493 research outputs found

    Supervised Nonparametric Image Parcellation

    Get PDF
    Author Manuscript 2010 August 25. 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part IISegmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SNIP). SNIP models the intensity and label images as samples of a joint distribution estimated from the training data in a non-parametric fashion. By capitalizing on recently developed fast and robust pairwise image alignment tools, SNIP employs the entire training data to segment a new image via Expectation Maximization. The use of multiple registrations increases robustness to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with manual labels for the white matter, cortex and subcortical structures. SNIP yields better segmentation than state-of-the-art algorithms in multiple regions of interest.NAMIC (NIHNIBIBNAMICU54-EB005149)NAC (NIHNCRRNACP41-RR13218)mBIRN (NIHNCRRmBIRNU24-RR021382)NIH NINDS (Grant R01-NS051826)National Science Foundation (U.S.) (CAREER Grant 0642971)NCRR (P41-RR14075)NCRR (R01 RR16594-01A1)NIBIB (R01 EB001550)NIBIB (R01EB006758)NINDS (R01 NS052585-01)Mind Research InstituteEllison Medical FoundationSingapore. Agency for Science, Technology and Researc

    Supervised Nonparametric Image Parcellation

    Get PDF
    Abstract. Segmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SNIP). SNIP models the intensity and label images as samples of a joint distribution estimated from the training data in a non-parametric fashion. By capitalizing on recently developed fast and robust pairwise image alignment tools, SNIP employs the entire training data to segment a new image via Expectation Maximization. The use of multiple registrations increases robustness to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with manual labels for the white matter, cortex and subcortical structures. SNIP yields better segmentation than state-of-the-art algorithms in multiple regions of interest

    Bayesian Modelling of Functional Whole Brain Connectivity

    Get PDF

    Spatially Adaptive Mixture Modeling for Analysis of fMRI Time Series.

    Get PDF
    International audienceWithin-subject analysis in fMRI essentially addresses two problems, the detection of brain regions eliciting evoked activity and the estimation of the underlying dynamics. In [1, 2], a detection-estimation framework has been proposed to tackle these problems jointly, since they are connected to one another. In the Bayesian formalism, detection is achieved by modeling activating and non-activating voxels through independent mixture models (IMM) within each region while hemodynamic response estimation is performed at a regional scale in a nonparametric way. Instead of IMMs, in this paper we take advantage of spatial mixture models (SMM) for their non-linear spatial regularizing properties. The proposed method is unsupervised and spatially adaptive in the sense that the amount of spatial correlation is automatically tuned from the data and this setting automatically varies across brain regions. In addition, the level of regularization is specific to each experimental condition since both the signal-to-noise ratio and the activation pattern may vary across stimulus types in a given brain region. These aspects require the precise estimation of multiple partition functions of underlying Ising fields. This is addressed efficiently using first path sampling for a small subset of fields and then using a recently developed fast extrapolation technique for the large remaining set. Simulation results emphasize that detection relying on supervised SMM outperforms its IMM counterpart and that unsupervised spatial mixture models achieve similar results without any hand-tuning of the correlation parameter. On real datasets, the gain is illustrated in a localizer fMRI experiment: brain activations appear more spatially resolved using SMM in comparison with classical General Linear Model (GLM)-based approaches, while estimating a specific parcel-based HRF shape. Our approach therefore validates the treatment of unsmoothed fMRI data without fixed GLM definition at the subject level and makes also the classical strategy of spatial Gaussian filtering deprecated

    Improving the accuracy of brain activation maps in the group-level analysis of fMRI data utilizing spatiotemporal Gaussian process model

    Get PDF
    OBJECTIVE: Accuracy and precision of the statistical analysis methods used for brain activation maps are essential. Adjusting models to consider spatiotemporal correlation embedded in fMRI data may increase their accuracy, but it also introduces a high computational cost. The present study aimed to apply and assess the spatiotemporal Gaussian process (STGP) model to improve accuracy and reduce cost. METHODS: We applied the spatiotemporal Gaussian process (STGP) model for both simulated and experimental memory tfMRI data and compared the findings with fast, fully Bayesian, and General Linear Models (GLM). To assess their accuracy and precision, the models were fitted to the simulated data (1000 voxels,100 times point for 50 people), and an average of accuracy indexes of 100 repetitions was computed. Functional and activation maps for all models were calculated in experimental data analysis. RESULTS: STGP model resulted in a higher Z-score in the whole brain, in the 1000 most activated voxels, and in the frontal lobe as the approved memory area. Based on the simulated data, the STGP model showed more accuracy and precision than the other two models. However, its computational time was more than the GLM, as the price of model correction, but much less than that of the fast, fully Bayesian model. CONCLUSION: Spatiotemporal correlation further improved the accuracy of the STGP compared to the GLM and fast, fully Bayesian model. This can result in more accurate activation maps. Moreover, the STGP model’s computational speed appears to be reasonable for model application

    Learning and comparing functional connectomes across subjects

    Get PDF
    Functional connectomes capture brain interactions via synchronized fluctuations in the functional magnetic resonance imaging signal. If measured during rest, they map the intrinsic functional architecture of the brain. With task-driven experiments they represent integration mechanisms between specialized brain areas. Analyzing their variability across subjects and conditions can reveal markers of brain pathologies and mechanisms underlying cognition. Methods of estimating functional connectomes from the imaging signal have undergone rapid developments and the literature is full of diverse strategies for comparing them. This review aims to clarify links across functional-connectivity methods as well as to expose different steps to perform a group study of functional connectomes

    Differences in White Matter Microstructure and Connectivity in Nontreatment‐Seeking Individuals with Alcohol Use Disorder

    Get PDF
    Background Diffusion‐weighted imaging (DWI) has been widely used to investigate the integrity of white matter (WM; indexed by fractional anisotropy [FA]) in alcohol dependence and cigarette smoking. These disorders are highly comorbid, yet cigarette use has often not been adequately controlled in neuroimaging studies of alcohol‐dependent populations. In addition, information on WM deficits in currently drinking, nontreatment‐seeking (NTS) individuals with alcohol dependence is limited. Therefore, the aim of this work was to investigate WM microstructural integrity in alcohol use disorder by comparing matched samples of cigarette smoking NTS and social drinkers (SD). Methods Thirty‐eight smoking NTS and 19 smoking SD subjects underwent DWI as well as structural magnetic resonance imaging. After an in‐house preprocessing of the DWI data, FA images were analyzed with tract‐based spatial statistics (TBSS). FA obtained from the TBSS skeleton was tested for correlation with recent alcohol consumption. Results Smoking NTS had lower FA relative to smoking SD, predominantly in the left hemisphere (p < 0.05, family‐wise error rate corrected across FA skeleton). Across the full sample, FA and number of drinks per week were negatively related (ρ = −0.348, p = 0.008). Qualitative analyses of the structural connections through compromised WM as identified by TBSS showed differential connectivity of gray matter in NTS compared to SD subjects of left frontal, temporal, and parietal regions. Conclusions NTS subjects had lower WM FA than SD, indicating compromised WM integrity in the NTS population. The inverse relationship of entire WM skeleton FA with self‐reported alcohol consumption supports previous evidence of a continuum of detrimental effects of alcohol consumption on WM. These results provide additional evidence that alcohol dependence is associated with reduced WM integrity in currently drinking NTS alcohol‐dependent individuals, after controlling for the key variable of cigarette smoking
    • 

    corecore