10 research outputs found

    Super-resolution land cover mapping by deep learning

    Get PDF
    Super-resolution mapping (SRM) is a technique to estimate a fine spatial resolution land cover map from coarse spatial resolution fractional proportion images. SRM is often based explicitly on the use of a spatial pattern model that represents the land cover mosaic at the fine spatial resolution. Recently developed deep learning methods have considerable potential as an alternative approach for SRM, based on learning the spatial pattern of land cover from existing fine resolution data such as land cover maps. This letter proposes a deep learning-based SRM algorithm (DeepSRM). A deep convolutional neural network was first trained to estimate a fine resolution indicator image for each class from the coarse resolution fractional image, and all indicator maps were then combined to create the final fine resolution land cover map based on the maximal value strategy. The results of an experiment undertaken with simulated images show that DeepSRM was superior to conventional hard classification and a suite of popular SRM algorithms, yielding the most accurate land cover representation. Consequently, methods such as DeepSRM may help exploit the potential of remote sensing as a source of accurate land cover information

    Updating Landsat-based forest cover maps with MODIS images using multiscale spectral-spatial-temporal superresolution mapping

    Get PDF
    Abstract With the high deforestation rates of global forest covers during the past decades, there is an ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy function to make the updated forest map spatially smooth. The temporal energy function was based on a multiscale spatial-temporal dependence model, and considers the land cover changes between the previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based classification and the latest sub-pixel based super-resolution mapping methods The results demonstrate the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based forest maps using MODIS images

    Sub-pixel mapping with point constraints

    Get PDF
    Remote sensing images contain abundant land cover information. Due to the complex nature of land cover, however, mixed pixels exist widely in remote sensing images. Sub-pixel mapping (SPM) is a technique for predicting the spatial distribution of land cover classes within mixed pixels. As an ill-posed inverse problem, the uncertainty of prediction cannot be eliminated and hinders the production of accurate sub-pixel maps. In contrast to conventional methods that use continuous geospatial information (e.g., images) to enhance SPM, in this paper, a SPM method with point constraints into SPM is proposed. The method of fusing point constraints is implemented based on the pixel swapping algorithm (PSA) and utilizes the auxiliary point information to reduce the uncertainty in the SPM process and increase map accuracy. The point data are incorporated into both the initialization and optimization processes of PSA. Experiments were performed on three images to validate the proposed method. The influences of the performances were also investigated under different numbers of point data, different spatial characters of land cover and different zoom factors. The results show that by using the point data, the proposed SPM method can separate more small-sized targets from aggregated artifacts and the accuracies are increased obviously. The proposed method is also more accurate than the advanced radial basis function interpolation-based method. The advantage of using point data is more evident when the point data size and scale factor are large and the spatial autocorrelation of the land cover is small. As the amount of point data increases, however, the increase in accuracy becomes less noticeable. Furthermore, the SPM accuracy can still be increased even if the point data and coarse proportions contain errors. © 2020 Elsevier Inc

    Superresolution Land Cover Mapping Using a Generative Adversarial Network

    Get PDF
    Superresolution mapping (SRM) is a commonly used method to cope with the problem of mixed pixels when predicting the spatial distribution within low-resolution pixels. Central to the popular SRM method is the spatial pattern model, which is utilized to represent the land cover spatial distribution within mixed pixels. The use of an inappropriate spatial pattern model limits such SRM analyses. Alternative approaches, such as deep-learning-based algorithms, which learn the spatial pattern from training data through a convolutional neural network, have been shown to have considerable potential. Deep learning methods, however, are limited by issues such as the way the fraction images are utilized. Here, a novel SRM model based on a generative adversarial network (GAN), GAN-SRM, is proposed that uses an end-to-end network to address the main limitations of existing SRM methods. The potential of the proposed GAN-SRM model was assessed using four land cover subsets and compared to hard classification and several popular SRM methods. The experimental results show that of the set of methods explored, the GAN-SRM model was able to generate the most accurate high-resolution land cover maps

    Assessing a temporal change strategy for sub-pixel land cover change mapping from multi-scale remote sensing imagery

    Get PDF
    Remotely sensed imagery is an attractive source of information for mapping and monitoring land cover. Fine spatial resolution imagery is typically acquired infrequently, but fine temporal resolution systems commonly provide coarse spatial resolution imagery. Sub-pixel land cover change mapping is a method that aims to use the advantages of these multiple spatial and temporal resolution sensing systems. This method produces fine spatial and temporal resolution land cover maps, by updating fine spatial resolution land cover maps using coarse spatial resolution remote sensing imagery. A critical issue for sub-pixel land cover change mapping is downscaling coarse spatial resolution fraction maps estimated by soft classification to a fine spatial resolution land cover map. The relationship between a historic fine spatial resolution map and a contemporary fine spatial resolution map to be estimated at a more recent date plays an important role in the downscaling procedure. A change strategy based on the assumption that the change for each land cover class in a coarse spatial resolution pixel is unidirectional was shown to be a promising means to describe this relationship. This paper aims to assess this change strategy by analyzing the factors that affect the accuracy of the change strategy, using six subsets of the National Land Cover Database (NLCD) of USA. The results show that the spatial resolution of coarse pixels, the time interval of the previous fine resolution land cover map and the current coarse spatial resolution images, and the thematic resolution of the used land cover class scheme have considerable influence on the accuracy of the change strategy. The accuracy of the change strategy decreases with the coarsening of spatial resolution, an increase of time interval, and an increase of thematic resolution. The results also indicate that, when the historic land cover map has a 30 m resolution, like the NLCD, the average accuracy of the change strategy is still as high as 92% when the coarse spatial resolution data used had a resolution of ~1000 m, confirming the effectiveness of the change strategy used in sub-pixel land cover change mapping for use with popular remote sensing systems

    General solution to reduce the point spread function effect in subpixel mapping

    Get PDF
    The point spread function (PSF) effect is ubiquitous in remote sensing images and imposes a fundamental uncertainty on subpixel mapping (SPM). The crucial PSF effect has been neglected in existing SPM methods. This paper proposes a general model to reduce the PSF effect in SPM. The model is applicable to any SPM methods treating spectral unmixing as pre-processing. To demonstrate the advantages of the new technique it was necessary to develop a new approach for accuracy assessment of SPM. To-date, accuracy assessment for SPM has been limited to subpixel classification accuracy, ignoring the performance of reproducing spatial structure in downscaling. In this paper, a new accuracy index is proposed which considers SPM performances in classification and restoration of spatial structure simultaneously. Experimental results show that by considering the PSF effect, more accurate SPM results were produced and small-sized patches and elongated features were restored more satisfactorily. Moreover, using the novel accuracy index, the quantitative evaluation was found to be more consistent with visual evaluation. This paper, thus, addresses directly two of the longest standing challenges in SPM (i.e., the limitations of the PSF effect and accuracy assessment undertaken only on a subpixel-by-subpixel basis). © 2020 Elsevier Inc

    Object-level image segmentation with prior information

    Get PDF

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing
    corecore