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Abstract 

 

 

IMPLEMENTATION OF FUZZY LOGIC CONTROL INTO AN EQUIVALENT 

CONSUMPTION MINIMIZATION STRATEGY FOR ADAPTIVE ENERGY 

MANAGEMENT OF A PARALLEL HYBRID ELECTRIC VEHICLE 

  

Jared Diethorn 

  

As government agencies continue to tighten emissions regulations due to the continued increase in 

greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle 

technology. Electric vehicles have been introduced by the industry, showing promising signs of reducing 

emissions production in the automotive sector. However, many consumers may be hesitant to purchase 

fully electric vehicles due to several uncertainty variables including available charging stations. Hybrid 

electric vehicles (HEVs) have been introduced to reduce problems while improving fuel economy. HEVs 

have led to the demand of creating more advanced controls software to consider multiple components 

for propulsive power in a vehicle. A large section in the software development process is the 

implementation of an optimal energy management strategy meant to improve the overall fuel efficiency 

of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The 

Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an 

equivalence factor to equate electrical to mechanical power when performing torque split determination 

between the internal combustion engine and electric motor for propulsive and regenerative torque. This 

equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide 

optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) 

constraints. When the control hierarchy is modified or different driving styles are applied, the analysis 

must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic 

controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict 

charge sustaining window of operation for the high voltage battery, and reduce computational time 

required during algorithm development. The adaptive algorithm is validated against global optimum fuel 

economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. 

Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% 

success rate when maintaining an ending SOC within 5% regardless of starting SOC. Recommendations for 

modification of the fuzzy logic controller are made to produce additional fuel economy and charge 

sustaining benefits from the parallel hybrid vehicle model. 
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1. Introduction 

The objective of this research is to design and implement a fuzzy logic controller for implementation with 

an energy management strategy for a student designed hybrid electric vehicle (HEV). The main goal of the 

implemented control strategy is to improve from the baseline fuel economy for multiple unknown test 

cycles and maintain charge sustaining (CS) vehicle operations. The purpose of implementing an advanced 

control strategy in a hybrid electric vehicle is to maximize efficiency by splitting the torque between 

multiple components including the internal combustion engine (ICE) and electric motor. These advanced 

strategies are known as torque-split algorithms (TSAs) and exist in multiple ways; however, not all are 

created equally. Some strategies are rule-based which do not involve explicit optimization, but rather rely 

on different sets of rules that decide what value of control to apply. Optimization strategies involve 

calculating the optimal set point by minimizing a cost function over a known driving cycle which leads to 

a global solution [1]. 

Globally optimal strategies are the best performing; however, they are only implementable if all future 

driving conditions are known during the algorithm development period. Normal day to day driving 

prevents every driving condition from being available so adaptive strategies have been implemented to 

achieve close to optimal performance. These adaptive strategies are designed from the model-based 

optimization control methods where global optimums are used for baseline evaluation [1]. 

This work explains the implementation of a fuzzy logic-based controller (FLC) in tandem with an optimal 

control strategy. The FLC is used to tune the control strategy based on the driver style and several control 

parameters. The modeling and analysis described in this work is performed in the simulation, or model-

in-the-loop (MIL), environment. The following pages describe the vehicle model used for the simulated 

engine, high-voltage (HV) battery and electric motor, vehicle dynamics, the control algorithm model, and 

the design and implementation of the FLC. Results from both a baseline control strategy and FLC strategy 
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are presented and analyzed at different initial setpoints. Lastly, conclusions are drawn, and 

recommendations and improvements are made for future work.  

1.1 Emissions 

Each year the government continues to tighten emissions regulations, so the introduction of hybrid 

electric vehicles has become increasingly important. Global warming and the effect of combustion engine 

performance on the environment have led to developing all-electric means of transportation. In 2019, 

greenhouse gas emissions from transportation accounted for roughly 29% of the total greenhouse gas 

emissions in the U.S. [2]. In terms of the overall trend, from 1990 to 2019, the number of vehicle miles 

traveled (VMT) by light-duty vehicles increased by 48% due to contributing factors such as population and 

economic growth [2].  

Several automotive manufactures, including General Motors (GM), are pushing to create an all-electric 

fleet to make a meaningful impact towards a zero-emissions future [3]. Companies like GM are 

spearheading the technological advancements needed to move the industry to becoming all-electric with 

no emissions from ICE or diesel engines. Before this change can happen, there are several factors that 

need to be addressed. Electric vehicles pose new problems, including additional trained personnel for 

maintenance, HV battery life, and charging stations. While electric vehicles do not require extensive 

maintenance work due to less moving parts when compared to an ICE engine, working with and servicing 

HV can be dangerous. Vehicles will also need to be able to drive for an extended range when compared 

to conventional vehicles that can obtain anywhere from 30-40 miles per gallon (mpg) for an average of 

350-400 miles on a single tank. The last factor to consider is the amount of charging stations readily 

available for commercial use. Until these stations are as common and as efficient as gas stations, 

consumers may be hesitant to move from a conventional vehicle to an all-electric vehicle. This is where 

hybrid vehicle architecture will come into play.  
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1.2 Hybrid Electric Vehicles 

HEVs can serve to bridge the gap for consumers who want to reduce their carbon footprints but are unsure 

of all-electric vehicle technologies. Hybrid vehicles can further help to reduce several categories of vehicle 

emissions, including both direct and cycle life. Direct emissions are emitted from a vehicle’s tailpipe and 

include greenhouse gases. HEVs can produce less tailpipe related emissions when using gasoline because 

they can operate more efficiently [4]. Life cycle emissions include all emissions related to both fuel and 

vehicle production, use, and disposing. When determining life cycle emissions, all emissions are included 

for extracting petroleum from the ground, refining to gasoline, distribution, and vehicle consumption. 

Electric vehicles generally produce fewer life cycle emissions because most emissions are lower for 

electricity generation and can be further minimized by using electricity generated from renewable sources 

including solar or wind [4]. How can HEVs help to reduce emissions while improving fuel economy when 

they use a gasoline or diesel-powered engine to help provide propulsion for the vehicle?   

Vehicle emissions can be reduced in several ways with the primary methods being engine optimization, 

energy capture through regenerative braking, and engine start/stop functionality. Conventional vehicle 

engines are less efficient than their electrical counterparts (30-40% efficient compared to 60-98% 

efficient); however, electric motors can be used to place the engine into a more efficient operating region. 

When the engine can operate at or close to the ideal operating torque region, fewer emissions will be 

produced, and fuel economy will be improved.  

Electric motors also provide the additional advantage of regenerative braking. Regenerative braking 

occurs when an electric motor is used to provide generating, or negative, torque to an axle of the vehicle 

to capture energy while decelerating the vehicle. This energy can be stored in the HV battery for later 

usage without needing to use the engine to recharge the battery during operation which could result in 

lower fuel economy and increased emissions. Alongside regenerative braking is engine start/stop 
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functionality. At low vehicle or idle speeds, the engine can be shut off to prevent unnecessary fuel 

consumption and emission production. While this functionality is available in commercial ICE vehicles, 

using an electric motor provides the advantage of launching the vehicle from a stop or driving with the 

engine shut off for extended periods of time.  

1.3 Hybrid Vehicle Classifications 

Hybrid vehicles can be broken down into two different classifications: Plug-in hybrid electric vehicles 

(PHEV) and non-plug in HEVs. PHEVs are characterized by large HV batteries that give a vehicle the 

advantage of functioning as a fully electric vehicle or a hybrid. These vehicles can be charged at home 

using automotive supplied cable that accepts power from a standard 120-volt outlet. When driving, the 

vehicle can follow charge depletion (CD) where the electric motor is used solely for propulsion until a 

predefined HV battery state of charge (SOC) is reached. The engine may also turn on during operation if 

the driver demanded torque exceeds the maximum available motor torque at that time. Once this 

threshold is crossed, the motor and engine can be used to provide propulsion for the vehicle in a CS mode 

where the SOC is maintained. Throughout the course of driving, if the SOC increases beyond an upper 

threshold, the engine may shut off to further increase fuel economy and reduce vehicle emissions.   

HEVs can be characterized by their smaller battery packs. In standard driving conditions, the battery pack 

is not large enough to provide electric-only vehicle operation; however, the motor can be utilized in case 

of emergencies if the vehicle runs out of gas and needs to be moved off of the road. HEVs also cannot be 

plugged into a standard wall outlet to charge in between trips. Normal operating conditions for a HEV 

include using the motor to augment and optimize the operating modes of the engine. This makes the HEV 

appealing because although it does not provide electric-only driving, consumers are still able to reduce 

emissions while improving fuel economy. The PHEV and HEV both allow for engine optimization and 

regenerative braking; however, the HEV will be discussed in greater detail below due to the focus of this 
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work. It should be noted that the results from this work can be applied to any hybrid architecture that 

utilizes an engine and electric motor. 

1.4 HEV Architecture 

HEVs have three architectures: series, parallel and a combination of both (series-parallel) shown in Figure 

1. A series hybrid (configuration B) is comparable to a battery electric vehicle (BEV) where the engine does 

not drive the wheels, rather, the engine is paired with an electric generator. The generator serves to 

charge the HV battery and power an electric motor that drives the vehicle. Series hybrids perform best in 

stop-and-go traffic situations where IC engines are more inefficient. When a large driver demanded torque 

is encountered, the motor can draw power from both the battery pack and generator for propulsion. 

However, the larger battery, motor and additional generator add to the overall cost of the vehicle making 

it more expensive than parallel hybrids [5].  

In a parallel hybrid (configuration A), both the IC engine and electric motor work in tandem to propel the 

vehicle. One disadvantage when compared to other configurations is the battery size. Parallel hybrids tend 

to have smaller battery packs that rely on regenerative braking to keep the battery charged. However, the 

engine is connected directly to the wheels, which eliminates any inefficiencies of converting from 

mechanical power to electricity and back. Power from both components can be varied to ensure that each 

component is operating in its’ most efficient region whenever possible. During a drive, if the generator is 

needed to recharge the HV battery, the motor can produce negative torque to generate current to charge 

the battery pack while the engine produces additional torque to satisfy the driver demand [5]. 

The series-parallel configuration (configuration C) consists of using the engine and motor to propel the 

vehicle separately as well as at the same time. At lower vehicle speeds, the vehicle can operate as a series 

and at higher vehicle speeds, when a series configuration is less efficient, the engine can take over and 

operate as a parallel hybrid. This configuration incurs higher costs than a parallel hybrid due to the larger 
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HV battery pack, generator, and more advanced computer system to control multiple systems when 

determining the best scenarios for using the engine. However, the added efficiencies mean that the series-

parallel can outperform the two individual configurations by increasing fuel economy and reducing vehicle 

emissions [6].  

 

Figure 1: HEV Architecture [7] 

Each of these architectures can benefit from regenerative braking. The motor is used to provide negative 

or drag torque on an axle, the flow of power can be reversed from the motor through the inverter to the 

HV battery for recharging. If regenerative braking is not sufficient for recharging the battery, the system 

can make use of opportunity charging (OC). 

Opportunity charging occurs when the engine is commanded to provide more torque than what the driver 

is requesting through the accelerator pedal. To maintain the initial driver demanded wheel torque, the 

motor provides negative torque equal to the difference between what the engine is currently providing 

and what the driver initially requested. The system compensates for the negative motor torque and 
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recharges the HV battery while the driver demanded wheel torque is satisfied. OC can also be 

implemented to force the engine into a more efficient operating region at low torque/power demands if 

the HV battery has the capacity to store the captured energy. 

1.5 HEV Parallel Architecture 

This work focuses purely on the parallel hybrid architecture, so the configurations for the parallel 

architecture will be highlighted and discussed. Six different architectures exist for a HEV that range from 

a P0 to a P5. These architectures are shown below in Figure 2 [8]. 

 

Figure 2: Parallel HEV Configurations [8] 

In a P0 configuration, indicated by the green circle in the figure, the electric motor, or belt integrated 

starter generator, size is reduced to exist on the engine and is connected via a belt. This motor does not 

rely on a HV battery but rather is run on a 48V battery that replaces the vehicles low voltage battery for 

standard vehicle accessories. The P0 motor can supply up to 50 Nm of torque and provides several 

advantages including both idle start/stop functionality, engine load shift for increased efficiency operation 

regions, and energy recuperation [9].  

The P1 motor is connected directly to the crankshaft of the IC engine (blue circle in above figure) and 

functions as a generator during deceleration events, as a starter in engine start/stop events, and as a 
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propulsive motor during varying acceleration events. The belt used from the P0 motor is removed to 

reduce belt loses, however, due to the location of the motor on the engine side, it cannot be disconnected 

mechanically [9]. 

The P2, P3 and P4 architectures have better energy efficiency due to the positioning of the motor 

indicated in the above figure. The motor can be placed on the input shaft (P2) or output shaft (P3) of the 

transmission, or on a differential (P4). Depending on the motor being used and the placement in the 

vehicle, these motors can have an efficiency of up to 95% and can be used for engine start/stop, torque 

assist, energy recapture, and four/all-wheel drive if using a P4 architecture [9]. A P4 motor is not limited 

to the rear axle. If desired, the P4 motor could drive the front axle and the engine could be used to drive 

the rear axle. The P5 architecture resembles the P4, however, the motors are placed within the wheels to 

allow for increased energy recapture and efficiency.  

1.6 EcoCAR Mobility Challenge 

Beginning in 1988, the U.S. Department of Energy (DOE) has sponsored Advanced Vehicle Technology 

Competitions (AVCTs) in partnership with leaders in the North American automotive industry. The AVTCs 

are managed by Argonne National Laboratory (ANL) and represent a coalition of industry, government, 

and academic partners to organize and execute the competition. These competitions challenge students 

beyond the traditional classroom, and feature opportunities for both graduate and undergraduate 

students in a variety of disciplines including project management, engineering, business, and 

communications. Students are tasked with re-engineering a donated production vehicle to improve 

efficiency while maintaining and expanding on consumer appeal items such as safety, cost, and 

performance. More than 20,000 students from 93 different institutions have participated, gaining real-

world and hands-on experience when vehicle design and integration problems associated with building 

more advanced fuel-efficient vehicles [10]. There have been 12 competitions, starting with the Methanol 
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Marathon in 1988 to the Natural Gas vehicle Challenge in 1990 and in more recent years, the EcoCAR 

Mobility Challenge [11]. 

The EcoCAR Mobility Challenge is the latest vehicle competition in the AVTCs sponsored by the U.S. DOE. 

The challenge spans four years, starting in 2018, and challenges 11 universities to apply advanced 

propulsion systems and connected and automated systems to improve safety, consumer appeal, and 

overall vehicle efficiency [12]. All teams in the current competition have been donated, by GM, a new 

2019 Chevrolet Blazer. The teams are tasked with redesigning and turning the Chevy Blazer into a HEV 

with level 2 SAE autonomy. Level 2 SAE autonomy is associated with advanced driving assistance systems 

(ADAS). ADAS can take over steering, acceleration, and deceleration in specific examples such as driving 

with adaptive cruise control on the highway. The car will maintain a set speed specified by the driver until 

a vehicle enters the safe distance space. At that time, the car will automatically decelerate to a safe 

following distance behind the lead vehicle. Level 2 autonomy still requires the driver to be fully alert of all 

vehicles surroundings and must be ready to take over vehicle control if prompted.  

Each of the competing university’s teams consist of three main technical swim lanes: propulsion systems 

integration (PSI), propulsion controls and modeling (PCM), and connected and automated vehicles (CAVs). 

Each of the swim lanes must work together over the 4-year competition to convert a stock ICE vehicle to 

a hybrid. The PSI sub-team consists of the mechanical and electrical teams. The mechanical team is 

responsible for any mechanical integration on or in the vehicle. The donated Chevy Blazer contained a 

3.6-liter engine, so the mechanical team was responsible for performing an engine and transmission swap 

to install a smaller engine, increasing fuel economy. The mechanical team is also responsible for any other 

hardware installation, including the electric motor, HV battery pack, competition required toggle and 

emergency disconnect switches, etc.  
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The electrical team is responsible for any low or high voltage wiring that is implemented in the vehicle. 

When the electric motor and HV battery are integrated into the vehicle, the inverter/motor must be 

electrically connected to the HV battery pack and all components must be safely secured within the 

vehicle. Teams work with competition sponsors to ensure all HV wiring is done safely and meets industry 

standards. The teams also add several third-party controllers to the vehicle that require both power and 

communication wires. A low voltage power distribution system is added in the vehicle to allow the team 

to easily power any additional relays or controllers that are added in later years of the competition. VeSys 

is used to create wiring diagrams to document all team added wiring harnesses in the vehicle. Each year 

competition organizers inspect the vehicles in an event called the vehicle technical inspection (VTI). The 

PSI team is responsible for correcting any changes the competition organizers require so that the vehicle 

can be certified for on-road testing. 

The PCM team is responsible for designing/programming and implementing various energy management 

strategies, power moding, component interfacing, and diagnostic systems in the vehicle. In the first year 

of the competition, the PCM team was responsible for different architecture modeling and the results 

drove the component selection for the remainder of the competition. Once strategies and algorithms are 

designed and tested, the team is responsible for flashing the created code onto a MicroAutoBox II (MabX) 

that interfaces with the stock controllers in the Blazer. Competition organizers require all teams to 

perform a minimum of 10 hours of closed course testing before the vehicle can be recommended for on 

road testing. This requires the PCM team to implement several layers of version control to ensure that all 

software passes individual testcases before being implemented in the car for closed course testing. 

Vigorous testing is carried out by the PCM swim lane on all team added controls to ensure full vehicle 

functionality before moving to on-road testing. 

The CAVs team is responsible for both the team designed adaptive cruise control (ACC) system and sensor 

fusion. Team added sensors, including Bosch radars and a Mobileye camera, are used to move the vehicle 
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to level 2 autonomy. The CAVs team creates algorithms to combine dynamic sensor data from different 

locations on and in the vehicle to detect other vehicles on road and create a functioning ACC algorithm 

for the competition. Sensor fusion feeds relative vehicle speed and distance to the ACC controller which 

determines how fast or slow the vehicle should be moving. If no vehicles are present during operation, 

the ACC controller functions as a normal cruise controller. 

Cohda wireless radios have also been introduced in the EcoCAR mobility Challenge and are utilized by the 

CAVs swim lanes. These radios support vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) 

communications. Cohda wireless is one of the global leaders in mobile outdoor communication that will 

supply automotive industries with the software to optimize traffic efficiency through cooperative cruise 

control and infrastructure communication [13]. Teams are supplied with several radios for vehicle testing. 

The radios can be programmed to function as stop signs, traffic lights, and can be installed in several 

vehicles to create a network for vehicle communication. In Year 4 of the competition, teams are required 

to have basic ACC algorithms that will accelerate and decelerate the vehicle in unsmart intersections using 

wireless communication between 2 or more radios.  

1.7 West Virginia University Vehicle Architecture 

Two distinct considerations drove the architecture selection for the West Virginia University (WVU) team: 

fuel economy results and integration considerations. Several vehicle architectures were analyzed in Year 

1 of the Mobility Challenge by the PCM and PSI teams. Each architecture was simulated with a specific 

control strategy to determine which would pose the best fuel economy. This optimization period in Year 

1 gave the WVU team a complete understanding of each architecture and the risks and rewards associated 

with them. Due to the nature of the competition requiring teams to have a fully functional hybrid in three 

years after the design phase in Year 1, the team selected a P4 architecture. The selected architecture may 
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not be the most ideal, however, the team was confident in their ability to achieve full hybrid functionality 

and set themselves apart from the rest of the competition each year. 

1.7.1 General Motors Donated Components 

The following components were donated by GM and reduced overall costs for the team in the Mobility 

Challenge. The selected engine is a 4-cylinder GM 2.5L LCV engine which is rated for a maximum torque 

of 259 Nm at 4400 revolutions per minute (rpm), maximum power of 151 kilowatts (kW) at 6300 rpm with 

a maximum engine speed of 7000 rpm [14]. The engine is paired with a GM 9-speed M3D 9T50 

transmission. The transmission has an accumulator to enable engine start/stop functionality and has a 

wider 7.6:1 overall gear ratio that supports ‘off-the-line acceleration’ and low-rpm highway cruising [14]. 

The selected HV battery is the GM HEV4 battery pack. This pack has a nominal voltage of 300 volts with a 

total energy storage capacity of 1.5 kilowatt hours (kWh) and a peak power of 50 kW. 

1.7.2 Third Party Donated Components 

The electric motor is an electric axle with a differential gearbox and integrated motor procured from 

Magna Powertrain. The electric axle is known as the electric all-wheel drive (eAWD) unit or electric rear 

axle drive unit (eRAD) and is used in the Volvo V60 hybrid. The eAWD has a peak power slightly greater 

than the battery pack at 60 kW. It has a maximum torque rating of 200 Nm with a continuous torque 

rating of 90 Nm. The unit also has a maximum speed of 12000 rpm. The gear ratio of the differential is 

roughly 9:1. Each eAWD system comes with an inverter that is uniquely paired with each motor.  

1.7.3 Vehicle Power Flow 

The WVU P4 architecture has two primary modes of power flow: all-wheel drive (AWD) and front-wheel 

drive (FWD) with both regenerative braking and opportunity charging. These two modes are shown in 

Figure 3 below where the arrows indicate the power flow direction with blue arrows indicating mechanical 

power and orange arrows indicating electrical power. In AWD, the engine and motor are both used to 
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provide power to their respective axles, propelling the vehicle forwards. The left-hand illustration only 

highlights propulsive torque to the rear axle to demonstrate AWD capabilities. In both AWD and FWD, the 

motor can be used for regenerative braking shown in the right-hand side of Figure 3. During a coasting or 

deceleration event, the motor can be utilized to produce various amounts of negative torque to capture 

free energy from the vehicle’s inertia. This torque production reverses the power flow and charges the 

HV battery. A slower deceleration will capture larger amounts of energy from regenerative braking.  

