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Abstract 

The first postnatal years are an exceptionally dynamic and critical period of structural, functional 

and connectivity development of the human brain. The increasing availability of non-invasive 

infant brain MR images provides unprecedented opportunities for accurate and reliable charting of 

dynamic early brain developmental trajectories in understanding normative and aberrant growth. 

However, infant brain MR images typically exhibit reduced tissue contrast (especially around 6 

months of age), large within-tissue intensity variations, and regionally-heterogeneous, dynamic 

changes, in comparison with adult brain MR images. Consequently, the existing computational 

tools developed typically for adult brains are not suitable for infant brain MR image processing. To 

address these challenges, many infant-tailored computational methods have been proposed for 

computational neuroanatomy of infant brains. In this review paper, we provide a comprehensive 

review of the state-of-the-art computational methods for infant brain MRI processing and analysis, 

which have advanced our understanding of early postnatal brain development. We also summarize 

publically available infant-dedicated resources, including MRI datasets, computational tools, grand 

challenges, and brain atlases. Finally, we discuss the limitations in current research and suggest 

potential future research directions. 

Keywords: Infant brain, segmentation, parcellation, registration, cortical surface, brain atlas  

Highlights:  

1. A comprehensive review of infant-dedicated computational methods and tools 

2. A discussion of contributions to the understanding of infant brain development 

3. A discussion on current limitations and potential future directions 
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1 Introduction 

The first postnatal years are an exceptionally dynamic and critical period of structural, functional 

and connectivity development of the human brain. At term birth, although all primary and 

secondary cortical folds have been established, the average volume of the normal neonatal brain is 

only one third of that of the adult (Knickmeyer et al., 2008). During the first postnatal year, the 

brain volume doubles with regionally-heterogeneous growth patterns (Knickmeyer et al., 2008). 

Although the biological mechanisms of the early brain development remain unclear, complex 

underlying microstructural changes, e.g., myelination, increases in dendritic arborization, axonal 

elongation and thickening, synaptogenesis and glial proliferation, are typically considered as the 

main driving factors (Lyall et al., 2014). Increasing evidence suggests that many 

neurodevelopmental and psychiatric disorders are the consequence of abnormal brain development 

in this stage of rapid brain growth during infancy (Gilmore et al., 2010; Hazlett et al., 2005). For 

example, infants with autism, which affects >1.4% of children in the United States, demonstrate 

brain overgrowth associated with an increase in cortical surface area before 2 years of age (Hazlett 

et al., 2011). Identifying early biomarkers of neurodevelopmental and psychiatric disorders during 

infancy will allow designing targeted preemptive intervention strategies to improve prognosis or 

even prevent disorder onset. 

The increasing availability of non-invasive infant brain multimodal MR images, e.g., T1-

weighted (T1w), T2-weighted (T2w), diffusion-weighted (DW), and resting-state functional MR 

images, provides unprecedented opportunities for accurate and reliable charting of dynamic early 

brain developmental trajectories in understanding normative and aberrant growth. For example, the 

Baby Connectome Project (BCP) will acquire and release cross-sectional and longitudinal high-

resolution multimodal MRI data from 500 typically-developing children from birth to 5 years of 

age (http://babyconnectomeproject.org). The Developing Human Connectome Project (dHCP) in 

the UK will release MRI data from 1500 subjects acquired from 20 to 44 weeks post-conceptional 

age (http://www.developingconnectome.org). These large-scale datasets will undoubtedly greatly 

increase our limited knowledge on normal early brain development, and provide important insights 

into the origins and abnormal developmental trajectories of neurodevelopmental disorders, such as 

autism, schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder (ADHD).  

However, infant brain MRI typically exhibits reduced tissue contrast (especially from 3 to 9 

months of age), large within-tissue intensity variations, and regionally-heterogeneous dynamic 

image appearance and development, in comparison with adult brain MRI. In terms of white-gray 

matter contrast, infant brain T1w and T2w MR images exhibit three distinct phases, as shown in 

Fig. 1 (Paus et al., 2001): (1) the infantile phase (≤ 3 months), in which the gray matter shows a 

relatively higher signal intensity than the white matter in T1w images, and the tissue contrast in 

T2w images is better than in T1w images; (2) the isointense phase (5-9 months), in which the signal 

intensity of the white matter is increasing during the development due to the myelination and 

maturation process; in this phase, gray matter and white matter have the lowest signal 

differentiation in both T1w and T2w images; (3) the early adult-like phase (≥12 months), where 

the gray matter intensity is much lower than the white matter intensity in T1w images, largely 

similar to the tissue contrast pattern in adult T1w images. Hence, the existing computational tools 

typically developed for processing and analyzing adult brain MRI, e.g., SPM, FSL, BrainSuite, 

CIVET, FreeSurfer and HCP pipeline, often perform poorly on infant brain MRI.  

To address these challenging issues, many infant-tailored computational methods have been 

proposed for computational neuroanatomy of infant brains, and have led to many important 

discoveries on early postnatal brain development. This review article aims to provide a 

comprehensive review of the state-of-the-art computational methods dedicated for processing and 

analysis of infant brain structural T1w and T2w MR images. As illustrated in Fig. 2, for processing  

http://babyconnectomeproject.org/
http://www.developingconnectome.org/
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Fig. 1. T1w, T2w, FA images, tissue segmentation results (by LINKS, (Wang et al., 2015)) as well 

as the reconstructed inner and outer surfaces of a typically-developing infant, scanned 

longitudinally at 2 weeks, 3, 6, 9 and 12 months of age. Inner surfaces are color-coded with the 

maximum principal curvature, and outer surfaces are color-coded with cortical thickness.  

and analyzing structural T1w and T2w brain images, a computational pipeline typically consists of 

the following main steps: image preprocessing, tissue segmentation, image registration, regions of 

interest (ROIs) labeling, topology correction, surface reconstruction, surface registration, surface 

parcellation, volumetric/surface atlas construction, and measurement. In this review, we will 

discuss the challenges and the existing solutions for each of these major steps in infant brain studies, 

and also suggest future research directions. We will also list those publically available resources 
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dedicated for advancing infant brain MRI studies, e.g., datasets, computational tools, grand 

challenges, and brain atlases. Note that the techniques for fetal brain MRI processing and analysis, 

which are different from processing infant brain MRI, is not the focus of this review and thus will 

not included in this review. But the respective techniques can be found in those fetus-dedicated 

review articles (Benkarim et al., 2017; Makropoulos et al., 2017a; Studholme, 2011). 

 

Fig. 2. Flowchart of a typical pipeline for analyzing T1w and T2w structural MR images. Note that, 

in infant studies, many steps need to be infant-specific.  

2 Image Preprocessing 

In brain MRI studies, image preprocessing is a fundamental step for subsequent image processing 

and analysis. This step usually includes motion correction, intensity inhomogeneity correction, and 

skull stripping, thus improving image quality and reducing undesired disturbance. 

2.1 Motion Correction 

Motion correction has been an active area of research within MRI community. Compared to adults, 

imaging infants is susceptible to motion, because it is difficult to expect infant subject to remain 

still during acquisition (Dean et al., 2014). Meanwhile, motion artifacts can manifest in the forms 

of ghosting, blurring, contrast changes or signal voids, which hampers accurate image processing, 

and thus often necessitate a rescan. To minimize motion-related artifacts, the most widely used 

strategy is to scan infants when they are asleep. However, infants are still prone to move or wake 

up. To date, advanced retrospective (Atkinson et al., 1999), prospective (Zaitsev et al., 2006), and 

hybrid (Aksoy et al., 2012) techniques have been developed for motion correction. Such techniques 

could be used in conjunction with the infant dedicated protocols to achieve high success rates with 

artifact-free images (Hughes et al., 2016). Recently, Cordero-Grande et al. (Cordero‐Grande et 

al., 2018) proposed a method for reconstruction of multi-shot, multi-slice neonatal MRI to address 

the problem of rigid motion, leading to a remarkable improvement of image quality on 500+ 

neonates. Detailed reviews of motion correction techniques can be found in (Malamateniou et al., 

2013; Zaitsev et al., 2015). 
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2.2 Intensity Inhomogeneity Correction 

Intensity inhomogeneity refers to the smoothly varying signal intensities across an image, also 

referred to as radio-frequency coil non-uniformity, magnetic field inhomogeneity, etc. (Vovk et al., 

2007). Intensity inhomogeneity could greatly decrease the performance of algorithms for infant 

MRI analysis, especially when algorithms assume intensity homogeneity within each tissue class. 

Therefore, correction of intensity inhomogeneity is important for accurate segmentation and 

registration of infant brain MRI. The widely used methods for intensity inhomogeneity correction 

for infant brain MRI are nonparametric nonuniform normalization (N3) algorithm (Sled et al., 

1998) and its improved version, N4 (Tustison et al., 2010), despite they are not specifically 

designed for infants. Although most studies address intensity inhomogeneity at the pre-processing 

stage, some works incorporate intensity inhomogeneity correction into tissue segmentation 

techniques (Wang et al., 2011). Detailed reviews of intensity inhomogeneity correction techniques 

can be found in Belaroussi et al. (Belaroussi et al., 2006) and Vovk et al. (Vovk et al., 2007). 

2.3 Skull Stripping 

Background: Skull stripping, also known as brain extraction, aims to retain brain parenchyma 

and discard non-brain tissues, such as skull, scalp, and dura (Smith, 2002). Skull stripping has 

become a standard procedure to preprocess brain MR images and is important for subsequent image 

analysis. Accurate skull stripping is crucial, since incorrectly-removed brain tissues cannot be 

recovered in subsequent processing steps, and also unremoved non-brain tissues (especially the 

dura) could cause overestimation of the local brain volume or cortical thickness. 

Challenges: Numerous skull stripping methods have been proposed over past years, while, most 

of them were validated only on adult brain MR images. In comparison, infant MR images are 

considerably more challenging for skull stripping, due to their low spatial resolution, dynamic 

changes of imaging intensity, brain size and shape. Hence, only a few methods have been developed 

for skull stripping of infant brain MR images. 

Methods: Representative skull stripping methods developed for infant brain images can be 

categorized into deformable surface-based methods (Mahapatra, 2012) and learning-based methods 

(Serag et al., 2016; Shi et al., 2012a). In particular, Mahapatra et al. (Mahapatra, 2012) proposed a 

technique for skull stripping of the neonatal brain using the prior shape information within a graph 

cuts framework, with a validation on 20 neonates. Inclusion of the prior shape information obtained 

from a set of manually labeled training images facilitated accurate identification of brain and non-

brain tissues. Thus, Shi et al. (Shi et al., 2012a) proposed a method named Learning Algorithm for 

Brain Extraction and Labeling (LABEL). The basic idea is to perform multiple complementary 

brain extractions for a given image by using a meta-algorithm including BET and BSE, where the 

parameters of each run of the meta-algorithm were effectively learned from the training data. Also, 

representative subjects were selected as exemplars and used to guide brain extraction of new 

subjects in different age groups. A level-set based fusion method was proposed to combine multiple 

brain extractions for obtaining the final extraction. This method has been extensively evaluated on 
200+ infant subjects. Serag et al. (Serag et al., 2016) proposed a multi-atlas-based learning method 

for skull stripping. This method used a sparsity-based atlas selection strategy that required a very 

limited number of atlases ‘uniformly’ distributed in a low-dimensional data space, combined with 

a machine learning based label fusion technique, and has been validated on 50 newborns. 

Future Directions: Due to the dynamic changes of imaging contrast in both T1w and T2w images, 

skull striping methods should adaptively choose the appropriate T1w or T2w image, or combine 

them together, to achieve the best performance. Recently, deep learning has achieved the state-of-

the-art performance in many applications in neuroimaging. Using deep learning and its combination 

with existing methods could further improve the performance. 
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3 Image Segmentation and Registration 

After image preprocessing in Section 2, brain tissue segmentation, registration, labeling and 

volumetric atlas construction can be performed. Tissue segmentation aims to segment the brain into 

different tissue types, such as white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). 

