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Abstract: Remote sensing images contain abundant land cover information. Due to the complex nature of land 14 

cover, however, mixed pixels exist widely in remote sensing images. Sub-pixel mapping (SPM) is a technique 15 

for predicting the spatial distribution of land cover classes within mixed pixels. As an ill-posed inverse problem, 16 

the uncertainty of prediction cannot be eliminated and hinders the production of accurate sub-pixel maps. In 17 

contrast to conventional methods that use continuous geospatial information (e.g., images) to enhance SPM, in 18 

this paper, a SPM method with point constraints into SPM is proposed. The method of fusing point constraints 19 

is implemented based on the pixel swapping algorithm (PSA) and utilizes the auxiliary point information to 20 

reduce the uncertainty in the SPM process and increase map accuracy. The point data are incorporated into 21 

both the initialization and optimization processes of PSA. Experiments were performed on three images to 22 

validate the proposed method. The influences of the performances were also investigated under different 23 

numbers of point data, different spatial characters of land cover and different zoom factors. The results show 24 

that by using the point data, the proposed SPM method can separate more small-sized targets from aggregated 25 
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artifacts and the accuracies are increased obviously. The proposed method is also more accurate than the 26 

advanced radial basis function interpolation-based method. The advantage of using point data is more evident 27 

when the point data size and scale factor are large and the spatial autocorrelation of the land cover is small. As 28 

the amount of point data increases, however, the increase in accuracy becomes less noticeable. Furthermore, 29 

the SPM accuracy can still be increased even if the point data and coarse proportions contain errors. 30 

 31 

Keywords: Remote sensing images, sub-pixel mapping (SPM), super-resolution mapping, downscaling, pixel 32 

swapping algorithm (PSA), point constraints. 33 

 34 

 35 

1. Introduction 36 

 37 

Many significant applications require reliable land cover information extracted from remote sensing images 38 

and land cover mapping is an important topic in remote sensing. Conventional hard classification techniques 39 

allocate each pixel to a single land cover class (Atkinson et al., 1997). However, mixed pixels that contain more 40 

than one land cover class exist invariably in remote sensing images (Fisher, 1997). Mixed pixels are classified 41 

into two main types, namely: Low-resolution or L-resolution (where pixels are larger than the objects of 42 

interest) and High-resolution or H-resolution (where pixels are smaller than the objects of interest) (Atkinson, 43 

2009). Irrespective of the kind of mixed pixels, one-class-per-pixel classification unavoidably results in a loss 44 

of land cover information. To deal with mixed pixels and obtain more reliable land cover information, soft 45 

classification, also termed spectral unmixing, has been developed to predict the proportion of each land cover 46 

class within pixels resulting in a set of land cover proportion images (Eastman and Laney, 2002). Sub-pixel 47 

class composition can be estimated by soft classification (Bioucas-Dias et al., 2012; Keshava and Mustard, 48 

2002), but the spatial distribution of land cover classes within pixels is still unknown. To deal with this issue, 49 

sub-pixel mapping (SPM) has been developed, also termed super-resolution mapping in remote sensing. SPM 50 
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divides each pixel into sub-pixels and predicts their class labels, that is, the land cover classification is 51 

performed at a finer spatial resolution than that of the input images. 52 

Generally, SPM is undertaken by utilizing the expectation that remotely sensed images are spatially 53 

dependent, that is, nearby observations (pixels or sub-pixels) are considered more likely to be of the same class 54 

than more distant ones. Various methods have been developed for SPM. According to the scheme used for 55 

characterizing spatial dependence, SPM can be divided into three main categories. The first concerns the 56 

spatial relation between each sub-pixel and its neighboring sub-pixels. In this set, SPM is an optimization 57 

problem, and the spatial distribution of sub-pixels is changed iteratively to maximize the quantified spatial 58 

dependence. Solutions commonly used in this group include pixel-swapping algorithm (PSA) (Atkinson, 2005), 59 

Hopfield neural network (HNN) (Foody and Doan, 2007; Tatem et al., 2001), genetic algorithms (Mertens et 60 

al., 2003), particle swarm optimization (Wang et al., 2012) and maximum a posteriori (MAP) (Zhong et al., 61 

2015). The second set concerns the spatial relation between each sub-pixel and neighboring coarse pixels. For 62 

this group, it is critical to describe accurately the scale difference between the coarse and fine spatial resolution 63 

pixels. Methods belonging to this group include the sub-pixel/pixel spatial attraction model (Mertens et al., 64 

2006), kriging (Jin et al., 2012; Verhoeye and De Wulf, 2002), radial basis function interpolation (RBF) (Wang 65 

et al., 2014a) and double-calculated spatial attraction model (DSAM) (Wu et al., 2018). The third set considers 66 

both of the spatial dependencies mentioned above. Examples include hybrid intra- and inter-pixel dependence 67 