 

Figure 3: WVU Hybrid Power Flow 

In FWD with opportunity charging, the engine is commanded to supply an excess amount of torque 

greater than what the driver initially requested. This difference in this torque command from the driver 

versus the engine is made up by the motor. The motor is used to drag the rear axle by producing a negative 

torque equal to the difference of the driver and engine torques. This allows the HV battery to be recharged 
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if the SOC has dropped too low and can also be used to load the engine and place it into a more efficient 

operating region which will be discussed below.  

1.7.4 Component Optimization 

From the above discussion, the engine can provide substantially more power when compared to the 

eAWD system. This difference in power, combined with a smaller HV battery pack led the team to the 

decision of not having a CD mode except for emergencies where the engine was not able to sustain 

propulsion for the vehicle. However, the eAWD system can be used to augment the engine efficiency 

operations. Now the question can be asked: How can a smaller motor be used to increase the efficiency 

of a larger engine? 

First, engine characteristics need to be understood. What does engine efficiency mean? This entails 

moving the engine into an area where the brake specific fuel consumption (BSFC) is minimized. The BSFC 

is a means of measuring the efficiency of an engine during operation given a fuel flow rate. BSFC is a 

function of both the torque being produced and the current speed of the engine. Engine speed can be 

determined by the speed of the vehicle wheels and the corresponding gear ratios. The gear ratios are 

defined by both the current transmission gear and a differential gear ratio. The engine torque is a function 

of the deflection of the accelerator pedal being manipulated by the driver. Reducing the BSFC will help to 

maximize the efficiency of the engine, but now the problem is creating an effective and efficient torque 

split algorithm that can recognize engine inefficiencies. If the most efficient split is commanded between 

the engine and motor, the engine would never be used due to the higher efficiency of the electric motor. 

If the vehicle was not equipped with a large energy storage system to handle the larger load on the motor, 

the HV battery would be drained quickly. The torque split algorithm selected must understand the 

operating regions for both propulsion components in order to calculate the ideal operating regions. This 

involves using the motor to reduce or increase the load on the engine to minimize the BSFC. 
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Consider an engine efficiency map shown in Figure 4 shown below [15]. The engine speed in rpm is on the 

x-axis and the available engine torque is located on the y-axis. The red line indicates the maximum engine 

torque available from the engine at any given operating point. The multicolored lines indicate the BSFC at 

different operating points. Due to confidentiality agreements with the EcoCAR competition and GM, this 

BSFC map is not for the 2.5-liter engine discussed above, but rather it is for a similar class engine. 

 

Figure 4: BSFC Map for an IC Engine [15] 

This engine is most efficient between the range of 1500-2900 rpm at a given load of 85-115 Nm of torque. 

At nominal cruise conditions on the highway (55-70 mph), a standard IC engine only produces the torque 

required to overcome friction and maintain the desired vehicle speed. However, to be more efficient, the 

engine may be asked to produce additional torque to reduce the BSFC. This is where the additional electric 

motor will come into play. 

Now consider the following scenario shown in Figure 5. If the engine is producing roughly 60 Nm of torque 

at 2200 rpm (point A), it is less efficient than an operating point at 100 Nm and roughly 2200-2300 rpm 

(point B). To move the engine to the more efficient operating point B, the torque split algorithm can 
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increase the amount of torque requested from the engine. However, this will increase the overall torque 

production of the vehicle violating the initial torque request from the driver through the accelerator pedal 

causing the vehicle to accelerate. To mitigate this overshoot, the electric motor can be used to provide 

negative torque on the rear axle of the vehicle. This negative torque will be equal to the increased engine 

torque (roughly 40 Nm), which will allow the engine to be loaded into a more efficient region, reducing 

fuel consumption. Additionally, the negative torque production from the motor can be used to charge the 

HV battery in a situation called through the road or opportunity charging. 

 

Figure 5: Vertical Translation in BSFC 

Now consider the following situation (Figure 6) when the engine is producing a higher amount of torque 

at an increased engine speed, such as climbing up a grade. The engine can move into the more efficient 

BSFC region by producing less torque while the motor provides increased torque to maintain the original 

driver request. For this transition to happen, however, the engine speed must also be adjusted. Engine 

speed, as discussed above, is a direct reflection of the vehicle wheel speed and gear ratios. To translate 

to a lower engine speed, the transmission may need to shift to a lower gear, reducing the engine rpms. 

Programmable shift maps can be implemented in a control scheme to recognize the need for a reduced 
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engine speed to translate horizontally while the engine torque is also reduced to move the engine from 

point A to point B.  

 

Figure 6: Horizontal Translation in BSFC 

Motor efficiencies are also a function of speed and torque; however, the motor operates with a single 

fixed gear ratio. An efficiency map of an electric motor is shown below in Figure 7. When a motor is 

producing positive, or propulsive torque in a forward direction, it is ‘motoring’. Similarly, when the motor 

is producing negative, or brake torque in a backward direction, it is ‘generating’ or producing negative 

power to recharge the HV battery. In the figure below, motoring torque is on the positive y-axis and 

generating torque is on the negative y-axis.  
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Figure 7: Electric Motor Efficiency Map 

The HV electrical system is composed of the motor, inverter and HV battery, so the losses from the battery 

and inverter need to be considered when designing an efficient torque split algorithm. Both the inverter 

and HV battery can be subjected to losses due to internal resistances when converting from DC to AC 

current and vice versa. All propulsion systems and respective losses need to be accounted for when 

designing a control strategy. This includes understanding component operating points and their 

respective efficient operating regions. 

The goal of this work is to design an optimal control strategy using a FLC. The controller will be used to 

augment the optimal control strategy known as the energy consumption minimization strategy (ECMS). 

This selected control strategy is only optimal if all future driving conditions are known a priori. All future 

driving conditions cannot always be known in the real-world, so a FLC will be implemented to analyze 

current driving conditions to update and optimize the control parameter, or equivalence factor, of the 

ECMS.  
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2 Literature Review 

The following section contains an outline of previous work completed in the development of hybrid 

control strategies for automotive and aerial vehicles which work to produce optimal torque strategies to 

increase fuel economy in different vehicles. Fuzzy logic control strategies are also examined in greater 

detail due to the nature of this paper. 

2.1 Overview of HEV Control Strategies 

When designing a HEV control strategy, there are two important factors to consider: Improving fuel 

economy and reducing vehicle emissions. This strategy is highly complex and must take component 

limitations and efficient operating regions into consideration. If the control strategy is not efficient or 

smart enough, all torque would be commanded from the electric motor, maximizing efficiency for the 

engine. However, this course of action would result in the HV battery being drained rather quickly. 

Instead, a strategy that allows the SOC to be maintained around a setpoint is introduced. This thesis will 

focus solely on maximizing fuel economy and charge sustainability through simulations with the design of 

a control strategy. 

With the increase of HEVs in the world, there are also an increase in the control strategies used for 

maximizing efficiency. Automotive companies are constantly competing to design the best systems for 

consumer appeal and marketability, promising more fuel economy than their competitors. However, 

these control strategies can ultimately be broken down into 2 distinct categories: Rule-based and Optimal 

based strategies.  

 The main characteristic of heuristic control, or rules-based, strategies is their effectiveness to run in real-

time. These rules do not involve any kind of explicit optimization, which reduces the computation power 

required to run in real-time. The rules used in this strategy are designed from intuition, heuristics, and/or 

the knowledge from other global optimum solutions [1]. 
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In optimization strategies, the optimum actuator set points are calculated from the minimization of a cost 

function over some predefined drive cycle, known a priori which leads to the global optimal solution. 

These strategies find the minimum value of the cost function using the acquired knowledge of future 

driving conditions. Optimization strategies cannot be used directly for real-time implementation due to 

the computation power required and future driving conditions that are required. Instead, they can be 

used to design rules that can be used for online implementation [1].  

Optimization methods can be further divided into two approaches: numerical and analytical. Numerical 

optimization methods include dynamic programming, genetic algorithms, and stochastic dynamic 

programming. When this method is used, the entire drive cycle must be taken into consideration to find 

the global solution numerically. Analytical methods use an analytical problem formulation to find the 

solution in a closed form that makes the numerical solution faster. Included in this method are 

Pontryagin’s minimum principle (PMP) and the ECMS. These strategies can make use of a receding-

horizontal approach for past, present, and future driving conditions [1].    

Optimization strategies make use of drive cycles similar to the one shown below in Figure 8. 

 

Figure 8: EcoCAR Mobility Challenge City Drive Cycle 
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Drive cycles are a function of vehicle speed specified at each instance that are used to test varying 

characteristics including fuel economy, performance, and emissions. The cycle shown above is used to 

test vehicle performance and fuel economy when driving in city conditions with several aggressive vehicle 

accelerations. Drive cycles, like the one shown above, can be used to determine the torque demands from 

the vehicle or powertrain being simulated or tested. If the total torque or power demands are found using 

a priori knowledge, optimization strategies can be used to determine an efficient cost-effective split 

between the IC engine and electric motor.  

2.2 Energy Management Control Problem 

Rizzoni et al. [1] discusses a formula to minimize the total mass of fuel consumed, as follows:  

 
𝐽 =  ∫ �̇�𝑓(𝑢(𝑡), 𝑡)𝑑𝑡

𝑡𝑓

𝑡0

 1.1 

Where �̇�𝑓 is the mass flow rate of fuel used (g/sec), 𝑢(𝑡) is the control variable leading to the 

minimization of fuel consumed for the cost function, 𝐽, over a drive cycle starting at time 𝑡0 and ending at 

time 𝑡𝑓. The cost function varies based on constraints in the system that can be broken down into two 

categories: global and local constraints. Global constraints include imposed constraints, such as state of 

charge (SOC) targets while local constraints focus more on component power, speed, and torque limits 

and/or predefined SOC boundaries. Other local constraints can also include drivability and driver comfort 

issues [1]. 

The energy management problem defined in equation 1.1 follows a global constraint to lower fuel 

consumption. This equation can be further broken down to impose additional constraints in the form of 

a penalty function as shown below in equation 1.2.  
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𝐽 =  ∅ (𝑥(𝑡𝑓)) + ∫ �̇�𝑓(𝑢(𝑡), 𝑡)𝑑𝑡

𝑡𝑓

𝑡0

 1.2 

Where ∅ (𝑥(𝑡𝑓)) is the new penalty function added to the performance index to obtain a charge-

sustaining performance index. Additional soft constraints can be applied in order to further constrict the 

energy management strategy including factors such as drivability, thermal dynamics, battery aging and 

life of product, ICE emissions, and varying torque production [1]. The following sections provide methods 

used to solve equation 1.1 with the additional penalties applied in equation 1.2. 

2.3 Dynamic Programming 

Dynamic Programming (DP) uses numerical methods to solve the global energy management problem for 

a given drive cycle by operating backwards over time. DP can provide the optimal solution to any variety 

of complex problems within computational limits, but it is only implementable using a simulation 

environment. Information must be known a priori for DP to be successful due to the nature of looking at 

the optimization horizon.  

The algorithm used for DP is based on Bellman’s principle of optimality, which starts from the final step 

and works backwards to generate an optimal cost-to-go solution as shown below [1]: 

 𝑢𝑘 = 𝜇∗(𝑥𝑘 , 𝑘) = arg min
𝑢∈𝑈𝑘

(𝐿𝑘(𝑥𝑘, 𝑢) + 𝑌𝑘+1(𝑓𝑘(𝑥𝑘 , 𝑢𝑘), 𝑢𝑘)) 1.3 

Where 𝑘 = N-1…,1. 𝑌(𝑥1, 1) is found in the last iteration of the algorithm and is equal to the optimal cost 

𝐽∗(𝑥0) discussed above. 𝑌(𝑥𝑁, 𝑁) is equal to the terminal cost and is dependent on the final state of 𝑥𝑁. 

𝑌(𝑥𝑘, 𝑘) represents the optimal ‘cost-to-go’ from time 𝑘 to the end of the optimization horizon. 

𝑌𝑘(𝑥𝑘, 𝑢𝑘) is dependent on the control variable 𝑢𝑘 which represents all values that the cost-to-go function 

can assume. The control sequence is performed backwards where values for the optimal choice at each 

time instance 𝑘 and state value 𝑥𝑘 are stored in the matrix 𝑢∗ [1].  
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An example of a DP algorithm is shown below in Figure 9 [1]. The numbers on each segment represent 

the cost from the minimum cost-to-go function 𝑌(𝑥, 𝑘) at each instant. The algorithm solves from N to 1 

on the time index axis. 

 

Figure 9: DP Cost-to-go Matrix 

Once the DP algorithm is finished, the minimum cost is selected for the implemented control algorithm.  

Wang et al. [16] applied DP to a series, parallel, and series-parallel powertrain for a Toyota Prius to find a 

potential for fuel economy improvement. The simulation results showed a 30% potential improvement in 

overall cost, which converts the electrical costs to fuel costs. From these results, an online real-time 

control algorithm was developed based on the DP results. In comparison to the simulated DP results, the 

online controller showed a 27% improvement in overall costs, which was very close to the original global 

optimized costs using DP.  

Other methods of DP involve solving the problems analytically to reduce the overall computational loads. 

Work done by Larsson et al. [17] investigated the possibility of using an analytic solution for a continuous 

control signal. For this work, two different approximations of the cost-to-go function were considered. 

The first was a linear approximation and the second was a quadratic spline approximation. It was found 

that the computational time can be reduced by just below two orders of magnitude in exchange for a 

slight decrease in fuel economy simulation accuracy. In addition, when using the quadratic spline cost-to-

go function, the storage requirements for memory allocation can be significantly reduced (almost two 

orders of magnitude). This reduction in computational time and memory exhibits the option to implement 
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this method in a vehicle controller unit. The authors state that, while the proposed method is technically 

an offline simulation, it is possible to perform the computations at a higher level on an external device 

which can transmit the solution to the vehicle via a cellular network. One downside to this method is that 

the specific analytical solution is not generic, so a solution must first be obtained for each individual 

powertrain configuration. 

Similar work has been conducted by Yuan et al. [18] for a parallel HEV where DP was compared to PMP. 

The energy management problem was formulated as an optimal control problem between total fuel 

consumption and gear shifting frequency with admissible constraints. The algorithms are applied to a 

vehicle with an automatic manual transmission (AMT) as a potential replacement for a standard automatic 

transmission with a torque converter. The vehicle powertrain is used as the dynamic system with two 

applied state variables (battery SOC and AMT gear position). The independent control variables used are 

the engine throttle signal and gear shifting action. For the DP optimization, the cost function is as follows: 

 𝐽(𝑘) = min
𝑢(𝑘)

{𝐽(𝑘 + 1) + �̇�𝑓(𝑘) + 𝛽|𝑠ℎ(𝑘)|} 1.4 

Where 𝑢(𝑘) is the optimal control for the entire problem horizon, 𝛽|𝑠ℎ(𝑘)| is introduced to limit 

excessive shifting, and �̇�𝑓 is the flow rate of the equivalent fuel consumption rate. 𝛽 is a positive 

weighting factor and can be tuned to reach an equilibrium point between the shifting frequency and fuel 

consumption. Similarly, an optimization function is created for the PMP comparison as follows: 

 [𝑠ℎ∗(𝑡), 𝑡ℎ∗(𝑡)] = 𝑎𝑟𝑔 min
𝑢(𝑡)

𝐻 1.5 

Where 𝑠ℎ∗(𝑡) and 𝑡ℎ∗(𝑡) are the optimal control variables obtained at each instant to minimize the 

Hamiltonian defined in equation 1.6. 

 𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑡, 𝑝(𝑡)) = 𝑝𝑇(𝑡) ∗ 𝑓(𝑥(𝑡), 𝑢(𝑡)) + �̇�𝑓(𝑡) + 𝛽|𝑠ℎ(𝑡)| 1.6 
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Where 𝑝(𝑡) is a vector of auxiliary variables called co-states. When compared side by side, the PMP 

produced near-optimal results that were close to the results from DP. While the PMP may not be exact, it 

can save approximately 77% of the computational time when compared to DP by approximating the co-

states. With a reduced computational load, the PMP can be run on an online controller to achieve close 

to optimal results in a real-world environment.  

A DP model of the 2019 Chevrolet Blazer used by the WVU in the EcoCAR Mobility Challenge was created 

by Aaron Mull of WVU [19]. Mull implemented a backwards operating model of the EcoCAR Blazer model 

in MATLAB by creating functions for each of the vehicle components, including the engine, battery, and 

motor. Cost functions were defined for each component to minimize fuel consumption and provide CS for 

multiple drive cycles. CS operation was imposed directly by selecting an initial state to be equal to the CS 

target SOC. Once constraints were imposed, the DP algorithm determined the effective cost-to-go matrix 

for each operating point from the start to end of each simulation. Simplified drive cycles were created to 

verify the functionality of the DP algorithm to ensure no constraints were violated during the optimization 

process. Once final cost functions were implemented, the DP algorithm was validated using a Simulink 

model of the 2019 EcoCAR Blazer. The DP algorithm was successful in calculating the best cost-to-go 

function for both drive cycles, and similar results were produced in the Simulink environment to validate 

all results. In the EMC City cycle, the maximum achievable fuel economy was found to be 30.18 mpg and 

in the EMC Highway cycle, the maximum fuel economy was found to be 37.24 mpg. In this paper, a similar 

Simulink model was implemented for the design of the F-ECMS algorithm. Due to multiple similarities 

between the models, the results from this DP algorithm will be used in the validation process of the F-

ECMS algorithm designed and discussed in this report to further validate the effectiveness of this 

controller against the benchmark analysis performed by Mull. 
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Similar work has been done in the DP area including predictive control using Stochastic DP (S-DP) [20], 

real-time implementation based on DP [21] and other optimization methods using DP [22], however, due 

to the focus of this research paper, only a select few DP papers were highlighted.   

2.4 Equivalent Consumption Minimization Strategy 

The ECMS provides an effective solution to energy management problems discussed previously by using 

a heuristic method. ECMS is used in a charge-sustaining driving mode and works to use both the HV 

battery and electric motor as an auxiliary source of power. This algorithm works by applying a cost to the 

use of electrical, mechanical, and fuel energy when determining the optimum torque split ratio between 

both powertrains. The key idea, however, is that an equivalent fuel consumption value is associated with 

the use of all electrical energy in the system [1]. This relationship is shown below in the following equation: 

 �̇�𝑓,𝑒𝑞𝑣(𝑡) = �̇�𝑓(𝑡) + �̇�𝑟𝑒𝑠𝑠(𝑡) 1.4 

Where �̇�𝑓 is the actual fuel consumption, �̇�𝑟𝑒𝑠𝑠 is the equivalent electrical fuel consumption, and �̇�𝑓,𝑒𝑞𝑣 

is the total equivalent fuel consumption.  

The actual fuel consumption of the engine is based on the lower heating value of the fuel used (𝑄𝑙ℎ𝑣, 

MJ/kg) along with the engine efficiency (𝜂𝑒𝑛𝑔) and power produced by the engine (𝑃𝑒𝑛𝑔) as shown below. 

 
�̇�𝑓(𝑡) =

𝑃𝑒𝑛𝑔(𝑡)

𝜂𝑒𝑛𝑔(𝑡)𝑄𝑙ℎ𝑣
 1.5 

The electrical energy is given an equivalent fuel consumption value, or virtual fuel, shown in equation 1.4 

and can be found by assigning its’ own virtual specific fuel consumption (𝑠𝑓𝑐𝑒𝑞, g/kWh) at the current 

time and multiplying by the battery power (𝑃𝑏𝑎𝑡𝑡) [1]. It should be noted that proper unit conversions are 

needed in these equations when converting from MJ to kJ etc. 
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 �̇�𝑟𝑒𝑠𝑠(𝑡) = 𝑠𝑓𝑐𝑒𝑞(𝑡) ∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) 1.6 

The virtual fuel consumption is determined by applying the equivalence factor (𝑠(𝑡)), which is a vector of 

values used for both charging and discharging the HV battery. This relationship can be seen in equation 

1.7. 

 
𝑠𝑓𝑐𝑒𝑞(𝑡) =

𝑠(𝑡)

𝑄𝑙ℎ𝑣
 1.7 

Now the global problem of reducing the total cost can be condensed down to the local problem of 

minimizing the equivalent fuel consumption in equation 1.4. At each instance of time, the equivalent fuel 

consumption is determined for multiple candidates of the control variable 𝑃𝑏𝑎𝑡𝑡 which will provide the 

smallest equivalent fuel consumption value. This approach closely approximates the global solution and 

is less demanding on a computational scale when compared to other methods such as dynamic 

programming. The ECMS does not explicitly rely on information about the future driving conditions, 

however, the constant values for the equivalence factor must be selected beforehand which will affect 

both the power output and fuel consumption for the system [1]. 

During operation with the ECMS, boundaries must be determined to prevent the HV battery from violating 

any admissible limits. Due to these limitations, a multiplicative penalty function is generated to ensure all 

SOC limits are obeyed. 

 

𝑝(𝑆𝑂𝐶) = 1 − (
𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛
2

)

𝑎

 1.8 

 This function takes deviations from the target SOC into account and will apply a penalty based on the 

direction of the deviation. Figure 10 shows 3 different penalty functions for varying values of the exponent 

𝑎 [1]. 
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Figure 10: Varying Penalty Function for HV SOC 

As seen in the above sigmoid function figure, smaller exponential values of 𝑎 will result in steeper 

penalties being applied. As the SOC deviates to the left from the target towards the minimum specified 

SOC, the penalty being applied will increase which in turn will increase the cost to use the battery, making 

a discharge event less likely. If the SOC moves to the right from the target to the maximum specified SOC, 

the penalty will decrease, resulting in a lower cost to use the HV system for a discharging event.  

This penalty function is added to equation 1.4 as follows: 

 
�̇�𝑓,𝑒𝑞𝑣(𝑡) = �̇�𝑓(𝑡) +

𝑠(𝑡)

𝑄𝑙ℎ𝑣
∗ 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗ 𝑝(𝑆𝑂𝐶) 1.9 

Applying the ECMS through equation 1.9 provides results comparable to those achieved through DP. 

