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High lights: 

• Brain activation maps are critical tools for insight into the brain cognition system and the 

prevention, diagnosis, and treatment of many brain disorders. 

• Incorporating spatiotemporal dependencies result in a more accurate brain activation 

map. 

• The STGP model considers the non-separable unstructured spatiotemporal correlation in 

the calculation. 

• The STGP model resulted in more accurate and precise maps in exprimental and 

simulated data compared to two common scenarios of fMRI data analysis, i.e., the GLM 

and  Bayesian approaches. 
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Abstract:  

Objective: Accuracy and precision of the statistical analysis methods used for brain activation 

maps are essential. Adjusting models to consider spatiotemporal correlation embedded in fMRI 

data may increase their accuracy, but it also introduces a high computational cost. The present 

study aimed to apply and assess the spatiotemporal Gaussian process (STGP) model to improve 

accuracy and reduce cost.   

Methods:  We applied the spatiotemporal Gaussian process (STGP) model for both simulated and 

experimental memory tfMRI data and compared the findings with fast, fully Bayesian, and General 

Linear Models (GLM).  To assess their accuracy and precision, the models were fitted to the 

simulated data (1000 voxels,100 times point for 50 people), and an average of accuracy indexes 

of 100 repetitions was computed.  Functional and activation maps for all models were calculated 

in experimental data analysis. 

Results: STGP model resulted in a higher Z-score in the whole brain, in the 1000 most activated 

voxels, and in the frontal lobe as the approved memory area. Based on the simulated data, the 

STGP model showed more accuracy and precision than the other two models. However, its 

computational time was more than the GLM, as the price of model correction, but much less than 

that of the fast, fully Bayesian model. 

Conclusion: Spatiotemporal correlation further improved the accuracy of the STGP compared to 

the GLM and fast, fully Bayesian model.  This can result in more accurate activation maps. 

Moreover, the STGP model’s computational speed appears to be reasonable for model application. 

Keywords:  

fMRI data analysis, Brain mapping, Spatiotemporal Gaussian Process Model, GLM, Accuracy 

Assessment 
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1. Introduction: 

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique for brain mapping 

that measures changes in oxygenated and deoxygenated blood magnetization recorded in Blood 

Oxygenated Level Dependent (BOLD) signals [1,2].  Brain mapping is used to associate mental 

function and its spatial location in the brain’s anatomical structure.  BOLD and the identification 

of the neural activation relationship make fMRI a tool for mapping brain activity [3]. Contrary to 

most previous brain imaging methods, fMRI is a non-invasive way to map brain function. Such 

maps are critical tools for insight into the brain cognition system and the prevention, diagnosis, 

and treatment of many brain disorders [1,4]. 

There are two main approaches for fMRI experiments: task-based (tfMRI), in which participants 

either perform a specific task or receive stimuli in an MRI scanner while BOLD signals are 

recorded, and resting-state fMRI (rsfMRI), which includes no stimulus events and the participants’ 

BOLD signals are recorded as they rest quietly in the scanner [2,3,5]. As tfMRI enables researchers 

to link intended behavioral or cognitive tasks and brain activations, it has become a crucial tool 

for brain mapping [2].  

Statistical analysis applied to make inferences about the significance of the effect of manipulated 

experiments on brain activation is divided into two categories: data-driven and model-based 

methods [1]. Data-driven approaches need no task information. However, model-based methods 

are extensively used when there is information about the task and stimulation.  Model-based 

techniques are generally easier to implement and interpret[6]. 