(Ling et al., 2013) and class membership probabilities calculated by fusing a smoothness prior and the 68 

downscaled proportions (Ling et al., 2014). Chen et al. (2018a) characterized the spatial dependence at the 69 

object level, which was combined with the abovementioned two types of dependences (i.e., multiscale spatial 70 

dependence) in their later work (Chen et al., 2018b). 71 

To circumvent the strong reliance on spectral unmixing of the above methods, spatial-spectral models have 72 

been developed that simultaneously consider the spatial goal of maximizing spatial dependence and the 73 

spectral constraints from the observed coarse data. Kasetkasem et al. (2005) and Tolpekin and Stein (2009) 74 

proposed Markov random field (MRF)-based SPM. Xu et al. (2018) introduced a spatial-spectral SPM model 75 



 

 

4 

that is performed directly for hyperspectral images. In addition, SPM can be realized through geostatistical 76 

solutions. As presented in Boucher et al. (2008), indicator kriging was used to predict the probabilities of land 77 

cover class occurrence at the sub-pixel level. Moreover, for the L-resolution case, the two-point histogram was 78 

applied to match the spatial structure of SPM prediction with the training image (Atkinson, 2004). Recently, 79 

Song et al. (2019) reformulated the SPM problem into a multi-objective optimization problem using a sparse 80 

representation method. 81 

It has been recognized widely that SPM is an ill-posed problem (Ling et al., 2010). Specifically, for a given 82 

coarse spatial resolution image with a spatial size of X×Y, a finer spatial resolution land cover map with a 83 

spatial size of (X×s)×(Y×s) needs to be predicted, where s is the zoom factor. There exists unavoidable 84 

uncertainty in SPM predictions where multiple solutions can lead equally to the same coherence constraint 85 

imposed by the coarse proportion or original coarse image. The uncertainty in predictions becomes greater 86 

when s is larger (Wu et al., 2018). As a result, aggregated artifacts exist widely in the predicted land cover maps 87 

and some features such as linear or elongated features cannot be satisfactorily restored. Such a problem can be 88 

alleviated by utilizing supplementary information. 89 

Over the past decades, various sources of supplementary information, such as additional data, training 90 

images or a priori information, have been used to reduce prediction uncertainty and enhance SPM. Specifically, 91 

prior shape information was used to extract fine spatial resolution building objects from observed coarse 92 

images (Ling et al., 2012). The vectorial boundary information extracted from land-line digital vector data was 93 

used to refine the boundaries of objects after conventional SPM (Aplin and Atkinson, 2001). Ling et al. (2008) 94 

applied digital elevation model (DEM) to sub-pixel waterline mapping according to the physical features of the 95 

water flow. For global scale forest mapping based on MODIS data, the 250 m MODIS bands which have a 96 

finer spatial resolution than the input 500 m bands were incorporated into the SPM process to increase the 97 

accuracy of predicted 30 m forest maps (Zhang et al., 2017). Some geostatistical SPM methods extract spatial 98 

patterns of a prior structural model from training images (Boucher et al., 2008). Multiple shifted images were 99 

utilized by the HNN and indicator cokriging models respectively, to produce more reliable soft class attribute 100 
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of sub-pixels (Ling et al., 2010; Wang et al., 2017; Wang et al., 2014b). The panchromatic (PAN) image can 101 

also be applied to enhance SPM. Specifically, the PAN reflectance constraint was added into the HNN energy 102 

function (Nguyen et al., 2011) and the use of PAN image can increase the accuracy of tree crown detection 103 

(Ardila et al., 2011). Moreover, Light Detection And Ranging (LiDAR) elevation data were used to construct 104 

an additional height energy function in the HNN for more reliable building mapping (Nguyen et al., 2005). In 105 

the latest deep learning-based methods, the fine spatial resolution training images were also used to learn the 106 

relation between the coarse proportion images and fine land cover maps using a convolutional neural network, 107 

which can reproduce complex spatial structure in the SPM predictions (Jia et al., 2019; Ling and Foody, 2019). 108 

In recent years, several SPM methods have been developed to borrow temporal information (i.e., temporally 109 

neighboring images covering the same area) and some spatio-temporal SPM models have been proposed. More 110 

precisely, for global scale monitoring at both fine spatial and temporal resolutions, SPM was performed on 111 

temporally dense, 500 m MODIS time-series data to predict land cover maps at 30 m (i.e., Landsat) spatial 112 

resolution, where several temporally sparse, 30 m Landsat images were available and the 30 m information was 113 

incorporated in the SPM process (Li et al., 2017; Wang et al., 2016; Zhang et al., 2017). In detail, Zhang et al. 114 

(2017) proposed a temporal-example learning-based method to predict class possibilities at the sub-pixel-scale. 115 