Different drive cycles require different values for the penalty function as well as different equivalence 

factors which must be obtained through numerical optimization beforehand. In ideal conditions through 

drive cycle simulation with prior knowledge, the ECMS results are very close to the global optimum. If the 

algorithm is used without a priori knowledge, the results are useable, but they are not as good as they 

could potentially be if the future driving conditions were known [1]. Adaptive methods have been 

introduced to provide optimal solutions without a priori knowledge of the driving conditions. A few 
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adaptive methods include fuzzy logic, neural networks, and proportional-integral-derivative (PID) 

controllers. 

2.5 Adaptive Optimal Supervisory Control 

Optimal fuel economy cannot be guaranteed if real-world information, such as the drive cycle or 

environment, is not available. To combat this problem, adaptive optimal supervisory control (A-OSC) 

algorithms are introduced [1]. The A-OSC can be broken down into numerous groups depending on how 

the control algorithm(s) is being optimized. For this paper, several methods will be discussed for an 

adaptive ECMS (A-ECMS) strategy, however, emphasis will be placed on using fuzzy logic with ECMS.  

Adaptive drive cycle prediction focuses on adding ‘on-the-fly’ algorithms to the ECMS to estimate the 

equivalence factors. In the work performed by Sciarretta et al. [23], the method used for the A-ECMS was 

based on speed prediction for a parallel HEV. In this work, the equivalence factor was updated on an 

online controller using a look-ahead horizon to determine the most likely behavior of the battery in the 

near future for both charging and discharging situations. No predictions were needed for future conditions 

and only a few control parameters were required which vary from one vehicle to another. For one cycle 

discussed in the paper, the ECMS showed a potential for reducing fuel consumption by up to 30% when 

compared to the conventional value. For the urban driving cycle (UDC), the reduction was increased to 

50% while the method imposed does not affect CS operations due to SOC excursions over each drive cycle 

being limited to 2%. The method was validated by comparing data using the steady-state fuel 

consumption which was not affected by SOC excursions, and the equivalent specific fuel consumption 

determined from the ECMS.  

In similar work performed by Zhang et al. [24] for drive cycle prediction, a chaining neural network (CNN) 

was introduced for a velocity prediction approach. The developed CNN was used to predict the velocity 

over numerous temporal horizons using V2V and V2I communication. The proposed energy management 
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strategy was broken down into 3 parts. The first part included simulating vehicles in urban driving 

conditions to obtain real-time velocity and traffic information. The second step was to predict the velocity 

of a subject vehicle over various horizons using the CNN and given velocity of any lead vehicles. The final 

step was to adjust the EF by the defined adaptation law and apply the ECMS to split the commanded 

torque between the engine and motor. Several tests were conducted where the prediction time ranged 

from 5 to 20 seconds for three separate studies. This predicted velocity along with the SOC feedback was 

used to update the equivalence factor periodically. When evaluating the impact of the defined CNN 

parameters, a sensitivity analysis was conducted for different velocity prediction values and number of 

nodes in each hidden layer. The developed algorithm was compared to a base back propagation (BP) 

neural network to study improvements in the system over three different cases. The prediction error was 

found to increase as the prediction horizon expanded to 20 seconds and changed slightly from 20 to 30 

seconds, however, the prediction error was reduced for all 3 cases when the velocity prediction and CNN 

parameter values were selected to be 2 and 20 respectively. ECMS when regulated by the proposed 

adaptation, showed a 0.2-5% increase in fuel economy for different prediction horizons in the three cases 

as opposed to ECMS with a traditional adaptation law.    

Adaptive drive pattern recognition involves training an algorithm to recognize a previous driving pattern. 

The current algorithm parameters are then adjusted based on the information learned from previous 

drive cycle patterns. In work done by Jeon et al. [25], a multi-mode control algorithm using driving pattern 

recognition was developed and applied to a parallel HEV. Six driving patterns, including three urban, one 

expressway, and two suburban were selected for the training patterns. 24 parameters including stop/total 

time, average acceleration, and average cycle velocity were also selected to characterize the driving 

patterns. For each driving pattern selected, the control parameters were optimized using the Taguchi 

method through both fuel consumption and emissions simulations. These seven control parameters 

consisted of weighting factors for performance measures for deciding the ratio of engine to required 
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power from driving load. The additional control parameter was the charging/discharging method of the 

battery. A neural network decides, when driving, which representative driving pattern is closest to the 

current pattern by comparing the correlation related to the 24 characteristic parameters.  

In work conducted by Harris et al. [26] of WVU, an on-board artificial neural network (ANN) was 

implemented to dynamically update the equivalence factor for the A-ECMS based on a sliding time 

window of past driving parameters. A radial basis function (RBF) ANN was used to implement the adaptive 

portion of the ECMS algorithm and was selected because the RBF can be trained very quickly by exposing 

it to the entire training data set all at once. The RBF consisted of one hidden layer and one output layer 

for the system where the weights between the two layers are updated during training. 30 drive cycles 

were used to train the RBF ANN and each cycle was characterized by 9 parameters. Multiple levels of 

variance in the RBF were examined along with different time windows (2, 3, and 4 minutes) that were 

used to update the equivalence factor. Of the 5 drive cycles used for validation of the RBF, 3 achieved a 

percent error within roughly 2.5% of the results from the optimal ECMS. 

Kazemi et al. [27] of WVU proposed a predictive A-ECMS algorithm using intelligent transportation 

systems (ITS) for HEV powertrain control. 3 real-time control strategies were proposed for HEVs, each of 

which introduced an adjustment of the equivalence factor for the cost of electrical energy consumption. 

The first real-time strategy implemented a new definition for the EF, where the original EF was combined 

with a modification factor based on the energy requirements from a vehicle in the prediction horizon. This 

new formulation of the EF improved fuel economy by decreasing the number of engine on/off cycles 

during simulation. These cycles were prevented by decreasing the cost of using electrical energy when 

there was an upcoming regenerative braking event. The second strategy continued from the first but 

introduced a dynamic time horizon. The length of the time window was determined at each instance was 

defined by the time to the next minimum of the vehicle’s drive cycle, indicated by the last moment of 

upcoming regenerative braking. In the third strategy, the EF was further modified to include the cost of 
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charging and discharging the battery in the near future. These costs were determined by running the 

vehicle model with the A-ECMS controller over a long drive cycle to determine the maximum and 

minimum EF values. Then, the best values of the adjustment EF variables were determined while the 

threshold of the EF was set to the maximum and minimum determined EF. The new strategy decreased 

the cost of electrical energy when there was a possible regenerative braking event on the prediction 

horizon, regardless of the SOC placement below the target value. Simulation results showed a fuel 

economy improvement of 1.8% for the UDDS drive cycle, a 4.1% improvement for the HWFET drive cycle 

and a 3.7% improvement in the US06 drive cycle. 

2.6 Additional HEV Work 

Additional work has been conducted which analyzes different aspects of a HEV control system outside of 

the global simulation-limited TSA area. The transmission shift map can be modified to allow the engine to 

operate in a more efficient region at different vehicle speeds. Many transmission shift maps are functions 

of the current vehicle speed and accelerator pedal position. However, work done by Connelly, et al. [28] 

at WVU, looked at developing SOC dependent and independent shift maps. This work was conducted in 

the EcoCAR3 challenge on a 2016 Chevy Camaro with a P3 architecture.  

First, a sensitivity analysis was conducted in the MIL environment using the additional power available 

from the electric motor. This SOC independent shift map resulted in an increase to both the engine 

efficiency and fuel economy. A new three-parameter shift map was designed that added the current SOC 

as the third parameter in the map. With an SOC dependent shift map, additional solution space was 

analyzed to generate new shift lines in the map. When comparing the SOC independent to the dependent 

shift maps, the difference in fuel economy was negligible, however, both maps showed improvements 

when compared to the original stock shift map. 
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In the same EcoCAR 3 competition with the 2016 Chevy Camaro, a power-loss minimization TSA was 

developed for the PHEV architecture by Derek George et al. [29] of WVU. A golden search algorithm was 

paired with a cost function to find the optimal engine torque available for the system. This developed 

function was compared to a base power-loss algorithm to determine the effectiveness of the 

implemented algorithm. The cost function served to minimize the total power-loss of the system while 

meeting the driver demanded wheel torque and CS functionality. Three cost functions were created for 

the analysis to determine the most effective power-loss strategy. 

In the VIL environment, the compared cost function showed a 14.6% decrease in measured engine torque 

transients. In addition to the reduced torque transients, fuel economy was improved by 1.7%. An 

emissions analysis was also performed at the Center for Alternative Fuels, Engines, and Emissions research 

facility where carbon dioxide (𝐶𝑂2), carbon monoxide (𝐶𝑂), nitrogen oxide (𝑁𝑂𝑥), and total hydrocarbon 

(𝑇𝐻𝐶) were measured. When compared to the base power-loss algorithm, there was a 10.4% decrease in 

𝐶𝑂, an 84.6% decrease in 𝑁𝑂𝑥, a 15.6% increase in 𝐶𝑂2, and an 8.1% decrease in 𝑇𝐻𝐶. In future work for 

this algorithm, it was recommended that a similar method of reducing the engine torque transients 

through A-ECMS be explored to further reduce emissions and improve fuel economy [29]. 

2.7 Fuzzy Logic  

Conventional control theory relies on an analytical model of a process to be controlled; however, this 

process can fall short if the model of the process is difficult to obtain or is highly nonlinear. How could a 

controller be designed to automate the process of driving a car? Automotive companies have begun 

designing control systems to produce autonomous vehicles, but humans have been driving for decades 

without needing mathematical models. This is where fuzzy logic can be introduced to help simplify the 

mathematical model. A fuzzy based control system is a real time expert level system that implements 

some experience and knowledge from a human operator. Fuzzy logic uses if-then rules and sets to define 
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the meaning of qualitative values for a controller input. This logic can capture the continuous nature of 

human decisions to improve on the standard binary control logic [30].  

Take the example of a thermostat used to control a furnace. A simple control algorithm to control the 

temperature may state that if the temperature falls 5 degrees below the setpoint, turn on the furnace. 

Once the temperature is 5 degrees above the setpoint, shut the furnace off. Fuzzy if-then rules can be 

introduced to further control the temperature around a setpoint. If-then rules can be defined to state: If 

the temperature is low and the temperature delta is small, turn the furnace on low. While this is a basic 

example, the idea of fuzzy logic can be expanded to control more complex systems, such as the accelerator 

pedal commands in a vehicle for cruise control. 

A fuzzy logic controller consists of three major areas or modules: the fuzzification input, inference engine, 

and defuzzification output, as shown below in Figure 11 [31]. 

 

Figure 11: Overview of Fuzzy Logic Architecture 

Fuzzy properties called linguistic values (low, high) are introduced in the fuzzification input and define 

fuzzy sets with membership functions and values between 0 and 1. The fuzzification process represents 

the degree to which the crisp measurements belong to each of the fuzzy sets that are defined by the 
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linguistic values. The inference engine if-then rules are used to create a fuzzy output or command which 

is converted back to a crisp output using the defuzzification engine.  

Crisp inputs include physical values from the system such as a vehicle speed of 10 mph or an acceleration 

of 9.81 
𝑚

𝑠2. When converting from the crisp inputs to the fuzzy inputs for the inference engine, linguistic 

variables and values are implemented. Linguistic variables are qualitative in nature and serve as a 

classification such as height, age, error levels, temperature, vehicle speed, position, etc. Linguistic values 

can vary for the linguistic variables. For example, a linguistic variable for acceleration can take on several 

values including, large negative, zero, small positive, large positive, etc. The linguistic values can take on 

a range of real numbers, so the large positive mentioned above could relate to [1 ,2] 
𝑚

𝑠2 for acceleration 

[31].  

Membership functions of a fuzzy set determines the degree to which a crisp value for a linguistic variable 

belongs to a certain linguistic value. Membership functions can take on various shapes, however, the more 

common shapes are trapezoidal, triangular, bell shaped, and sinusoidal. An example of the trapezoidal 

membership function is shown below in Figure 12 [31].  

 

Figure 12: Fuzzy Logic Trapezoidal Membership Function 
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The final step in the fuzzy algorithm is the defuzzification process. Defuzzification methods have the 

purpose of converting the command from a fuzzy to a crisp output that is executed by the control system. 

For example, the fuzzy output could be in the large positive (LP) membership function region, which could 

correlate to a physical output of 3 for an actuator. The elements of the fuzzy command matrix are viewed 

as heights of ‘clipped’ fuzzy sets as shown below in Figure 13.  

 

Figure 13: Clipped Trapezoidal Membership Function 

There are several conversion algorithms that are based on the height of the fuzzy sets and/or the area of 

the sets. Some of the methods for conversion are: 

• Center-of-Sum 

• Height-at-Lower-Value 

• Height-at-Peak-Value 

• Last-of-Maxima 

However, the trapezoidal and triangular membership functions, commonly used, contain discontinuities 

in their derivatives that propagate through the whole process and can result in discontinuities in the 

command rate. It is possible to have a negative effect on the performance of the control laws and to 

prevent this, the membership functions can be smoothed out at the edges or a low-pass filter can be 

executed on the command [31].  

Zhang et al. [32] aimed to enhance fuel economy and impose SOC charge-sustainability by adapting the 

equivalence factor for the ECMS using a fuzzy logic proportional integral (PI) controller. The ECMS was 
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compared with and without fuzzy adaptation to compare fuel economy results. Constraints were placed 

so that the battery was forced into a charge sustainability mode, where the ending SOC had to equal the 

starting SOC. To impose the SOC constraints, the following cost function equation was implemented: 

 
𝐽(𝑆𝑜𝐶(𝑡)) = ∫ �̇�𝑓(𝑢(𝑡), 𝑡)𝑑𝑡 + 𝜂

𝑄𝑚𝑎𝑥

𝐻𝐿𝐻𝑉
∫ 𝑉𝑜𝑐𝑑(1 − 𝑆𝑜𝐶) + 𝛽(𝑆𝑂𝐶𝑟 − 𝑆𝑜𝐶(𝑡))

2
𝑆𝑜𝐶(𝑡)

𝑆𝑜𝐶(𝑡0)

𝑡

𝑡0

 1.10 

Where 𝑆𝑂𝐶𝑟 is the reference SOC value, 𝑆𝑂𝐶𝑟 − 𝑆𝑜𝐶(𝑡) is the delta SOC value during operation, 𝜂 is the 

average component efficiency of the motor over the engine, �̇�𝑓 is the equivalent engine fuel 

consumption, 𝐻𝐿𝐻𝑉 is the lower heating value, 𝑉𝑜𝑐 is the open circuit voltage, and 𝛽 is a tunable penalty 

coefficient. To further impose charge-sustainability, an additional equation can be introduced: 

 
𝑠(𝑡) = 𝑠0 + 𝐾𝑝(𝑆𝑜𝐶𝑟 − 𝑆𝑜𝐶(𝑡)) + 𝐾𝑖 ∫ (𝑆𝑜𝐶𝑟 − 𝑆𝑜𝐶(𝑣))𝑑𝑣

𝑡

𝑡0

 1.11 

Where 𝑠0 is the initial equivalence factor and 𝐾𝑝 and 𝐾𝑖 are the proportional and integral coefficients. The 

key problem in the research done was determining how to adjust the PI coefficients. To design the fuzzy 

logic controller, 5 linguistic values were used for both the inputs and outputs which ranged from negative 

to positive. Once the fuzzy controller was designed, simulations were conducted for ECMS with constant 

EF and the fuzzy PI ECMS. The results confirmed that the fuzzy PI adaptation algorithm was more robust 

than ECMS with a static equivalence factor in terms of fuel economy, with a 4.44% improvement for a 

China city bus cycle and 14.7% increase for the Europe (ECE) cycle.  

In [33] Wang et al. designed an adaptive ECMS algorithm with fuzzy logic to adjust the equivalence factor 

based on the deviation of the actual SOC level. The EF was approximated with a tunable penalty factor in 

the following equation:  

 
𝑆(𝑡) =

𝜂𝑒𝑚

𝜂𝑒𝑛𝑔
+ 2𝛿

𝐻𝑙ℎ𝑣

𝐸𝑏𝑎𝑡(𝑡)
Δ𝑆𝑂𝐶(𝑡) 1.12 
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Where 𝜂𝑒𝑚 and 𝜂𝑒𝑛𝑔 are the motor and engine efficiencies, 𝛿 is the penalty factor and Δ𝑆𝑂𝐶 is the 

difference between the current SOC and reference values. The fuzzy controller consists of two inputs and 

one output. The first input was the SOC deviation and had 7 membership functions, and the second input 

was the engine rotational speed characterized by 5 membership functions. A practical regenerative 

braking method was also included to balance the brake torque split to the electric motor and disk brakes. 

The fuzzy A-ECMS improved the fuel economy from 1.12% to 5.91% for the simulated drive cycles when 

the initial EFs were set to the optimal EF for ECMS. Under the real drive cycle testing, the fuzzy A-ECMS 

presented a 0.46% to 3.39% improvement in fuel economy when the initial EF was not adjusted based on 

prior cycle testing.  

Denis et al. [34] proposed a control strategy based on fuzzy logic by feeding the proposed controller with 

driving condition information. Two inputs for the fuzzy controller were used: a moving average of the past 

speed and the global discharge rate. The moving average was used to locate the current speed among 

three speed distributions to use the past driving information to adapt the control logic. The global 

discharge rate is computed by dividing the difference between the current and targeted SOC with the 

remaining distance in the cycle left. During the trip, the controller will consider each update as a new 

driving cycle with a given initial SOC. Three membership functions were used for the moving average and 

nine functions were used to define the global discharge rate. The designed controller was compared to a 

DP simulation along with a rule-based strategy. The rule-based strategy showed a fuel consumption of 

2.62 L/100 km, the fuzzy-based EMS showed a fuel consumption of 2.01 L/ 100 km and the DP algorithm 

showed a fuel consumption of 1.89 L/ 100 km. While the results may not be as good as the DP algorithm, 

the proposed fuzzy-EMS improved fuel economy over the rule-based algorithm and is able to operate 

online in a real-time environment. 

In [35], by Sharkh et al., a fuzzy-rule-based electric-dominant energy management strategy was 

implemented for a PHEV. The fuzzy controller uses the vehicle power demand and the battery working 
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state (BWS) to determine the power split for the engine and electric motor. The BWS was introduced to 

overcome the disadvantage of relying only on the battery SOC for calculations because if over or 

underestimated, could result in severe damage to the battery pack from under or overcharging. The BWS 

uses both the SOC and terminal voltage where the SOC is defined with 5 membership functions (low, 

medium low, medium, medium high, and high) and the termina voltage is defined with 3 membership 

functions (low, medium, and high). The output for the BWS consists of 5 membership functions (very low, 

medium low, medium, medium high and very high). As the BWS approaches a defined setpoint for CS, the 

controller increases the power generated by the engine to keep the SOC at a setpoint. Vehicle power 

demand and the engine target power are characterized by seven membership functions. Offline 

simulations were performed to test the fuzzy controller for two different drive cycles: The Urban 

Dynamometer Driving Schedule (UDDS) and the New European Driving Cycle (NEDC). Results from both 

cycles showed that the BWS was effective in preventing the battery from over-discharging when the 

evaluated SOC level was erroneous. The fuzzy EMS also demonstrated the capability of commanding the 

engine to operate in its most fuel economic region during both drive cycles whenever possible. 

In [36] by Zhao et al., a fuzzy ECMS was proposed as an intelligent energy management solution that could 

operate in real-time. Heavy duty HEVs involved in duty cycles are characterized by frequent start-stop 

events in off-road applications, and the dynamics were considered when designing the controller. The 

power split between the engine and motor for the fuzzy sets were characterized by the deviation of the 

SOC and component efficiencies. The cost function to be minimized is shown below in equation 1.13:  

 
𝐽𝑓(𝑡𝑓 , 𝑢, 𝑆𝑂𝐶) = ∫ �̇�𝑓(𝜏, 𝑢, 𝑥)𝑑𝜏 + 𝜑(𝑆𝑂𝐶(𝑡0), 𝑆𝑂𝐶(𝑡𝑓))

𝑡𝑓

𝑡0

 1.13 
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Where 𝑥 denotes the engine, motor, and battery states, 𝑢 represents the defined control variables, 𝑡0 is 

the initial time, 𝑡𝑓 is the final time, and 𝜑 is the penalty function defined for the SOC deviation from the 

starting value. 

The proposed fuzzy ECMS was evaluated under non-road transient cycle and hydraulic excavation 

transient cycle on a CAT C15 diesel engine model and showed a fuel economy improvement of 4.43 and 

6.44% respectively.  The fuzzy ECMS showed greater adaptability in tuning the cost factor under different 

drive cycles with faster dynamics.   

Guo et al. [37] designed and implemented a fuzzy logic controller to detect various driving styles. Once 

drive cycles were classified, the driving styles were decoupled to design the fuzzy controller. The fuzzy 

logic controller uses the accelerator pedal opening and the accelerator pedal rate of change which reflects 

the power demand and its variation trend. Both inputs are characterized by 3 linguistic values which 

include values of small, medium, and big. The output of the controller is the driving style factor which is 

composed of 4 linguistic values which classify the drive cycle. The values for the output are economy, soft, 

normal, and aggressive and can take on values from 0 to 1 for the driving style factor. This output is used 

in tandem with the ECMS along with a hybrid particle swarm optimization-genetic algorithm to optimize 

the relationship of the driving style from the fuzzy controller to the EF in the ECMS to minimize fuel 

consumption. The proposed fuzzy logic driving style identification-based control strategy improved the 

energy economy by 3.69% in the NEDC. The work performed provided guidance for incorporating driving 

style into PHEV management strategies to help further improve fuel economy. 

Wahsh et al. [38] proposed a fuzzy logic based control strategy for a parallel hybrid electric vehicle using 

the load torque and speed control for efficient vehicle driving. In this study, a fuzzy logic controller was 

designed and compared to a PID controller to determine which was more effective at controlling the 

speed of an induction motor. Inputs to the fuzzy logic controller included the speed error and change of 
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the speed error while the output to the system was the reference speed command. Both inputs and the 

output included 7 membership functions ranging from large negative to large positive. A city and highway 

drive cycle were used to validate the PID and fuzzy logic controllers, where the fuzzy controller 

outperformed the PID due to more robust characteristics when evaluating the control problem. For both 

drive cycles, the fuzzy controller produced a more stable speed command while obtaining a faster overall 

response in the motor speed for both drive cycles.  