The most common models for analyzing tfMRI data are based on General Linear Models (GLM) 

family that was first applied in this field by Friston [7]. As fMRI experiments make a sequence of 

three-dimensional images at each time point during scanning, spatiotemporal correlations are 

unquestionably embedded in acquired 4D data [1,3,8]. Models that are used in common analysis 

pipelines, like those obtained using the FSL software package (FMRIB, University of Oxford), 

AFNI (Analysis of Functional Neuro-Images software), and SPM (Statistical Parametric Mapping 

software) do not consider this complex spatiotemporal correlation structure.  Instead, they try to 

account for such structure in the preprocessing stage or post-process corrections [9,10]. Ignoring 
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this residual correlation structure may lead to an underestimation of parameters' variability and 

consequently increase the false-positive rate (FPR) up to 70%, especially in the group-level 

analysis [1,10–13].  Moreover, it may restrict the reliability and accuracy of brain activation 

findings [1]. Z-score is defined as an estimated parameter divided by its standard error, used to 

determine brain activation. Therefore, activation maps known as Z-score (or statistical parametric) 

maps are based on the significance level of the estimated regression coefficients.  Their accuracy 

and precision depend on the properties of the estimated model coefficients and their variances. 

One of the most common methods in the context of model-based fMRI data analyses is the 

Bayesian method [14–16]. Bayesian approaches are popular for their estimation ability, and the 

preparation of appropriate activation maps without pre-smoothing [17]. In the spatiotemporal 

Bayesian framework, various prior distributions for spatial and temporal correlation (almost 

separated)  are considered to model the data [18]. Incorporating spatiotemporal correlations results 

in a computational burden of high-dimensional parameters in the posterior distributions [19]. To 

simplify these calculations, certain prior structure correlations such as Markov Random Field 

(MRF) and Conditional autoregressive (CAR) are considered. These restricted correlation 

structures may not accurately approximate the actual structure, which is used to estimate and 

produce activation maps [18]. 

So far, several studies have been conducted on modeling fMRI data with spatiotemporal 

correlations. Different ideas have been proposed to define the brain voxel spatial neighborhood, 

such as six physically adjacent voxels in three orthogonal directions[20], contiguous first-order 

neighboring voxels[21], all pairs of exchangeable voxels within functionally grouped voxels [22], 

and finally, using neuroanatomic parcellation to define groups of voxels [23]. Since previous 

researches have shown that functional brain activation can occur in separate brain areas, the last 

two neighborhood definitions for brain activation findings seem to be more suitable than the others 

[15]. 

Spatiotemporal correlations can be considered as separable or inseparable structures, depending 

on time and space. Separability means that the total covariance matrix can be factorized as a 

product of the time covariance with the spatial covariance matrixes. Separability is an underlying 

assumption of spatiotemporal processes that must be assessed. Failure to establish this hypothesis 

leads to misspecification of the mean or covariance structure. [24]. Aston et al. [25] suggested a 
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method for separability hypothesis testing in high-dimensional and hyper-surfaces. However, 

when separability is considered, it does not allow any interaction between time and space and leads 

to discontinuity in correlations [24].  As an example of using separable structure modeling, Lorenzi 

et al. [26] considered a spatiotemporal structure using the kernel convolution of a white noise 

Gaussian process. Furthermore, Lorenzi  et al. [27] applied a Kronecker product of spatial and 

temporal covariance. As an example of non-separable structure modeling, Long et al. [28] used a 

non-parametric Functional Data Analysis (FDA) method to consider non-stationarity with time-

varying property in an fMRI data non-separable covariance structure. Non-separability is often 

more realistic, especially when space and time covariance come from  Fourier transformation like 

fMRI data [24]. 

For ultra-high dimension 4D data, models usually introduce numerous estimated parameters 

especially, when incorporating non-separable spatiotemporal correlations.  So, their application is 

limited by computational complexity and cost. Most statistical models for fMRI data have been 

designed for single subject or region of interest (ROI) based data analysis to prevent this kind of 

complexity [29].  Statistical power can be improved by multi-subject studies that include possible 

heterogeneity among subjects [15,30]; however, their high computational cost and complexity 

have been a prominent challenge for group-level data analysis in Cognitive Neuroscience and the 

medical image analysis field [31].  