Li et al. (2017) utilized a series of coarse MODIS images for SPM and in the pre-spectral unmixing step. The 116 

changes in proportions in each coarse pixel across time were analyzed to extract more reliable endmembers for 117 

the post-unmixing and SPM steps. Wang et al. (2016) proposed a mathematical model to quantify 118 

spatio-temporal dependence by combining the spatial and temporal dependences linearly. 119 

In some cases, for SPM of a specific region, there may be very few data available or they may be 120 

insufficiently reliable for enhancing SPM, such that it is necessary to seek other additional data. In practice, 121 

there exist various sources of data for obtaining the land cover class labels at the target fine spatial resolution, 122 

especially in the current era of “big data”. In this paper, we refer to this type of available data as „point data‟ and 123 

the corresponding sub-pixel as the „informed sub-pixel‟. Different from the abovementioned existing methods 124 

that use spatially continuous data for enhancing SPM, this paper uses spatially sparse (i.e., partly known) point 125 
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data as a new constraints in SPM to reduce the uncertainty and increase the prediction accuracy. The potential 126 

sources for such information can be summarized as follows: 127 

1) Field surveys or manual interpretations. In conventional supervised pixel-level remote sensing image 128 

classification, one of the most common used ways to obtain training samples (i.e., informed pixels) is 129 

manual interpretations associated with field surveys (Bizzi et al., 2016). Similarly, informed pixels can be 130 

collected by field surveys or manual interpretation for SPM. 131 

2) Social media data. Social media data have been used for pixel-level classification and have received 132 

increasing attention in recent years. Social media data can provide valuable information for land cover 133 

and land use mapping. For example, locations with more frequent check-in for social software such as 134 

Twitter, Facebook and Weibo, are more likely to be impervious surface (Frias-Martinez and 135 

Frias-Martinez, 2014; Fritz et al., 2012). Such data have been fused with fine spatial resolution remote 136 

sensing images for urban land use classification and the scheme was demonstrated to be promising (Liu et 137 

al., 2017). Compared to manual interpretation, social media data may be labor-saving but provide a 138 

broader source for land cover mapping. 139 

3) Prior knowledge. The land cover information of some classes can be acquired empirically, such as by 140 

using temporal information and widely acknowledged change rules. For instance, if a pixel belongs to the 141 

urban class in the past few years, it will remain the same afterwards, as the change of most of the cities are 142 

generally assumed to be unidirectional, that is, expanding rather than degenerating into other classes such 143 

as vegetation (Jokar Arsanjani et al., 2013). 144 

Such rich supplementary point information, although sparse in spatial distribution, is significant for 145 

classification of large regions. To the best of our knowledge, such point data have not been utilized in the 146 

existing SPM literature. To explore the effect of such widely available point data on enhancing SPM, this paper 147 

develops a new method and extends an existing SPM framework to incorporate the point data as SPM 148 

constraints. The main contributions of this paper are, thus, twofold. 149 

1) Point data are proposed for enhancing SPM. Different from existing methods using supplementary 150 
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spatially continuous information, point data at the sub-pixel scale are spatially sparse. 151 

2) A new SPM method is developed to incorporate the point constraints. In addition to conventional SPM 152 

methods performed based on a spatial goal and a coarse data coherence constraint, the proposed method 153 

accounts for the point constraints directly and simultaneously as part of the solution. 154 

The rest of this paper is organized as follows. Section Ⅱ first describes the benefit of using point data in SPM 155 

in Section Ⅱ-A, followed by the details of the proposed SPM method incorporating point constraints in Section 156 

Ⅱ-B. In Section Ⅲ, experimental results for both the H- and L-resolution cases are provided. A discussion of 157 

the results is provided in section Ⅳ and section Ⅴ concludes this paper. 158 

 159 

2. Methods 160 

 161 

2.1.  The Benefit of Using Point Constraints 162 

SPM is essentially an ill-posed problem. Finding available auxiliary information has become increasingly 163 

popular as a means of reducing the uncertainty in the SPM process. In this paper, point data, which refers to 164 

class-informed fine spatial resolution pixels (i.e., class-informed sub-pixels), are proposed for enhancing SPM. 165 