The potential for using a fuzzy logic controller for controlling and calibrating a HEV was explored by 

Anderson et al. [39]. Competitive control strategies were reviewed, and the fuzzy controller was identified 

as a strong candidate for reducing overall fuel consumption. A Toyota Prius was selected as the baseline 

vehicle for validation results due to a well-established system and vast amount of published data. The 

fuzzy controller was designed with 3 inputs: Vehicle speed, driver demanded torque, and SOC. The initial 

fuzzy rule base was broken down into 3 different operating modes: Regenerative braking, motor-only, and 

a combined engine and motor mode. From these operating modes, the initial fuzzy sets were designed 

using 4 different SOC ranges from very low (0-0.2) to high (0.8-1), where 0 corresponds to 0% and 1 

corresponds to 100%. In the initial design, the membership functions did not overlap and were stated as 

unique sets for each defined SOC operating range. Validation of the fuzzy controller showed a fuel 

economy of 49 mpg for the UDDS cycle, while real-world reported results showed a fuel economy of 60 

mpg. The initial results were promising and showed that the fuzzy controller could produce fuel efficiency 

similar to a conventional control strategy while maintaining SOC over a broad range of initial conditions. 

Further optimization yielded fuel economy results of 55 mpg for the same drive cycle, which fell 5 mpg 

short of the real-world results from the Prius. This was deemed to be acceptable by the authors when 

considering the simplicity and ease of implementation of the developed fuzzy algorithm when compared 

to the manpower required for the algorithm used in the Toyota Prius.  
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A fuzzy logic, rule based control strategy was proposed by Hannoun et al. in [40] for a PHEV. The strategy 

controlled the amount of energy flow among components to satisfy the driver demand while optimizing 

energy consumption and reducing polluting emissions. The optimization strategy was summarized to 

satisfy the conductor demand, reduce fuel consumption, and maintain a SOC between 70 and 95%. From 

this summary, the fuzzy controller was defined using 3 inputs: The requested power, SOC, and vehicle 

speed. Inputs were defined by 3 membership functions ranging from negative to high for the power and 

low to high for the SOC and vehicle speed. Three speed cycles were implemented for validation of the 

controller to illustrate various operating modes including single component operation (engine or motor) 

and a power assist mode where the motor is used to augment the engine. During operation, if the power 

demand is less than 10 kW, the engine is reduced to idle speed and the motor is solely used to provide 

power. If the power demand increases above 10 kW, the engine is used to provide additional power. 

Results showed that the conventional vehicle operates well below the optimal curve extracted from the 

engine efficiency curve while the hybridization model using the fuzzy controller operates at or near the 

optimal curve, improving fuel economy while maintaining SOC for the imposed constraints over multiple 

cycles. The fuzzy controller chose the best power split between the engine and motor to considerably 

improve the efficiency and reduce pollutant emissions from the engine.  

Fuzzy logic often requires some form of expert level knowledge of the system to generate membership 

functions to solve the energy management problem. One disadvantage of the fuzzy approach is that the 

defined rules are independent of the membership functions and cannot guarantee that the developed 

system will produce viable results. In the work performed by Danhong et al. [41], a genetic algorithm was 

introduced to optimize a fuzzy controller implemented in a control algorithm for a PHEV. Inputs to the 

fuzzy controller consisted of the battery SOC and desired vehicle power while the output was the desired 

battery power. Three membership functions ranging from low to high characterized the inputs and 5 

membership functions characterized the output ranging from negative big to positive big. Once the initial 
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membership functions were defined, the genetic algorithm was implemented to adjust the membership 

functions as needed. First, an operating range for the GA was defined and an initial population with a 

predefined number of individuals was selected. The fitness for each chromosome was calculated and the 

reproduction, crossover, and mutation of the current population was performed to produce the next 

iteration of the population. These last steps were repeated until predefined criteria were met and both 

versions of the fuzzy controller were validated using the NEDC driving cycle. The equivalent fuel 

consumption of the fuzzy controller was 6.8 L/100km while fuel consumption of the genetic-fuzzy 

controller was 6.5 L/100km. The SOC for the genetic-fuzzy controller was kept higher when comparing 

results from both controllers and the output engine torque operated in a more stable region while the 

motor torque was allowed to fluctuate. The genetic-fuzzy controller was able to improve both fuel 

economy and CS, proving that the addition of the GA further improves the robustness of the controller 

without having an initial expert level knowledge of the system as a whole.  

In addition to the work done in the automotive field for the ECMS strategy, work has also been performed 

for unmanned aerial vehicles. Xie et al. [42] proposed a method combined the ECMS strategy with fuzzy 

logic control to formulate the fuzzy-based ECMS (F-ECMS). Normal vehicle operations tend to keep the CS 

mode of a hybrid around 30% SOC. This CS strategy is not optimal for aerial vehicles because the residual 

battery capacity cannot guarantee a safe landing is failures occur involving the engine. The F-ECMS solved 

the deficiencies of ECMS and took into consideration the aircraft landing safely in the event of an engine 

failure. The final power requirement was used to consider inputs to the fuzzy logic controller where the 

maximum and optimal power of the engine could be substituted by their difference. This reduced the 

number of inputs to the controller to 3, also taking the SOC into account. They further reduced the number 

of membership functions for the engine down to 2 to reduce computational power required and consisted 

of positive and negative for the engine inputs. The SOC input consisted of 4 membership functions which 

included low, sustained, high and full. When compared to a combustion propulsion system, the hybrid 
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propulsion system, integrated with F-ECMS, showed an 11% fuel consumption reduction for designed 

flight missions. In the second test case, the F-ECMS was shown to solve the issues related to the 

conventional ECMS where flight missions need to be known a priori by operating within prescribed SOC 

limits. The F-ECMS was also superior to the A-ECMS because there is an associated lower computational 

cost involved. 

The above works illustrate that fuzzy logic controllers appear to be a viable way to achieve a robust 

solution to complex problems of creating an algorithm to boost fuel economy while maintaining CS 

operations over different drive cycles or flight missions containing multiple characteristics. The 

implementation of a fuzzy logic controller requires some expert level knowledge of the system when 

implementing membership functions into the controller. However, with reduced manpower required to 

create these controllers, the use of fuzzy logic provides an adaptive way to simplify complex control 

problems in industry. The work discussed above is not an exhaustive list and extensive work has been 

done in this area even over just the past decade, however, to list every publication would be redundant. 

Work presented in this thesis will use two inputs to the fuzzy logic controller to reduce the computational 

demand with the goal of improving fuel economy, maintaining CS over numerous drive cycles, and 

extending the HV battery life. 

3 Methodology 

The objective of the current work is to present an adaptive ECMS strategy using a fuzzy logic controller to 

dynamically update the equivalence factor based on the deviation of the SOC from the target value and 

the drivers current wheel torque command to the controller. The proposed hypothesis is to improve fuel 

economy over the base ECMS while maintaining CS operations in a 20% SOC deviation window ranging 

from 40 to 60%. This section is dedicated to an overview of the MathWorks model used for simulation 
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and results generation. All results published in this report have been obtained strictly in the MIL 

environment. 

3.1 Vehicle Model Overview 

The vehicle model is composed of 5 key areas illustrated in Figure 14. The Driver subsystem contains a 

driver model along with the drive cycle selected for the current simulation. The Controller subsystem 

contains all student implemented code that is flashed onto real-time hardware for any vehicle testing that 

is performed. The Plant model contains simulated versions of the engine, HV battery, and EM. The three 

subsystems are connected through virtual interfaces, or busses, to mimic communication processes that 

would be observed in vehicle.  

The two subsystems on the right-hand side of the figure are the Visualization and Logging subsystems. 

Scopes are implemented in the Visualization subsystem to observe signal communication and 

troubleshoot any errors in the model. Any signal that is contained on the System Signals bus can be 

viewed/monitored in the Visualization subsystem. The Logging subsystem follows a similar format to the 

Visualization subsystem. The Logging subsystem serves to record any important signals in the model 

including the HV battery SOC, wheel torque commands, component torque production, drive cycle error, 

etc. A high-level order for a simulation is as follows: 

1.)  The driver model provides an accelerator pedal input to follow the drive trace. 

2.) The accelerator pedal is read into the Controller subsystem and torque commands are 

determined for the ICE and EM. 

3.) The torque commands are sent to the Plant subsystem where the engine and EM models produce 

torque that is translated to the wheels to move the vehicle. 

4.) The relative velocity is fed back to the Driver subsystem where the driver model determines 

whether the accelerator or decelerator pedal should be pressed to follow the drive trace. 
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5.) Results are recorded in the Logging subsystem for post processing and comparison between 

different simulations. 

Steps 1-4 are repeated until the simulation is complete. 

 

Figure 14: Hybrid Vehicle Model Overview 

3.2 Driver Model 

The Driver subsystem (Figure 15) is composed of 2 critical components: The Longitudinal Driver and the 

Drive Cycle Selection subsystem. The Longitudinal Driver implements a longitudinal speed-tracking 

controller and generates normalized acceleration and deceleration commands based on the reference 

drive cycle and vehicle feedback velocities. Additional parameters can be adjusted to tune the Driver 

controller, including the driver response time and preview distance. Other notable parameters can be 

tuned to closer mimic the vehicle being simulated including the vehicle mass, tractive force, and resistance 

coefficients [43].  
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Figure 15: Longitudinal Driver 

The Drive Cycle Selection subsystem shown in Figure 16 contains various drive cycles that can be used 

during a simulation. Each drive cycle shown in the figure below belongs to the ‘Drive Cycle Source’ mask 

where any type of cycle can be input. The ones shown in the figure are preloaded, however, excel or text 

files can be loaded in if the data is available. A multiport switch is also implemented in this subsystem for 

automated testing. A script which will be discussed in a following section can be programmed to update 

the Drive Cycle Selection constant value shown at the top of the figure. This constant block determines 

which of the inputs to the multiport switch will be passed along to the Longitudinal Driver. For example, 

currently the constant block is set to 1, so the NYCC will be the drive cycle used for the simulation. If the 

constant block is changed to 2, the SC03 drive cycle would be used for the simulation and so on. 
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Figure 16: Drive Cycle Multiport Switch 

3.3 Plant Model 

The Plant model in Figure 17 consists of 3 main subsystems: The Input layer from the Driver and Controller, 

the Application layer and the Output layer which organizes the signals onto the ‘Plant Signals’ bus to be 

sent out to the system. 
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Figure 17: Plant Model Overview 

The Application layer contains the engine, HV battery, electric motor, and drivetrain as shown in Figure 

18. The green inputs to the system are the engine and motor torque commands which are generated from 

the Controller.  
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Figure 18: Plant Model Application Layer 

3.3.1 Engine Model 

Figure 19 provides a high-level overview of the engine model. The engine being used for simulations is the 

GM 2.5L LCV 4-cylinder engine with a maximum torque output of 259 Nm and maximum power output of 

151 kW. The engine model is broken down into two separate areas: The spark ignition (SI) Engine 

Controller and Mapped SI Engine are shown in Figure 20. 
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Figure 19: Engine Subsystem 

The SI Controller uses the driver torque request in conjunction with the input engine speed to determine 

fuel, spark, open-loop air and actuator commands that are required to meet the initial torque command. 

The SI Controller also contains an output ‘Info’ bus that contains varying signals including the torque and 

load commands, cam phase angle commands, air flow and estimated torque commands. An additional 

output from this Powertrain Blockset is the fuel injector pulse-width (InjPw) that can be used along with 

the torque command and ignition switch to simulation start/stop logic [44]. 
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The Mapped SI Engine uses power, air mass flow, emission performance, exhaust temperature, fuel flow, 

and efficiency look-up tables to simulate the engine for fuel economy and performance. Transfer functions 

are integrated into the model to closer mimic actual engine dynamics from smoothing and delay. The 

outputs of this block include the actual engine torque produced (EngTrq) and an info bus. The info bus 

contains varying signals, including the fuel flow, engine speed, exhaust manifold gas temperature, BSFC 

and several emission parameters [45].  

 

Figure 20: Engine Control Module/Mapped Engine Model 

The engine model table data for both the Controller and Mapped Engine was derived from steady-state 

operating conditions on a dyno at a GM facility. Even though the steady-state parameters have been 

implemented, the assumption can be made that the included parameters are adequate for modeling the 

dynamic operations of the engine.  
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3.3.2 Battery Model 

The battery modeled in Simulink is the GM HEV4 battery pack with a peak power of 50 kW and a nominal 

voltage of 300 volts. Figure 21 illustrates the battery model, which is the Datasheet Battery included in 

the Powertrain Blockset.  

Several parameters can be specified for the Datasheet Battery, including the maximum battery charge, 

open circuit voltage table data (V), internal resistance (Ohms) number of cells in series and parallel, and 

the initial battery capacity (Ah). The data block uses the ambient temperature and current load as inputs 

to the system and uses internal resistance and open circuit look-up tables to determine the appropriate 

voltage, power, and SOC outputs to the system [46].  

 

Figure 21: Powertrain Blockset Battery Model 

Battery packs have different limits when discharging and charging the pack that are based on 

temperature, battery capacity, and current draw. In the vehicle, this is performed by the battery system 

manager (BSM) and the status of the battery is broadcast over CAN, however, in the model, the BSM must 

be modeled accurately to ensure that no incorrect loads are placed on the battery when implementing 

energy management strategies. The BSM model is shown below in Figure 22. 
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Figure 22: Battery System Manager 

The limits for the Discharge and Charge Power subsystems were provided by GM and are given as 

functions of SOC for varying time intervals. The battery SOC and voltage are read into the Discharge and 

Charge Power subsystems and pushed through 1 dimensional look-up tables to determine power. The 

maximum power is determined for 0.1, 2, and 10 seconds for the available charge and discharge power. 

Figure 23 highlights an example of the Discharge Power subsystem.  

 

Figure 23: Maximum Discharge Calculations 

Once the maximum power for each time is determined, it is divided by the voltage to obtain the maximum 

discharge current available to the system. For simplicity with the student designed controls in the EcoCAR 

competition, the 2-second maximum is equivalent to the peak available power and/or current. The 10-

second maximum power and/or current is considered equivalent to the continuous operating maximum. 
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The Charge Power subsystem follows a similar pattern; however, the signs are flipped to indicate negative 

power and current to simulate the battery being charged. 

When using the 2-second discharge, a buffer is implemented to ensure the power is reduced from the 2-

second peak to the 10-second continuous after 2 seconds by implementing a windowed integrator. The 

logic around the Discharge Buffer subsystem is shown below. The windowed integrator integrates over a 

specified time (in this case, 2 seconds) window. When the maximum 2-second current is drawn, the buffer 

initializes with a value of 1 and will vary between 0 and 1. As the maximum current is drawn from 0-2 

seconds, the buffer will decrease towards 0 from a value of 1 reducing the maximum available current to 

the 10-second, or maximum continuous current available. If the battery current is negative, the Buffer 

system will have a value of 1 for the maximum available 2-second current. The charge buffer is calculated 

in a similar fashion with the exception of battery current being negative to reflect the battery pack being 

charged.  

 

Figure 24: Discharge Buffer Calculation 

Once the buffer is calculated, the Limiter subsystem (right-hand side of Figure 22) is used to determine 

the maximum discharge and charge currents and powers, and the maximum battery voltage shown below 

in Figure 25. The 1-D tables output a gain value ranging from 0 to 1 based on the current value of the SOC. 

As the SOC approaches the upper or lower limit, the gain will decrease from 1 to 0. In parallel, the 

maximum allowable charge and discharge currents are multiplied by the buffers determined from Figure 

24. These two signals are multiplied together to obtain the maximum allowable charge and discharge 
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currents for the Controller model to use in constraints calculations, discussed later. The maximum charge 

and discharge currents are also multiplied by the current battery voltage to obtain a power in Watts to 

simulate actual BSM communication in the vehicle. 

 

Figure 25: Maximum and Minimum Power Calculation 

3.3.3 Electric Motor Model 

Figure 26 highlights the Magna eRAD motor which is modeled in Simulink using the Mapped Motor from 

the Powertrain Blockset. The ‘Mapped Motor Model’ uses 2-D look-up tables tabulated with data from 

the Magna powertrain to mimic vehicle operations. Parameters for the model include rotational speeds, 

maximum torque values, torque control time constants and speed and torque losses. Tabulated loss data 

is used to calibrate the motor model due to efficiencies becoming ill defined for zero speed or zero torque. 

Inputs to the system include the current motor speed from the Driveline and Veh Dynamics subsystem, 

the torque command from the Controller, and the current battery voltage. The P4 motor current draw is 

output from the Mapped Motor Model and is determined by adding the mechanical power and power 

losses from the system and dividing the total by the battery voltage [47]. The motor torque produced is 

fed into the Torque Limit Calculations subsystem for additional limit determination and is also fed back to 

the Controller subsystem.  
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Figure 26: Mapped Motor Model 

The motor has different limitations for continuous and peak torque production which is modeled in the 

Torque Limit Calculations subsystem shown below in Figure 27. The calculations follow a similar pattern 

to the BSM limits where the continuous and peak torque commands are determined using 1-D look-up 

tables based on the motor speed. These values are integrated using a windowed integrator block to 

determine a discharge and charge buffer for the system. The peak and continuous signals are fed into the 

Max and Min Determination subsystem where they are multiplied by the respective buffer to determine 

the maximum and minimum available torque for the system. The minimum available torque is used for 

regenerative braking events when the motor is used to supply negative torque on the rear axle to 

decelerate the vehicle. Also included in this subsystem is the Motor Coupling Dynamics transfer function 

that was implemented to further mimic actual torque production in the vehicle. 
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Figure 27: Motor Torque Limits 

3.3.4 Vehicle Drivetrain 

The Driveline and Veh Dynamics system (Figure 28) contains the Transmission Controller, Torque 

Converter, Brake Request, Differential, Wheels, Brakes and Vehicle subsystems. For these simulations, the 

grade, or slope of the road, is not considered along with the wind velocity (WindVel).  

 

Figure 28: Vehicle Drivetrain Overview 

The transmission is modeled using Stateflow in Simulink as seen in Figure 29 and accepts the vehicle speed 

and accelerator pedal command as inputs to the system. Simulink Functions are used to determine the 

threshold for shifting gears in the model.  
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Figure 29: Stateflow Shift Map 

The Simulink functions use 2-D look-up tables that are tabulated with speed thresholds generated from 

GM data. The data contained in the look-up tables is confidential; however, an overview of the ‘up_th’ 

function is shown below in Figure 30. 

 

Figure 30: Transmission Up-Shift Threshold 

The Torque Converter Automatic Transmission system, shown in Figure 31, contains a torque converter 

(left-hand side), 2 driveshaft compliance blocks, and a fixed gear transmission. All blocks are contained 

within the Powertrain Blockset in Simulink. The torque converter implements a three-part converter 

which consists of the impeller, turbine, and stator with an optional clutch lock-up system. The converter 

can simulate both driving and coasting capabilities. The lock-up type selected for these simulations is the 

Lock-up, which models automatic clutch engagement. 
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The Ideal Fixed Gear Transmission block [48] implements a transmission without a clutch or 

synchronization. The block is used to model the overall gear ratio and power loss for the system with 

minimal parameterization and computational cost. The transmission block was parameterized using data 

provided by GM for the M3D transmission. The efficiency is also included in the block and is determined 

from a 4-D look-up table also parameterized with data provided by GM. 

The Driveshaft Compliance blocks represent a parallel spring-damper system to couple two rotating 

driveshafts. Parameters for the blocks include driveshaft angular velocity, torsional stiffness, and torsional 

damping to determine the torque. The “R” and “C” ports on the block are used for angular velocity in 

rad/s. The block also implements an output info bus containing torque, speed, and power information; 

however, for these simulations, the signals are the info bus will not be used. 

 

Figure 31: Torque Converter Automatic Transmission Model 

The Brake Pedal to Total Braking Pressure Request system determines how much force the brake pads 

should apply. This system is shown below in Figure 32. A ‘Switch’ block is implemented to determine how 

much braking force should be applied. If the input signal ‘Park’ is ever greater than 0, a constant 1 will be 

passed meaning that the maximum available braking force will be applied at the wheels to hold the vehicle 

stationary. In this model, the logic for a parking brake is not modeled, so a grounding block is used to 

signify that the vehicle does not have the parking brake set. Instead, the brake pedal (DecelPdl) is passed 

in the form of a decimal from 0 to 1 with a value of 1 signifying that the brake pedal has been applied 

fully. The decimal value from the Switch block is multiplied by the maximum brake pressure for 4 disk 
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brakes to determine how much pressure should be applied on the model of the wheels, which will be 

discussed below. 

 

Figure 32: Brake Pressure Calculation 

The Differential and Compliance subsystem, shown below in Figure 33, contains an Open Differential block 

along with Two-way Connection blocks and an additional Axle Compliance block. The Open Differential 

block implements a differential as a planetary bevel gear train. Parameters for this block can be adjusted, 

including the carrier-to-driveshaft ratio, crown wheel location, and coefficients for the axles and carries. 

For these simulations, the crown wheel is located to the left of centerline. The block can be used to couple 

post-transmission driveshafts to wheel axles and/or universal joints. It can also be used for modeling 

mechanical power splitting in a generic gearbox and drive line scenarios. The block uses a defined 

coordinate system that can produce tire and vehicle motion for engine, transmission, and differential 

configurations. For additional information, a picture of this differential from MathWorks is shown below 

in Figure 34 [49]. The Axle Compliance block is similar to the Driveshaft Compliance block discussed 

previously and implements a parallel spring-damper system to couple rotating driveshafts. 
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Figure 33: Differential and Compliance Subsystem 

 

Figure 34: MathWorks Differential [49] 

The P4 Diff system (Figure 35) contains another Open Differential block along with an Axle Compliance 

block. This system is similar to the Differential and Compliance system for the engine except the motor is 

being considered for the rear axle.  