The GLM does not incorporate spatial or temporal correlations, which results in imprecise 

estimations. Moreover, although the Bayesian approach can take the spatiotemporal correlation 

into account, these methods are faced with the problem of covariance structure and also time-

consuming computations. In this work, we applied the spatiotemporal Gaussian process (STGP) 

model introduced by Hyung et al. [4] to analyze positron emission tomography (PET) and MRI 

longitudinal data. Due to its ability to handle massive data incorporating spatiotemporal correlation 

for group-level analysis, we customized the model to analyze fMRI data. The STGP can be a 

computationally efficient framework for approximating unstructured non-separable huge 

spatiotemporal covariance in group fMRI data analysis [4,18].  Using this model, we expect to 

produce a more accurate activation map due to its residual structure adjustment for the non-

separable spatiotemporal correlation in group-level data.  This decreases FPR and leads to 

achieving more accuracy in functional maps. In addition, it is computationally efficient when using 
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FPCA and parcellation. A simulation study was conducted to evaluate the model's accuracy, 

precision, and computational speed compared with an ordinary GLM and a fast, fully Bayesian 

spatiotemporal model for fMRI introduced by Musgrove [29]. 

The rest of the article is organized as follows: In Section 2, we introduce the experimental tfMRI 

data used in this study and the basics of the STGP model. In Section 3, we explain the estimation 

process, the details of the STGP model application, and the simulation scenarios and its results. In 

Section 4, we showed the results of fitting the STGP model, spatiotemporal Bayesian model, and 

standard Group-Level-GLM to real data. All results are discussed in Section 5, and finally, the last 

section is the conclusion. 

2. Materials and Methods: 

We considered memory task-based data by Lewis-Peapock [32] that are published online at 

https://openneuro.org/datasets/ds001497/versions/1.0.2. They acquired whole-brain fMRI images 

with a 3.0 Tesla scanner for ten volunteers, including seven men and three women aged 19-32 

years old, all right-handed with no history of medical, neurological, or psychiatric illness. Each 

participant had a high-resolution structural image (30 axial slices, 0.937˟0.937 ˟4mm) and a 

functional image (30 axial slices, 3.75˟3.75 ˟4mm) of BOLD signals acquired using a gradient-

echo echo-planner sequence (TR=2000ms, TE=50ms) that lasted for 6 minutes and 50 seconds 

[32].  The stimulation task was done via a block design: 30 seconds rest and 30 seconds memory 

task.  During the task time, the participants viewed 15 non-repeated random pictures of famous 

locations, people, or objects. Then they indicated their answers on a 4-point Likert scale using a 

stimulus-response box to show the degree of attraction to the celebrity, visiting the location, or 

encountering the object every day [18,32]. The prefrontal cortex in the frontal lobe was expected 

to be the main activated area in the brain, as the previous study showed [32]. 

We preprocessed the data using the FSL software package [33] because of its more accurate 

estimation in single-level computations compared to other analysis tools such as SPM, AFNI, etc. 

[12]. The following steps were taken for preprocessing: the Brain Extraction Tool (BET) was 

used to remove non-brain tissues, motion correction, slice timing correction, spatial smoothing, 

and registration of the subject’s structural and Montreal Neurological Institute templates (MNI 
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atlas) images.  Then, we analyzed the data using the spatiotemporal Gaussian process (STGP) 

model. Figure 1 shows the steps in STGP modeling.  

 

 

Fig.1. Diagram of the STGP model used to analyze the tfMRI data. 

More details about calculation and model assessment by simulation are explained in the next 

section. 