The method of incorporating point constraints is different to existing methods that use spatially continuous 166 

information (i.e., data covering the entire study area), such as learning -based methods (Ling et al., 2016). The 167 

benefit of using point information is analyzed by an explicit example below. 168 

With auxiliary point data, additional point constraints aside from spatial correlation are provided to reduce 169 

the uncertainty in the allocation of sub-pixel classes. Fig. 1 shows an example to describe the practical 170 

significance of point data (i.e., class-informed sub-pixels) in the process of SPM. Two classes (white 171 

background and gray target) were considered in a region covering 3×3 coarse pixels. Suppose the proportion of 172 

the target in the central mixed pixel is 1/3 and the zoom factor s=3. Amongst the nine sub-pixels, three 173 

sub-pixels should be allocated to the gray class. 174 
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Based on the assumption of maximizing spatial correlation, multiple distributions of the gray sub-pixels in 175 

the central coarse pixel are listed in Fig. 1(a). There are no other constraints to determine which solution is 176 

optimal. 177 

If there is some supplemental information at the sub-pixel level, such as the red-marked sub-pixel at (1, 1) 178 

that is assigned to the gray class in Fig. 1(b), all the sub-pixels in the red shaded part (the neighboring window 179 

of this point) are attracted by the informed sub-pixel. The closer the to-be-determined sub-pixel is to it, the 180 

larger the probability that it belongs to be the same gray class. Therefore, solutions that do not satisfy the 181 

constraint imposed by this point are excluded (i.e., the second and the fourth allocations in which a red fork is 182 

drawn are excluded, as shown in Fig. 1(b)). 183 

 184 

(a) 185 

(...)

 186 

(b) 187 

(...)

 188 

(c) 189 

(...)

 190 

Fig. 1. An example of incorporating point constraints in SPM and possible sub-pixel class distributions in the central mixed pixel. (a) 191 

No point constraint. (b) Possible distributions with a single informed sub-pixel. (c) Possible distributions with two informed 192 

sub-pixels. 193 
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When another red-marked sub-pixel at (3, 3) is also assigned to the gray class, the common neighboring 194 

sub-pixel of the two constraints at (2, 2) can be determined with little uncertainty, as the spatial attraction 195 

exerted on it strong. Thus, the most likely distribution, that is the first allocation in Fig. 1(c), can be selected. 196 

 197 

2.2.  SPM with Point Constraints 198 

The known point data exist at the sub-pixel resolution. Thus, it is a natural choice to consider SPM methods 199 

that characterize the spatial dependence at the sub-pixel level (i.e., spatial relation between sub-pixels). This 200 

type of sub-pixel to sub-pixel methods depends on optimization solutions based on a general model composed 201 

of a goal and constraint as: 202 

1 2 pixelE k G k C                                                                       (1) 203 

where k1 and k2 are weights, the term G is the spatial goal of maximizing spatial dependence and Cpixel is the 204 

pixel proportion constraint at the coarse spatial resolution. 205 

In existing optimization-based SPM methods, only the upper bound (pixel proportion at coarse spatial 206 

resolution) is considered as a constraint. That is, the number of sub-pixels for each class should be consistent 207 

with the class proportion at the coarse pixel resolution. 208 

In the proposed SPM with point constraints method, however, the constraint term is extended by considering 209 

the sub-pixel resolution hard data, and the abovementioned model is extended to: 210 

1 2 pixel 3 sub pixel= + -E k G k C +k C                                                             (2) 211 

where Csub-pixel is the point constraint term at the sub-pixel level. 212 

In this way, we have constraints at both the lower bound (sub-pixel) and upper bound (coarse proportion), 213 

rather than only the upper bound in existing optimization-based SPM methods. The point data provide more 214 

detailed information at the target fine spatial resolution, which can impose more reliable constraints for 215 

sub-pixel class prediction, especially for the neighbors of the point data. Thus, some inappropriate SPM 216 

solutions can be excluded (as illustrated in Fig. 1) and the solution space can be reduced.  217 

 218 
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2.3. PSA-based SPM 219 

Common choices for sub-pixel to sub-pixel methods are PSA and HNN. The HNN method involves a large 220 

number of iterations and thus, is computationally expensive. Moreover, the HNN cannot preserve linear and 221 

elongated features as well as small objects satisfactorily and the predictions tend to be overly smooth. 222 

Alternatively, the PSA method proposed in Atkinson (2005) is employed to account for the proposed point 223 

constraints in this paper. 224 

In this section, the principle of PSA is briefly introduced. The implementation of PSA consists of two main 225 

steps: initialization of sub-pixel classes according to the coarse proportion constraint and optimization based on 226 

the goal of maximizing spatial correlation through pixel swapping. 227 

Suppose pi is a sub-pixel in coarse pixel P and sub-pixels ( =1,2,..., )jp j N  are its neighbors, s is the zoom 228 

factor (i.e., each coarse pixel is divided into s×s sub-pixels), and Fk is the coarse proportion of the kth 229 

(k=1,2,…,K, K is the number of land cover classes) class in pixel P. The implementation of PSA is described 230 

briefly as follows: 231 

Step 1) Initialization. For each coarse pixel, according to the scale factor s and its coarse proportions Fk, a 232 

fixed number of sub-pixels are allocated to class k. An initial sub-pixel map is generated after pixels for each 233 

class are exhausted. Since all sub-pixels are allocated randomly in this step, the uncertainty is obvious. 234 