Brain registration aims to establish inter-subject or intra-subject image correspondences. Brain ROI 

(region of interest) labeling is to partition the brain into anatomically or functionally meaningful 

regions, such as subcortical regions and cortical regions. Atlas construction aims to build an 

unbiased and population-based common space for brain analysis. Each of these 4 steps can help or 

guide each other to achieve more accurate results. For example, tissue segmentation results could 

be used for registration and atlas construction, and in turn the constructed atlas could be used to 

guide tissue segmentation and registration of new subjects. Each of these steps is reviewed in the 

following four sections.   

3.1 Tissue Segmentation 

Background: Accurate tissue segmentation of infant brain MR images into different regions, e.g., 

white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF), is a fundamental step for 

quantifying early brain development. A large amount of work has been dedicated to the 

segmentation of adult brain MRI, resulting in many successful software packages, e.g., FSL, SPM, 

FreeSurfer, BrainSuite, and CIVET.  

Challenges: Segmentation tools developed for adult brains are not suitable for processing infant 

brains, due to the significant imaging appearance differences between infant and adult brain MRI 

as well as the dynamic contrast changes in infant brain MRI. To date, there is very limited publicly 

available software for infant brain MRI segmentation. In fact, segmentation of infant brain MRI is 

considerably more challenging than that of adult brain MRI due to the reduced tissue contrast 

(especially at around 6 months of age), severe partial volume effect, high image noise, strong 

motion effect, and dynamic white matter myelination. Actually, as shown in Fig. 1, there are three 

distinct phases in infant T1w and T2w MRI, i.e., the infantile phase (≤ 3 months), the isointense 

phase (5-9 months), and the early adult-like phase (≥12 months), with each phase having its distinct 

white-gray matter contrast pattern (Paus et al., 2001). As an illustration, the middle column of Fig. 

1 shows examples of T1w and T2w images at around 6 months of age. It can be observed that the 

intensities of voxels in gray matter and white matter are in a similar range in both T1w and T2w 

images (especially around the cortical regions), resulting in the lowest image contrast and hence 

significant difficulty for tissue segmentation. 

Methods: This section provides an overview of the representative infant brain MRI segmentation 

techniques in the literature, as also summarized in Table 1. According to the strategies used, we 

roughly divide the state-of-the-art segmentation methods into four categories: atlas-based, 

deformable-surface-based, learning-based, and hybrid approaches. The atlas-based approaches 

are further subdivided, based on the type of the atlases used, into population atlas based and subject-

specific atlas based approaches. Similarly, learning-based approaches are subcategorized, based 

on the type of the features used, into hand-crafted features based approaches and deep learning 

based approaches. From Table 1, we can also see that the focus of infant brain segmentation has 

recently shifted from the infantile phase to the more challenging isointense phase. Algorithms have 

evolved from basic atlas-based label fusion methods to more advanced deep learning frameworks. 

3.1.1 Atlas based approaches 

Most of the techniques for infant brain tissue segmentation rely on pre-segmented brain atlases 

(please refer to Section 3.4 for detailed introduction of atlases). The popularity of atlases stems 

from their widespread utility, as they can guide the segmentation process in areas of poor tissue 

contrast and help in distinguishing between tissues with similar intensities.  
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Population Atlas Based Approaches. An atlas can be generated from manual or automated 

segmentation of an individual image, or a population of images from different individuals. 

Population-based atlases provide a probabilistic estimate of each tissue at every voxel. This is 

essential for probabilistic segmentation approaches that require a prior probability model for each 

tissue label. For example, Prastawa et al. (Prastawa et al., 2005) generated an atlas by averaging 

three semi-automatically segmented images and then integrated it into the expectation-

maximization (EM) scheme for tissue classification. Similarly, Xue et al. (Xue et al., 2007a) 

constructed multiple age-specific atlases and performed the EM algorithm for tissue segmentation, 

in conjunction with the Markov random field (MRF). Song et al. (Song et al., 2007) built a 

population-based atlas with diffeomorphic flow based registration. Weisenfeld et al. (Weisenfeld 

et al., 2006) built a population-based atlas from 20 preterm infants scanned at 42 GA weeks, which 

were manually segmented by an expert based on initially automatic segmentations produced by 

(Warfield et al., 2000). Later, Weisenfeld and Warfield (Weisenfeld and Warfield, 2009) also 

employed an atlas of spatial priors constructed from 15 newborns. Other methods directly 

employed those publicly available infant atlases, e.g., UNC Infant 0-1-2 atlas (Shi et al., 2011b), 

4D neonatal atlas (Kuklisova-Murgasova et al., 2011), and Melbourne Children’s Regional Infant 

Brain (M-CRIB) atlas (Alexander et al., 2017). For example, Wang et al. (Wang et al., 2012b) 

proposed a neonatal segmentation algorithm based on the segmentation tool from SPM and the 4D 

neonatal atlas (Kuklisova-Murgasova et al., 2011). 

Subject-specific Atlas Based Approaches. The performance of population atlas-based approaches 

highly depends on the quality of the atlas used and its spatial alignment with the to-be-segmented 

images. Moreover, a pre-defined atlas may not be able to account for the considerable anatomical 

variability among subjects. As proposed in (Aljabar et al., 2009; Shi et al., 2010a), a subject-specific 

atlas, which can be constructed from images that are similar to the to-be-segmented image, leads 

to more accurate segmentation results than the population-based atlases. Thus, Shi et al. (Shi et al., 

2010a) proposed a novel approach for neonatal brain segmentation by utilizing an atlas built from 

the longitudinal follow-up image of the same subject (i.e., the image scanned at one or two years 

of age) to guide neonatal image segmentation. Since many neonatal subjects do not have 

longitudinal follow-up scans, Shi et al. later proposed a multi-region-multi-reference framework 

(Shi et al., 2010b) to generate a similar atlas for the to-be-segmented image. Wang et al. (Wang et 

al., 2014b) estimated a subject-specific atlas by using patch-based sparse representation. 

Nevertheless, these approaches still do not eliminate the use of atlases, although not population-

based atlases. 

3.1.2 Deformable surface based approaches 

Most of the above-mentioned atlas are based on voxel-wise approaches. Consequently, prior 

geometric/anatomical information is not fully explored, e.g., cortical thickness, which can help 

constrain the relative locations of different tissue boundaries. To effectively explore this 

information, deformable surface based approaches provide an alternative way for infant brain 

segmentation. A representative work was proposed in (Wang et al., 2011), in which cortical 

thickness was easily incorporated into a coupled level sets framework. To provide a robust 

initialization of the zero level set, a population-based atlas or a subject-specific atlas was usually 

employed. For example, in (Wang et al., 2014b), a subject-specific atlas estimated by a patch-based 

sparse representation was used as an initialization for level set evolution.  

3.1.3 Learning based approaches 

It is worth noting that atlas-based approaches and deformable surface-based approaches mainly 

focus on the infantile phase (neonatal) brain. They typically donot work well on the isointense 

infant images, due to the extremely low image contrast in both T1w and T2w images, as shown in 

Fig. 1. To address this issue, learning-based approaches have been proposed and achieved better 
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performance on the challenging isointense images. According to features used, we divided 

learning-based approaches into hand-crafted features based approaches and deep learning based 

approaches. 

Hand-crafted Features Based Approaches: Anbeek et al. (Anbeek et al., 2013) proposed a 

neonatal brain segmentation method based on supervised classification. Each voxel was 

represented using its intensity and spatial features. Based on these features, each voxel was assigned 

to one of eight tissue classes using K-nearest neighbor classifier. Wang et al. (Wang et al., 2015) 

proposed a learning-based multi-source integration framework for segmentation of infant brain 

images (shorted as LINKS). They employed the random forest technique (Breiman, 2001) to train 

a classifier to effectively integrate 3D Haar-like features from multi-source images for tissue 

segmentation. Here, the multi-source images include initially only the multi-modal (T1w, T2w and 

FA) images and later also the iteratively estimated and refined tissue probability maps of WM, GM, 

and CSF. They evaluated their method on infant brain MR images at all three phases during the 

first year of age.  

Deep Learning Based Approaches: In recent years, deep learning (LeCun et al., 2015) has 

achieved great success in many fields. Instead of designing hand-crafted features, deep learning 

can automatically learn effective feature hierarchies from the infant brain MR images. Zhang et al. 

(Zhang et al., 2015) proposed deep convolutional neural networks (CNNs) to segment isointense 

phase MR images, in which a hierarchy of increasingly complex features from MR images were 

learned. Moeskops et al. (Moeskops et al., 2016) proposed a CNN-based method for automatic 

segmentation of neonatal brain MR images. To well capture brain structural details and enforce 

spatial consistency, the proposed network used multiple patch sizes and multiple convolution kernel 

sizes to acquire multi-scale information of each voxel. Nie et al. (Nie et al., 2016) used fully 

convolutional networks (FCNs) for segmentation of isointense phase images, and later further 

proposed a 3D fully convolutional network (3D-FCN) trained in an end-to-end and voxel-to-voxel 

fashion for segmentation of isointense phase images (Nie et al., 2018). 

3.1.4 Hybrid approaches 

Many methods combined or integrated different strategies into a hybrid segmentation framework. 

For example, Beare et al. (Beare et al., 2016) utilized a combination of unified segmentation, a 

population-based neonatal atlas (Kuklisova-Murgasova et al., 2011), morphological segmentation 

tools and topological filtering, to segment neonatal images. Gui et al. (Gui et al., 2012) proposed 

an atlas-free neonatal segmentation method based on the high-level brain morphology knowledge, 

integrating relative tissue location, connectivity and structure. They employed some established 

segmentation methods, such as the marker-based watershed and region-based active contours, and 

then validated on neonatal images.   

Future Directions: Although many algorithms have been proposed and achieved reasonable 

performances, there are still many open directions to explore. First, most infant brain images used 

in the previous studies are from normal subjects without visible pathology or severe imaging 
artifacts. However, in clinical routine, scans with artifacts, especially motion artifacts, as well as 

scans with pathology are very common. Second, myelinated white matter (MWM) was usually 

poorly segmented, compared to other tissues, due to the small volume of myelin in the infant brain 

and the extremely low contrast with the surrounding tissues in isointense phase. Third, most of 

previous methods ignore brain anatomical/topological information during segmentation, resulting 

in many geometric/topological errors, which will be discussed in Section 4. Fourth, ground-truth 

annotations, usually from manual segmentations, are critically important in developing algorithms, 

especially for the learning-based approaches. However, these resources are highly limited.  
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Table 1. Representative infant brain segmentation algorithms in the literature. WM: white matter 

(WM=MWM+UWM); GM: gray matter (GM=cGM+sGM); CSF: cerebrospinal fluid 

(CSF=eCSF+vCSF); UWM: unmyelinated white matter; MWM: myelinated white matter, cGM: 

cortical gray matter; sGM: subcortical gray matter; eCSF: cerebrospinal fluid in the extracerebral 

space; vCSF: cerebrospinal fluid in the ventricles; BGT: basal ganglia and thalami; CB: cerebellum; 

BS: brainstem; BG: background. 