We used Matlab 2019b and R version 3.6.1 and FSL software to conduct the analyses. The 

computation system RAM was 8 Gigabytes with a Core-i7 CPU 

3. Theory and calculation: 
 

3.1. Spatiotemporal Gaussian process (STGP) model calculation:       

Consider a set of fMRI data for a group of n subjects. For each subject, we observed the intensity 

of the BOLD signal denoted by 𝑌!(𝑠, 𝑡) (i=1,2,…,n) at each three-dimensional (3D) voxels and 

each time point (4D data); t shows the measuring time-point (t∈Ꞷ={1,2,…,T}) and s is the spatial 
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location of the voxel (s∈Ꞩ={1,2,…,S}). At each time point, we have the whole-brain (all voxels) 

intensity and a vector of p covariates. The STGP model for fMRI data is given by: 

𝑌!(s, t) = µ"(s, t) + η"(s, t) + ε"(s, t) (1) 

where 

𝜇!(s, t) = X"(s, t)β"(s, t) (2) 

and β"(s, t) is the effect of the covariate X"(s, t) and µ"(s, t) is the mean structure for characterizing 

this effect for the ith subject across (s, t).  For the ith subject 	η"(s, t) are random functions 

characterizing the spatiotemporal correlation structure across (s, t), and ε"(s, t) are the 

measurement errors.  It is assumed that η"(s, t)	and	ε"(s, t) are mutually independent and 

identically distributed as GP(0, ∑#) and	GP(0, ∑$), respectively; where GP(µ, ∑) denotes a 

Gaussian Process with the mean function µ(s, t) and covariance function  ∑((s, t), (s%, t%)).  

Incorporating spatiotemporal correlation, we want to adjust Y" covariance estimation for a 

heterogeneous structure that is the sum of the spatiotemporal random function covariance and the 

measurement error covariance.  Ordinary estimation of  β" and its covariance must be corrected 

with respect to spatiotemporal correlation, considering inverse covariance of Y" as the estimation 

weight [34]. Then, a new Z-score will be computed based on these adjusted estimations to reach a 

more accurate activation map. The STGP model uses the following steps to estimate the true 

covariance of Y" based on spatiotemporal observations and measurement errors: 

1. We estimated the mean structure µ" using a semiparametric regression model and obtained the 

residuals:	r"(s, t) = Y"(s, t) − µ&(s, t)= ; 

2. These residuals were used to estimate spatiotemporal random functions η&>(s, t) using a local 

linear function by smoothing r". Having more than one hundred time points, we faced dense 

sampling data, so an optimum boundary of a univariate kernel function k':  

𝑘((s) − s) = h*+Dk((s),- − s-) h⁄ )
.

-/0

 (3) 
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was used to estimate η"	with	respect	to	β1	and	β0:  

η&>(s, t) = LLMr"Ns),-, t"-O − β1 − β02 PNs),- − s-O
2, t"- − tQ

2
R
3
k'(s),- − s-)k'!(t"- − t)

4

-/0

.

)/0

 (4) 

where: 

k'!Nt"- − tO = k(
Nt"- − tO
h0

)/h0 (5) 

The optimal boundaries (h, h0) were selected by minimizing the generalized cross-validation 

(GCV) score. 

3. To estimate the covariance of spatiotemporal Gaussian random functions, ∑ 	#  , we first 

checked its separability hypotheses using the Aston et al. test [25], which was rejected (P-

value=<0.001, 0.022, and 0.038). In this non-separable unstructured spatiotemporal 

covariance matrix, we faced a daunting 23,961,600 parameters (122880 voxels ˟ 195-time 

points) for our data.  By taking it into standard brain space, they became 176,012,655 

parameters (902629 voxels ˟195 time points) in an MNI standard format (average152T1). The 

STGP model uses the Functional Principal Component (FPC) model to consider global 

spatiotemporal dependencies. Using FPC allows regression coefficients to vary across the 

brain because it estimates spatiotemporal basis functions directly. In addition, it enables STGP 

to quickly and easily estimate the huge spatiotemporal dependencies matrix. We used FPC’s 

of an average of the product of the η&>  of all subjects single spectral decomposition [35]: 

!	
#

𝜼
$(s, t), 's′, t′() = n−1!η*i(s, t)η*i(s′, t′)

n

i=1
 (6) 

!	
#

𝜼
=! λkψk(s𝑖, 𝑡𝑖)ψk's𝑗, 𝑡𝑗(

∞

k=0
 (7) 

Where λ0 > λ3 > λ+ > ⋯0  are the ordered eigenvalues of linear operation determined by ∑# and 

ψ@(s, t) are the corresponding orthonormal eigenfunctions:  
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�̂�!(𝑠, 𝑡) = Lξ"@

@"

@/1

ψ@(s, t) (8) 

Where: 

𝜉!A = ] ] η̂"(s, t)
.