Step 2) Optimization. Two sub-pixels within pixel P are selected randomly and sub-pixel swapping is 235 

allowed if it increases the sum of attractiveness of all sub-pixels in pixel P. Otherwise, the original sub-pixel 236 

classes are kept. The procedure is repeated until convergence. The attractiveness A(pi) of sub-pixel pi is 237 

predicted as a distance-weighted function of its N neighbors: 238 

( ) ( )
N

i i , j i j

j 1

A p p , p 


=                                                                 (3) 239 

where λi,j is a weighting coefficient which is depicted as: 240 

( )
exp( )

i j

i , j

d p , p

a



                                                                  (4) 241 
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in which d(pi, pj) is the Euclidean distance between pi and pj and a is a nonlinear parameter in the exponential 242 

model. In Eq. (3), δ(pi, pj) is a binary indicator: 243 

1  if  and  belongs to the same class

0, otherwise.

i j

i j

, p p
p p





（ , ）=                                         (5) 244 

The PSA model considers only how to maximize the spatial correlation when optimizing the spatial 245 

distribution of sub-pixels. In reality, however, the distribution of land cover may not fully accord with this 246 

maximum spatial correlation hypothesis. Auxiliary information is necessary for increasing the accuracy of 247 

SPM in this situation. 248 

 249 

2.4. The Proposed Method for Incorporating Point Constraints 250 

Based on the above analysis of using point data and the uncertainty in PSA, the SPM method with point 251 

constraints is proposed. It makes the following extensions to the original PSA method by incorporating 252 

sub-pixel level supplemental information. 253 

1) Initialization Stage: In the original PSA method, for a mixed pixel, the number of sub-pixels belonging to 254 

class k (k=1,2,…,K) is determined as:  255 

2round( )k kN F s                                                                     (6) 256 

where round( • ) function takes the integer nearest to • . 257 

Under the coarse proportion constraints in Eq. (6), the number of possible initialization results for any coarse 258 

pixel is quantified as an arrangement:  259 

2
11

1

1

= C k
K

kk

K
N

s N
k

I



 
                                                                       (7) 260 

where C kN

m is a combination that calculates the total possible distributions of Nk sub-pixels assigned to class k 261 

and m represents the number of remaining unassigned sub-pixels. Particularly, Nk=0 if k=0. 262 

In the proposed SPM with point constraints method, some of the sub-pixels are informed and the class labels 263 

are free of uncertainty. Let Npoint(k) be the number of informed sub-pixels belonging to class k in mixed pixel P, 264 
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and the sum of Npoint(k) for all classes is Npoint. The number of remaining sub-pixels with uncertainty about the 265 

assignment to class k can be computed as: 266 

( )k k point kL N N                                                                       (8) 267 

Then the number of possible initialization results for the remaining sub-pixels is quantified as: 268 

2
1 ( )1
+

1

= C k
K

k po int kk

K
L

2
s N N

k

I



 
                                                                  (9) 269 

Therefore, by accounting for the point constraints, the decrease in the solution space is calculated by 270 

subtracting Eq. (9) from Eq. (7). A simple example is given in Fig. 2 to illustrate the decrease in uncertainty. 271 

Suppose the scale factor s=3 and the proportions of the two coarse pixels for classes A, B and C are all 1/3. The 272 

red sub-pixel represents the informed sub-pixel (i.e., known point data). The gray sub-pixel represents the 273 

to-be-allocated sub-pixel. 274 

 275 

Y

I1=1680

A=1/3
B=1/3
C=1/3

A=1/3
B=1/3
C=1/3 I2=560  276 

 Informed sub-pixel (free of uncertainty) 277 

 To-be-allocated sub-pixel (contain uncertainty) 278 

 Mixed pixel 279 

Fig. 2. Two mixed pixel under initialization in PSA. One has no informed sub-pixel and the other has one informed sub-pixel. The 280 

numbers of possible distributions are calculated. 281 

 282 
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As shown in the upper-left corner of Fig. 2, at the initialization stage in the original PSA model, all nine 283 

sub-pixels contain uncertainty and there are 
3 3 3

1 9 6 3I =C C C =1680• •  possible initialization results. When one 284 

sub-pixel labeled in red in the central pixel is determined through point data, the remaining 8 sub-pixels need to 285 

be initialized. In this case, the number of possible initializations is 
2 3 3

2 8 6 3I =C C C =560• • and the uncertainty is 286 

reduced by 67% compared to PSA without supplemental point data. 287 

2) Calculation of Attractiveness: Based on the initialized sub-pixel map, the final SPM result is obtained 288 

through an iterative pixel swapping process so that the spatial correlation approaches a maximum gradually. 289 