Study Dataset Modality 
Tissues 

segmented 

Atlas/Features/ 

Architecture 
Method 

(a.1) Atlas based approaches – Population atlas based approaches 

(Prastawa 

et al., 2005) 
50 neonates 

T1w, 

T2w 

UWM, 

MWM, GM, 

CSF 

Atlas built from 3 

neonates 

EM based framework 

for classification 

(Xue et al., 

2007a) 
25 neonates T2w 

UWM, GM, 

CSF 

Age-based templates 

from 27 to 45 

gestational age 

EM-MRF scheme 

 

(Weisenfeld 

and 

Warfield, 

2009) 

13 training, 

10 testing 

neonates 

 

T1w, 

T2w 

UWM, 

MWM, 

cGM, sGM, 

CSF 

Atlas built from 15 

newborn 

segmentations 

Supervised 

classification, 

followed by iterative 

prototype editing 

 

(a.2) Atlas based approaches – Subject-specific atlas based approaches 

(Shi et al., 

2010a) 
10 neonates T2w 

WM, GM, 

CSF 

Atlas built from 

longitudinal scans 

Probabilistic-atlas-

based segmentation  

(Shi et al., 

2010b) 
 

10 neonates T2w 
WM, GM, 
CSF 

Atlas built by 

selection of similar 
exemplars  

Multi-region-multi-

reference framework 
 

(Shi et al., 

2011a) 
10 neonates T2w 

WM, GM, 

CSF 

Hybrid atlas built on 

subject-specific 

cortical structures, 

with population-

based atlas 

Use of phased array 

coil and creation of 

hybrid atlas 

(Wang et 

al., 2014a) 

32 infants 

at 6 months 

of age 

T1w, 

T2w, FA 

WM, GM, 

CSF 

Subject-specific 

atlas built based on 

multi-modal sparse 

representation 

Patch-based sparse 

representation of 

multi-modal images + 

anatomical/topological 

constraints  

(b) Deformable surface based approaches 

(Wang et 

al., 2011) 
10 neonates T2w 

WM, GM, 

CSF 

Population atlas 

from (Shi et al., 

2011b) 

Coupled level sets 

with incorporation of 

atlas, local intensity, 

and cortical thickness 

(Wang et 

al., 2014b) 

152 

neonates 
T2w 

WM, GM, 

CSF 

Subject-specific 

atlas built by sparse 

representation 

Patch-driven level set 

method 

(c.1) Learning based approaches – Hand-crafted features based approaches 

(Anbeek et 

al., 2013) 

7 training + 

101 testing 

neonates 

T1w, 

T2w 

CB, MWM, 

UWM, BGT, 

BS, vCSF, 

eCSF, BGT 

Intensity and spatial 

features 

Supervised 

classification based on 

intensity and spatial 

values  

(Wang et 

al., 2015) 

10 training 

and 26, 22, 

22, 23, and 

26 testing 

T1w, 

T2w, FA 

WM, GM, 

CSF 

3D Harr-like 

features extracted 

from T1w, T2w, FA, 

and also the 

Learning-based multi-

source integration 

framework (LINKS): 

Training a sequence of 
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subjects at 

0-, 3-, 6-, 9- 

and 12-

months, 

respectively 

intermediate WM, 

GM, and CSF 

probability maps 

classifiers via random 

forest and auto-context 

model 

(c.2) Learning based approaches – Deep learning based approaches 

(Nie et al., 

2016) 

10 infants 

at 6 months 

of age 

T1w, 

T2w, FA 

WM, GM, 

CSF 

3 convolutional 

layers + 2 

deconvolutional 

layers  

2D fully convolutional 

networks (FCN) 

(Moeskops 

et al., 2016) 
22 neonates  T2w 

CB, MWM, 

UWM, BGT, 

BS, vCSF, 

eCSF, BGT 

3 convolutional 

layers + 1 fully 

connected layer in a 

multi-scale fashion 

2D Multi-scale CNN 

(Nie et al., 

2018) 

11 infants 

at 6 months 

of age 

T1w, 

T2w, FA 

WM, GM, 

CSF 

6 convolutional 

layers + 6 

deconvolutional 

layers 

3D multimodal FCN 

(d) Hybrid approaches 

(Gui et al., 

2012) 

30 neonates  

 

T1w, 

T2w 

CB, MWM, 

UWM, BGT, 

BS, CSF, 

eSF, BGT 

Watershed + active 

contour model 

Morphology-driven 

automatic 

segmentation  

(Beare et 

al., 2016) 
41 neonates  T2w 

cGM, WM, 

sGM, CB, 

BS, CSF, 

amygdala, 

hippocampus  

Unified 

segmentation with a 

population atlas, 

template adaptation 

and topological 

filtering 

Morphological 

adaptation and unified 

segmentation 

3.2 Image Registration 

Background: Image registration aims to establish accurate inter-subject and intra-subject brain 

anatomical/functional correspondences. Image registration techniques are the cornerstone of many 

applications, such as segmentation (Section 3.1), ROI labeling (Section 3.3) and volumetric atlas 

constructions (Section 3.4). Herein, we mainly focus on the techniques for deformable/nonlinear 

image registration, necessary for both intra-subject and inter-subject comparisons in infants. For 

the affine or linear registration, tools developed for adults can be directly adopted. 

Challenges: To date, a number of deformable registration methods have been developed (Klein et 

al., 2009; Sotiras et al., 2013), yet most of them are proposed for registering adult brain images and 

are not directly applicable to infant brain images. This is because the infant brain undergoes 

dramatic changes in imaging appearance, brain size, shape, and folding degree in region-specific 

manners as shown in Fig. 1. Therefore, it is very challenging to register two infant brain images 

with a large age gap, especially across different subjects. 

Methods: To tackle the challenges in infant image registration, recent studies fully exploited the 

prior knowledge, such as the previously registered longitudinal infant images, to guide registration 

of new infant subject images. In general, the representative methods fall into three categories: 

intensity-based methods (Wang et al., 2014c; Wei et al., 2017; Wu et al., 2015), segmentation-

based methods (Ha et al., 2011; Shi et al., 2010a; Wang et al., 2012a; Xue et al., 2007b), and hybrid 

methods (Dong et al., 2017; Xue et al., 2006), as listed in Table 2. 

Table 2. Representative registration methods for infant brain images. (W: weeks; M: months; Y: 

years; GA: gestational age) 
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Study Dataset Modality Applied infant ages  Method 

(a) Intensity-based approaches 

(Wei et al., 

2017) 

24 infants (leave-

two-out validation) 
T1w or T2w 

2 W to 12 M, 3 M to 12 

M, 6 M to 12 M, 9 M to 

12 M 

Learning based 

method using 

random forest 

and auto-context  

(Wang et al., 

2014c) 

9 infants (leave-one-

out validation) 
T1w or T2w 2 W to 6 M, 6 M to 12 M 

Sparse learning 

based method 

(Wu et al., 2015) 

24 infants (leave-one-

out validation) 

 

T1w or T2w 

2 W to 12 M, 3 M to 12 

M, 6 M to 12 M, 9 M to 

12 M 

Longitudinal-

image-guided 

correspondence 

detection  

(b) Segmentation-based approaches 

(Wang et al., 

2012a) 
28 infants T1w, T2w, FA 

2 W, 3 M, 6 M, 9 M, 12 

M 

Tissue maps 

based method 

(Shi et al., 

2010a) 

10 infants (leave-one- 

out validation) 
T1w and T2w Neonate, 1 Y, 2 Y 

Tissue maps 

based method 

(Ha et al., 2011) 10 infants T1w Neonate to 2 Y 

Tissue maps and 

geometric 

descriptors 

based method 

(c) Hybrid approaches 

(Dong et al., 

2017) 

10 infants (leave-two 

-out validation) 
T1w and T2w 

2 W to 12 M, 3 M to 12 

M, 6 M to 12 M, 2 W to 

3 M, 2 W to 6 M, 3 M to 

6 M 

Joint 

segmentation 

and registration  

Intensity-based Methods: Intensity-based registration methods include learning-based methods 

and modeling-based methods. Learning-based methods can be further classified into two 

subcategories: supervised learning based methods, and sparse representation learning based 
methods. The supervised learning based methods aim to learn a complex mapping from an intensity 

image to its corresponding deformation field to a given reference image. In the training stage, 

machine learning techniques, such as random forest regression model and auto-context model (Wei 

et al., 2017), were applied to learn an appearance-to-displacement model and an appearance-to-

appearance model in a patch-wise manner. The learned models were used to predict the deformation 

pathways as well as alleviate the appearance differences between infant MR images with a large 

age gap. In the testing stage, the learned models can be used to predict a deformation field and 

appearance change for the new infant subject image. Following the prediction, the conventional 

deformable registration methods, such as diffeomorphic demons (Vercauteren et al., 2009), can be 

further used to refine the image registration. On the contrary, sparse representation learning based 

methods can directly achieve good registration performance without using a registration refinement. 

For example, Wang et al. proposed a sparsity learning based method to detect spatio-temporal 

correspondences within the to-be-registered subjects with the help of a set of intermediate 

sequences with established longitudinal correspondences (Wang et al., 2014c). Wu et al. further 

improved the registration performance by using a hierarchical and symmetric registration strategy 

to iteratively increase the key points in the images and to symmetrically deform the two infant 

images towards their common space (Wu et al., 2015). 

Segmentation-based Methods: Different from intensity-based methods, segmentation-based 

registration methods establish more accurate image correspondences using morphological features 

extracted from segmented images (Shi et al., 2010a; Wang et al., 2012a). These segmented images 

can be obtained by using the methods mentioned in Section 3.1. In addition to using the segmented 
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images, Ha et al. proposed a method by incorporating both tissue probability maps and surface 

anatomical descriptors for longitudinal infant image registration (Ha et al., 2011).  

Hybrid Methods: The last category above is the hybrid registration methods. On one hand, image 

registration can benefit from the segmentation, where geometric features can be extracted to help 

identify image correspondences. On the other hand, the refined image registration results can bring 

more useful information leading to better tissue maps for guiding the segmentation process. 

Inspired by this, Dong et al. proposed a novel joint segmentation and registration method for infant 

brain images by using spatiotemporal trajectories learned from a large number of training subjects 

with complete longitudinal data (Dong et al., 2017). By using a sparse learning multi-atlas based 

label fusion method, coupled with a level-set segmentation approach, the initial image 

correspondences can be established by registering segmented images. Then, with spatial 

correspondences, segmentation accuracy of the new infant image can be further improved by 

incorporating additional label fusion priors from the reference time domain. Thus, through iterative 

segmentation and registration steps, both segmentation and registration performances can be 

progressively improved. 

Future Directions: Future research should still focus on improving both registration performance 

and computational efficiency. Considering the power of deep learning, one may employ deep 

learning techniques to learn a mapping model between infant brain image and its predicted 

deformation field as well as its predicted image appearance changes. 

3.3 Brain ROI Labeling 

Background: Brain ROI labeling aims to partition brain image into anatomically/functionally 

meaningful regions. These labeled regions provide the basis for many applications, such as 

quantitative measurement of regional development and serving as nodes for studying structural and 

functional networks. There are two major ways to label brain ROIs. One is to directly label 

volumetric images. The other one is to label the reconstructed cortical surfaces. In this section, we 

focus on the volumetric ROI labeling, while detailing cortical surface parcellation in Section 4.4. 

Challenges: Existing methods for brain image labeling typically leverage multi-atlases with manul 

labels. For infant brain image labeling, there are three main challenges: 1) Infant-dedicated multi-

atlases are scarce; 2) It is difficult to establish accurate image correspondences between the to-be-

labeled image and multi-atlases; 3) ROI boundaries in the infant brain are typically not very clear.  

Methods: Although many approaches have been proposed for labeling brain ROIs, very few works 

were dedicated to infant brains. Gousias et al. (Gousias et al., 2008) labeled 2-year-old brain images, 

by propagating the manually labeled ROIs from 30 normal adult brains, using the non-rigid 

registration and majority voting strategy. Gousias et al. further explored the term-born and preterm 

infant brain ROI labeling (Gousias et al., 2012). In particular, they defined a labeling protocol to 

manually label the preterm brain into 50 ROIs based on the macro-anatomical landmarks from both 

T1w and T2w images, and applied to 15 preterm subjects and 5 term subjects using label fusion. 

Later, they generated an atlas named ALBERT, consisting of the voxel-wise manual labeling 

template for each subject (Gousias et al., 2012). In their following works (Gousias et al., 2013), the 

ROI labels on the atlas were propagated onto individual subjects based on the multi-atlas 

registration and label fusion. In another work (Makropoulos et al., 2014), an Expectation-

Maximization (EM) based labeling fusion strategy was adopted for propagating the ALBERT atlas 

labels onto the target image. Blesa et al. (Blesa et al., 2016) used the intermediate registration 

strategy to build the Edinburgh Neonatal Atlas (ENA33), which consists of 107 ROIs propagated 

from the adult brain. Alexander et al. (Alexander et al., 2017) built another neonatal cortical and 

subcortical atlas with 100 brain ROIs, which includes the popular FreeSurfer Desikan cortical 

parcellation scheme (Desikan et al., 2006) and subcortical regions.  
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     Apart from labeling the whole brain, some studies just focused on the labeling of particular 

regions, for example, the hippocampus. Guo et al. used a multi-atlas registration based approach 

that integrated multimodal information of both T1w and T2w images (Guo et al., 2014). The 

hierarchical multi-set kernel canonical correlation analysis is used to obtain common feature 

representations for multi-modal data. These features are then used for sparse patch-based label 

fusion to propagate the hippocampus labels on atlases to the target images. Dong et al. (Dong et al., 

2015) proposed a multi-atlas multi-modal label fusion method to label hippocampus at various ages 

from neonates to 1-year-old infants. A hypergraph was employed to leverage the label integration 

from both T1w and T2w multi-atlases. In a later sequential study, Guo et al. (Guo et al., 2016) 

further considered the longitudinal consistency by introducing cross-time point edges into the 

hypergraph. Table 3 summarizes the representative works on infant brain ROI labeling.  