1

4

1
	ψ@(s, t)dt	dv(s) (9) 

ξ"@ is referred to kth FPC score for the ith subject, and dv(s) is the Lebesgue measure [36]. ξ"@ is a 

random variable with E(ξ"@) = 0 and E(ξ"@
3) = λ@. Some first ordered eigenvalues were used to 

approximate the spatiotemporal random function covariance structure,  ∑ 	#𝛈, because they 

explained at least 70% of the total relative variation [37].  Here,  ∑ 	#𝛈	is the first element of the total 

variance of	Y"  estimation, ∑ 	# 𝐘. Afterward, measurement errors were estimated by: 

𝜀!̂(𝑠, 𝑡) = Y"(s, t) − µ̂"(s, t) −Lξ"@

)

@/1

ψ@(s, t) (10) 

4. This model used a partitioned covariance estimation to capture error dependencies. The same 

parcellation, anatomical or functional methods are usually used to partition all subjects’ brains. 

Since distant voxels can have a similar activity pattern in studies such as the present one, 

activity-based (functional) parcellation is more appropriate[15]. Therefore, Group 

Independent Component Analysis (GICA)  was conducted using the FSL software package 

(melodic) for parcellation of all subjects’ brains together [33]. Using GICA, we identified 

some brain clusters that have the same activity pattern. These clusters were used to define 

brain parcellations or regions of interest (ROI) for error covariance estimation. 

5. To approximate the error covariance structure, a mixed-effects model was implemented on 

each subject's brain ROI,(developed in the previous step. This model was used to estimate the 

measurement error distribution covariance parameters by restricted maximum likelihood 

estimation (RMLE) for the first-order autoregressive model in each area. Errors ε"(s, t) were 

assumed to be independent across the partitioned brain regions, while the spatiotemporal 

correlation was preserved within each subdivision. Then the estimation of ∑$ became a block-
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diagonal matrix, with each block belonging to one of the ROIs in an AR(1) format, and the 

ROIs are considered independent. 

6. The total variance of Y"  or the STGP model, ∑ 	#𝐘, was computed by adding up	∑ 	b# to∑ 	b$;  

!	
#

𝐘
=!	

#
𝛈
+!	

#
ε
 (11) 

After total variance computation, the adjusted estimation of β" was computed by the Weighted 

Least Square (WLS) method with taking the total variance as inverse weight; then, the model 

estimation of observation is calculated as follows: 

𝛽d = (X%L	
b

C

*0

X)*0X′L	
b

C

*0

Y 
(12) 

𝑌!"(𝑠, 𝑡) = X"(s, t)β#"(s, t) + η#/(s, t) +	ε#/(s, t) (13) 

Calculating the βe  variance adjusted for spatiotemporal correlation, the new corrected Z-score was 

calculated. 

𝑐𝑜𝑣(β)b = (I − XjX%L	
b

C

*0

Xk
*0

X%)Y jX%L	
b

C

*0

Xk
*0

 
(14) 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 = β8	(𝑐𝑜𝑣(β)/ )−1/2 (15) 

The corrected brain activity pattern map was computed using the STGP model and then compared 

with Group-Level-GLM output from the FSL software package (Feat-second level analysis) and 

the fast, fully Bayesian spatiotemporal model. They were visualized using xjView 

(https://www.alivelearn.net/xjview) and FSL eye toolboxes.  