During each iteration, each swap is directly influenced by the calculation of spatial correlation in terms of 290 

spatial attractiveness. 291 

As depicted in Fig. 3, after integrating the point constraint, the new attractiveness of sub-pixel pi consists of 292 

two parts, that is, the attractiveness from the informed sub-pixels (i.e., colored sub-pixels in Fig. 3) without 293 

uncertainty and the attractiveness from the to-be-determined sub-pixels (i.e., white sub- pixels in Fig. 3). 294 

 295 

𝑝𝑛1(𝑥𝑛1 ,𝑦𝑛1) 

𝑑(𝑝𝑖 ,𝑝𝑛1) =  (𝑥𝑖 − 𝑥𝑛1)
2 + (𝑦𝑖 − 𝑦𝑛1)

2 

𝑝𝑖(𝑥𝑖 ,𝑦𝑖) 
neighboring window of pi

Y

X

 296 

 Informed sub-pixel (free of uncertainty) 297 

 To-be-allocated sub-pixel (contain uncertainty) 298 

Fig. 3. Calculation of attractiveness with point constraints. 299 

 300 
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To alleviate the uncertainty in the optimization process, this paper uses informed sub-pixels in the 301 

computation of attractiveness. Suppose ( )i

pointN  is the number of informed sub-pixels in the local window 302 

centered at sub-pixel pi. The new attractiveness ( ) iA' p of sub-pixel pi is predicted as a distance-weighted 303 

function of its ( )i

pointN  informed neighbors and ( )i

pointN N  remaining neighbors: 304 

( ) ( )

1 1 2 2

1 1 1

( ) = ( ) + ( ) 

i i

po int po int

2

N N N

i i ,n i n i ,n i n

n n

A' p p , p p , p   



 

                                            (10) 305 

where 
1

( )i np , p  and 
2

( )i np , p  are binary indicators as defined in Eq. (5), indicating whether the two 306 

sub-pixels belong to the same class. 
1i ,n  and 

2i ,n  are weight coefficients as defined in Eq. (4), and the 307 

calculation of Euclidean distance between pi and 
1np  is provided in Fig. 3. 308 

By comparing Eqs. (3) and (10), it can be found that the first item for attractiveness in Eq. (10) does not 309 

contain uncertainty due to the informed sub-pixels (point data). Undoubtedly, by considering the point data, the 310 

reliability of sub-pixel class prediction increases. For a sub-pixel pi, the increased reliability for class k can be 311 

quantified as: 312 

( )
( )

=1

1
( )

i
po int kN

k i ,n i n

nk

R p , p
Z

                                                              (11) 313 

where 

( )

=1

( )

i
po intN

k i ,n i n

n

Z p , p    is a normalization constant, and ( )

( )

i

point kN  is the number of informed sub-pixels 314 

belonging to class k in the local window centered at sub-pixel pi. That is, the closer the target sub-pixel pi to pn 315 

that is informed as class k, the larger the likelihood that pi belongs to the same class as pn. 316 

The implementation of the proposed SPM with point constraints method can be summarized briefly in three 317 

steps: 318 

1) Initialization. Different to original PSA, this step is performed not only under the proportion constraint, 319 

but also under the point constraint (i.e., the informed sub-pixels are allocated first). 320 

2) Sub-pixel swapping. The key is the calculation of the total attractiveness of all sub-pixels before and after 321 
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swapping. Informed sub-pixels are used to increase the reliability of the attractiveness calculation. 322 

3) Iteration. Step 2 is repeated until convergence or the pre-determined maximum number of iterations is 323 

reached. 324 

 325 

3. Experiments 326 

 327 

Three datasets were used to demonstrate the effectiveness of the proposed SPM with point constraints 328 

method, including two for the H-resolution case and one for the L-resolution case. The SPM results of the 329 

proposed point-constraints-based method were compared to the original PSA method without point constraints, 330 

under the conditions of different volume of points, different scale factors and different spatial structure. To 331 

explore the feasibility of the proposed method with uncertainties in the point data, the influence of the attribute 332 

error (i.e., the error in the class labels of points) and geo-locational error (i.e. the mismatch between points and 333 

the proportion images) were fully considered. Furthermore, the radial basis function (RBF) interpolation-based 334 

method (Wang et al., 2014a), which has a strong nonlinear fitting ability and which has been shown to be a 335 

competitive SPM method, was used as a benchmark method in this paper. Considering the heavy reliance of the 336 

