]

# 2, Length: 805 mm, StatDay: [ 0.794 0.202 0.004], StatNight: [ 0.691 0.306 0.003]

# 3, Length: 694 mm, StatDay: [ 0.731 0.261 0.008], StatNight: [ 0.981 0.018 0.001]

# 4, Length: 560 mm, StatDay: [ 0.702 0.269 0.029], StatNight: [ 0.948 0.047 0.006]

# 5, Length: 740 mm, StatDay: [ 0.857 0.137 0.006], StatNight: [ 0.980 0.017 0.002]

# 6, Length: 772 mm, StatDay: [ 0.918 0.079 0.003], StatNight: [ 0.987 0.012 0.001]

# 7, Length: 992 mm, StatDay: [ 0.732 0.265 0.004], StatNight: [ 0.768 0.230 0.002]

# 8, Length: 628 mm, StatDay: [ 0.837 0.158 0.005], StatNight: [ 0.990 0.009 0.001]

# 9, Length: 780 mm, StatDay: [ 0.815 0.183 0.002], StatNight: [ 0.968 0.030 0.002]

#10, Length: 531 mm, StatDay: [ 0.698 0.278 0.023], StatNight: [ 0.958 0.036 0.005]

#11, Length: 422 mm, StatDay: [ 0.852 0.121 0.028], StatNight: [ 0.970 0.022 0.008]

#12, Length: 617 mm, StatDay: [ 0.720 0.267 0.014], StatNight: [ 0.981 0.017 0.003]

#13, Length: 554 mm, StatDay: [ 0.837 0.152 0.011], StatNight: [ 0.977 0.021 0.002]

#14, Length: 798 mm, StatDay: [ 0.747 0.248 0.005], StatNight: [ 0.926 0.073 0.001]

#15, Length: 676 mm, StatDay: [ 0.894 0.101 0.006], StatNight: [ 0.986 0.013 0.001]

#16, Length: 585 mm, StatDay: [ 0.679 0.311 0.010], StatNight: [ 0.989 0.010 0.002]

#17, Length: 680 mm, StatDay: [ 0.876 0.121 0.003], StatNight: [ 0.995 0.004 0.001]

#18, Length: 485 mm, StatDay: [ 0.923 0.064 0.013], StatNight: [ 0.987 0.009 0.004]

#19, Length: 530 mm, StatDay: [ 0.884 0.106 0.010], StatNight: [ 0.987 0.011 0.002]

#20, Length: 615 mm, StatDay: [ 0.933 0.062 0.005], StatNight: [ 0.992 0.008 0.001]

Day time population estimates:

theta = [ 0.8259 0.1638 0.0078]

[ 0.2569 -0.2675 -0.0107]

W = [-0.2675 0.2812 -0.0194] (in logit domain)

[-0.0107 -0.0194 0.4353]

# 1: [ 0.8212 0.1682 0.0078], L: 578, p-val: 0.638035

# 2: [ 0.8268 0.1624 0.0082], L: 805, p-val: 0.685034

# 3: [ 0.8312 0.1584 0.0077], L: 694, p-val: 0.725120

# 4: [ 0.8270 0.1632 0.0073], L: 560, p-val: 0.284323

# 5: [ 0.8236 0.1657 0.0079], L: 740, p-val: 0.916625

# 6: [ 0.8203 0.1688 0.0080], L: 772, p-val: 0.350415

# 7: [ 0.8290 0.1603 0.0083], L: 992, p-val: 0.347690

# 8: [ 0.8255 0.1638 0.0080], L: 628, p-val: 0.941316

# 9: [ 0.8298 0.1595 0.0085], L: 780, p-val: 0.073640

#10: [ 0.8329 0.1575 0.0072], L: 531, p-val: 0.088945

#11: [ 0.8256 0.1650 0.0073], L: 422, p-val: 0.213921

#12: [ 0.8318 0.1581 0.0075], L: 617, p-val: 0.506483

#13: [ 0.8253 0.1643 0.0076], L: 554, p-val: 0.919697
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#14: [ 0.8303 0.1592 0.0080], L: 798, p-val: 0.653147

#15: [ 0.8244 0.1649 0.0079], L: 676, p-val: 0.870831

#16: [ 0.8338 0.1560 0.0077], L: 585, p-val: 0.375426

#17: [ 0.8217 0.1673 0.0081], L: 680, p-val: 0.570583

#18: [ 0.8182 0.1720 0.0076], L: 485, p-val: 0.165754

#19: [ 0.8217 0.1678 0.0077], L: 530, p-val: 0.705593

#20: [ 0.8155 0.1747 0.0079], L: 615, p-val: 0.152295

Night time population estimates (with indviduals #7, #2, #14, #18, and #11 excluded):

theta = [ 0.9844 0.0139 0.0016]

[ 0.4468 -0.4565 -0.3659]

W = [-0.4565 0.4681 0.3582] (in logit domain)

[-0.3659 0.3582 0.4425]

# 1: [ 0.9834 0.0149 0.0017], L: 578, p-val: 0.486218

# 3: [ 0.9846 0.0137 0.0016], L: 694, p-val: 0.357374

# 4: [ 0.9857 0.0128 0.0014], L: 560, p-val: 0.095166

# 5: [ 0.9846 0.0137 0.0015], L: 740, p-val: 0.897195

# 6: [ 0.9841 0.0141 0.0017], L: 772, p-val: 0.569789

# 8: [ 0.9839 0.0144 0.0016], L: 628, p-val: 0.746050

# 9: [ 0.9852 0.0132 0.0015], L: 780, p-val: 0.494091

#10: [ 0.9855 0.0130 0.0015], L: 531, p-val: 0.137100

#12: [ 0.9846 0.0138 0.0015], L: 617, p-val: 0.802857

#13: [ 0.9848 0.0135 0.0016], L: 554, p-val: 0.844332

#15: [ 0.9842 0.0140 0.0017], L: 676, p-val: 0.649057

#16: [ 0.9840 0.0143 0.0016], L: 585, p-val: 0.781717

#17: [ 0.9830 0.0153 0.0017], L: 680, p-val: 0.157704

#19: [ 0.9841 0.0142 0.0016], L: 530, p-val: 0.899792

#20: [ 0.9836 0.0145 0.0017], L: 615, p-val: 0.286372

- Forward selection

# 2: [ 0.6908 0.3058 0.0034], L: 805, p-val: 0.000000 *

# 7: [ 0.7684 0.2295 0.0020], L: 992, p-val: 0.000000 *

#11: [ 0.9700 0.0223 0.0077], L: 422, p-val: 0.000262 *

#14: [ 0.9257 0.0730 0.0013], L: 798, p-val: 0.000001 *

#18: [ 0.9871 0.0091 0.0039], L: 485, p-val: 0.000641 *
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