 

Figure 35: Electric Motor Differential 

The Wheels and Brakes system (Figure 36) contains 2 longitudinal wheels from the Powertrain Blockset 

calibrated for disc brakes. The longitudinal force for this model is characterized by the Magic Formula 

constant value, meaning that the block implements the Magic Formula as a specific form of the tire 
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characteristic function that can be characterized by four dimensionless coefficients, which are the 

stiffness, shape, peak, and curvature. The coefficients are based on empirical data for the specific tires 

being modeled. The rolling resistance used is the pressure and velocity, which is a function of tire pressure, 

normal forces, and velocity. Additional parameters can be adjusted, including the wheel dynamic inertias, 

loaded and unloaded radii, tire pressure, brake friction coefficients, etc. The brake input signal (BrakeReq) 

is received from the Brake Pedal to Total Braking Pressure Request and split between the front and rear 

brakes with a 60/40% split. Axle torque inputs from the engine and motor are also received to produce 

axle torques for both the front and rear axle. These two torques are combined to produce the actual 

wheel torque produced at the wheels of the vehicle model [50].  

 

Figure 36: Wheels and Brakes 

The final system in the Driveline model is the Vehicle system, shown in Figure 37. This system is composed 

of a Vehicle Body 1DOF block along with 2 continuous low pass filters and several 2-way connection blocks. 

The vehicle body block implements a 1 degree-of-freedom (DOF) rigid vehicle body with a constant mass 

that undergoes longitudinal motion. The block accepts the total longitudinal force on the front and rear 

axles (FwF and FwR), the grade, and longitudinal wind speed (WindX). It should be noted that for these 

simulations, the grade and wind velocity are a constant 0. The block also determines and outputs the 
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normal axle forces (FzF and FzR) which are sent out to the system after being pushed through low pass 

filters. The info bus contains various signals, however, the main signal used in this simulation will be the 

actual vehicle velocity (xdot), which is an output to the system in Figure 28 [51]. 

 

Figure 37: Vehicle Body Dynamics 

3.4 Controller Model 

The Controller system (Figure 38) consists of 3 main subsystems: The Input Layer, Hybrid Supervisory 

Controller, and Output Layer. The Input and Output layers are dedicated to organizing and distributing all 

relevant signals that the hybrid supervisory controller, or Application Layer, receives and sends out to the 

system. No calculations are performed in the input and output layers. Their purpose is to organize the 

signals being received and transmitted to other systems within the model. 
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Figure 38: Controller Overview 

The Application Layer (Figure 39) consists of two main systems: The Accel Pedal and Regen Braking and 

Energy Management subsystems. The Brake Pedal to Total Braking Pressure Request contains the same 

logic that was highlighted in Figure 32 and the purpose of this subsystem will be discussed below. 

 

Figure 39: Controller Application Overview 
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3.4.1 Accel Pedal and Regen Braking 

The purpose of the Accel Pedal and Regen Braking system (Figure 40) is to convert the driver’s accelerator 

and decelerator pedal inputs to a wheel torque command that the Controller can use downstream for 

both a wheel torque and final brake command. This is done through in two separate subsystems. The 

Series Regen Braking subsystem uses the drivers brake pressure request to determine the total brake 

torque required to slow the vehicle down. This method of deceleration is known as series braking. The 

available motor torque is determined at the current vehicle speed and is compared to the total brake 

torque required. If the motor can provide the total brake torque that the driver is requesting, the friction 

brakes will not be used to ensure that the motor can recapture available energy through regenerative 

braking. However, if the brake request is too large, or the HV battery does not have the capacity to store 

the captured energy, the remaining brake torque will be sent to the friction brakes. In the Mobility 

Challenge, teams are not able to provide series braking requests as described above. The competition 

states that teams are only able to provide over-the-top braking in which the deceleration request from 

the driver must go entirely to the friction brakes. Teams may provide additional regenerative torque from 

the EM to further slow the vehicle down in a braking event. In this experiment, a series braking 

configuration is integrated to allow additional energy recapture through the EM during all braking 

requests to further mimic production-level vehicle control architectures. 

The Accel Pedal to Traction Wheel Torque Request subsystem determines the final wheel torque command 

that is sent to the energy management system. One-dimensional look-up tables are implemented to 

determine the maximum amount of available torque that the engine and motor can provide at the current 

vehicle speed and transmission gear. This maximum wheel torque is multiplied by the accelerator pedal 

which has a range from 0 to 1 with 1 being 100% pedal. If the driver is not on the accelerator pedal, such 

as a coasting or braking event, the regen torque command will be sent as the final wheel torque command. 

If the wheel torque command is less than 0, the switch case for Energy Management Off, shown in Figure 
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39 is activated. In this subsystem, the motor torque command is equal to the regen torque command to 

ensure all possible energy is captured by the electric motor. 

 

Figure 40: Accel Pedal and Regen Braking System 

3.4.2 Energy Management 

The Energy Management system, shown below in Figure 41, is composed of 3 subsystems: The Control 

Domain, Powertrain Constraints, and ECMS. The ECMS subsystem outlined with a dashed box contains the 

FLC designed and implemented for the work presented in this thesis. 
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Figure 41: Energy Management Overview 

The Control Domain subsystem generates a predefined vector of possible wheel torque commands for the 

motor (Figure 42). Pure electric propulsion, no electric propulsion, and a combination of the difference 

between the two are all considered and pushed into a ‘mux’ block to combine the 3 inputs into a vector. 

The output of the mux block is fed into a ‘reshape’ block to change the dimensions of the vector to output 

a vector with a size of [1,1].  

 

Figure 42: Motor Wheel Torque Determination Subsystem 
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The Powertrain Constraints subsystem in Figure 43 is used to determine component torques and infeasible 

operating conditions. At each timestep of the simulation, the limits for each powertrain component are 

determined. If the commanded torque exceeds a limit, an infeasible flag is set that will affect the torque 

output downstream. If one of the three infeasible flags are set, the entire torque command is flagged to 

ensure that no powertrain limits are exceeded during operation. 

 

Figure 43: Powertrain Constraints 

There are 3 different infeasible flags that can be set: An engine, motor, or battery infeasible flag. In the 

Engine Constraint subsystem, the motor wheel torque vector is subtracted from the wheel torque vector 

to determine the engine wheel torque vector possibilities. This vector is converted to a component torque 

and is compared to the maximum torque that the engine can produce at the current vehicle speed. If the 

command exceeds the calculated maximum, the infeasible flag will be set. Even if an infeasible flag is set, 

the complete engine torque vector is still sent to the ECMS algorithm downstream. This subsystem also 

determines the engine fuel flow rate by interpolating through a 2-dimensional look-up table using the 

engine speed and possible engine torque commands. 
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A similar process is followed in the Motor Constraint subsystem. The motor speed is read into the 

subsystem and pushed through a 1-D look-up table to determine the maximum motor torque available at 

the given speed. An assumption is made that the minimum available motor torque is equal to the 

maximum motor torque with a sign flip from positive to negative. The motor torque command vector is 

pushed through a saturation block to ensure that the signal stays within the maximum and minimum 

available motor torque. If the commanded motor torque is greater than the maximum or less than the 

minimum available torque, the infeasible motor condition will be set. The total motor power used for 

each portion of the torque vector is also calculated using an efficiency map supplied by Magna. This power 

vector is sent into the Battery Constraint subsystem. 

The Battery Constraint subsystem determines the actual current draw and infeasible operating conditions 

on the HV battery. The actual battery current is calculated by dividing the motor power vector by the 

actual battery voltage to obtain the current draw on the HV battery. If this current exceeds the maximum 

or minimum current reported from the Plant model (HV battery in the vehicle), an infeasible flag will be 

sent downstream. Similarly, the battery SOC is fed into 1 dimensional look-up tables to determine the 

maximum and minimum available power. The purpose of these tables is to limit the HSC from 

overcharging/overdrawing power from the HV battery. The output of the tables is a gain value that ranges 

from 0-1. This final value is compared to the calculated motor power vector and if limits are exceeded, an 

infeasible flag will be set. 

The ECMS subsystem, shown in Figure 44, is composed of the equivalence factor and associated SOC 

penalty calculations, battery power, fuel flow rate, the infeasible flag condition, tractive power error and 

the engine power delta. It is important to remember that each of the inputs to the summation block are 

vectors, not scalar values. Each input is composed of a vector determined upstream in the Control Domain 

subsystem. The summation is as follows in equation 3.1: 
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 𝐻 = 𝑃𝑓𝑢𝑒𝑙 + 𝑠 ∗ 𝑃𝑏𝑎𝑡𝑡 ∗ 𝑝(𝑆𝑂𝐶) + 𝐶𝑜𝑛𝑃 + 𝑇𝑟𝑎𝑐𝑃𝐸 + 𝑃𝑒𝑛𝑔,𝑅𝐿 3.1 

Where 𝑃𝑓𝑢𝑒𝑙  is fuel power, 𝑠 is the equivalence factor, 𝑃𝑏𝑎𝑡𝑡is the associated battery power, 𝑝(𝑆𝑂𝐶) is 

the multiplicative penalty factor, 𝐶𝑜𝑛𝑃 is the infeasible flag constraint factor, 𝑇𝑟𝑎𝑐𝑃𝐸 is the tractive power 

error, and 𝑃𝑒𝑛𝑔,𝑅𝐿 is the engine power delta. 

 

Figure 44: ECMS Overview 

The battery power is determined using the HV battery reported voltage and the current calculated in the 

Battery Constraint subsystem. This power is multiplied by the multiplicative penalty factor, which is a 

function of the battery SOC at each timestep. In this analysis, the penalty factor was adjusted so that from 

40-60% SOC, the penalty would be approximately 1. As the SOC increases above 60%, the penalty 

decreases and as the SOC decreases below 40%, the penalty will increase. Figure 45 illustrates the penalty 

factor as a function of battery SOC. The maximum and minimum SOC values are 30 and 70% respectively. 
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Figure 45: Penalty Factor for a = 3 

The equivalence factor, or ‘s’, can be a constant value determined offline or a dynamic variable that 

updates during online operations and is used to relate the total amount of battery energy to power. This 

value can take on a multitude of ranges, but the range that applies to most drive cycles is between 2 and 

4. The fuzzy adaptive controller will be discussed in-depth below in section 3.5. 

The engine power delta calculation is performed by multiplying both the current engine torque vector and 

the previous commanded engine torque by the engine speed to determine power. The purpose of this 

calculation is to deter the management strategy from oscillating the commanded engine torque. As the 

commanded engine power differs from the previous power, the associated penalty will continue to 

increase, making the command more costly. The final engine power delta is the absolute value of the 

current engine power vector minus the previous engine power command. 

The tractive power error penalty is calculated upstream and is implemented to prevent the minimization 

strategy from selecting a cost that will prevent the total wheel torque command from being obeyed. In a 

similar fashion, the infeasible flag is multiplied by a gain of 1E7. An extremely high gain is used to prevent 

the minimization strategy from selecting a cost that would cause damage to one of the powertrain 

components. The engine fuel flow rate is multiplied by the lower heating value to obtain the fuel power 

in kilowatts for each element in the commanded engine torque vector. 
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Once H is determined, the MATLAB function block is implemented to find the minimum allowable value 

of the cost function. This creates an index value ‘idx’ which is used downstream in the multiport switches 

to pass the torque command. For example, if the input vector has a length of 10 and the index is 2, then 

the multiport switches will pass the second vector value for the engine and motor torque commands. In 

the case where all torque splits are infeasible, the strategy will use the first index which is defined as the 

total driver demanded wheel torque. Before leaving the controller, a discrete transfer function is applied 

to the motor torque command to better match engine applied torque and the engine torque command is 

passed through a unit delay block. This ensures that the last value is used when determining the engine 

power delta penalty.  

3.5 Fuzzy Logic Additional Control Block 

The focus of this work was to implement a fuzzy logic controller in the management strategy to improve 

overall fuel economy, charge sustainability of the system, and extend the overall life of the HV battery. 

The fuzzy controller accepts two inputs: the difference in SOC between the actual and target, and the 

driver wheel torque command shown below in Figure 46. It should be noted that the wheel torque 

command and SOC inputs are single values, not vectors. Membership functions were defined for both 

inputs using the Fuzzy Logic Controller which belongs to the Fuzzy Logic Toolbox in Simulink. This toolbox 

provides a Simulink block for designing, analyzing, and simulating systems with fuzzy logic. Users are 

allowed the flexibility to model complex system behaviors using simple logic rules that can be 

implemented in a fuzzy inference system [52]. The wheel torque command was added to allow the fuzzy 

controller to make accurate updates to the equivalence factor based on the power demanded from the 

driver. During low power or torque demands, the controller may determine that the motor can be favored 

over the engine until the SOC decreases below the setpoint. 
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Figure 46: Fuzzy Logic Controller 

The delta SOC variable shown in Figure 47 was designed to operate in a range of +-10% around the target 

SOC of 50% satisfying the defined operating window of 40-60% SOC. Trapezoidal membership functions 

were implemented using uniform distribution to ensure complete coverage of the defined SOC range. 

Functions include large negative (LN), medium negative (MN), small negative (SN), zero (Z), small positive 

(SP), medium positive (MP) and large positive (LP). Each membership function has a base coverage of 4% 

SOC. When the SOC increases during simulation, the membership functions will increase to the LP, 

indicating that the motor can be favored to reduce fuel consumption from the engine. Similarly, when the 

SOC is decreasing, the membership functions will decrease towards the LN membership function, 

indicating that the HV battery is losing charge and the engine should be favored over the motor. 

 

Figure 47: Delta SOC Membership Functions 

The wheel torque input (Figure 48) was created to operate in the range of 0-4100 Nm. Negative wheel 

torque was not considered due to the functionality of the management strategy. When the wheel torque 



75 
 

is not a positive value, the management strategy is disabled to favor regenerative torque from the motor. 

This torque input is considered the net input to the system and during operation, if the wheel torque 

command is positive but the HV battery SOC is low, the ECMS will favor an OC scenario to increase the 

load requested from the engine to provide regenerative torque from the motor. The range for the wheel 

torque membership functions were defined based on experience working in a VIL environment with the 

competition vehicle and 2.5L engine. The membership function shape is trapezoidal, similar to the delta 

SOC functions and can take on values that include very small (VS), small (S), medium small (MS), medium 

(M), medium large (ML), large (L), and very large (VL). If the torque command exceeds 4100 Nm, the input 

function will default to VL. The base of each function covers 900 Nm of wheel torque except for the VL 

function which covers from 3800 to 4100 Nm and above. 

 

Figure 48: Wheel Torque Command Membership Functions 

The output membership function shown in Figure 49 is a delta equivalence factor value. A delta was 

selected in order to help prevent the fuzzy controller from selecting an equivalence factor that would 

make the battery power too cheap, which could cause the battery to discharge down to a lower limit. The 

output of the controller is added to a predefined input to ensure that the equivalence factor will always 

take on an appropriate value, regardless of starting SOC or the selected drive cycle. The base of each 

membership function has a range of 1 with a total range of -1.5 to 1.5. Definitions of the membership 

functions are similar to the delta SOC input with LN meaning large negative and LP meaning large positive.  
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Figure 49: Delta EF Membership Functions 

Once the membership functions for both inputs and the output were created, the inference rule matrix 

was designed. The inference rule matrix includes the ‘if-then’ rules that dictate how the controller 

functions. For example, one rule may state that if (Delta_SOC is SP) and (WhlTrqCmd is S) then (Delta_EF 

is MN). This would allow the controller to decrease the equivalence factor making the battery and motor 

cheaper to use. The rules were defined using prior knowledge of possible wheel torque commands and 

fluctuations in the battery SOC. Varying weights can be assigned to rules to make some rules favored over 

others, however, for this design, all rules had an equal weight of 1. Once created, Rule Viewer, shown 

below in Figure 50, was used to double check all rules before implementing the controller in the model. 

Rule Viewer allows the user to select different input values to determine how the output will be affected. 

In this example, the delta SOC was defined at an arbitrary value of 7.45% below the setpoint with a small 

arbitrary torque input of 420 Nm. The resulting output is a small increase in the equivalence factor, 

meaning that the battery and motor will still be used to provide propulsion. Forty-nine rules in total were 

defined in the inference rule matrix. 
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Figure 50: Fuzzy Logic RuleViewer Toolbox 

Figure 51 illustrates the surface plot generated from the inference rule matrix for both inputs and the 

output to the system. As the delta SOC decreases from the setpoint, the inference rule matrix begins to 

increase the equivalence factor. This increase occurs faster as the wheel torque command increases to 

ensure that the battery remains within the defined maximum and minimum limits. The complete 

inference rule matrix is shown below in Table 1. The wheel torque command (WTC) is illustrated in the 

far-left column, the delta SOC (DSOC) is shown in the top row, and the remaining information creates the 

output delta EF. For example, if the WTC is very small (VS) and the DSOC is large negative (LN) then the 

delta EF is medium positive (MP). 

 

Figure 51: Inference Rule Matrix Surface Plot 

 

 

 



78 
 

Table 1: Inference Rule Matrix 

WTC | DSOC LN MN SN Z SP MP LP 

VS MP SP MN MN MN LN LN 

S MP SP MN MN MN LN LN 

MS MP SP SN MN MN LN LN 

MS LP MP SN MN MN LN LN 

ML LP MP SN SN MN MN LN 

L LP LP Z Z SN MN LN 

VL LP LP SP Z SN MN LN 

Consider a scenario where the input crisp values exist in the area where overlapping occurs in the 

membership functions. For example, if the delta SOC is 4.25% and the wheel torque command is 350 Nm, 

the fuzzy set intersection of the input membership functions will be as follows taken from the above table: 

Table 2: Fuzzy Set Intersection 

WTC | DSOC SP MP 

VS MN LN 

S MN LN 

The above fuzzy set intersection indicates that the fuzzy delta EF output could be a MN or a LN fuzzy value. 

Next, the implication ‘Min’ method is applied, meaning that the lowest value from both inputs will be 

used in the intersection. If the crisp values are applied to the table, the updated intersection can be seen 

in the table below, where the minimum value from the wheel torque command and delta SOC are 

selected. 

Table 3: Fuzzy & Crisp Set Intersection 

 WTC | DSOC SP - 0.60 MP - 0.45 

VS - 0.55 MN - 0.55 LN - 0.45 

S - 0.40 MN - 0.40 LN - 0.45 

Finally, the fuzzy output is converted to a crisp delta EF output that the ECMS algorithm can use 

downstream. The defuzzification method selected in this work is the centroid applied to the clipped fuzzy 

sets. This centroid function will return the center of the area under the aggregate fuzzy set. For this simple 
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example, the FLC outputs a crisp delta EF of -1.01, reducing the EF and enabling the ECMS to prioritize the 

motor over the engine. 

Figure 52 provides a high-level overview of the closed-loop system in the MIL environment with the 

integrated FLC, combining subsystems previously discussed in section 3. The Controller is indicated by the 

blocks shaded in gray, green shaded boxes indicate the Plant model, and the Driver model is shaded in 

blue. The Longitudinal Driver provides pedal commands to the system using both the accelerator and 

decelerator (brake) pedal to reduce vehicle speed error from the selected drive trace. These pedal 

commands are sent to the Controller system, indicated with gray shaded blocks in the figure. A torque 

request is generated in the Pedal Map system and is sent downstream to the ECMS algorithm. The torque 

request and SOC are read into the Fuzzy Logic Controller to determine the change in EF that should be 

applied in the ECMS system. The ECMS minimizes the torque input from upstream in the Controller to 

optimize the engine and motor using signals discussed in section 3.4.2 along with the dynamic delta EF 

from the FLC. The torque outputs are sent to the engine and motor to determine actual torque production 

from both components. From the Engine & Motor system, the motor current draw is routed into the HV 

Battery system to determine the change in SOC. Simultaneously, the produced torque from the engine 

and motor is read into the Vehicle Dynamics system where the vehicle speed is adjusted. The updated 

vehicle speed is received by the Longitudinal Driver and the process is repeated until the drive cycle is 

complete. 
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Figure 52: High-Level Control with Integrated Fuzzy Logic Controller 

4 Test Procedure 

The testing methodology is broken down into 3 parts: Optimal, average, and fuzzy ECMS. The optimal 

ECMS is defined as the absolute best fuel economy that can be achieved while maintaining CS over each 

drive cycle. The optimal is found through a brute force analysis of the EF discussed below. The average 

ECMS uses the average EF (sum of all EF divided by the total number of drive cycles) found during the 

brute force analysis to determine how effective the ECMS can be over multiple drive cycles when the EF 

remains fixed. The fuzzy ECMS uses the same initial EF for each drive cycle and the additional FLC updates 

the EF based on the input SOC and wheel torque command from the driver.  

Table 4 illustrates the experimental factors, levels applied on the factors, and the effects on the control 

strategy downstream to highlight the experimental design process. Each test consisted of changing one 

of three factors to analyze the effects on the control strategy downstream. For example, the first factor 

held constant in a test could be the NYCC drive cycle. The second factor held constant can be an initial 

SOC value of 50%. The driving style, or level, of the driver is selected as the modified factor to simulate 

both an aggressive and mild driver. Once the test is complete, the process is repeated with a different 

driving style while the drive cycle and initial SOC remain constant.  
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Each factor and their respective level have a cause-and-effect relationship with the control strategy 

downstream. If the driving style is modified, the wheel torque demand from the driver will fluctuate. 

Aggressive drivers have more oscillation in the demanded torque to follow a drive trace with minimal 

error while the mild driver will produce less oscillation and smooth the drive trace out with minor errors. 

Similarly, when the drive cycle is modified, the characteristics in the cycle will change. These 

characteristics are discussed below in Table 5 and include factors such as maximum vehicle speeds and 

accelerations. The initial SOC has a direct correlation with the cost of electrical energy in the ECMS. When 

a lower initial SOC is used, the cost of electrical energy will increase, causing the ECMS to prioritize the 

engine over the motor until the current SOC approaches the target SOC of 50%. It should be noted that 

the optimal results discussed below only used an initial SOC of 50% and an average driving style combining 

the aggressive and mild drivers. 