 

3.2. Simulation study 

A simulation study was conducted to evaluate the STGP model and to compare its properties with 

the Group-Level GLM and fast, fully Bayesian spatiotemporal models. Imaging data with an 
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S=10×10×10 set of voxels were generated for n=50 subjects at T=100 time points.  We considered 

a fixed design matrix of block task of 30 seconds rest and 30 seconds task that was convolved by 

a double-gamma canonical hemodynamic response function (HRF). The random function of the 

spatiotemporal correlation structure 

η"(s, t) = Lξ"@

@"

@/1

ψ@(s, t) 

were set for k1=3 and 

ξ0@~N(0, 7
3), 																						ξ3@~N(0, 3

3), 																			ξ+@~N(0, 1.5
3). 

Based on three eigenfunctions of applied real data [4,18,35], the eigenfunctions were considered 

as: 

ψ0!(𝑠, 𝑡) = 	
1

5√30
sin P

𝜋𝑠
5 Q cos t

𝜋𝑡
18v 

 
(16) 

ψ3!(𝑠, 𝑡) = 	
1

5√30
cos P

𝜋𝑠
5 Q cos t

𝜋𝑡
18v 

 

(17) 

ψ+!(𝑠, 𝑡) = 	
1

2√255
P0.9 −

𝑠
5Q cos

(𝜋𝑡) (18) 

Ten parcels were defined for error simulation, and at each parcel,  ε"(s, t) was considered as a zero-

mean Gaussian Process. The non-separable space-time covariance function proposed by Bourotte 

[38] was defined as the covariance structure.  

The GLM, STGP and Spatiotemporal Bayesian models were fitted to each simulated dataset.  

Then, we assessed the models using measures of accuracy (the percentage of voxels whose status 

in terms of activation or inactivity is correctly estimated by the model), precision (the percentage 

of active voxels that the model has correctly estimated to be active), false positive rate, FPR (the 

ratio of active voxels that are incorrectly detected by the model as active voxels to the total number 

of active voxels), false negative rate, FNR (the percentage of inactive voxels that are wrongly seen 

by the model as inactive voxels to the total number of inactive voxels). Also,  Mean of Absolute 
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Error (MAE), Root Mean Square of Error (RMSE) and Normalized Mean Square Error (NMSE) 

were computed and reported.  It is clear that models with higher accuracy and precision and lower 

FPR, FNR, MAE, RMSE, and NMSE≅ 1 are preferred. By concatenating Y"s as Y=(Y0, Y3, … , YF) 

and setting N=	𝑆 × T × n, we calculated MAE, RMSE, and NMSE using the following formulas: 

 
 
This process was repeated 100 times and the mean of the calculated measures are reported in Table 

1. 
 

Table 1. The model comparison indexes for GLM, Bayesian Spatiotemporal Model and STGP Model 
based on the simulation study. 

Models Accuracy (%) Precision (%) FPR (%) FNR (%) MAE RMSE NMSE 
Group-Level-GLM 86.7 78.32 4.35 3.27 3.576 3.85 2.32 
Bayesian ST model 93.8 95.65 1.08 0.9 2.952 2.509 0.432 
STGP Model 99.5 99.95 0.41 0.1 1.352 1.745 0.934 

 

4.  Results: 

The STGP model, the ordinary Group-GLM, and a fast, fully Bayesian spatiotemporal model were 

fitted to tfMRI (memory task) data, and their performances were compared. Preprocessing steps 

were similar for all models. First level and Group-Level-GLM analyses were conducted using FSL 

software. 

Using the Spatiotemporal Gaussian Process (STGP) model, µ&> 	and	r" were computed for each 

subject. According to the FPCA results, the first three eigenvalues could explain about 90% of the 

total relative variation (Figure 2). 

 

𝑀𝐴𝐸 = (𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒(𝑌 − 𝑌e))(1′G1G)*0  
 

(19) 

𝑅𝑀𝑆𝐸	= 		 (N𝑌 − 𝑌eO%N𝑌 − 𝑌eO(1′G1G)*0)0/3 (20) 

NMSE	 = N𝑌 − 𝑌eO′(𝑌′𝑌)*0N𝑌 − 𝑌eO (21) 
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 All-subject brain parcellation was conducted using GICA in the FSL(Melodic toolbox) software 

package. Based on GICA results, 11 activity-based regions of interest (ROI) were selected, one of 

which consisted of all inactive voxels. Therefore, the error correlation was estimated using the 

spatiotemporal autoregressive model with the REML method[39]. In the next step, total variance 

estimation, adjusted βe , and its variance were computed. Figure 3 represents the voxel-wise Z-

scores (βe/SE(βe  )) for the three models. 