Table 3. Representative works for infant brain ROI labeling. (M: months; Y: years) 

Future Directions: Future developments might include: 1) developing advanced learning-based 

methods for labeling; 2) creating more infant-specific labeling protocols and multi-atlases; 3) 

developing methods for temporally-consistent labeling of longitudinal infant images.   

3.4 Volumetric Atlas Construction 

Background: A brain atlas incorporates prior knowledge of voxel characteristics for neuroimaging 

studies. An atlas can be constructed by a single subject or a population of subjects. A typical 

population-based atlas usually includes an intensity model (also called template) that defines a 

spatial coordinate system, and additional features such as tissue probability maps and ROIs. Most 

Study Dataset Modality 

ROIs 

from 

adult? 

ROI 

NO. 
Method 

(a) Whole brain labeling 

(Gousias et al., 

2008) 

33 infants at 

2 Y 
T1w Yes 83 

Multi-atlas + majority 

voting 

(Gousias et al., 

2010) 

13 infants at 

1 Y 

T1w 

 
Yes 83 

Multi-atlas + majority 

voting 

(Gousias et al., 

2012) 
15 preterm 

and 5 term 

infants 

T1w, T2w No 50 Manual delineation 

(Gousias et al., 

2013) 
T1w, T2w No 50 

Multi-atlas + majority 

voting 

(Makropoulos et 

al., 2014) 
T1w, T2w No 50 

Multi-atlas + EM based 

labeling fusion 

(Blesa et al., 2016) 33 neonates T1w, T2w Yes 107 
Atlas + intermediate time 

points registration 

(Alexander et al., 

2017) 
10 neonates T1w, T2w Yes 100 Manual delineation 

(b) Specific ROI labeling 

(Guo et al., 2014) 

10 infants, 

each at 1, 3, 

6, 9 M 

T1w, T2w No 
hippoca

mpus 

Multi-atlas  +  multi-modal 

features based label fusion 

(Dong et al., 2015) 

10 infants, 

each at 1, 3, 

6, 9, 12 M 

T1w, T2w No 
hippoca

mpus 

Multi-atlas multi-modal + 

hypergraph based label 

fusion 

(Guo et al., 2016) 

10 infants, 

each at 1, 3, 

6, 9, 12 M 

T1w No 
hippoca

mpus 

Multi-atlas + spatial-

temporal hypergraph based 

label fusion 
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atlases were developed using adult subjects, while infant-dedicated atlases are few. In fact, 

registration of infant images to adult atlases results in poor alignment, due to considerable 

differences between infant brains and adult brains. 

Challenges: The main challenges in population-based atlas building are caused by inaccurate inter-

subject registration due to complex cortical folds and poor image contrast, especially in the 

isointense phase. Hence, the constructed infant atlases are typically blur and fuzzy in image 

appearance, especially in the cortical regions with large inter-subject variability of cortical folding. 

Methods: A population-based atlas can be generated from a population of subjects by registering 

individual images into a common space and then averaging them to get a mean template. Kazemi 

et al. proposed a neonatal atlas by a normalization process including an affine registration followed 

by a nonlinear registration with 7 individual images to represent their mean intensity and shape 

(Kazemi et al., 2007). Oishi et al. constructed a population-averaged atlas from 25 neonates through 

a multi-step alignment process with linear and nonlinear registrations (Oishi et al., 2011). 

Considering that infant images have low spatial resolution and insufficient tissue contrast, Shi et al. 

proposed to first segment the infant images with dedicated algorithms, and then register the 

segmented images (Shi et al., 2011b). In registration, as selecting one individual as a reference 

might hamper generalizability and induce bias, groupwise registration is considered as a better way, 

where no reference image is selected and all images are registered together to a hidden common 

space (Bhatia et al., 2007; Wu et al., 2011). As certain blurriness is always observed from the group 

averaged averaging, some works enhanced the sharpness of constructed atlas using sparse 

representation in intensity domain (Shi et al., 2014) and spatial-frequency domain (Zhang et al., 

2016b).  

     Due to the nature of the rapid development of infant brains, estimating age-specific infant brain 

atlases would be highly needed. For example, Kuklisova-Murgasova et al. proposed a 4D neonatal 

atlas covering the ages between 29 and 44 gestational weeks from 142 premature born neonates 

(Kuklisova-Murgasova et al., 2011). Through affine registration and a kernel-based regression 

method, age-specific templates and tissue probability maps were produced for a given age. Serag 

et al. further improved this 4D atlas by employing a more sophisticated nonlinear registration 

method (Serag et al., 2012a). Shi et al. proposed atlases for neonates, 1-year-olds and 2-year-olds, 

based on 95 subjects with longitudinal images (Shi et al., 2011b) (Fig. 3). Zhang et al. presented a 

4D infant atlas covering 5 time-points from birth to 1 year of age with an interval of 3 months from 

35 longitudinally scanned subjects, by using group-wise registration, patch-based atlas construction, 

and spatial-temporal consistency constraint (Zhang et al., 2016a).  

      The obtained average template, serving as a major component of the atlas, is widely used for 

spatial normalization of brain images. Furthermore, other maps with voxel-wise properties, such as 

tissue probabilities and ROI parcellation, can be transferred to the same coordinate system using 

the estimated deformation fields between individual intensity image and the average template. 

Beside ROIs defined by brain structures, functional connectivity based parcellation were also 

proposed (Shi et al., 2017).  
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Fig. 3. An example of age-specific atlases for neonate, 1 year and 2 years with multiple components 

from (Shi et al., 2011b). 

Future Directions: Future developments might include improving the atlas sharpness with better 

registration approaches, using larger sample size, using longitudinal data densely covering a larger 

developmental period, and integrating multiple image modalities.  

4 Cortical Surface Based Analysis  

Based on the brain tissue segmentation results in Section 3, cortical surface-based analysis can be 

performed, which plays a central role in mapping brain structure, function and connectivity. 

Cortical surface-based analysis is advantageous over volume-based analysis by 1) respecting the 

topological properties of the cortex, 2) facilitating alignment, analysis, and visualization of the 

highly-folded cortical regions, and 3) precisely measuring multiple biologically-distinct cortical 

properties, e.g., cortical thickness, surface area, cortical folding, myelin content, and cortical 

diffusivity. Hence, cortical surface-based analysis is well suited to capture the dynamic and 

complex neurobiological changes of the cortex during early brain development. As shown in Fig. 

2 and Fig. 4, typical pipelines for cortical surface-based analysis include topology correction, 

surface reconstruction, surface registration, surface parcellation, and surface measurement. This 

section provides a comprehensive review of representative computational methods for cortical 

surface-based analysis of the infant brain. Of note, compared to the abundant works on infant brain 

segmentation, infant-dedicated methods for cortical surface-based analysis are still very limited. 

As an alternative preliminary solution to the scarcity of such methods, many tools developed for 

examining the adult brain were adopted or modified to some extent to study the infant brain. 
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Fig. 4. A typical computational pipeline for cortical surface-based analysis of infant brains.  

4.1 Topology Correction  

Background: Geometrically, the cortical surface of each hemisphere is topologically equivalent to 

a sphere, when closing the midline hemispheric connections. However, due to the highly-folded, 

thin cortex and low neuroimaging resolution, topological defects are inevitably present in tissue 

segmentation results. Even a subtle error in tissue segmentation could lead to a large topological 

defect, thus bringing large errors to the surface-based analysis. Therefore, topology correction is 

an important step for cortical surface-based analysis (Fig. 4(e)). 

Challenges: Topological defects in infant brains are more prevalent and complicated, compared to 

adult brains, due to more segmentation errors in infant brains. Hence, directly applying topology 

correction methods developed for adult brains to infant brains typically leads to many anatomically-

incorrect regions. Such errors are largely generated by confusing two different topologies, i.e., 

holes and handles (bridges across sulcal banks), which are typically hard to distinguish when solely 

relying on geometric information. Typically, holes incorrectly perforate the cortical surface, while 

handles erroneously bridge the geodesically nonadjacent regions. Cortical surface correction 

methods generally focus on two topological operations: either filling a “hole” or breaking a 

“handle”, thus fixing all topology defects and preserving the anatomical structures of the cortex.    

Methods: Topology correction involves two sequential tasks, i.e., (1) localizing topologically 

defected regions, and (2) correcting these regions. Representative topology correction methods, 

which have been applied to infant studies, can be roughly classified into four categories (as 

summerized in Table 4): a) graph-based methods (Han et al., 2002; Shattuck and Leahy, 2001), b) 

surface mapping methods (Fischl et al., 2001; Segonne et al., 2007), c) topology-preserving 

deformation methods (Bazin and Pham, 2007; Han et al., 2003), and d) learning-based infant-

specific method (Hao et al., 2016). Each category is briefly discussed in the following text. 

Table 4. Representative methods applied to infant cortical topology correction. (WM: white matter) 
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Graph-based Methods: These methods typically convert a white matter (WM) volume into a 

graph, in which any circle indicates a topological defect. The circles can be removed by either 

changing the foreground voxels (WM voxels) into background (i.e., breaking a handle) or changing 

the background voxels into foreground (i.e., filling a hole), depending on the operation requiring 

minimal changes in the volume (Shattuck and Leahy, 2001) or constructing a maximum cycle-free 

sub-graph (Han et al., 2002). As many topological defects are complex in infant brains, this strategy 

may erroneously treat holes as handles, or vise versa, leading to anatomically less accurate results.  

Surface Mapping Methods: These methods leverage spherical surface mapping to identify and 

remove topological defects (Fischl et al., 2001; Segonne et al., 2007). Specifically, first, the initially 

tessellated surface mesh of WM is mapped onto a spherical surface. The locations of topological 

defects on the mapped spherical surface have overlaps or self-intersections of triangular meshes. 

Topological defects can be corrected by re-tessellating their corresponding local meshes. For 

example, in (Fischl et al., 2001) a greedy-strategy is used to sort the intersected edges and 

meticulously add them back. In (Segonne et al., 2007), a set of non-separating loops are selected 

using a Bayesian framework for opening and sealing the surface. These methods are 

computationally expensive due to the spherical mapping, especially for large topological defects. 

Topology-preserving Deformation Methods: These methods deform a surface with a spherical 

topology towards the WM surface, while preserving its initial topology by detecting cirtical points 

in topology (Bazin and Pham, 2007; Han et al., 2003). As the external forces typically rely on the 

image intensity, they may not work well for infant brain images, due to their dynamic, regionally-

heterogeneous image intensity. However, as suggested in (Hao et al., 2016), if relying on the 

segmented image, such methods can properly fill all the holes when shrinking the initial surface to 

wrap the WM volume. However, all “handle” defects are erroneously treated as “hole” defects and 

thus are incorrectly filled. 

Learning-based Method: To effectively distinguish handles from holes, a learning-based method, 

which does not rely on any ad hoc rules, was proposed to correct topological defects for infant 

cortical surfaces (Hao et al., 2016). To locate topologically defected regions, a topology-preserving 

level set method is leveraged. Specifically, a level set function with a spherical topology is first 

initialized by a large ellipsoid containing all WM voxels, and then gradually shrinks towards the 

WM surface, while preserving its initial topology. Next, a comparison between the converged WM 

volume and the original WM volume is performed to localize all topologically defected regions. 

