1,593 research outputs found

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Implementation Of Fuzzy Logic Control Into An Equivalent Minimization Strategy For Adaptive Energy Management Of A Parallel Hybrid Electric Vehicle

    Get PDF
    As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Electric vehicles have been introduced by the industry, showing promising signs of reducing emissions production in the automotive sector. However, many consumers may be hesitant to purchase fully electric vehicles due to several uncertainty variables including available charging stations. Hybrid electric vehicles (HEVs) have been introduced to reduce problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% regardless of starting SOC. Recommendations for modification of the fuzzy logic controller are made to produce additional fuel economy and charge sustaining benefits from the parallel hybrid vehicle model

    PHYSICS-BASED MODELING AND CONTROL OF POWERTRAIN SYSTEMS INTEGRATED WITH LOW TEMPERATURE COMBUSTION ENGINES

    Get PDF
    Low Temperature Combustion (LTC) holds promise for high thermal efficiency and low Nitrogen Oxides (NOx) and Particulate Matter (PM) exhaust emissions. Fast and robust control of different engine variables is a major challenge for real-time model-based control of LTC. This thesis concentrates on control of powertrain systems that are integrated with a specific type of LTC engines called Homogenous Charge Compression Ignition (HCCI). In this thesis, accurate mean value and dynamic cycleto- cycle Control Oriented Models (COMs) are developed to capture the dynamics of HCCI engine operation. The COMs are experimentally validated for a wide range of HCCI steady-state and transient operating conditions. The developed COMs can predict engine variables including combustion phasing, engine load and exhaust gas temperature with low computational requirements for multi-input multi-output realtime HCCI controller design. Different types of model-based controllers are then developed and implemented on a detailed experimentally validated physical HCCI engine model. Control of engine output and tailpipe emissions are conducted using two methodologies: i) an optimal algorithm based on a novel engine performance index to minimize engine-out emissions and exhaust aftertreatment efficiency, and ii) grey-box modeling technique in combination with optimization methods to minimize engine emissions. In addition, grey-box models are experimentally validated and their prediction accuracy is compared with that from black-box only or clear-box only models. A detailed powertrain model is developed for a parallel Hybrid Electric Vehicle (HEV) integrated with an HCCI engine. The HEV model includes sub-models for different HEV components including Electric-machine (E-machine), battery, transmission system, and Longitudinal Vehicle Dynamics (LVD). The HCCI map model is obtained based on extensive experimental engine dynamometer testing. The LTC-HEV model is used to investigate the potential fuel consumption benefits archived by combining two technologies including LTC and electrification. An optimal control strategy including Model Predictive Control (MPC) is used for energy management control in the studied parallel LTC-HEV. The developed HEV model is then modified by replacing a detailed dynamic engine model and a dynamic clutch model to investigate effects of powertrain dynamics on the HEV energy consumption. The dynamics include engine fuel flow dynamics, engine air flow dynamics, engine rotational dynamics, and clutch dynamics. An enhanced MPC strategy for HEV torque split control is developed by incorporating the effects of the studied engine dynamics to save more energy compared to the commonly used map-based control strategies where the effects of powertrain dynamics are ignored. LTC is promising for reduction in fuel consumption and emission production however sophisticated multi variable engine controllers are required to realize application of LTC engines. This thesis centers on development of model-based controllers for powertrain systems with LTC engines

    SARSCEST (human factors)

    Get PDF
    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed

    Powertrain Fuel Consumption Modeling and Benchmark Analysis of a Parallel P4 Hybrid Electric Vehicle Using Dynamic Programming

    Get PDF
    As regulations on the emission of greenhouse gasses continue to tighten on the automotive industry, the production of hybrid electric vehicles has gained significant popularity in recent years. With the increase in production, there has been a parallel demand in the advancement of both mechanical hardware and control system implementation used in these vehicles. A critical factor in the efficient operation of a hybrid electric vehicle is the energy management strategy where the goal is to maximize the efficient use of fuel energy to propel the vehicle. Designing a fuel-efficient control system is a complex challenge due to the degrees of freedom that exist in the control of a hybrid electric vehicle. Several methods exist for the real-time implementation of control strategies that employ heuristic or optimization-based algorithms; however, these control strategies typically rely on the results of offline optimization as a benchmark against which the control strategies are evaluated. Offline energy management optimization strategies require a pre-defined driving schedule for which the operation of the powertrain can be evaluated to determine the globally optimal control policy. The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark analysis employs dynamic programming by backward induction to determine the globally optimal solution by solving the energy management problem starting at the final timestep and proceeding backwards in time. This method requires the development of a backwards facing model that propagates the wheel speed of the vehicle for the given drive cycle through the driveline components to determine the operating points of the powertrain. Although dynamic programming only searches the solution space within the feasible regions of operation, the benchmarking model must be solved for every admissible state at every timestep leading to strict requirements for runtime and memory. The backward facing model employs the quasi-static assumption of powertrain operation to reduce the fidelity of the model to accommodate these requirements. Verification and validation testing of the dynamic programming algorithm is conducted to ensure successful operation of the algorithm and to assess the validity of the determined control policy against a high-fidelity forward-facing vehicle model with a percent difference of fuel consumption of 1.2%. The benchmark analysis is conducted over multiple drive cycles to determine the optimal control policy that provides a benchmark for real-time algorithm development and determine control trends that can be used to improve existing algorithms. The optimal combined CS fuel economy of the vehicle is determined by the dynamic programming algorithm to be 32.99 MPG, a 52.6% increase over the stock 3.6L 2019 Chevrolet Blazer
    corecore