PSA method on the accuracy of spectral unmixing results, the impact of proportion errors was also 337 

investigated. 338 

 339 

3.1.  Experiment on the synthetic dataset 340 

In the first experiment (H-resolution case), two images were used to examine the performance of the 341 

proposed SPM method accounting for point constraints. The first is a QuickBird image with a spatial resolution 342 

of 0.61 m acquired in August 2005. It covers an area in Xuzhou City, China. The multispectral image was 343 

classified into a land cover map using a support vector machine. As shown in Fig. 4, the land cover map 344 

contains seven classes: shadow, water, road, tree, grass, roof and bare soil. The second dataset is a 30 m land 345 

cover map from the National Land Cover Database 2001 (NCLD 2001, a raster-based classification dataset 346 
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with over 50 U.S. states and Puerto Rico). It covers an area in South Carolina and contains four classes, namely, 347 

water, urban, agriculture and forest (Fig. 5). Both land cover maps have a size of 512×512 pixels. 348 

(a)                                                  (b) 349 

  350 

Shadow      Water      Road      Tree      Grass      Roof      Bare soil 351 

Fig. 4. The 0.61 m Quick Bird images of Xuzhou (512×512 pixels). (a) Original image. (b) Classified land cover map. 352 

 353 

Water  Urban  Agriculture  Forest 354 

Fig. 5. The 30 m NCLD land cover map of South Carolina (512×512 pixels). 355 

(a)                                                  (b) 356 

  357 

Vegetation  Background 358 

Fig. 6. The SPOT images of Granada, Spain (256×256 pixels). (a) Original image. (b) Classified land cover map. 359 
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The experiment for the L-resolution case was implemented using a SPOT image contained in Google Earth 360 

covering an area in Granada, Spain (Muad and Foody, 2012). The image was acquired on 1 October 2004. The 361 

land cover map containing vegetation and background was derived using a support vector machine. Fig. 6 362 

shows the original map and the classified land cover map. 363 

The workflow of the experiments is shown in Fig. 7. To avoid the uncertainty in spectral unmixing and 364 

concentrate solely on the performance of the new SPM method itself, coarse proportions synthesized from fine 365 

spatial resolution land cover maps were used. For a map with K land cover classes, the K proportion images 366 

were simulated by degrading the corresponding fine spatial resolution binary land cover map with a factor of s 367 

(i.e., each s×s pixels were aggregated to a coarse pixel). α% sub-pixels were then extracted randomly from the 368 

fine spatial resolution land cover map. By this strategy of synthesizing data, the reference map is known 369 

perfectly for objective evaluation. Moreover, the uncertainty in acquiring point data can also be avoided and, 370 

thus, we can focus solely on the performance of the proposed method. The accuracy of SPM was evaluated 371 

quantitatively in the light of the percentage of correctly classified sub-pixels (PCC). Notably, the informed 372 

sub-pixels were not included in the accuracy statistics since they will increase the accuracy without providing 373 

any useful information on the performance of the proposed method accounting for point constraints. 374 

 375 

Land cover map

(reference)

Coarse proportion images

Extracting α% pixels 

as  point data

Point data

Accuracy Assesments
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constraints

SPM results
Point 

constraints

Spatial degradation
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 376 

Fig. 7. Experimental approach for validation of the SPM with point constraints method. 377 

 378 
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3.2.  Experiments for H-resolution Case 379 

1) Impact of the number of point data: For the Xuzhou and South Carolina maps, four scale factors (i.e., s=4, 380 

6, 8, and 10) were considered and four groups of coarse proportion images were produced as the inputs of SPM. 381 

Fig. 8 shows the proportion images for the seven classes in the Xuzhou map which were produced using a scale 382 

factor of s=10. Point data were sampled by ratios α= 5%, 10%, 15%, 20%, 25%, and 30%, respectively. 383 

 384 

       385 

0  100% 386 

Fig. 8. Coarse proportion images of the Xuzhou area (50×50 pixels, created by degrading the land cover map with a zoom factor of 387 

10). From left to right: shadow, water, road, tree, grass, roof, and bare soil. 388 

 389 

(a)                                    (b)                                    (c)                                    (d)                                    (e) 390 

     391 

(a1)                  (b1)                   (c1)                   (d1)                  (e1)                    (f)                     (g)                     (h) 392 

        393 

Shadow      Water      Road      Tree      Grass      Roof      Bare soil 394 

Fig. 9. SPM results of the Xuzhou map (s=10) and corresponding point data maps. (a) Original PSA. (b) PSA with 5% point data. (c) 395 

PSA with 10% point data. (d) PSA with 15% point data. (e) Reference map. (a1)-(e1) Zoomed subareas of (a)-(e). (f) 5% point data 396 

map. (g) 10% point data map. (h) 15% point data map. 397 

 398 
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(a)                                    (b)                                    (c)                                    (d)                                    (e) 399 

     400 

(a1)                  (b1)                   (c1)                   (d1)                  (e1)                    (f)                     (g)                     (h) 401 