Study Localizing defects 
Correcting 

defects 

Infant-

dedicated 
Method 

(Shattuck and 

Leahy, 2001;  

Han et al., 2002) 

Identifying circles in 

the graph of WM 

volume 

Changing voxels 

in WM volume, 

based on rules 

No Graph-based 

(Fischl et al., 

2001; Segonne et 

al., 2007) 

Detecting overlapping 

triangles of WM 

surface mapped on 

sphere 

Re-tessellating of 

triangles 
No 

Surface 

mapping based 

(Bazin and 

Pham, 2007; Han 

et al., 2003) 

Detecting non-

simple/critical points in 

topology 

Preserving the 

topology of a 

deformable 

surface with a 

spherical topology 

No 

Topology-

preserving 

deformation 

based 

(Hao et al., 2016) 

Difference of the WM 

volume before and after 

topology-preserving 

deformation 

Multi-atlas based 

sparse 

representation 

Yes Learning-based 
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To fix each topological defect, the correction scheme is learned from a number of well-defined 

segmentations that have been manually edited by experts. A region-specific dictionary is built for 

each defected region using the corresponding regions of these aligned reference images. Finally, 

the correct structure is inferred from the dictionary using a sparse representation method. For large 

topological defects that typically cannot be fully corrected using one-shot sparse representation, the 

above process can be iterated to gradually refine the results. 

Future Directions: Although these methods can remove many topological errors, their 

performance is still less promising for the regions with large segmentation and topological errors, 

such as in the occipital cortex, frontal pole, and medial temporal cortex. More advanced methods, 

especially those based on machine learning, are highly desired.  

4.2 Cortical Surface Reconstruction 

Background: After tissue segmentation and topology correction, cortical surfaces can be 

reconstructed, which play a vital role in studying structure, function and connectivity of the human 

brain (Dale et al., 1999). Cortical surface reconstruction can usually be divided into two sub-

problems: reconstruction of the inner surface (the interface between white matter and gray matter), 

and reconstruction of the outer/pial surface (the interface between gray matter and cerebrospinal 

fluid). The central/middle surface, which lies in the geometric middle layer of the cortex, is also 

often reconstructed for a more balanced representation of the cortical geometry. 

Challenges: There are a few challenges that need to be paid attention to, when reconstructing infant 

cortical surfaces. First, due to the severe partial volume effects in infant MRI, accurate 

reconstruction of the outer cortical surface in deep narrow sulcal regions for infant brains is more 

challenging than for adult brains. This is because in deep sulci the opposing sulcal banks are often 

closer than the MRI resolution and the cerebrospinal fluid can hardly be seen. Second, because of 

the changing image contrast during the first year, low image resolution, severe partial volume 

effects, and the possible errors involved in the image processing, the reconstructed cortical surfaces 

of the same subject may be not longitudinally consistent, leading to inaccurate measurement of the 

longitudinal development of infant brains.  

Methods: Existing approaches reconstruct cortical surfaces using a common framework, which is 

first to reconstruct the inner cortical surface (Fig. 4 (f)) and then to deform it into the central/outer 

cortical surface (Fig. 4 (g)). This common framework works for both adult and infant cortical 

surface reconstruction. In what follows, we briefly introduce this common framework, then several 

infant-specific methods will be discussed (as summarized in Table 5). 

Table 5. Representative methods for infant cortical surface reconstruction. (WM: white matter; M: 

months) 

Study Initialization 
External 

forces 

Internal 

forces 

Self-

intersection 

Output 

Surfaces 

Applied 

infant ages 

(Leroy et al., 

2011) 

Coupled 

surfaces: brain 

bounding box 

and a surface 

in WM volume 

Based on 

intensity 

image 

Based on 

Ising 

model 

N/A Inner 1-4 M 

(Li et al., 

2014a) 

Surface of 

topology- 

corrected WM 

volume 

Based on 

tissue 

image 

Based on  
Taubin 

smoothing 

filter 

Explicitly 

detect 

intersecting 

triangles 

Inner, 

middle, 

outer 

1-24 M 
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• Common Framework: The most common framework for cortical surface reconstruction is to 

first reconstruct the inner surface based on the white matter segmentation, then to deform the inner 

surface outwardly to obtain the central or outer surface. Under this common framework, each 

method may use a different strategy to implement each step of cortical surface reconstruction. The 

methods can vary in the following important aspects: (a) surface initialization, (b) surface 

evolution, (c) deep sulci processing. Each aspect is briefly discussed as follows.  

• Surface Initialization. There are mainly two surface initialization methods. The first one is to 

use the surface of the white matter volume following topology correction for initialization. The 

second one is to use the surface of a sphere/ellipsoid shape enclosing the white matter without 

topology correction for initialization. If the initial surface is an implicit surface (e.g., level set), then 

it is first deformed then tessellated. In contrast, if an explicit surface is used, it is first tessellated 

then deformed. Typical tessellation methods include Marching Cubes algorithm (Lorensen and 

Cline, 1987) and its variances, and the method in (Dale et al., 1999).  

• Surface Evolution. The deformation of the initialized surface can either be driven by the 

explicitly defined forces or implicitly achieved by minimizing an energy function. Either ways, the 

deformable model should always include two important terms: a data fitting term and a smoothness 

(regularization) term. The data fitting term provides the external force to push the surface moving 

towards the desired location. It can be modeled either based on the intensity image (Dale et al., 

1999) or the tissue segmented image (Han et al., 2004; Kim et al., 2005; Li et al., 2012), or both 

(Makropoulos et al., 2017b). The smoothness term provides the internal force to keep the surface 

tight and spatially smooth, while respecting the geometry of highly-convoluted cortical folding. 

The smoothness term can be based on local quadratic patch modeling (Dale et al., 1999), or 

curvature (Makropoulos et al., 2017b), or stretch and bending energy (Kim et al., 2005; MacDonald 

et al., 2000), or Taubin smoothing filter (Li et al., 2012). Another important component is the 

prevention of surface self-intersection. For implicit surface evolution, such intersections can be 

avoided by using topology-preserving level set algorithm (Han et al., 2004), while for explicit 

surface evolution, intersections can be avoided by introducing intersection prohibition terms in the 

energy function (MacDonald et al., 2000), or by explicitly detecting the potential intersecting 

triangles caused by evolution (Dale et al., 1999; Li et al., 2012). 

• Deep Sulci Processing. Due to the severe partial volume effect, the CSF between the deep and 

narrow sulcal banks typically cannot be captured in MR imaging, giving no hint to correctly 

reconstruct the outer cortical surface. In (Dale et al., 1999; Makropoulos et al., 2017b), for the deep 

sulci, the opposing sulcal banks deformed towards each other until they are close enough but 

without self-intersection. In (Han et al., 2004; Li et al., 2014a; Li et al., 2012; Mangin et al., 1995), 

the deep sulci are recovered using an anatomically consistent enhancement method. Specifically, 

in the sulcal regions a central skeleton is built in the middle of two back-to-back sulcal banks based 

on the weighted geodesic distance measurement. The skeleton is thinned to be no more than one 

voxel and treated as CSF. A similar idea is also used in (Kim et al., 2005), where a partial volume 

classification algorithm is used to label and thin voxels containing CSF components.  

(Kim et al., 

2016b) 
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Infant-specific methods: Some surface reconstruction tools developed for adult brains, e.g., 

FreeSurfer, Caret and CIVET, could be modified for reconstructing infant cortical surfaces, when 

providing infant tissue segmentation results (Hill et al., 2010; Kim et al., 2016b). Several infant-

dedicated methods have also been proposed. Leroy et al. (Leroy et al., 2011) proposed an infant-

specific method for inner cortical surface reconstruction. In this method, first, a feature field is 

constructed based on the contrast of the T2w image. Then, the inner cortical surface is reconstructed 

by simultaneously deforming two surfaces, which change at different speeds along different 

directions. Specifically, the first surface is initialized by setting a threshold of the feature field and 

deforms outwards; and the second surface is set as the brain bounding box and deforms inwards 

using a topology preserving method. When the two surfaces converge and meet, the second surface 

is used as the inner cortical surface. A neonate-specific method is proposed in (Makropoulos et al., 

2017b). In this method, a triangular mesh is first initialized as a convex hull of the white matter 

volume, and further deformed to reconstruct the inner surface and outer surfaces. The internal 

forces are based on curvature information and repulsion forces. The external forces are based on 

tissue image and intensity image. Specially, the surface is first pushed towards the white matter 

volume, and then further refined based on the intensity information to obtain the inner surface. The 

outer surface is obtained by further deforming the inner surface. 

Independent reconstruction of cortical surfaces at multiple time points of the same infant 

typically leads to temporally-inconsistent and inaccurate measurements, as surface reconstruction 

involves complex nonlinear optimization, which is typically sensitive to noise and initialization.  

Li et al. (Li et al., 2014a) proposed a method for reconstructing longitudinally-consistent cortical 

surfaces. Specifically, the inner cortical surfaces are first independently reconstructed then modeled 

by using a surface growth model. Next, the vertex-wise correspondence is established between each 

pair of successive inner surfaces. Then all cortical surfaces are jointly deformed with a spatio-

temporal deformable surface method to reconstruct all longitudinal inner and outer cortical surfaces, 

with the same triangular mesh configuration, thus providing a more accurate measurement of the 

dynamic development of the infant cortex. When removing the temporal constraint, this method 

can also be used to reconstruct infant cortical surfaces at a single time point.   

Future Directions: Regions with extremely low contrast and small folding structures, e.g., the 

medial occipital cortex, frontal pole, medical temporal cortex, and temporal pole, typically have 

less accurate segmentation results and thus the poor surface reconstruction. Leveraging the prior 

information of these regions may help improve the results. Moreover, for longitudinal infant studies, 

the longitudinal consistency of cortical surfaces is an important issue to consider.  

4.3 Cortical Surface Registration and Atlas Construction 

Background: Cortical surface registration aims to establish intra-subject and inter-subject cortical 

correspondences, so that longitudinal and cross-sectional analyses can be performed meaningfully. 

Cortical surface atlas construction aims to create population-based representative cortical 

properties based on surface registration. In turn, surface atlases can guide surface registration and 

play a fundamental role in analysis, visualization, and comparison of results across individuals and 

studies. 

4.3.1 Cortical Surface Registration  

Challenges: There are mainly two challenges in cortical surface registration. The first one is the 

remarkable inter-subject variability of the highly-convoluted cortical folding patterns. The second 

one is the dynamic changes of cortical properties during early brain development. Therefore, 

features used for driving surface registration need to be meaningful and reliable for capturing key 

characteristics of the infant cerebral cortex.  
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Methods: Many methods have been developed for cortical surface registration of adult brains, but 

infant-dedicated registration methods are still lacking. In this section, we mainly focus on those 

methods which have been successfully applied in infant studies.  

     The most popular and widely used methods for cortical surface registration are based on the 

spherical representation of the cortical surface (Fig. 4 (j)) (Fischl et al., 1999). These methods 

leverage the 2D nature of the cerebral cortex sheet, thus greatly facilitating the registration and 

analysis of the convoluted cortex. Typically, these methods first inflate and map the cortical surface 

onto the standard sphere with minimal distortion (Figs. 4 (h) and 4 (i)) (Fischl et al., 1999). Many 

cortical properties are computed either from the original surface (e.g., curvature, sulcal depth, 

myelin content, and sulcal-gyral curves) or the inflation procedure (e.g., average convexity). Then, 

the spherical surface registration can be performed based on slected cortical properties. A hallmark 

software for cortical surface registration is FreeSurfer (Dale et al., 1999; Fischl et al., 1999), which 

uses geometric features (e.g., curvature and average convexity) to drive the spherical registration. 

Later, Van Essen et al., proposed a surface registration method based on manually-delineated 

sulcal-gyral landmark curves (Van Essen, 2004; Van Essen et al., 2001). This method has been 

adopted for construction of the first neonatal cortical surface atlas (Hill et al., 2010). Robbins et al. 

(Robbins et al., 2004) proposed another strategy for the cortical surface registration based on 
spherical representation. Their method is based on the free-form deformation, with the control 

points’ similarities derived from the local geodesic distance from gyral crown vertices. Yeo et al. 