Table 4: Experimental Factors and Respective Levels 

Factor Level Effect 

Driver 
Aggressive Change in Wheel 

Torque Demand Mild 

Drive 
Cycle 

NYCC 

Change in driving 
style 

characteristics 

SC03 
US06 
EMC City 
RTS95 
HWFET 
HUDDS 
EMC Highway 
UDDS 
LA92 
Artemis Rural 
Road 

SOC 
50 % Change in cost of 

electrical energy 32.5 % 

Drive cycles were selected that covered an extensive range of vehicle dynamic possibilities, including 

moderate and hard accelerations, simulated city and highway speeds, and varying engine idle times. A 

total of 8 drive cycles were used in the optimal ECMS method to find the best performing EF, however, 3 
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additional drive cycles were used for further validation of the fuzzy ECMS strategy. The implemented drive 

cycles and their respective characteristics used for testing and validation are shown in Table 5. Drive cycles 

were repeated twice in each simulation to allow the fuel economy to balance out when starting at 0 mpg 

at the beginning of each simulation. SOC CS constraints were imposed to prevent the ECMS from deviating 

too far from the initial target SOC of 50%. When each cycle has finished running, the test was deemed CS 

if the ending SOC was within the range of +- 5% of the starting SOC. Additional loose constraints define an 

appropriate operating region of 40-60% SOC to ensure longer battery life and prevent the ECMS algorithm 

from using the motor for propulsion too heavily causing the HV battery to deplete to critical levels of less 

than 20% SOC. 

Table 5: Validation Drive Cycles and Characteristics 

Drive Cycle 
Simulation 

Time (s) 

Max Speed 

(m/s) 

Avg. Speed 

(m/s) 

Max Acceleration 

(m/s2) 

Min Acceleration 

(m/s2) 

NYCC 1196 12.38 3.17 2.68 -2.64 

SC03 1200 24.50 9.60 2.28 -2.73 

US06 1200 35.90 21.46 3.76 -3.08 

EMC City 1478 31.75 11.70 3.63 -3.41 

RTS95 1772 37.35 14.58 2.88 -2.71 

HWFET 1530 26.78 21.56 1.43 -1.48 

HUDDS 2120 25.93 8.43 1.96 -2.07 

EMC Highway 5924 35.90 25.91 3.56 -2.89 

UDDS 2738 25.35 8.76 1.48 -1.48 

LA92 2870 30.04 11.00 3.08 -3.93 

Artemis Rural Road 2164 30.97 15.96 2.36 -4.08 

4.1 Optimal ECMS 

An optimal equivalence factor needed to be determined for each drive cycle to obtain optimal fuel 

economy during a CS drive. This was done by performing a brute force analysis of the vehicle model. A 

brute force analysis was selected to ensure that the EF found was a global and not a local optimum. First, 
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the vehicle model was prepared for simulations that could be run from a script in MATLAB. Running the 

model from a MATLAB script provides several benefits including reduced simulation downtime to 

manually reset variables after each cycle along with reduced data files which improves the data reduction 

process. Preparations in the vehicle model included configuring the model to log certain signals along with 

replacing constant blocks with calibratable variables. For example, Figure 53 shows a calibratable variable 

(CurrDriveCycle) for the selected drive cycle. Before starting simulations, the active drive cycle passing 

through the multiport switch can be adjusted by updating a variable saved in the base workspace. Figures 

for each drive cycle used in the brute force discussed in the results section will be highlighted, and a figure 

of each cycle is also shown below in Appendix A. The MATLAB script used in the brute force analysis is 

shown below in Appendix B. The figure below illustrates the cyclic functionality of drive cycles in Simulink. 

Each drive cycle will repeat until the specified duration is complete to allow the SOC to stabilize over the 

duration of each test to allow better representation of average performance and reduce bias from the 

initial SOC. 

 

Figure 53: Calibratable Variable 

The brute force analysis included running each drive cycle for varying equivalence factors with a ‘for’ loop 

in MATLAB. The selected range for the tested equivalence factor values spanned from 2 to 4 in 0.05 

increments.  As discussed above, the optimum EF should be very low to ensure the motor is highly always 

favored, however, this would result in very poor charge sustainability. Constraints were put in place to 

prevent the ECMS from using an EF set too low, so charge sustainability was defined in a 5% window from 
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the starting SOC. After each run, the battery SOC and fuel economy were loaded into the base workspace 

for data reduction. An ‘if’ loop was created to determine if the current EF provided adequate CS. If the 

ending SOC was less than 45% or greater than 55%, the EF was determined to be inadequate, and the 

ending fuel economy was set to 0 mpg. Once the brute force analysis was complete, the maximum fuel 

economy for each drive cycle with a constant EF was found. This fuel economy was determined using a 

SOC charge correction question to determine the equivalent fuel consumed or stored by the HV battery. 

By setting the non-CS drive cycles fuel economy variable to 0, the maximum fuel economy that provided 

CS results was found using a max function for each of the 8 drive cycles. The total fuel economy and 

corresponding EF for each of these drive cycles is shown below in section 5. 

4.2 Average ECMS 

Once the best EF was found for each drive cycle that maximized fuel economy and CS, the average ECMS 

could be run. From the first 8 drive cycles and EFs shown in Table 6, the average EF was determined to be 

2.65. This average value was added to a new script which iterated over each drive cycle again, however, 

in post processing, the fuel economy was not reset if the ending SOC was outside of the defined CS range. 

In the average ECMS procedure, CS is still defined as +- 5% from the original initial SOC of 50%.  
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Table 6: Optimal Equivalence Factors 

Drive Cycle Equivalence Factor 

NYCC 3.5 

SC 03 2.45 

US 06 3.05 

EMC City 2.75 

RTS 95 2.85 

HWFET 2.75 

HUDDS 2.95 

EMC Highway 3.05 

Average 2.92 

The EF can vary greatly when changing between city and highway drive cycles so 3 additional drive cycles, 

the UDDS, LA92, and Artemis Rural Road were introduced with varying drive cycle characteristics to 

further validate the effectiveness of the average ECMS algorithm. 

Each drive cycle was repeated 4 times to capture multiple iterations of data in varying scenarios. A starting 

SOC of 50% and 32.5% were defined as well as different driver reaction times of 0.1 and 0.5 seconds 

respectively. The difference in starting SOC provides a varying approach to determining how well the 

average EF can obtain CS results when the average EF is found for a starting SOC of 50%. Driving styles 

differ from person to person and terrain including elevation and starting/ending location. For example, in 

a real-world environment, the vehicle may be powered down after a large regenerative event down a hill 

or a hard acceleration up a hill, causing the ending SOC to differ greatly. A starting value 50% SOC was 

selected to better represent the average between different scenarios and the effect they have on the 

starting SOC when turning the vehicle on. A starting SOC value of 32.5% was chosen to represent a 

scenario where the starting SOC is closer to the defined lower operating limit of 30% SOC. This scenario is 

used to show how the control system will react when starting a simulation from a very low SOC. Adjusting 

the driver response time in the Longitudinal Driver block also provides additional flexibility of providing a 
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mild and aggressive driver. The Aggressive driver with a response time of 0.1 seconds will attempt to 

follow the drive cycle as close as possible, minimizing deviations while the mild driver with a response 

time of 0.5 seconds tends to smooth out the drive trace and allow for a margin of error when performing 

accelerations and decelerations. Figure 54 illustrates the difference between the aggressive and mild 

driving styles. The drive cycle is illustrated with a black line, the aggressive driver with a red line, and the 

mild driver with a green line. As seen in the figure, the aggressive driver follows the drive cycle almost 

perfectly while the mild driver deviates during both accelerations and decelerations to help mimic 

different and real-world driving styles. 

 

Figure 54: Driver Style Comparison 

4.3 Fuzzy ECMS 

The fuzzy logic controller output membership functions were defined using data collected in the brute 

force EF testing. Results showed that the model performed best when operating in an EF range of 2-3, 

however, there were certain instances where the SOC would deviate from the defined operating range of 

40-60% SOC. Due to these deviations, the output delta SOC function was defined to have a range of -1.5 

to 1.5 to allow the EF to increase above 3 if the engine was needed to provide OC and decrease below 2 

after large energy capturing instances. As discussed above, the EF is not based solely on the output of the 
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fuzzy logic controller, but rather the output is added to the original EF defined before simulations begin. 

Creating a delta output rather than an absolute output provides the controller with added flexibility of 

adjusting the EF without losing resolution by expanding or reducing the total range of the output. A similar 

process was followed as discussed above in section 4.2 where the starting SOC and driver styles were 

varied to test the robustness of the F-ECMS strategy. A separate MATAB script was created to run the 

model to save computational time and record results from each drive cycle in separate structures in 

MATLAB for additional post processing. 

5 Results 

The results from the optimal, average, and F-ECMS will be discussed in this section. Results pertaining to 

the brute force analysis conducted to obtain the optimal EF for each of the first 8 drive cycles will be 

discussed in section 5.1. A comparison analysis will be discussed in section 5.2 involving the optimal, 

average, and F-ECMS algorithms to validate the effectiveness of the F-ECMS algorithm for both fuel 

economy and CS improvements. Section 5.3 will highlight results obtained when evaluating the F-ECMS 

algorithm for different driver reaction times along with 2 different starting values for the SOC. Section 5.4 

will discuss results from comparing the F-ECMS to the DP algorithm performed by Aaron Mull of WVU. 

5.1 Brute Force Analysis 

Table 7 below shows the fuel economy and SOC results for the brute force analysis discussed in section 

4.1. From these results, the absolute best fuel economy for each drive cycle using the imposed SOC CS 

constraints can be seen. These results provide us with the baseline for all future testing using the current 

vehicle model configuration. While these results may not accurately represent other work conducted with 

a similar EcoCAR Blazer model for a GM 2.5L LCV engine paired with a Magna eAWD motor, they do serve 

as an accurate benchmark for the work being conducted in this paper. 



88 
 

From the table below, drive cycles with mild accelerations and decelerations allow for more robust energy 

management from both powertrain components. This in turn results in lower costs to use the electric 

motor which correlates to a lower EF factor. Drive cycles characterized by harder accelerations and 

decelerations with lower top speeds such as the NYCC correlate to increased penalties associated with 

the electric motor due to poor energy recapture, resulting in a higher EF. However, during operation, the 

ECMS may decide that it is more cost effective to run the engine harder in order to generate electrical 

energy to charge the HV battery pack. These findings will be discussed below. It should be noted that the 

fuel economy results are calculated based on engine fuel flow, output from the SI Mapped Engine Blockset 

discussed in section 3.3.1 in kg/s. The fuel flow is converted from kilograms per second to the U.S. gallon 

equivalent. This fuel flow is divided from the total distance traveled in miles to obtain the engine mpg 

equivalent. Once a cycle is complete, a charge correction is applied to adjust the final fuel economy based 

on the ending SOC of the HV battery. In CS operations, the fuel economy may be adjusted if the ending 

SOC is different than the starting SOC, indicating that the drive may have been charge depleting (ending 

SOC less than starting). The difference in the SOC value is considered in the charge correction equation, 

which defines the correlation between equivalent electric gasoline used or stored and actual fuel flow 

from the engine model. If the SOC is less than the starting SOC, the electric equivalent fuel consumed will 

be a positive number. However, if the HV battery is charged over the course of the cycle, energy will be 

left over for the next test, improving the overall fuel economy for the drive. Charge correction has been 

applied to the fuel economy results shown in the table below. 
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Table 7: Optimal ECMS Results 

Drive Cycle Equivalence Factor Ending SOC (%) Fuel Economy (mpg) 

NYCC 3.5 47.41 19.85 

SC 03 2.45 52.27 36.40 

US 06 3.05 54.95 30.55 

EMC City 2.75 53.78 33.15 

RTS 95 2.85 50.23 26.99 

HWFET 2.75 52.22 41.19 

HUDDS 2.95 54.92 35.66 

EMC Highway 3.05 49.56 30.22 

 

5.2 Fuel Economy Comparison 

Table 8 provides the charge corrected fuel economy results from the average and F-ECMS for both driving 

styles with varying initial SOC values. The table is broken down into 4 main sections. The first row contains 

the different driving style and initial SOC value. The second column contains the drive cycle header and 

type of EF applied. The average EF is represented with an ‘A-EF’ and the fuzzy EF is represented with an 

‘F-EF’. Drive cycles used in the experiment are listed on the left-hand side of the table in the first column, 

and fuel economy data in units of mpg is displayed in the remainder of the table. The fuzzy EF competes 

with the average EF for each driver style and starting SOC value, improving fuel economy over the course 

of several drive cycles.  

 

 

 



90 
 

Table 8: Fuel Economy Results in mpg for Average and Fuzzy EF for Aggressive and Mild Drivers at 50% and 32.5% Initial SOC  

  Aggressive 50% Mild 50% Aggressive 32.5% Mild 32.5% 

Drive Cycle A-EF F-EF A-EF F-EF A-EF F-EF A-EF F-EF 

NYCC 18.69 19.46 19.18 19.92 19.55 21.47 19.92 21.85 

SC 03 36.12 34.14 36.25 34.33 38.26 35.98 38.19 36.03 

US 06 27.72 27.94 28.60 28.83 28.27 28.12 29.22 28.92 

EMC City 31.41 30.68 31.85 30.94 32.51 31.65 32.74 31.88 

RTS 95 26.88 26.78 25.97 27.49 27.39 27.21 28.07 27.89 

HWFET 39.46 38.81 40.52 39.63 40.22 39.49 41.01 40.93 

HUDDS 32.08 31.55 33.58 32.76 33.05 32.58 34.65 33.81 

EMC Highway 30.06 30.59 30.07 31.54 30.63 30.69 31.41 31.63 

UDDS 33.65 33.67 34.00 34.33 34.60 34.72 34.65 34.94 

LA 92 31.48 30.93 32.00 31.51 32.08 31.48 32.54 32.03 

Artemis Rural Road 37.30 36.69 38.26 37.23 38.02 38.99 37.41 30.05 

 

Equation 5.1 is used to determine the percent difference between the average and fuzzy EF strategies.  

 
%𝐷𝑖𝑓𝑓 =

𝐹𝐸𝐹 − 𝐹𝐸𝐴𝑣𝑔

𝐹𝐸𝐴𝑣𝑔
∗ 100 5.1 

Where 𝐹𝐸𝐴𝑣𝑔 is the charge corrected fuel economy from the average ECMS and 𝐹𝐸𝐹  is the charge 

corrected fuel economy from the F-ECMS. Table 9 provides the total percentage difference for the fuel 

economy over each drive cycle for the average and optimal ECMS compared to the F-ECMS. Positive 

percentages represent an increase in fuel economy for the F-ECMS while negative percentages highlight 

a decrease in fuel economy over the average or optimal ECMS. The cells containing improvements in fuel 

economy are shaded with a light green background.  

Please note, the optimal EF was only found for a starting SOC of 50%. For the tests comparing the optimal 

to the F-ECMS algorithms, the 32.5% SOC tests are used for comparing the hypothetic possibility of using 

an adaptive equivalence factor to highlight differences in fuel economy. For an accurate comparison, the 

brute force analysis would need to be repeated with an initial SOC of 32.5% and a target of 50%. As 
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mentioned earlier, the fuel economy for the NYCC cycle is substantially lower due to the aggressive 

accelerations and decelerations at low speeds, reducing the amount of energy recapture over the course 

of the drive. For every other cycle, the F-ECMS can maintain a percentage difference of an average 4% 

decrease, except for an 11.53% decrease in the HUDDS cycle when compared to the optimal ECMS. 

However, the F-ECMS was able to increase fuel economy substantially on multiple cycles, including the 

NYCC and EMC highway cycles when compared to the average ECMS. The drive cycles that showed 

improvement have similar characteristics. The ECMS algorithm can use the motor for launching events 

due to mild accelerations and is able to recapture energy through regenerative braking during longer, 

more mild decelerations. Mild decelerations also mean the engine can be pushed into fuel cut off (FCO) 

more often, saving additional fuel. Through the adjustment of the EF, the ECMS selects better operating 

regions for the engine to improve fuel economy and reduce emissions. 

The F-ECMS does not perform as well when looking at the percent difference compared to the optimal 

ECMS. In the table shown below, the F-ECMS performs better than the optimal ECMS roughly 25% of the 

time. The largest error occurs during the HUDDS cycle and has a total error of 11.53%. The best 

improvement was 4.37% during the EMC Highway cycle when only considering the 50% starting SOC due 

to the brute force analysis only being completed for an initial SOC of 50%. The average decrease was 

1.62% when looking at the drive cycles where the F-ECMS performed worse when compared to the 

average EF. In the case of the mild driver when starting at 50% SOC, the F-ECMS was able to improve fuel 

economy in 3 out of the 8 original cycles that the optimal ECMS was calibrated for. The lowest 

improvement was 0.35% while the highest was 4.37%. The mild driver provides a better representation 

of human drivers in a real-world environment due to the natural tendency of deviating away from the 

defined drive trace. The adjustment in the EF allowed the ECMS algorithm to better optimize the engine 

by utilizing the motor during launching events and the engine at higher speeds achieved in cycles such as 

the EMC Highway cycle. A better example of this can be seen from the mild driver with a starting SOC of 
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50% where the F-ECMS was able to improve fuel economy on the EMC Highway cycle by 4.37%. Reasons 

for the improvement in fuel economy come from setting the EF relatively high during early parts of the 

drive cycle. This penalized the motor which forced the ECMS to use the engine to provide OP and recharge 

the HV battery. During these events, the engine was optimized to operate in a more efficient BSFC region 

to provide better fuel economy while increasing the SOC of the HV battery pack to obtain CS results shown 

below in section 5.3 

However, it is important to remember that the F-ECMS substantially reduces the computational effort 

required to use the ECMS in a real-world environment when obtaining an optimal or an average EF for 

one or multiple drive cycles or different road conditions. The F-ECMS allows for the design of a robust 

algorithm that can be competitive over numerous drive cycles with reduced computational effort required 

to tune the algorithm to one or a few drive cycles with varying characteristics.  

Table 9: Total Fuel Economy % Comparison 

 Average Comparison Optimal Comparison 

Drive Cycle 
Aggressive 

50% 
Mild 
50% 

Aggressive 
32.5% 

Mild 
32.5% 

Aggressive 
50% 

Mild 
50% 

Aggressive 
32.5% 

Mild 
32.5% 

NYCC 4.12 3.86 9.82 9.69 -1.96 0.35 8.16 10.08 

SC 03 -5.48 -5.30 -5.96 -5.66 -6.21 -5.69 -1.15 -1.02 

US 06 0.79 0.80 -0.53 -1.02 -8.54 -5.63 -7.95 -5.34 

EMC City -2.32 -2.86 -3.54 -2.62 -7.45 -6.67 -4.52 -3.83 

RTS 95 -0.37 5.85 -0.65 -0.64 -0.78 1.85 0.82 3.33 

HWFET -1.64 -2.19 -1.82 -0.19 -5.78 -3.79 -4.13 -0.63 

HUDDS -1.65 -2.44 -1.42 -2.42 -11.53 -8.13 -8.64 -5.19 

EMC 
Highway 

1.76 4.89 0.20 0.70 1.22 4.37 1.56 4.67 

UDDS 0.06 0.97 0.35 0.84 

LA 92 -1.75 -1.53 -1.87 -1.57 

Artemis 
Rural Road 

-1.64 -2.69 2.55 1.71 

The above tables provide a substantial overview of the F-ECMS and how effective it can be at providing 

CS results and improving fuel economy by the end of each drive cycle; however, this is only a brief 

snapshot highlighting the results of each drive cycle. What happens throughout each simulation? Does 
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the SOC remain in a smaller CS window, or does it deviate outside of the defined operation region 

discussed above in section 4, reducing the overall life of the HV battery and related systems? 

5.3 SOC Comparison 

Table 10 provides the ending SOC results from the average ECMS strategy along with the F-ECMS for both 

driving styles with varying initial SOC. The first row of both tables groups the tests into 4 categories which 

pertain to the driver type (aggressive or mild) and starting SOC value (50% or 32.5%). In the second row, 

the average ECMS and F-ECMS are denoted with an A and F respectively.  

In Table 10 we can see that the average EF keeps the control strategy operating in a CS mode roughly 73% 

of the time. For the selected drive cycles, an average EF is satisfactory for maintaining the SOC, prolonging 

HV battery life, and demonstrating that a constant EF performs well under certain circumstances. During 

simulations, the cycles that fail pertain more to the aggressive driver, correlating to more frequent 

oscillations in the torque command to keep the vehicle speed as close to the drive trace as possible. The 

drive cycles that fail also share common characteristics: Higher speeds, aggressive accelerations, and 

reduced idle times. In comparison, the F-ECMS shows a success rate of 95% when looking at the ending 

SOC in comparison to the defined ending range of +/- 5%. In the F-ECMS, the failures occurred during the 

UDDS cycle with an initial SOC of 32.5% and the mild 50% SOC NYCC test. However, the largest gap 

between the lower defined operating range and lowest ending SOC value is 0.78% which corresponds to 

a maximum error of roughly 1.5% when looking at every drive cycle for different driving styles. 
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Table 10: Average and Fuzzy ECMS Ending SOC Comparison 

  Aggressive 50% Mild 50% Aggressive 32.5% Mild 32.5% 

Drive Cycle A-EF F-EF A-EF F-EF A-EF F-EF A-EF F-EF 

NYCC 38.12 44.22 39.63 46.41 31.61 46.27 30.74 46.40 

SC 03 61.61 46.15 60.61 45.75 61.60 46.13 56.57 45.74 

US 06 52.10 49.74 58.93 50.27 52.25 49.71 58.33 50.27 

EMC City 61.70 50.13 65.07 50.17 62.56 50.18 65.00 50.19 

RTS 95 50.74 52.55 49.78 53.67 51.24 52.57 49.76 53.67 

HWFET 62.82 49.77 65.30 50.24 62.65 49.79 65.15 50.24 

HUDDS 51.95 47.55 59.01 47.83 50.92 47.54 60.40 47.85 

EMC Highway 47.69 51.84 52.07 51.18 47.63 51.84 52.06 51.18 

UDDS 43.23 45.73 40.64 45.20 44.73 45.71 38.60 44.92 

LA 92 63.13 48.25 62.57 48.65 63.31 48.24 62.58 48.61 

Artemis Rural Road 56.31 46.35 63.61 46.79 56.34 46.33 64.08 49.18 

Several drive cycles will be highlighted to showcase the results of the average and fuzzy ECMS methods. 