 

Fig. 2. The first ten eigenvalues of ∑ 	&# for the experimental tfMRI memory data. 
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Fig. 3. Comparison between activation (significant voxel) maps of selected slides of the functional image: (A) 
Group-Level-GLM, (B) STGP Model, and (C) Fast, fully Bayesian model. The main activated area was the same for 
all models, but adjustment for spatiotemporal correlation in the STGP and Fast, fully Bayesian model lead to 
surpassed areas with higher Z-score. 

 

 The absolute minimum and maximum Z-scores in the STGP were considerably higher than those 

of the Group-Level GLM and somewhat higher than the fast, fully Bayesian spatiotemporal model 

(Table 2).  

 
Table2. Z-scores in the Group-Level-GLM, Bayesian Spatiotemporal Model, and STGP Model. 

Models Minimum  
 

Maximum  
 

Mean Absolute  
in 1000 higher 

activated voxels 

Mean in the main 
activated area  in 
Prefrontal cortex 

Group-Level-GLM -14.8 20.96 10.178 12.1 

Bayesian 
Spatiotemporal Model -20 22.32 18.2 22.23 

STGP Model -33.1 32.2 31.91 30.3 
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The computed family-wise error rate (FWER) threshold was 5.99. Based on this threshold, the 

brain activation maps are shown in Figure 4. 

 

 

Fig. 4. The axial view of activation (Z-score) maps for : (A) Group-Level-GLM, (B) STGP Model, and (C) Fast, 
fully Bayesian model. The main activated area in all models was the same in the super motor area. The STGP model 
had a higher Z-score but less activated voxels compared to the group-level GLM and Fast, fully Bayesian model. 
The STGP model had a higher Z-score but less activated voxel, especially in diffused voxels. 

 

The STGP model, Group-Level GLM, and fast, fully Bayesian spatiotemporal model found 14.5%, 

25%, and 19% activated voxels in the whole brain, respectively. Mean computational time 

consumed for single, and group-level (for real and simulated data) calculations for the models are 

reported in Table 3. 

 
Table 3.  Time (in minutes) consumed for data analysis by the GLM, Bayesian Spatiotemporal Model, 

and STGP Model.  

Models Single-level 
analysis 

Group-level 
analysis 

(10 subjects) 

Simulated data Group-
level analysis 

(50 subjects,1000 voxels) 
Group-Level-GLM 17 192 116 
Bayesian ST model 780 7998 4793 
STGP Model 112 1312 702 

 

5. Discussion 

This research aimed to assess the efficiency and accuracy of the STGP model compared to two 

common scenarios of fMRI data analysis, i.e., the GLM and  Bayesian approaches. As statistical 
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analysis is the basis of reported brain activation (Z-score) maps, it is obvious that inaccurate 

analysis can lead to imprecise brain maps [10]. 

 fMRI data are acquired in three-dimensional space during the scanning time, so when the 

spatiotemporal correlation is embedded, it makes it four-dimensional. Ignoring this correlation 

may lead to underestimating the variability and an increased false-positive rate [1]. Additionally, 

when fMRI data moves from a k-space inverse Fourier transformation to the time-space, a more 

realistic spatiotemporal covariance structure would be non-separable [24]. However, incorporating 

an ultra-high-dimension non-separable unstructured spatiotemporal covariance matrix causes 

difficulties in computations. Hence, a spatiotemporal model with the ability to consider huge non-

separable unstructured spatiotemporal covariance for fMRI data with a lower computational 

burden and more accuracy seemed necessary. We applied the proposed STGP model, which 

considers spatiotemporal correlation implanted in the fMRI data. The STGP model used FPCA for 

spatiotemporal covariance and parcellation for error covariance estimation. To evaluate this model 

in comparison to the GLM and fast, fully Bayesian models, we fitted them to experimental tfMRI 

memory and also simulated datasets. 