(Yeo et al., 2010) proposed a fast spherical demons algorithm using the same geometric features as 

FreeSurfer. This method has been leveraged to build the first 4D (spatial + temporal) infant cortical 

surface atlases (Li et al., 2015d). Robinson et al. (Robinson et al., 2014) modeled the spherical 

registration as a Markov random field labeling procedure. Besides cortical folding features, 

function related features (e.g., myelin content and functional connectivity) are also introduced into 

the registration framework for better functional alignment.      

4.3.2    Cortical Surface Atlas Construction  

Challenges: For adult MRI studies, many cortical surface atlases have been generated and widely 

adopted. However, they cannot be simply used in infant studies, due to the dynamic changes of 

brain size, shape and cortical folding. Given the dynamic development, the infant surface atlases 

should be constructed as spatiotemporal atlases with a dense sampling of age. However, very 

limited works (as summarized in Table 6) focused on building infant cortical surface atlases.  

Table 6. Representative works on infant cortical surface atlas construction. (GW: gestational 

weeks; M: month) 

Study 
Ages of 

Atlases 

Subject No. 

(Scan No.) 

Registration 

Method 

ROI No. (per 

hemisphere) 
Link 

(Hill et 

al., 2010) 
39 GW 12 Van Essen, 2004 N/A 

http://brainvis.wustl.

edu/wiki/index.php/

Sums:About?id=705

2056 

(Li et al., 

2013) 

Neonate, 12, 

24 M 
73 (219) Yeo et al., 2010 N/A N/A 

(Li et al., 

2015d; 

Wu et al., 

2017) 

1, 3, 6, 9, 12, 

18, 24, 36, 48, 

60, 72 M 

50 (339) Yeo et al., 2010 35 & 180 

https://www.nitrc.or

g/projects/infantsurf

atlas/ 

(Kim et 

al., 2016a) 

26 - 30, 31 - 

33, 34 - 36, 37 

- 40 GW 

158 (231) 
Robbins et al., 

2004 
39 N/A 

http://brainvis.wustl.edu/wiki/index.php/Sums:About?id=7052056
http://brainvis.wustl.edu/wiki/index.php/Sums:About?id=7052056
http://brainvis.wustl.edu/wiki/index.php/Sums:About?id=7052056
http://brainvis.wustl.edu/wiki/index.php/Sums:About?id=7052056
https://www.nitrc.org/projects/infantsurfatlas/
https://www.nitrc.org/projects/infantsurfatlas/
https://www.nitrc.org/projects/infantsurfatlas/
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(Bozek et 

al., 2016) 

38, 39, 40, 41, 

42 GW 
44 

Robinson et al., 

2014 
N/A N/A 

(Wu et al., 

2018) 

39, 40, 41, 42, 

43, 44 GW 
764 Yeo et al., 2010 35 & 180 

https://www.nitrc.or

g/projects/infantsurf

atlas/ 

(Wang et 

al., 2018) 

0.5, 1, 2, 3, 4, 

5, 6, 8, 10, 12, 

16, 20, 24 M 

32 (138) 

Rhesus 

Macaques 

Yeo et al., 2010 8 N/A 

Methods: Hill et al. (Hill et al., 2010) constructed the first neonatal cortical surface atlas, PALS-

term12 atlas, by co-registration of spherical cortical surfaces of 12 term-born neonates based on 

constraints of manually-delineated sulcal-gyral curves, using the method in (Van Essen, 2004; Van 

Essen et al., 2001). Kim et al. (Kim et al., 2016a) built spatiotemporal cortical surface atlases for 

preterm-born neonates from 26 to 40 weeks postmenstrual age based on SURFTRACC framework 

(Lyttelton et al., 2007; Robbins et al., 2004) from the CIVET pipeline. Specifically, they used 231 
scans from 158 preterm-born neonates and built atlases at four age ranges, i.e., 26-30, 31-33, 34-

36, and 37-40 weeks of gestation. Bozek et al. (Bozek et al., 2016) created spatiotemporal neonatal 

cortical surface atlases at each week from 38 to 42 gestational weeks, based on 44 subjects, by co-

registration of cortical surfaces in each age group using MSM registration method (Robinson et al., 

2014). As atlases constructed from small datasets may not be representative to the neonatal 

population, Wu et al. (Wu et al., 2018) thus constructed spatiotemporal cortical surface atlases at 

each week from 37 to 44 gestational weeks, based on a large-scale dataset with 764 neonates.  

All these atlases only cover the neonatal stage, and thus are still not able to accurately 

characterize the dynamic, regionally-heterogeneous cortical development during infancy. To 

address this issue, Li et al. (Li et al., 2013) created the first longitudinal infant cortical surface 

atlases at 0, 1, and 2 years of age, based on 219 serial MRI scans from 73 healthy infants, by 

groupwise registration of spherical cortical surfaces of all subject at each age using spherical 

demons (Yeo et al., 2010). To more comprehensively capture the dynamic development during the 

first two years, Li et al. (Li et al., 2015d) further constructed the first 4D (spatiotemporal) infant 

cortical surface atlas at seven densely-sampled time points (as shown in Fig. 5), including 1, 3, 6, 

9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy term-born infants, 

with each infant scanned longitudinally since birth. To ensure the longitudinal consistency and 

unbiasedness to any specific subject and age in this 4D surface atlas, they first computed the within-

subject mean cortical folding by groupwise co-registration of all longitudinal cortical surfaces of 

each infant, by using spherical demons. Then, they further established longitudinally-consistent 

and unbiased inter-subject cortical correspondences by groupwise co-registration of within-subject 

mean cortical folding across all infants. Thus, this 4D surface atlas captured both longitudinally-

consistent dynamic mean shape changes and the individual variability of cortical folding during 

early brain development. Recently, Wu et al. (Wu et al., 2017) extended the 4D surface atlas to 

densely cover the first 6 years with 11 time points (i.e., at 1, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 

months of age), based on 339 longitudinal MRI scans from 50 healthy infants. Moreover, to 

improve the clarity and sharpness of the atlas, instead of simply averaging of cortical folding 

features across the co-registered surfaces, a spherical patch-based sparse representation technique 

was also developed to eliminate the possible registration errors across subjects, thus preserving 

more details of cortical folding patterns. 

Future Directions: Cortical folding geometries are typically used for driving surface registration 

and for representing surface atlases. More cortical properties, e.g., myelin content, functional 

connectivity, and structural connectivity, could be potentially encoded in surface atlases and used 

for surface registration. However, as some cortical properties develop dynamically during infancy, 

they should not be simply used in surface registration involving subjects at very different ages. 

https://www.nitrc.org/projects/infantsurfatlas/
https://www.nitrc.org/projects/infantsurfatlas/
https://www.nitrc.org/projects/infantsurfatlas/
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Meanwhile, as cortical development during the first months is extremely dynamic, surface atlases 

would be better to have denser time points during this stage. 

 

Fig. 5. UNC 4D infant cortical surface atlases and parcellations, created by the method in (Li et al., 

2015d). (a) and (c) are the average convexity maps on the spherical space and mean cortical shape, 

respectively. (b) and (d) are the mean curvature maps on the spherical space and mean cortical 

shape, respectively. (e) and (f) are the FreeSurfer parcellation and HCP parcellation, respectively. 

The left-hand column indicates the age in months. 

4.4 Cortical Surface Parcellation 

Background: Cortical surface parcellation aims to divide the cerebral cortex into small parcels that 

are distinguishable from each other according to their micro/macro structures, functional properties 

or connectivity patterns (Eickhoff et al., 2017). Parcellation can be performed on a population level 

or an individual level. A population-level parcellation captures the commonly distinct cortical 

regions in population of subjects and can be defined on surface atlases, while an individual-level 
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parcellation more accurately reflects the individualized cortical regionalization. In this section, we 

mainly focus on infant cortical surface parcellation based on structural MRI information.  

Challenges: There are two main challenges in infant cortical surface parcellation. First, due to 

dramatic differences in cortical properties between infants and adults, the available cortical 

parcellation protocols defined in adults may not be optimal for infant studies. Second, in 

longitudinal infant studies, the dynamic cortical development may cause longitudinally-

inconsistent parcellations, especially for those ambiguous regions.  

Methods: There are very limited works on infant cortical surface parcellation. Existing methods 

can be roughly categorized into two groups: 1) sulcal-gyral based parcellation, where the cortical 

sulcal-gyral macro-structures are used to define basic units of the cortical surface (Fig. 4 (k)), and 

2) development based parcellation, which aims to define the basic cortical units that are distinct in 

developmental trajectories of cortical properties. 

• Sulcal-gyral Based Parcellation: Some existing methods developed for adult cortical 

parcellation could be modified for infant cortical parcellation at a single time point. To address the 

issue of longitudinal consistency, Li et al. (Li et al., 2014b) proposed a multi-atlas labeling approach 

for simultaneous parcellation of multiple longitudinal infant cortical surfaces. In this method, an 

energy function was explicitly formulated to adaptively enforce the spatial smoothness and 

temporal consistency in the longitudinal surface parcellation. Of note, this method can also be 

applied to infant cortical parcellation at a single time point, when removing the temporal 

consistency term. Due to the lack of infant-specific multi-atlas surfaces, this study was based on 

adult multi-atlas surfaces with manual labels by experts. Using infant-specific multi-atlas surfaces 

may improve the parcellation results, given that adult brains are not representative of infant brains. 

• Development Based Parcellation: Given that cortical microstructural and functional borders 

do not always match the sulcal-gyral structures, Li et al. (Li et al., 2015c) proposed a population-

level parcellation of infant cortical surfaces based on the developmental trajectories of cortical 

properties, e.g., cortical thickness and surface area. The central idea is that the developmental 

trajectories indirectly reflect the underlying changes of microstructures and their connectivity, 

which jointly determines the functional principal of each region (Zilles and Amunts, 2010). Thus, 

compared to sulcal-gyral structures, the development based cortical parcellation may lead to a 

better definition of developmentally, micro-structurally, and functionally distinct regions. Given 

the development trajectory of a cortical property, they first built the affinity matrix for each subject 

between each pair of vertices in the cortical surface. Then, after fusion of the affinity matrices for 

all subjects, the output parcellation was produced by performing spectral clustering algorithm on 

the fused affinity matrix. To more precisely localize each individual’s distinct regions and better 

understand the inter-subject variability, Li et al. (Li et al., 2017) further proposed to derive an 

individualized parcellation with the prior guidance from the population-level parcellation. The 

developmental trajectory requires multiple longitudinal infant scans, this may potentially limit its 

immediate extension to other applications.  

Future Directions: As existing infant cortical surface parcellations are based on a single cortical 

property, development of methods using multiple cortical properties are highly desired, as multiple 

properties provide complementary information on cortical architecture (Glasser et al., 2016). To 

this end, numerous questions remain open to future research, such as how different cortical 

properties contribute to the parcellation and which properties are more correlated with each other.  

4.5 Surface-based Measurement 

With the results of surface reconstruction, registration and parcellation, one can quantitatively 

measure multiple biologically distinct cortical properties, such as cortical thickness, surface area, 

myelin content, and cortical folding, at both vertex-wise level and region-level in the infant brain. 
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To quantify the cortical folding, many methods have been proposed, e.g., gyrification index (GI), 

local GI, sulcal depth, and curvature derived measurements. These cortical properties are discussed 

below. 

• Surface Area. At each vertex, the vertex-wise surface area can be computed as one-third the 

sum of the areas of all triangles associated with this vertex. The total surface area is the sum of 

vertex-wise surface areas of all vertices. Although surface area can be computed based on any 

surface, the central/middle surface is frequently used, as it is a more balanced representation of the 

sulci and gyri of the cerebral cortex. Of note, for vertex-wise comparison in both longitudinal and 

cross-sectional studies, the vertex-wise surface area should be computed based on the registered 

and resampled cortical surfaces for ensuring vertex-to-vertex cortical correspondences.  

• Cortical Thickness. At each vertex, the cortical thickness can be computed based on the 

reconstructed inner and outer surfaces, e.g., the minimum distance between inner to outer surfaces. 

The mean cortical thickness is computed as the average thickness values of all cortical vertices.  

• Cortical Volume. At each vertex, the cortical volume can be computed as the product of the 

surface area and cortical thickness. The total cortical volume is calculated as the sum of each 

vertex’s cortical volume, or the sum of the volume of each voxel. As can be seen, the cortical 

volume development is jointly determined by two distinct cortical measurements.  