The drive cycles that were used for validation are presented in Appendix A and results not discussed in 

the following paragraphs are presented in Appendix C.  

Why is the trend of SOC over time an indication of good EF management? The EF will affect how the ECMS 

optimizes torque between the engine and motor. An EF that is set very low may improve fuel economy 

by utilizing the motor more often, however, this may cause the SOC to deplete to critical levels. During 

operation, if the SOC drops to an extreme limit, the contactors in the battery pack may open under load, 

damaging the pack by pitting or welding the contactors shut, rendering the pack unusable and dangerous. 

Adjusting the EF allows the HV battery and motor to operate in constrained but efficient cases to keep 

the SOC within predefined limits, regardless of the driving style or cycle. A robust EF management strategy 

will allow the SOC to deviate away from the target SOC without violating predefined limits. Different 

driving styles also influence the fluctuations in SOC over different drive cycles with varying top speeds and 

accelerations. The trend in SOC over each drive cycle can help to pinpoint errors in a constant or average 
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EF rather than a dynamic EF. In the following sections, the EF for several drive cycles will be presented to 

observe how adjusting the EF prevents the SOC from approaching an extreme limit. 

5.3.1 NYCC Cycle 

The F-ECMS achieved a maximum fuel economy improvement of 0.35% when compared to the optimal 

ECMS with a starting SOC of 50% while simultaneously increasing fuel economy by a maximum of 9.82% 

when compared to the average ECMS. However, CS characteristics need to be considered when evaluating 

the effectiveness of the implemented FLC. Figure 55 displays the NYCC cycle for one iteration. It should 

be noted that drive cycles were ran 2 times in succession to validate fuel economy and CS SOC results and 

reduce bias from the initial SOC. 

 

Figure 55: NYCC Drive Cycle 

Figure 56 provides the SOC results in the NYCC cycle for the optimal, average, and F-ECMS strategies for 

a starting SOC value of 50%. The optimal results were obtained from the brute force analysis; however, 

the brute force analysis was designed to obtain the best fuel economy while maintaining an ending CS 

window of +- 5% when starting with an initial SOC of 50%. If the initial SOC is modified, the brute analysis 



96 
 

will need to be rerun to determine the new EF for CS results. The NYCC cycle contains hard accelerations 

with reduced idle periods, and the EF was determined to be relatively high at 3.5. The average EF of 2.92 

is substantially lower, meaning that the electrical to fuel conversion for the motor is cheaper over the 

course of the entire drive cycle. A lower equivalence value corresponds to lower energy management 

which resulted in non-charge sustaining operations for this cycle. However, other cycles in the MIL or VIL 

environment may show increased benefits from using the average EF determined in this thesis. The 

average ECMS also violated the 40-60% operating region constraints that were placed for simulations at 

the end of each cycle. Conversely, the F-ECMS method was able to maintain an average SOC value of 45% 

and was charge sustaining at the end of the cycle for both the aggressive and mild driver, indicating that 

the ending SOC fell within the prescribed bounds for the experiment. It should be noted that in the 

following SOC comparison figures, the 40-60% constraint operating window is indicated with a dashed 

horizontal blue line. 
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Figure 56: NYCC 50% SOC Comparison 

Figure 57 illustrates the SOC and EF for both drivers along with the average EF for comparison. The SOC 

correlates to the left y-axis and the EF correlates to the right y-axis. It should be noted that for the EF 

comparison figures, the average EF of 2.92 is shown with a dashed horizontal line. In the figure, the EF 

begins relatively low allowing usage of the motor until the SOC crosses the 45% point. At that time during 

the drive cycle, the fuzzy logic controller begins to adjust the EF based on the deviation of the SOC and 

the drivers wheel torque command. When the SOC approaches 45% from a lower value, the EF is adjusted 

to favor the motor in the energy management strategy consistently throughout the cycle. The driver is 

more demanding for the aggressive style, which correlates to increased fluctuations in the EF. Due to 

aggressive accelerations in the cycle, the EF averages roughly 3.0 for the duration of the drive.  
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Figure 57: NYCC 50% EF Comparison 

Figure 58 and Figure 59 illustrate the NYCC cycle when the starting SOC is at an extreme low point of 

32.5%. During normal operations, an SOC value this low should be prevented to ensure proper 

functionality of the HV battery, however, an extreme case was considered to test the functionality of both 

the average and F-ECMS. In Figure 58, a similar process is followed where the F-ECMS can recharge the 

battery and obtain CS operations over the course of the drive cycle. The average ECMS, with a lower than 

optimal EF, is not able to maintain a balanced SOC which resulted in undesirable performance. It should 

be noted that the optimal EF ECMS SOC is also plotted in this figure. The optimal SOC provides a guideline 

for where the SOC should be operating during the simulation if the optimum EF is applied at a starting 

SOC of 50%. This guideline further shows the robustness of the F-ECMS algorithm to maintain proper SOC 

balancing, regardless of initial SOC. The F-ECMS adjusts the EF to increase the SOC over the drive cycle to 

maintain CS operation within the first 250 seconds.  
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Figure 58: NYCC 32.5% SOC Comparison 

Similarly, in Figure 59, the EF factor adjusts at the beginning to roughly 3.8 for both driving styles and 

remains high until the SOC begins to approach 45%. At this point, the EF decreases slightly to favor the 

motor but remains higher than the average due to the characteristics of the drive cycle combined with a 

very low starting SOC. Regardless of the driver style, the F-ECMS can maintain roughly the same value for 

the SOC at each instance in the drive cycle. 
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Figure 59: NYCC 32.5% EF Comparison 

5.3.2 US06 Cycle 

The F-ECMS was not able to increase fuel economy when compared to the optimal ECMS, however, an 

improvement of 0.8% was found when comparing the average to F-ECMS with a mild driving style. The 

US06 drive cycle is presented below in Figure 60. 
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Figure 60: US06 Drive Cycle 

Figure 61 demonstrates the improvement of the F-ECMS over both the average and optimal ECMS when 

looking at SOC for the US06 drive cycle. In the figure, while the optimal ECMS was CS, it produced poor 

SOC optimization during the drive cycle and led to the upper 60% constraint to be violated over the course 

of the simulation. A violation in the upper limit may not cause substantial differences in the overall life of 

the HV battery, however, goal of this work is to minimize the amount of time spent charging and 

discharging over a defined SOC limit to improve the overall HV battery life in the VIL environment. 

Consider the case where the SOC can deviate below the lower operating region of 40%. This may result in 

increased fuel economy by utilizing the motor, however, the SOC may continue to decrease to a critical 

level and may not recover fast enough. If the SOC reaches critical levels around 20%, the battery pack may 

open contactors, causing severe damage to the battery pack. Similar results can be seen for the average 

ECMS with the mild driver where the upper limit is crossed multiple times before the battery is discharged. 

The F-ECMS can keep the SOC balanced around 45-50% for the driver cycle regardless of the driving style 

used and is able to better optimize usage of the electric motor. It should be noted that the average ECMS 

in the mild driver simulation optimized the engine by providing more torque than the driver requested. 
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This optimization is due in part to the ECMS favoring the engine during higher vehicle speeds when the 

engine is more efficient. A lower torque demand paired with higher vehicle speeds results in a lower 

efficiency for the IC engine which consequently led to the ECMS commanding additional torque from the 

engine to reduce fuel flow. As a result, the ECMS produced larger amounts of opportunity charging 

throughout the simulation to maintain a higher-than-average SOC for the HV battery.  

 

Figure 61: US06 50% SOC Comparison 

Figure 62 provides the SOC and EF plots for the aggressive and mild driver with a starting SOC of 50% for 

the US06 cycle when the F-ECMS was implemented. During this drive cycle, the motor is able to recapture 

energy through regenerative braking to charge the HV battery, which resulted in an EF lower than the 

average in multiple instances of the drive cycle, including the times from 500-600 and 1050-1150 seconds 

respectively for the aggressive driver. From the figure, as the SOC decreases below 45%, the EF increases 

to compensative and make the motor more expensive to use. Similarly, as the HV battery is recharged, 
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the EF adjusts and lowers to gain more usage of the electric motor during vehicle launching operations 

where the engine is less efficient. For example, from roughly 500 to 600 seconds in the aggressive driver 

simulation, the EF is reduced to allow the motor to help launch the vehicle during the lower speed 

accelerations. Once the SOC drops below 45%, the EF increases to help raise the cost of using the motor, 

preventing the HV battery from being discharged too quickly.   

 

Figure 62: US06 50% EF Comparison 

Figure 63 and Figure 64 show the SOC and EF variation for the US06 drive cycle with a starting SOC of 

32.5%. It should be noted that the optimal SOC curve for the US06 with an initial SOC of 50% is also shown 

in the figure to serve as a guideline for where the SOC would operate when using the optimum EF, similar 

to the case shown in the NYCC section. The SOC for the aggressive driver follows an ideal case where the 

SOC can fluctuate between 40 and 60% throughout the cycle. However, the average ECMS demonstrates 

a similar pattern to the results discussed above where the ECMS opted to run the engine harder for OC 
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due to lower torque demands from the mild driver. When not following the drive trace as closely as 

possible, the ECMS is able to expand the area of focus and favor more efficient regions of the engine to 

recharge the HV battery. The F-ECMS can adjust the EF as shown in Figure 64 to prevent the motor from 

operating at the extreme low SOC values from times at 200-450 and 800-1100 seconds. Similarly, as the 

SOC increases, the EF begins to oscillate to allow the cost of the motor to fluctuate during operation. The 

adjustment of the EF allows the SOC to operate around the lower charge sustaining setpoint of 45% 

without large deviations to help prolong the battery life while maintaining good fuel economy. In the 

initial phase of the cycle from 0 to roughly 100 seconds, the EF is kept relatively high for both drivers to 

ensure that the ECMS favors the engine for OC to increase the value of the SOC. Once a peak of roughly 

50% is reached, the fuzzy controller adjusts the EF to allow more use of the electric motor when 

commanding propulsive torque. 

 

Figure 63: US06 32.5% SOC Comparison 
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Figure 64: US06 32.5% EF Comparison 

5.3.3 EMC City Cycle 

The F-ECMS may not have improved fuel economy when compared to the optimal ECMS with the smallest 

decrease of 3.83%, however, it maintained an average decrease of only 2.7% when comparing the F-ECMS 

to the average ECMS. The F-ECMS may not have improved fuel economy during simulations, however, 

substantial improvements for charge sustainability and SOC stability were performed. The EMC City drive 

cycle is shown below in Figure 65. 
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Figure 65: EMC City Drive Cycle 

Figure 66 and Figure 67 provide results with a starting SOC of 50% while Figure 68 and Figure 69 provide 

the 32.5% starting SOC results for the EMC City drive cycle. In Figure 66, both the average and F-ECMS 

start off with nearly identical SOC traces until roughly 200 seconds. From that point, the F-ECMS adjusts 

the EF to maintain a rough average of 45% SOC. While the optimal SOC curve operates within the 40-60% 

range, the average violates the upper limit multiple times in the case of the mild driver. The F-ECMS 

maintains CS at the end of the cycle while the average ECMS violates the upper 55% window during both 

the aggressive and mild driver for the ending SOC, providing OC for both driving styles. This OC improves 

fuel economy, however, the SOC violates imposed constraints that would ultimately not be considered 

for a CS hybrid in the brute force analysis. Documentation for the GM HEV4 battery pack states that a 

strict limit of 20-80% SOC should always be followed to avoid damaging the battery pack by opening the 

HV contactors under a load. For this instance, an upper value of roughly 65% SOC is considered to be 

operating closer to the extreme range and should be avoided for safety of the HV battery pack as well as 

long term battery life/health.  
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Figure 66: EMC City 50% SOC Comparison 
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Figure 67: EMC City 50% EF Comparison 

In the case for the mild driver in Figure 68, the energy strategy determines that it is more efficient to use 

the engine to charge the motor resulting in a higher, but more stable SOC curve. The ending result is not 

CS because the SOC is outside of the 50 +/- 5% range defined in the problem statement. Due to the 

difference in driver torque commands from the aggressive to mild driver, the F-ECMS updates the EF more 

frequently in the aggressive simulations, regardless of starting SOC. It should be noted that in the low 

starting SOC case, the F-ECMS is able to adjust the EF to raise the SOC above 40% within the first 100 

seconds of the simulation while the average ECMS takes roughly 200 seconds. In the case of the aggressive 

driver in Figure 68, the SOC deviates from 32.5% to 30% briefly while the F-ECMS begins to increase the 

SOC almost instantly with minor decreases. Differences in the driving style between the aggressive and 

mild driver tend to cause fluctuations in where the ECMS algorithm decides components should operate 

in the case of the average ECMS, however, for both driving styles, the F-ECMS is able to adjust the EF and 
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keep the SOC operating in a consistent smaller range. This adaptive EF maintains roughly the same SOC 

throughout the cycle regardless of the selected driver. 

 

Figure 68: EMC City 32.5% SOC Comparison 
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Figure 69: EMC City 32.5% EF Comparison 

5.3.4 HWFET Cycle 

Despite the decrease in fuel economy when compared to the average and optimal ECMS, the F-ECMS was 

able to improve CS throughout the drive cycle, regardless of the applied driving style. The HWFET drive 

cycle is characterized with mild to sharp accelerations with very little idle periods and a top speed of 

roughly 60 mph maintained for longer periods of time, resulting in less energy recapture through 

regenerative braking. This cycle is shown in Figure 70. 
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Figure 70: HWFET Drive Cycle 

Figure 71 shows the difference between the optimal, average, and F-ECMS for the aggressive and mild 

drivers. The optimal trace does deviate below the 40% SOC line and above the 60% line twice, however 

this is not a substantial amount. Conversely, the average ECMS tends to favor opportunity charging with 

the aggressive driver to recharge the HV battery during high-speed sections of the drive cycle. This is due 

to the efficiency regions of the engine when considering higher speeds with moderate levels of driver 

requested wheel torque. The ECMS optimizes the engine by placing it in a higher torque region while the 

motor is used to charge the HV battery pack. This stored energy is used at minimally in the cycle when the 

engine is not operating in its most efficient area. In the case of the mild driver, the average and F-ECMS 

SOC curves are very close in shape and value until approximately 600 seconds where the average ECMS 

increases torque commands to the engine to further charge the HV battery. In each case, the F-ECMS is 

able to adjust the EF, shown in Figure 72, to maintain SOC balance around 45% regardless of the vehicle 

speed or wheel torque commands from the driver.  
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Figure 71: HWFET 50% SOC Comparison 

Due to the responsive difference in drivers, the EF in the aggressive driver tends to fluctuate more 

aggressively in the range of 2-3.4. The EF for the mild driver tends to center around 3.4 for the duration 

of the drive with minor exceptions when the SOC rises above 45%. Regardless of the driving style, the F-

ECMS is able to adjust the EF appropriately to keep the SOC within the desired operating window.  



113 
 

 

Figure 72: HWFET 50% EF Comparison 

Similar results were obtained for a starting SOC of 32.5% for the HWFET cycle as shown in Figure 73 and 

Figure 74. The SOC trace follows a similar trend where the HV battery is charged during the high-speed 

scenarios for the aggressive driver and the mild driver mimics the F-ECMS trace from roughly 300-600 

seconds. The F-ECMS is able to increase the EF, shown in Figure 74, to increase the cost of the electric 

motor early on until the SOC reaches the lower operating region of 45%. The average ECMS takes longer 

to charge the battery, and in the case of the mild driver, the SOC does not increase above the lower bound 

of 40% until 150 seconds have passed in the simulation. The EF follows a similar trend where the set value 

oscillates more frequently for the aggressive driver but both driving styles produce similar maximum and 

minimum values. When observing the differences in SOC for the aggressive and mild drivers, it is clear 

that the adaptable EF is more robust when maintaining an average SOC regardless of the reaction time 
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for the driver or top speeds of the vehicle. For both driving styles, the F-ECMS is able to end with an SOC 

of roughly 50% while the average ECMS exceeds the upper limit of 60% for both cases. 

 

Figure 73: HWFET 32.5% SOC Comparison 
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Figure 74: HWFET 32.5% EF Comparison 

5.3.5 EMC Highway Cycle 

The F-ECMS improved fuel economy for all 4 tests when compared to the optimal ECMS with a maximum 

increase of 4.37%. It should be noted that the F-ECMS improved fuel economy in both tests with an initial 

SOC of 32.5%, however, the optimal ECMS EF was not tuned using this initial SOC which could provide 

different fuel economy results. When compared to the average ECMS, the F-ECMS improved fuel economy 

by a maximum of 4.89%. This cycle is characterized by aggressive accelerations, high speeds of 80 mph, 

and reduced idle periods, as shown in Figure 75.  
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Figure 75: EMC Highway Drive Cycle 

Figure 76 and Figure 77 provide simulation results for a starting SOC of 50% with Figure 78 providing a 

snapshot of a portion of the drive cycle to highlight differences in the EF when a different driving style is 

applied. Figure 79 and Figure 80 provide results for a starting SOC of 32.5% with Figure 81 providing a 

snapshot of a zoomed in portion of the drive cycle to highlight EF differences in the driving styles. The 

optimal CS EF was found for the best fuel economy and as seen in Figure 76, the SOC oscillates through 

the range of 40-50% SOC throughout the cycle. The average ECMS produces CS results for both driving 

styles, however, differences can be seen in the figure below. The aggressive driver SOC curve follows the 

optimal for most of the cycle, with minor discrepancies at both the start and roughly 3000 seconds into 

the cycle. Conversely, the average ECMS tends to charge the battery to a higher SOC when using a mild 

driving style. This serves as another indication that an average EF can produce CS results over the drive 

cycle, but tuning is required for different driving styles to achieve similar results. The F-ECMS is able to 

maintain 45% SOC for a large portion of the drive cycle and does not deviate below the upper or lower 

SOC bound. The F-ECMS produces consistent results are remain in an operating region around 45% for 
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the duration of the drive regardless of the applied driving style and improves fuel economy when 

compared to both the average and optimal EF.  

 

Figure 76: EMC Highway 50% SOC Comparison 

Due to the harder accelerations and fluctuations of the accelerator pedal to match the drive trace as 

closely as possible, the EF for the aggressive driver changes frequently and produces a higher maximum 

when compared to the average driver. The F-ECMS follows a similar trend when comparing to the drive 

cycles discussed above: As the SOC decreases below 45%, the EF will increase to prevent the energy 

strategy from using the motor too often and depleting the HV battery. It should be noted that the SOC in 

the figures below rises quickly when in a regenerative state. The drive cycle shown has a simulation time 

of almost 6000 seconds which causes the SOC to appear to increase over a few time steps when viewing 

the entire cycle from start to finish. Figure 78 provides a zoomed in portion of the simulation to highlight 

the change in SOC more clearly. 
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Figure 77: EMC Highway 50% EF Comparison 

Figure 78 provides a zoomed in view of the EMC Highway cycle to further highlight the change in the EF 

for both driving styles. The EF for the aggressive driver changes more frequently based on both the more 

aggressive torque commands to follow the drive trace more accurately and the larger fluctuations in the 

SOC. This figure provides a better snapshot to further illustrate the correlations between a higher EF factor 

and an SOC value of less than 45%. As shown in the figure, the EF for the aggressive driver has an average 

of roughly 3.1 with deviations below the initial EF when the SOC is above 45%. The EF for the mild driver 

has an average slightly below the starting average of 2.92 and deviates above when the decreases below 

45% to penalize the motor and maintain an average SOC above 40%. 
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Figure 78: EMC Highway 50% EF 1000-2000 Seconds 

Figure 79 and Figure 80 provide the SOC and EF results for the EMC Highway drive cycle with a starting 

SOC of 32.5%. From the figures, the results are similar to the 50% starting SOC case with few exceptions. 

In the case of the aggressive driver, once the simulation begins, the SOC curve matches the optimal curve 

until roughly 1000 seconds, when the SOC begins to deviate below 40% slightly. This is not a large issue, 

and the operating region is far above the extreme limit of 20% discussed previously, however, the results 

still prove that the optimal and average ECMS fluctuate farther than the F-ECMS but get lower fuel 

economy. Similarly, the F-ECMS maintains the operating region of 45% regardless of the initial starting 

SOC value. The mild driver follows the same pattern where the average EF was able to maintain CS 

operations and increases the SOC quickly at the beginning of the cycle. The mild driver for both starting 

SOC points is nearly identical, which correlates to the ECMS finding the motor to be equal in cost once the 

SOC balanced above 45%. The mild driver shows a similar case to others previously discussed where the 
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SOC is charged well above the minimum requirement. This is due to the mild driver smoothing out the 

drive trace and producing a wheel torque request lower than the aggressive driver. This lower request 

results in the ECMS choosing to run the engine in a higher efficiency region to provide OC for the HV 

battery. As a result, the motor is favored more for launching events, depleting the SOC down from roughly 

65 to 45% in most cases. Regardless of higher efficiency regions for OC charging, the F-ECMS is able to 

outperform the average EF and improve fuel economy throughout the cycle. 

 

Figure 79: EMC Highway 32.5% SOC Comparison 

Due to hard accelerations at the beginning of the drive cycle, the EF fluctuated rapidly for the aggressive 

driver. The EF for the aggressive and mild drivers peak with a value of 3.97 at the beginning of the cycle 

due to the higher torque demand to match the drive trace and provide OC for the HV battery. These 

aggressive fluctuations occur due to the nature of the drive cycle. At higher speeds, when the drive cycle 

velocity changes, the aggressive driver oscillates between the accelerator and decelerator pedals quickly, 
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providing both motoring and generating torque on the electric motor. This quick transition between the 

pedals correlates to the fuzzy controller setting the EF high when the driver is on the accelerator pedal, 

and low when the driver is on the decelerator pedal to better match the drive trace.  