In the real data, the main activated areas were the same for all three models, the occipital and 

frontal lobes, which is in agreement with results in previous work on this data [32]. Moreover, 

these results were also confirmed by previous works on memory task-based stimuli [32,40–42]. 

Recent studies have shown that the frontal lobe and the posterior sensory-motor area, where the 

actual memory is demonstrated, were retrained [40]. 

Z-score is a measure that shows how changes in the BOLD signal of a voxel follow a normal 

pattern. A higher absolute Z-score shows more likely activation. After adjusting for spatiotemporal 

correlation, it is expected that the variance estimation of regression coefficients, cov(β)b	, will 

increase, and the Z-score will decrease.  Then, the false activation areas must also decrease. On 

the other hand, spatiotemporal adjustment corrects the  regression coefficient estimation,	β	� . 

Increasing the absolute Z-scores, considering these two corrections together, shows stronger 

activation findings.   

In this study, the STGP model increased the absolute maximum Z-score by about 18 and 13 units 

compared to the group-level GLM and fast, fully Bayesian model. The adjusted Z-score for 
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spatiotemporal correlation in 1000 highest activated voxels in the STGP model increased up to 21 

and 13.7 units compared to the group-level GLM and fast, fully Bayesian model, respectively. The 

average Z-score in the frontal lobe, a specific confirmed area, was about 18 and 8 units more than 

the group-level GLM and fast, fully Bayesian model, respectively (Table.2.). An increasing Z-

score showed stronger activation and suppressed activated areas in comparison with the two other 

models; this may be due to false activation removal. Activated voxels in the whole brain were 

observed to be ten percent less in the STGP model, especially the sporadic voxels in the GLM. 

This may be because the spatiotemporal correlation increases precision and accuracy while 

reduced diffused unrelated activated voxels, which were practically considered as noise in the 

computations. 

In the simulation study, the STGP model resulted in more accurate results (higher accuracy and 

precision; NMSE≅ 1; lower: FPR, FNR, MAE, and RMSE) compared to the other two models, 

presumably due to the spatiotemporal correlation adjustment (Table.1.).  

On the aspect of computation time, the GLM for single and group-level analysis was the fastest 

model both on real and simulated data. Moreover, the fast, fully Bayesian model was more time-

consuming than the two other models in both situations (Table.3.).  This computational burden 

makes it very difficult when analyzing big group data. The lower fitting speed of the STGP and 

fast, fully Bayesian models is because of the spatiotemporal justification, as mentioned in previous 

studies  [3,8,9,17,19]. Considering the non-separable unstructured spatiotemporal correlation, the 

calculation time consumption of the activation map findings for the STGP is lower than even a 

fast version of the Bayesian models. The STGP model showed better results for real and simulated 

data (more accurate with less FPR, higher absolute Z-score maps). However, its computational 

time is more than a simple model like the GLM.  

There are several limitations to the STGP model application. All steps in the STGP model must be 

supervised, and the setting at each step depends on the result of the previous step.  All following 

processes must also be supervised, which is not as easy as implementing a group-level GLM 

analysis. In addition, the STGP model is based on the Gaussian assumption in fMRI data. It would 

be better to evaluate Gaussian Process assumptions and adjust the model for cases where it would 

not be acceptable. 
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6. Conclusion 
To conclude, the STGP model, which considers spatiotemporal dependencies in a single subject 

and group level fMRI data, resulted in more accurate and precise maps in real and simulated data.  

There is a tradeoff between accuracy, precision, and computational cost. The STGP is not as fast 

as GLM but provides less FPR and more accurate group-level voxel-wise task-based fMRI maps.  
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