• Myelin Content. At each vertex on the central surface, the myelin content, which is related to 

brain functional areas, is defined as the ratio of the original T1w/T2w image intensities prior to 

intensity inhomogeneity correction (Glasser and Van Essen, 2011).  

• GI and Local GI. The global cortical folding degree can be quantified by using GI (Zilles et al., 

1988), i.e., the ratio of the surface area of the pial surface and that of the cerebral hull tightly 

wrapping the brain in 3D space. Given the regional variations of cortical folds, it is desired to 

measure the local gyrification. Li. et al. (Li et al., 2014c) proposed an infant-dedicated method to 

ensure a meaningful comparison and measurement of local GI for the dynamic developing brain 

(Fig. 4 (l)). Specifically, they first established intra-subject and inter-subject cortical 

correspondences and resampled all cortical surfaces using the same triangular mesh configuration. 

Then, they computed the local GI for each vertex as the area ratio of its N-ring neighborhood 

vertices on the outer surface and that of their corresponding regions on the cerebral hull surface.  

• Sulcal Depth. Sulcal depth provides a continuously varying measurement of both coarse and 

fine shape information. For each vertex, it can be computed as the distance from the outer surface 

to the nearest point on the cerebral hull surface. Based on the sulcal depth map, sulcal pits, the 

locally deepest points in sulci, can be extracted based on the watershed method (Meng et al., 2014).  

• Curvature-based Measurements. The curvature reflects fine-scale properties of the cortical 

folding. Many measurements based on curvature have been proposed, mainly based on the 

maximum principal curvature and the minimum principal curvature, e.g., mean curvature, Gaussian 

curvature, shape index, curvedness, to measure the complexity of the cortical folding (Awate et al., 

2010; Kim et al., 2016b; Pienaar et al., 2008; Rodriguez-Carranza et al., 2008). 

4.6 Multimodal Information Mapping 

Multimodal information from functional MRI and diffusion MRI can be mapped and integrated 

onto the infant cortical surface to study the cerebral cortex in a more accurate and comprehensive 

way, as in HCP (Glasser et al., 2013). For functional MRI, functional signals can be resampled on 

the central/middle cortical surface for studying functional connectivity. For diffusion MRI, cortical 

diffusivity information can also be mapped onto the central cortical surface for studying cortical 

microstructure. For example, white matter fibers extracted from diffusion MRI can be mapped onto 



28 

 

the inner cortical surface for studying cortical structural connectivity (Li et al., 2015b; Nie et al., 

2014; Rekik et al., 2015b). Thus, all cortical information from structural, diffusion and functional 

MRI can be integrated and mapped onto the cortical surface for multimodal analysis.  

4.7 Growth Modeling and Prediction 

Background: Modeling and prediction of the dynamic brain development during infancy can help 

us better understand the normal brain development and provide insights into neurodevelopmental 

disorders. However, predictive models which can track the dramatic spatiotemporal changes in 

infant brains remain very scarce.  

Challenges: Scarcity of such predictive models might be primarily due to: (1) the lack of 

longitudinal infant multimodal MRI data with dense acquisition timepoints from birth, and (2) the 

complex changes in both highly-folded cortical shape and MRI appearance during the first years. 

Methods: Recently, a few pioneering models have been devised to predict the development of brain 

MRI, cortical surface shape, brain multishape (cortical surface and white matter fibers), and cortical 

property maps from neonatal data. Nie et al. pioneered the first mechanical cortical growth model 

(Nie et al., 2010; Nie et al., 2011) to simulate the dynamics of cortical folding from longitudinal 

MRI data in the first postnatal year, by modeling the cerebral cortex as a deformable elastoplasticity 

surface. Although promising, this method requires the use of cortical surfaces at later timepoints of 

the same infant to guide the growth model. Fishbaugh et al. (Fishbaugh et al., 2013) developed a 

geodesic shape regression in the framework of currents to estimate subcortical structures at 6 

months of age based on shapes from 9 to 24 months. However, this model also requires more than 

one timepoint to predict the developmental trajectory from later to early acquisition timepoints. 

Rekik et al. proposed the first learning-based framework that predicts the dynamic cortical shape 

from a single baseline cortical surface at birth using a diffeomorphic surface regression model 

(Rekik et al., 2015a). This model used the current metric to first learn a population-based cortical 

shape atlas then individualize it to predict subject-specific cortical shape development. A more 

advanced version was proposed in (Rekik et al., 2016), where the varifold metric, a more robust 

and elegant mathematical representation of shapes, was used to predict cortical shape development. 

Since the human brain can be modeled as multiple interrelated shapes (multishape), such as the 

cortex and white matter pathways, Rekik et al. (Rekik et al., 2017) further proposed the first infant 

brain multishape development prediction model to jointly predict the development of cortical 

surface shape and underlying whiter matter fiber connectivity. Meng et al. (Meng et al., 2017) 

proposed a Dynamically-Assembled Regression Forest (DARF) learning framework to predict the 

development of the cortical property maps (e.g., cortical thickness) during the first postnatal year, 

based on neonatal MRI features. This provides complementary information to the cortical shape 

prediction model, as a few cortical properties, e.g., cortical thickness, cannot be directly derived 

from the cortical shape.  

Future Directions: Building models that predict not only time-varying anatomy but also time-

varying function and connectivity, as well as cognitive/behavioral scores and risk for brain 

disorders, is a compelling research direction that remains unexplored. 

5 Resources  

5.1 Datasets and Challenges 

Table 7 lists publicly available large-scale datasets of baby brain images, including the Baby 

Connectome Project (BCP), Developing Human Connectome Project (dHCP) and National 

Database for Autism Research (NDAR). Especially, the BCP, a joint effort between the University 

of North Carolina at Chapel Hill and the University of Minnesota, aims to map detailed functional 

and structural connectome of the human brain during the first five years of life. The ongoing BCP 
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will acquire and release cross-sectional and longitudinal high resolution multimodal brain MRI 

scans (including T1w, T2w, DTI and rs-fMRI) of 500 typically developing children from 0 to 5 

years of age. The imaging quality and resolution from BCP will be comparable to that in the Human 

Connectome Project (HCP).  

Table 8 lists grand challenges for the infant brain MR images segmentation. For NeoBrainS12, 2 

axial scans (acquired at 40 weeks corrected age) and 2 coronal scans (acquired at 30 weeks 

corrected age) are available for training and 15 neonatal subjects are available for testing. For iSeg-

2017, 23 isointense infant subjects are randomly chosen from the pilot study of BCP, of which 10 

subjects are provided for training and the remaining 13 subjects are provided for testing. These 

manual labels provided by the challenge organizers are highly valuable for methodological 

development from the community.  

Table 7. Publicly available datasets of infant brain T1w and T2w MR images. (Y: years; M: 

months) 

Dataset Imaging parameters Subjects Link 

BCP 

T1w: TR/TE = 2400/2.24 ms,  

voxel size = 0.8 × 0.8 × 0.8 mm3 

T2w: TR/TE = 3200/564 ms,  

voxel size = 0.8 × 0.8 × 0.8 mm3 

Normal 

children 

0-5 Y 

http://babyconnectomeproject.org 

 

dHCP 

T1w: TR/TE = 11/4.6 ms,  

voxel size = 0.8 × 0.8 × 0.8 mm3 

T2w: TR/TE = 12,000/156 ms,  

voxel size = 0.8 × 0.8 × 1.6 mm3 

Neonates and 

fetuses 
http://www.developingconnectome.org 

NDAR 

T1w: TR/TE = 2400/3.16 ms,  

voxel size = 1 × 1 × 1 mm3 

T2w: TR/TE = 3200/499 ms,  

voxel size = 1 × 1 × 1 mm3 

Normal and 

autistic 

infants at  

6, 12, 24 M 

https://ndar.nih.gov 

Table 8. Segmentation challenges for infant brain MR images. 

Challenge Subjects Link 

NeoBrainS12 Neonates: 4 training subjects, 

15 testing subjects 

http://neobrains12.isi.uu.nl/ 

 

iSeg-2017 6-month-olds: 10 training 

subjects, 13 testing subjects 

http://iseg2017.web.unc.edu/ 
 

Table 9. Publicly available computational tools for infant brain MR images. 

http://babyconnectomeproject.org/
http://www.developingconnectome.org/
https://ndar.nih.gov/
http://neobrains12.isi.uu.nl/
http://iseg2017.web.unc.edu/
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Tool Functionality Applicable Stage Link 

iBEAT 

Preprocessing, skull stripping, 

tissue segmentation, image 

registration, ROI labeling, 

surface-based analysis 

(available soon) 

Infantile, 

isointense, early-

adult 

http://www.nitrc.org/projects

/ibeat 

ALFA Skull stripping Infantile http://brainsquare.org 

Neoseg Tissue segmentation Infantile 
https://www.nitrc.org/project

s/neoseg 

DrawEM Tissue segmentation Infantile 
https://github.com/MIRTK/

DrawEM 

MANTiS Tissue segmentation Infantile 
https://github.com/Develop

mentalImagingMCRI/mantis 

INSTAR 
Joint tissue segmentation and 

registration 
Infantile 

https://www.nitrc.org/project

s/instar 

dHCP 

Structural 

Pipeline 

Segmentation and surface-

based analysis 
Infantile 

https://github.com/Developi

ngHCP/structural-pipeline 

5.2 Computational Tools and Atlases 

Publicly available computational tools for infant brain MR image processing are listed in Table 9. 

It is worth-noting that iBEAT (Dai et al., 2013) successfully integrates many major steps of infant  

MR image processing, including preprocessing, skull stripping, tissue segmentation, image 

registration and ROI labeling. Also, it will be further extended to include tools for surface-based 

analysis. However, as can be seen, still limited software packages are available for processing the 

infant brain MR images, especially for the isointense and early-adult phases. 

The available infant brain volumetric atlases are listed in Table 10. Especially, Zhang et al. 

(Zhang et al., 2016) presented the first set of detail-preserved longitudinal volumetric atlases at 1, 

3, 6, 9, and 12 months of age. For each time point, both T1w and T2w atlases, and the tissue 

probability maps are provided. The available cortical surface atlases are listed in Table 6. 

Especially, Li et al. (Li et al., 2015d) created the first 4D infant cortical surface atlases from 

neonates to 2 years of age, including 1, 3, 6, 9, 12, 18, and 24 months, based on 339 serial MRI 

scans from 50 healthy infants, with each being scanned longitudinally from birth. Meanwhile, they 

have also mapped both the FreeSurfer parcellation (Desikan et al., 2006) and the HCP multi-modal 

parcellation (MMP) (Glasser et al., 2016) onto the 4D infant cortical surface atlases, as shown in 

Fig. 5. These infant volumetric and cortical surface atlases with dense time points will greatly 

facilitate neuroimaging mapping of the dynamic early brain development in many pediatric studies. 