 

Figure 80: EMC Highway 32.5% EF Comparison 

Figure 81 provides a zoomed in view of the EMC Highway cycle to further highlight the change in the EF 

for both driving styles. The EF for the aggressive driver changes more frequently based on both the more 

aggressive torque commands to follow the drive trace more accurately and the fluctuations in the SOC. 

This figure provides a better snapshot to further illustrate the correlations between a higher EF factor and 

an SOC value of less than 45%. The aggressive EF tends to use step changes when adjusting between 2 EFs 

while the mild EF tends to have linear slopes when adjusting. As discussed previously, in the case of the 

aggressive driver, the drive trace is followed as closely as possible. When the driver is on the accelerator 

pedal, the EF will be higher due to the motor having a more expensive cost at a lower SOC value. If the 
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decelerator pedal is pressed, the motor will recapture energy raising the SOC level. Once the driver tips 

back into the accelerator pedal to follow the drive trace, the F-ECMS favors the motor until the SOC 

decreases below 45% and the EF is set higher again. Regardless of the driving style selected for the lower 

starting SOC value, the F-ECMS dynamically adjusts the EF to keep the SOC operating in a strict CS window 

throughout the entire cycle while improving fuel economy. 

 

Figure 81: EMC Highway 32.5% EF 1000-2000 Seconds 

5.3.6 Remaining Cycles 

Results for the remaining drive cycles are shown below in Appendix C. Each drive cycle contained varying 

characteristics including different accelerations and coast down times, maximum speeds, and idle periods. 

For each drive cycle, the F-ECMS was able to outperform the average ECMS in terms of CS throughout the 

entire drive cycle regardless of starting SOC or driver style selection. Similarly, as discussed above, the F-
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ECMS can compete with both the optimal and average ECMS algorithms in terms of fuel economy while 

maintaining the imposed SOC CS constraints. These results further validate the overall functionality of the 

F-ECMS when improving fuel economy over multiple drive cycles with reduced computational power 

required when considering the amount of time needed to optimize the EF for individual drive cycles and 

for each time the control hierarchy is modified in the design and calibration phase of modeling. 

5.4 Benchmark Validation 

The benchmark fuel economy results from several cycles are shown below in Table 11. These DP results 

were provided by Aaron Mull of WVU [19] in his work to create a DP algorithm to determine the best fuel 

economy for the WVU EcoCAR team’s Blazer Simulink vehicle model. The results from the DP algorithm 

serve as a benchmark for future design work using the Simulink Blazer model. Charge corrected fuel 

economy results shown in the table for the F-ECMS were obtained from results discussed above and 

include the best overall fuel economy for each drive cycle shown in the table. However, if modifications 

to a Simulink vehicle model are made in the Plant, Controller, or Drivetrain, this can result in skewed or 

abnormal fuel economy results. As seen in the table, 4 out of the 5 drive cycles showed a fuel economy 

improvement when comparing the F-ECMS to DP. The results from DP should serve as the absolute best 

fuel economy that the model is able to produce, however, multiple instances show that the F-ECMS was 

able to outperform the DP. Ideally, the fuel economy results from the F-ECMS should be within 1-2% range 

of the DP results to justify validation results from both experiments. 

Table 11: Benchmark Fuel Economy Comparison 

 DP Benchmark (mpg) F-ECMS (mpg) Error (%) 

EMC City 30.18 32.74 8.48 

EMC Highway 37.24 31.54 -15.31 

US06 24.64 28.92 17.37 

UDDS 30.74 34.94 13.66 

HWFET 32.95 40.93 24.22 
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It should be noted that different Simulink models were used in both experiments. The Simulink model 

used to validate the DP algorithm was not the same model used to validate the F-ECMS controller. The DP 

model was created in MATLAB as a backwards looking model, where component blocks including the SI 

Mapped Engine and Datasheet Battery were reconstructed using 2-D lookup tables with inputs of torque 

and current respectively. This can account for some margin of error when considering the construction 

and computational interpolation of the 2-D lookup tables. 

The Blazer vehicle model contains hundreds of parameters for defining the engine, motor, battery, and 

vehicle dynamics with characteristics ranging from fuel heating characteristics to friction coefficients of 

the simulated wheels and brakes. When these parameters differ, results such as fuel economy or charge 

sustainability can be affected due to differences in the power or torque required to propel the vehicle and 

follow a drive trace. Validation of the DP algorithm should be performed with the Simulink model used in 

this paper to verify proper functionality of the model. Validation includes using the component torque 

commands provided from the DP benchmark analysis to propel the vehicle and obtain new fuel economy 

and CS results for each drive cycle, using the appropriate starting SOC used in the DP analysis. Once a new 

benchmark is established for this model, the F-ECMS can be rerun over each drive cycle to verify and 

validate overall functionality as well as better or worse fuel economy and CS results. 

6 Conclusions and Recommendations 

In conclusion, the objective of this work was to design and integrate a fuzzy logic-based controller to 

implement with the ECMS. The fuzzy logic controller was selected due to the adaptability of the controller 

regardless of driver style or selected cycle. The goals of this work were to maintain or improve fuel 

economy when compared to the optimal baseline achieved by the ECMS through a brute force analysis 

along with improving the charge sustainability of the control algorithms and HV battery life. The overall 

performance of the ECMS is dependent on the adjustment of the equivalence factor that must be 
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determined offline with a priori knowledge of the current drive cycle to achieve globally optimal results. 

This global optimum is determined by performing a brute force analysis where the EF is incremented in 

small steps over a large window to determine the optimal EF to maximum fuel economy while providing 

CS results. The main drawback of the ECMS is that each drive cycle and driving style requires a different 

EF, and any changes made in the control architecture require the brute force analysis to be rerun to find 

the new global optimum. The implemented fuzzy logic controller updates the EF based on the current 

deviation of the SOC from a pre-determined setpoint as well as the current driver wheel torque demand 

to provide an adaptive robust ECMS algorithm, implementable over multiple drive cycles with various 

driver characteristics. 

6.1 Analysis 

A brute force analysis was performed on the base ECMS with an initial EF range of 2-4 for 8 drive cycles. 

Once complete, a fuzzy logic controller was designed based on prior knowledge of the control system 

along with possible wheel torque commands including minimum and maximum values for each drive 

cycle. The fuzzy logic controller was tested against the baseline optimal results of the ECMS for the original 

8 drive cycles along with 3 additional cycles to further validate the designed controller. The average EF for 

the original 8 drive cycles was determined to be 2.92 and was tested against the fuzzy controller to further 

validate the designed control system. This average EF was used to illustrate how the ECMS may not 

perform well if a full EF analysis is not conducted prior to implementing the algorithm in a real-world 

environment. The selected drive cycles covered a broad range of characteristics including idle time, mild 

and aggressive acceleration and decelerations, and vehicle top speeds. 

The optimal fuel economy was achieved within an average of +- 2.44% error when comparing the fuel 

economy results of the optimal ECMS to the F-ECMS. It was found that the fuel economy improvements 

occurred with both drivers at each initial SOC value. The best fuel economy improvement was during the 
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EMC Highway cycle with a total of 4.37% over the optimal ECMS. Fuel economy improvements from the 

32.5% starting SOC were not included in this comparison due to a brute force analysis not being conducted 

on the different starting SOC. While an analysis was not performed, the results serve as a benchmark 

when comparing an adaptive ECMS to a constant ECMS strategy with varying initial SOC values. From the 

mild driver starting at 50% SOC, 3 out of the 8 drive cycles showed improvements in fuel economy. When 

comparing the F-ECMS to the average ECMS method, 17 out of a total of 44 drive cycles showed an 

improvement in fuel economy with the largest improvement being 9.69% in the NYCC drive cycle. Out of 

the 17 cycles that showed improvements, 9 were from the mild driver. The mild driver presents a more 

accurate representation of a human driver in a real-world environment where slight deviations from the 

defined drive trace occur due to human error. 

Even though the fuel economy improvements may not have been significant in most cases, the F-ECMS 

was able to maintain CS operations for 42 out of the total 44 that were simulated. For comparison, out of 

the 44 total tests, the average ECMS operated in a CS region for 12 in total. The average ECMS results 

demonstrate the importance of updating the EF when charge sustainability is defined as a goal. Initial SOC 

values and driving styles play a large role in the SOC results for different drive cycles. If a constant EF is 

implemented, calibration of the EF offline is crucial for an ECMS controller. The integrated FLC proved that 

an average EF can be adjusted dynamically during random simulated drive cycles to achieve fuel economy 

improvements and charge sustainability with reduced computational time required to tune the ECMS 

each time logic is manipulated within the control hierarchy.  

6.2 Additional Drive Cycles 

Given the results of the fuel economy for the FLC, improvements could be considered which merits future 

work. For future work, it is recommended that additional drive cycles be used to determine an average 

EF. Out of the 8 drive cycles analyzed, the lowest EF was 2.45 and the highest was 3.5, however, only 3 
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drive cycles had an optimum EF of greater than 3. Drive cycles that incorporate less aggressive 

accelerations up to roughly 15-20 m/s along with sustained vehicle speeds (higher and lower) should be 

considered to obtain an average EF closer to 2.5 to better mimic real world driving in both city and highway 

environments. 8 drive cycles were selected due to the time constraint of designing and testing the FLC 

against both the optimal and average ECMS. 

6.3 FLC Variation 

The FLC is currently designed to operate based on a predefined EF. The output of the FLC is a delta that is 

added to or subtracted from the average EF to update the controller. Adjusting the output of the FLC to 

control the raw EF will help to reduce the amount of prior EF analysis that is conducted to further reduce 

the computation demand of the ECMS. Designing a sliding time window can help to further reduce the 

computational demand for embedded controllers that do not have a substantial amount of throughput 

power. The FLC in this work updates the EF at each time step if an adjustment needs to be made. This can 

result in very frequent and abrupt changes to the EF that can create unwanted step changes in component 

torque demands. The sliding time window could be designed to assume that the current driving conditions 

will remain the same for an extended period of time. This window could be adjusted to update the EF in 

1, 2, or even 5-minute windows depending on the desired update rate to achieve less oscillation from the 

updated EF while maintaining CS operations.  

6.4 Model Modifications 

Simulations conducted for this experiment used a model that did not take the road grade into account. 

Further experimentation should include moderate grade changes during each cycle to better simulate 

real-world driving conditions. These perturbations in grade could be predetermined or could be 

randomized to better capture the efficiency of the F-ECMS algorithm. The drive cycles in this experiment 
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were repeated twice to reduce any bias associated with the initial SOC. Additional run time should be 

considered to further reduce and/or eliminate bias from the experiment. 

Table 11 compares results from a DP experiment that was conducted by a fellow WVU graduate student. 

The results indicated that the F-ECMS was able to outperform the DP algorithm in terms of fuel economy 

improvements. The Simulink models used in both experiments differed slightly due to linear interpolation 

of the backwards looking 2-D lookup tables, which could have caused skewed results when evaluating the 

fuel economy for both algorithms. For further validation, the F-ECMS algorithm should be run in real-time 

using the PCM MabX controller for the drive cycles discussed in this research. Real-world results can be 

post processed to determine fuel economy results using the 2019 Chevy Blazer to validate both algorithms 

and determine the root cause of fuel economy errors discussed above. 

In the last year of the EcoCAR Mobility Challenge, teams are expected to have fully integrated V2X 

communication with the Cohda wireless radios. The FLC could be designed to receive information from 

the radio as an input to the system to further optimize the EF. For example, if the HV battery SOC is at 

46% and decreasing, the current controller will begin to increase the EF to increase the cost of using the 

electric motor. However, in 1000 meters, there could be a traffic light that the vehicle will need to stop at 

for a certain period of time. Rather than increasing the EF to penalize using the motor, the EF could remain 

the same or decrease slightly with the added knowledge that the vehicle will be slowing down soon and 

utilizing regenerative braking. This added logic would allow the SOC to decrease slightly below a loose 

constraint to improve fuel economy by reducing the amount of fuel required to provide propulsion with 

the engine, or in some cases, shut the engine off and use the motor as the sole means of propulsion. This 

knowledge could be extended to receiving a priori information about the drive cycle. If idle vehicle periods 

or speed and acceleration changes are known ahead of time in the VIL environment, the FLC could update 

the EF more appropriately ahead of time. Additional inputs for the FLC should also be considered. The 

current vehicle speed is not considered within the FLC. The vehicle speed can be treated as an input to 
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the FLC to help relate the cost to use the motor at lower speeds where the engine is considered less 

efficient.  

Lastly, the Longitudinal Driver accepts a driver response time variable that can be modified to increase or 

decrease the driver’s reaction time. Initial simulations were performed to determine the difference 

between an aggressive and mild driver with final values of 0.1 and 0.5 respectively. Real world testing 

should be performed to measure the reaction time of a group of individuals to gain a realistic response 

time when running simulations. When the reaction time is adjusted to further mimic human response, 

simulated results can closer mimic results that are achievable in real-world implementation. 
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Appendix A: Validation Drive Cycles 

 

Figure 82: NYCC Drive Cycle 

 

Figure 83: SC03 Drive Cycle 
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Figure 84: US06 Drive Cycle 

 

Figure 85: EMC City Drive Cycle 
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Figure 86: RTS95 Drive Cycle 

 

Figure 87: HWFET Drive Cycle 
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Figure 88: HUDDS Drive Cycle 

 

Figure 89: EMC Highway Drive Cycle 
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Figure 90: UDDS Drive Cycle 

 

Figure 91: LA92 Drive Cycle 
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Figure 92: Artemis Rural Road Drive Cycle 
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Appendix B: ECMS Brute Force Analysis MATLAB Code 

clc 

clear 

tic 

% Load in the parameters for the model to reference 

load('Model_Parameters_V2.mat') 

 

% Define the method for the ECMS multiport switch in the Energy Management 

% Subsystem. A value of 1 corresponds to the constant ECMS. A value of 2 

% corresponds to the fuzzy adaptive method. 

ECMS_method = 1; 

 

% Define the constant value for switching the multiport switch in the 

% Driver subsystem to cycle through the various drive cycles. 

DriveCycleSelection = 1:1:8; 

CurrDriveCycle = 1; 

ModelRunTime = 0; 

 

s_equiv = [2:0.05:4]; 

for Z = 1:1:length(DriveCycleSelection) 

 

    % This will allow the Drive Cycles to be iterated using the multiport 

    % switch in the Driver Subsystem 

    CurrDriveCycle = DriveCycleSelection(Z); 

 

    % Update simulation time based on selected drive cycle 

    if CurrDriveCycle == 1 

        ModelRunTime = 598*2; 

    elseif CurrDriveCycle == 2 

        ModelRunTime = 600*2; 

    elseif CurrDriveCycle == 3 

        ModelRunTime = 600*2; 

    elseif CurrDriveCycle == 4 

        ModelRunTime = 739*2; 

    elseif CurrDriveCycle == 5 

        ModelRunTime = 886*2; 

    elseif CurrDriveCycle == 6 

        ModelRunTime = 765*2; 

    elseif CurrDriveCycle == 7 

        ModelRunTime = 1060*2; 

    else 

        ModelRunTime = 2962*2; 

    end 

 

    % Define the loop to adjust the EF and record reported results 

    for i = 1:1:length(s_equiv) 

 

        % Iterate through the EF 

        S_equiv = s_equiv(i); 

 

        % Display the current drive cycle and EF iteration 

        disp('The Current Drive Cycle Number is:') 
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        disp(Z) 

        disp('The current equivalence factor is:') 

        disp(S_equiv) 

        disp('The current model run time is:') 

        disp(ModelRunTime) 

 

        % Once all updates are done, save and run the model 

        save_system('Simplified_Model.slx') 

        sim('Simplified_Model.slx') 

 

        % Load in the struct from the 'To File' block once the simulation 

        % is done running 

        load('LoggedSignals.mat') 

 

        % Extract the SOC timeseries to check to see if charge sustaining was 

        % achieved during the cycle 

        SOC_timeseries = loggedsignals.SOC; 

        SOC_finalvalue = SOC_timeseries.data(end); 

 

        % Extract the Fuel Economy timeseries to record the data for each 

        % simulation 

        FuelEconomy_timeseries = loggedsignals.MPG_Corr; 

        FuelEconomy_finalvalue = FuelEconomy_timeseries.data(end); 

 

        % Check to see if the absolute value of the delta SOC is less than 

        % 5%. If not, zero out the fuel economy for that iteration 

        if abs(SOC_finalvalue - SOCTrgt) < 5.1 && abs(SOC_finalvalue - SOCTrgt) > 0 

            AverageFuelEconomy = FuelEconomy_finalvalue; 

        else 

            AverageFuelEconomy = 0; 

        end 

 

        % Create a vector to keep records of the average fuel economy and value 

        % of s that corresponds to it. 

        FuelEcon_sequiv(1,i) = s_equiv(i); 

        FuelEcon_sequiv(2,i) = AverageFuelEconomy; 

 

        % Create the combined struct to be analzyed after the simulations are 

        % done 

        FinalStruct(1,i) = loggedsignals; 

        ActualValues(1,i) = s_equiv(i); 

        ActualValues(2,i) = FinalStruct(i).SOC.data(end); 

        ActualValues(3,i) = FinalStruct(i).MPG_Corr.data(end); 

        ActualValues(4,i) = FinalStruct(i).MPG_NonCorr.data(end); 

 

        % All logged variables sre deleted from the base workspace 

        % before beginning the next simulation 

        clear('loggedsignals','SOC_timeseries',... 

            'SOC_finalvalue','FuelEconomy_timeseries',... 

            'FuelEconomy_finalvalue','AverageFuelEconomy') 

        delete('LoggedSignals.mat') 

    end 

 

    % Once an entire iteration of the EF is complete for each drive cycle, 
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    % change directory and store the results in the appropriate folder 

    if CurrDriveCycle == 1 

        cd .. 

        cd ('Model Data for Constant S Equiv ECMS') 

        cd ('NYCC Cycle') 

        save('NYCC Data','FuelEcon_sequiv','ActualValues','FinalStruct') 

        cd .. 

        cd .. 

        cd ('Simple Model V2') 

    elseif CurrDriveCycle == 2 

        cd .. 

        cd ('Model Data for Constant S Equiv ECMS') 

        cd ('SC03') 

        save('SC03 Data','FuelEcon_sequiv','ActualValues','FinalStruct') 

        cd .. 

        cd .. 

        cd ('Simple Model V2') 

    elseif CurrDriveCycle == 3 

        cd .. 

        cd ('Model Data for Constant S Equiv ECMS') 

        cd ('US06') 

        save('US06 Data','FuelEcon_sequiv','ActualValues','FinalStruct') 

        cd .. 

        cd .. 

        cd ('Simple Model V2') 

    elseif CurrDriveCycle == 4 

        cd .. 

        cd ('Model Data for Constant S Equiv ECMS') 

        cd ('EMC City') 

        save('EMC City Data','FuelEcon_sequiv','ActualValues','FinalStruct') 

        cd .. 

        cd .. 

        cd ('Simple Model V2') 

    elseif CurrDriveCycle == 5 

        cd .. 

        cd ('Model Data for Constant S Equiv ECMS') 

        cd ('RTS 95') 

        save('RTS 95 Data','FuelEcon_sequiv','ActualValues','FinalStruct') 

        cd .. 

        cd .. 

        cd ('Simple Model V2') 

    elseif CurrDriveCycle == 6 

        cd .. 

        cd ('Model Data for Constant S Equiv ECMS') 

        cd ('HWFET') 

        save('HWFET Data','FuelEcon_sequiv','ActualValues','FinalStruct') 

        cd .. 

        cd .. 

        cd ('Simple Model V2') 

    elseif CurrDriveCycle == 7 

        cd .. 

        cd ('Model Data for Constant S Equiv ECMS') 

        cd ('HUDDS') 

        save('HUDDS Data','FuelEcon_sequiv','ActualValues','FinalStruct') 
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        cd .. 

        cd .. 

        cd ('Simple Model V2') 

    else 

        cd .. 

        cd ('Model Data for Constant S Equiv ECMS') 

        cd ('EMC Highway') 

        save('EMC Highway Data','FuelEcon_sequiv','ActualValues','FinalStruct') 

        cd .. 

        cd .. 

        cd ('Simple Model V2') 

    end 

    % Clear the final variables before beginning the next round of 

    % simulations 

    clear('FuelEcon_sequiv','ActualValues','FinalStruct') 

end 

 

toc 

Published with MATLAB® R2020b 

 

  

https://www.mathworks.com/products/matlab
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Appendix C: F-ECMS Validation Results 

 

Figure 93: SC03 50% SOC Comparison 
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Figure 94: SC03 50% EF Comparison 
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Figure 95: SC03 32.5% SOC Comparison 
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Figure 96: SC03 32.5% EF Comparison 
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Figure 97: RTS95 50% SOC Comparison 
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Figure 98: RTS95 50% EF Comparison 
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Figure 99: RTS95 32.5% SOC Comparison 
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Figure 100: RTS95 32.5% EF Comparison 
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Figure 101: HUDDS 50% SOC Comparison 
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Figure 102: HUDDS 50% EF Comparison 
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Figure 103: HUDDS 32.5% SOC Comparison 
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Figure 104: HUDDS 32.5% EF Comparison 
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Figure 105: UDDS 50% SOC Comparison 
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Figure 106: UDDS 50% EF Comparison 
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Figure 107: UDDS 32.5% SOC Comparison 
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Figure 108: UDDS 32.5% EF Comparison 
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Figure 109: LA92 50% SOC Comparison 
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Figure 110: LA92 50% EF Comparison 
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Figure 111: LA92 32.5% SOC Comparison 
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Figure 112: LA92 32.5% EF Comparison 
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Figure 113: Artemis Rural Road 50% SOC Comparison 
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Figure 114: Artemis Rural Road 50% EF Comparison 



169 
 

 

Figure 115: Artemis Rural Road 32.5% SOC Comparison 
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Figure 116: Artemis Rural Road 32.5% EF Comparison 
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