Table 10. Representative infant brain volumetric T1w and T2w atlases. (Yes: the item is available; 

“-”: item is not available; GA: gestational age; PA: postmenstrual age; “*”: denotes longitudinal 

subjects were used; D: days; W: weeks; M: months; Y: years) 

Studies 
Subject 

No. 
Age  Template 

Tissue 

Probability 

Maps 

Parcellation Link 

(Altaye et 

al., 2008) 
76 1 Y Yes Yes - 

https://irc.cchmc.org

/software/infant.php 

(Gousias et 

al., 2008) 
33 2 Y - - 83 ROIs 

http://brain-

development.org/bra

in-atlases/pediatric-

brain-atlas/ 

http://www.nitrc.org/projects/ibeat
http://www.nitrc.org/projects/ibeat
http://brainsquare.org/
https://www.nitrc.org/projects/neoseg
https://www.nitrc.org/projects/neoseg
https://github.com/MIRTK/DrawEM
https://github.com/MIRTK/DrawEM
https://github.com/DevelopmentalImagingMCRI/mantis
https://github.com/DevelopmentalImagingMCRI/mantis
https://www.nitrc.org/projects/instar
https://www.nitrc.org/projects/instar
https://github.com/DevelopingHCP/structural-pipeline
https://github.com/DevelopingHCP/structural-pipeline
https://irc.cchmc.org/software/infant.php
https://irc.cchmc.org/software/infant.php
http://brain-development.org/brain-atlases/pediatric-brain-atlas/
http://brain-development.org/brain-atlases/pediatric-brain-atlas/
http://brain-development.org/brain-atlases/pediatric-brain-atlas/
http://brain-development.org/brain-atlases/pediatric-brain-atlas/
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(Fonov et 

al., 2009) 
108 0 - 4.5 Y Yes - - 

http://www.bic.mni.

mcgill.ca/ServicesAt

lases/NIHPD-obj2 

(Shi et al., 

2011b) 
95 

Neonate, 

1Y, and 

2 Y* 

Yes Yes 90 ROIs 

https://www.nitrc.or

g/projects/pediatrica

tlas 

(Kuklisova-

Murgasova 

et al., 2011) 

153 

Preterm 

(26 - 44 

W GA) 

Yes - - 

http://brain-

development.org/bra

in-atlases/neonatal-

brain-atlas 

(Oishi et al., 

2011) 
25 0 - 4 D Yes - 122 ROIs 

http://lbam.med.jhm

i.edu/ 

(Serag et al., 

2012b) 
204 

Preterm 

(27-44 W 

PA) 

Yes - - 

http://brain-

development.org/bra

in-

atlases/consistent-

high-definition-

spatio-temporal-

neonatal-brain-atlas/ 

(Gousias et 

al., 2012) 
33 

Preterm 

(37–43 

W PA) 

- - 50 ROIs 

http://brain-

development.org/bra

in-atlases/neonatal-

brain-atlas-albert/ 

(Broekman 

et al., 2014) 

119, 

32 
0 M, 6 M Yes - - 

http://www.bioeng.n

us.edu.sg/cfa/infant_

atlas.html#atlas 

(Blesa et al., 

2016) 
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39 – 47 

W PA 
Yes Yes 107 ROIs 

http://brainsquare.or

g 

 

 

(Makropoul

os et al., 

2016) 

338 

Preterm 

and term 

(23-42 W 

GA) 

- - 
7/50/87 

ROIs 

http://brain-

development.org/bra

in-atlases/multi-

structural-neonatal-

brain-atlas/ 

(Zhang et 

al., 2016a) 

35 (150 

scans) 

0, 3, 6, 9, 

12 M * 
Yes Yes 90 ROIs 

https://www.nitrc.or

g/projects/infant_atl

as_4d/ 

     Besides T1w and T2w atlases, we also summarize in Table 11 for baby brain diffusion-weighted 

(DW) atlases that have been reported in the literature. A good summary of DW atlases can also be 

found in (Dickie et al., 2017). Most atlases are cross-sectional, except the UNC-CH atlases (Kim 

et al., 2017), which are constructed from a longitudinal dataset acquired every three months since 

birth. Except the UNC-CH and NUS atlases, all atlases provide group-averaged diffusion tensor 

(DT) images (Oishi et al., 2013; Oishi et al., 2011) or DTI-based contrasts, such as fractional 

anisotropy (FA) and mean diffusivity (Avants et al., 2015; Blesa et al., 2016). The UNC-CH and 

NUS atlases provide group DW images, allowing the flexibility of fitting any diffusion models (Bai 

et al., 2012; Broekman et al., 2014; Kim et al., 2017; Saghafi et al., 2017). The atlases constructed 

by (Oishi et al., 2013; Oishi et al., 2011) include a parcellation map of WM structures of the 

neonatal brain. 

Table 11. Representative diffusion-weighted atlases for the infant brain. (D: days; W: weeks; M: 

months; WM: white matter; PA: postmenstrual age) 

http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2
http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2
http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2
https://www.nitrc.org/projects/pediatricatlas
https://www.nitrc.org/projects/pediatricatlas
https://www.nitrc.org/projects/pediatricatlas
http://brain-development.org/brain-atlases/neonatal-brain-atlas
http://brain-development.org/brain-atlases/neonatal-brain-atlas
http://brain-development.org/brain-atlases/neonatal-brain-atlas
http://brain-development.org/brain-atlases/neonatal-brain-atlas
http://lbam.med.jhmi.edu/
http://lbam.med.jhmi.edu/
http://brain-development.org/brain-atlases/consistent-high-definition-spatio-temporal-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/consistent-high-definition-spatio-temporal-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/consistent-high-definition-spatio-temporal-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/consistent-high-definition-spatio-temporal-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/consistent-high-definition-spatio-temporal-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/consistent-high-definition-spatio-temporal-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/consistent-high-definition-spatio-temporal-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html#atlas
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html#atlas
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html#atlas
http://brainsquare.org/
http://brainsquare.org/
http://brain-development.org/brain-atlases/multi-structural-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/multi-structural-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/multi-structural-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/multi-structural-neonatal-brain-atlas/
http://brain-development.org/brain-atlases/multi-structural-neonatal-brain-atlas/
https://www.nitrc.org/projects/infant_atlas_4d/
https://www.nitrc.org/projects/infant_atlas_4d/
https://www.nitrc.org/projects/infant_atlas_4d/
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Study Age 
Modality / 

Diffusion Model 
Components Atlas name Link 

(Akazawa et 

al., 2016; 

Oishi et al., 

2013; Oishi et 

al., 2011) 

0 - 4 D 

T1w, T2w, DW / 

Diffusion tensor 

model 

Templates, WM 

Parcellation Map, 

Fiber Probability 

Map 

JHU 

Neonatal 

Atlas 

http://cmrm.med.j

hmi.edu/ 

(Oishi et al., 

2013) 

18 , 24 

M 

T1w, T2w, DW / 

Diffusion tensor 

model 

Templates, 

WM Parcellation 

Map 

JHU 

Pediatric 

Atlas 

http://cmrm.med.j

hmi.edu/ 

(Bai et al., 

2012; 

Broekman et 

al., 2014) 

5 - 17 D 
T2w, DW / No 

specific model 
Templates 

NUS 

Neonatal 

Atlas 

http://www.bioen

g.nus.edu.sg/cfa/i

nfant_atlas.html 

- 6 M 
T2w, DW / No 

specific model 
Templates 

NUS 

Pediatric 

Atlas 

http://www.bioen

g.nus.edu.sg/cfa/i

nfant_atlas.html 

(Blesa et al., 

2016) 

39 - 47 

W PA 

 

T1w, T2w, DW / 

Diffusion tensor 

model 

Templates, AAL  

parcellation map,  

Tissue probability 

map 

UE Neonatal 

Atlas 

http://brain-

development.org/

brain-

atlases/neonatal-

brain-atlas-albert/ 

(Saghafi et 

al., 2017) 

14 – 48 

D 

DW / No 

specific model 
Templates 

UNC-CH 

Neonatal 

Atlas 

 

(Kim et al., 

2017) 

0, 3, 6, 

9, 12 M 

DW / No 

specific model 

Templates, 

Fiber probability 

map 

UNC-CH 

Longitudinal 

Infant Atlas* 

 

* Brain atlas based on longitudinal dataset 

Abbreviations: JHU. Johns Hopkins University; NUS. National University of Singapore; UE. University 

of Edinburgh; UNC-CH. University of North Carolina at Chapel Hill; AAL. Automated Anatomical 

Labeling. 

6 Discussion and Conclusion 

Based on the above discussed infant-specific methods and tools, researchers can comprehensively 

quantify brain development in both typically-developing infants and infants with or at-risk of 

neurodevelopmental disorders, thus addressing a variety of questions on early postnatal brain 

development. For example, how the gray matter and white matter volumes grow in specific brain 

regions during infancy (Gilmore et al., 2011; Knickmeyer et al., 2008)? What are the 

spatiotemporal developmental patterns of multiple biologically-distinct brain properties, e.g., 

cortical thickness, surface area, cortical gyrification, sulcal depth, curvatures, and myelin content, 

in the first two postnatal years (Hill et al., 2010; Li et al., 2015a; Li et al., 2013; Li et al., 2014c; 

Lyall et al., 2014; Meng et al., 2014; Meng et al., 2017)? How the inter-subject variability and left-

right hemispheric asymmetries of these brain properties emerge and evolve during infancy (Duan 

et al., 2017; Dubois et al., 2010; Glasel et al., 2011; Hill et al., 2010; Li et al., 2014c; Meng et al., 

2016)? How these brain properties relate to gender, cognitive/behavioral functions, genetics and 

environments (Jha et al., 2018)? How these properties are differentially associated with risks for 

neurodevelopmental disorders (Hazlett et al., 2017; Kapellou et al., 2006; Li et al., 2016; 

Melbourne et al., 2014)? What are the structural and maturational covariance patterns of these 

properties (Fan et al., 2011; Geng et al., 2017; Shi et al., 2012b)? How these properties co-develop 

with structural and functional connectivity? More neuroscientific and clinical applications of 

http://cmrm.med.jhmi.edu/
http://cmrm.med.jhmi.edu/
http://cmrm.med.jhmi.edu/
http://cmrm.med.jhmi.edu/
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html
http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
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infant-specific computational methods and tools can be found in (Dubois and Dehaene-Lambertz, 

2015; Gilmore et al., 2018).   

      Although remarkable progress has been achieved on computational neuroanatomy of infant 

brains, there are still various limitations and open questions, which have been discussed in the 

previous sections and are also briefly summarized here: 

• Methods. Due to the partial volume, dynamic, and regionally-varing apparances of infant MR 

images, conventional methods are often unable to achieve satisfactory accuracy, especially for 

isointense images around 6 months of age with insufficient tissue contrast. Recently, machine 

learning techniques have been shown to boost the accuracy in several challenging tasks, such as 

tissue segmentation and image registration. In particular, deep learning has recenly emerged as a 

powerful tool in medical image analysis. For example, in iSeg-2017 MICCAI Grand Challenge, 

the majority of the top performing methods were based on deep learning. Hence, development of 

advanced learning-based methods for infant MRI processing and analysis is an important avenue 

of research.  

• Validation. Most existing methods are only validated on small-scale datasets acquired using a 

single imaging protocol. Therefore, their performance might be limited in the studies involving 

different imaging protocols, scanners, brain disorders/pathologies, and age groups. To make the 

developed methods truly useful, validation on multiple datasets capturing different scenarios as 

mentioned above is recommended.  

• Resources. The accessibility to infant MRI datasets, computational tools, and brain atlases is 

critical for advancing research in pediatric neuroimaging studies. However, due to challenges in 

image acquisition and processing, freely accessible resources for computational neuroanatomy of 

infant brains are still very limited. Efforts should be directed to make those carefully validated 

resources publically available.  

This article has been focused on T1w and T2w. Also important for understanding the early 

development of the human brain is diffusion MRI (DMRI), which is capable of revealing tissue 

microstructural properties due to its sensitivity to the diffusion of water molecules. Besides the 

infant-dedicated DMRI atlases summarized in Table 11, infant-specific computational tools also 

need to be developed for DMRI, so that DMRI can be used effectively for understanding early brain 

development. For example, the following issues need to be addressed: (1) Low SNR caused by 

signal attenuation due to water diffusion that is much less restricted in the developing brain (Hüppi 

and Dubois, 2006); (2) Insufficient spatial resolution due to smaller brain size; (3) Partial volume 

effects, requiring greater microstructural models to tease apart signal contributions from different 

tissue compartments (Assaf et al., 2004; Fieremans et al., 2011; Kaden et al., 2016; White et al., 

2013; Zhang et al., 2012); (4) Tractography uncertainty resulting from the significantly lower 

diffusion anisotropy in the developing brain (Yap et al., 2011). 

 In summary, we have reviewed state-of-the-art computational methods dedicated to processing 

and analyzing infant brain MRI. We have also briefly discussed their representative applications to 

advancing our understanding of normal and abnormal brain development. We believe that future 

improvements and disseminations of computational tools for infant brain MRI processing and 

analysis will allow us to better chart and understand the dynamic brain developmental trajectories 

in typically-developing infants as well as the roots of abnormal neurodevelopmental trajectories in 

infants with disorders, thus informing early diagnosis and intervention. 
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