        402 

Water  Urban  Agriculture  Forest 403 

Fig. 10. SPM results of the South Carolina map (s=10) and corresponding point data maps. (a) Original PSA. (b) PSA with 5% point 404 

data. (c) PSA with 10% point data. (d) PSA with 15% point data. (e) Reference map. (a1)-(e1) Zoomed subareas of (a)-(e). (f) 5% 405 

point data map. (g) 10% point data map. (h) 15% point data map. 406 

 407 

Figs. 9 and 10 shows the SPM results of the original PSA and PSA with 5%, 10%, and 15% point data for the 408 

case of s=10 for the Xuzhou and South Carolina maps, respectively. It is seen that no matter whether point data 409 

are used, the SPM results contain more spatial details than the coarse proportion images where the image is 410 

pixelated and the boundaries of classes are rough. For each resulting map in both Figs. 9 and 10, the water class 411 

is satisfactorily restored because the distribution of the water is spatially aggregated in nature, which is 412 

consistent with the spatial correlation hypothesis in SPM. For the road and shadow classes in Xuzhou and the 413 

urban class in South Carolina, which mainly have a linear feature in the reference map, we can find that they 414 

are incorrectly divided into several scattered patches in the SPM result of original PSA. As shown in Fig. 9(c), 415 

when incorporating 5% point data, the contour of road and shadow looks smoother and continuous, which is 416 

closer to the reference map. When the number of point data increases to 15%, the restoration of the road has 417 

been obviously improved. This is because the original PSA method tends to produce aggregated artifacts to 418 

increase the overall spatial correlation. The same phenomenon can be observed when checking the spatial 419 
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structure of the urban class in South Carolina, which becomes more continuous with the increase in the number 420 

of point data, see Fig.10(c)-(e). By using point data, however, some prior structure information is provided, 421 

especially for elongated features. Thus, the continuity of the elongated objects can be reproduced to some 422 

extent by the proposed SPM method with point constraints. 423 

 424 

(a)                                                                                           (b) 425 

  426 

Fig. 11. PCC (in percentage) of the proposed PSA method (with 5%, 10%, 15%, 20%, 25%, and 30% point data, respectively) and the 427 

original PSA methods for four zoom factors: 4, 6, 8, and 10. (a) Xuzhou map. (b) South Carolina map. 428 

 429 

(a)                                                                                           (b) 430 

  431 
Fig. 12. Difference in PCC (in percentage) between the proposed PSA method (with 5%, 10%, 15% 20%, 25%, and 30% point data, 432 

respectively) and the original PSA methods for four zoom factors: 4, 6, 8, and 10 (Error lines represent the standard deviation). (a) 433 

Xuzhou map. (b) South Carolina map. 434 
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For clearer visual comparison between the SPM results produced with different schemes, two subareas of 435 

the two maps are also shown in the second line of Figs. 9 and 10. With the increase in the number of point data, 436 

the restoration of the land cover becomes increasingly accurate. For example, the road class in Fig. 9 and urban 437 

class in Fig. 10 are predicted as several isolated patches when no point data are considered, but more and more 438 

road pixels are correctly classified as the volume of point data increases. As a result, when 15% of the point 439 

data is used, the distribution of the road class in the SPM prediction is visually very close to the reference, 440 

where most of the continuous features have been reproduced. From the point data maps in Fig. 9(f)-(h) and Fig. 441 

10(f)-(h), it can be seen that although the point data are relatively dispersed, the enhanced performances reveal 442 

that a small number of point data can also provide valuable information for SPM. 443 

Fig. 11 displays the quantitative evaluation results in terms of the PCC for the original PSA (i.e., PSA with 0% 444 

point constraint) and the proposed method with 5% to 30% point constraints under four zoom factors. 445 

Obviously, as the number of points increases, the PCC increases gradually. To observe clearly the increase in 446 

SPM accuracy after including point constraints, the difference in PCC between the original PSA method and 447 

the proposed PSA method for each class is shown in Fig.12. The y-axis indicates the increase in PCC of the 448 

proposed method when compared to the original PSA method. For the two datasets, the increased PCC is larger 449 

than zero in each case and becomes larger as more point data are considered. 450 

The bar charts in Fig. 13 show the increase of PCC for each additional 5% point data. For example, the 451 

length of the blue rectangle represents the increased PCC of PSA by adding 5% point data compared to PSA 452 

adding 0% (i.e., original PSA), while red represents the increased PCC when the point data increase from 25% 453 

to 30%. Undoubtedly, for a given zoom factor s, incorporating more point data as constraints is more helpful. 454 

It is worth noting that, as the point data volume continues to increase, the length of rectangles for both 455 

datasets becomes smaller, which refers to a slowdown in the positive effect of the same number of data. More 456 

precisely, for each 5% additional data of s=10, the corresponding increased PCCs are 2.06%, 1.67%, 1.26%, 457 

0.93%, 0.74%, and 0.49% for the Xuzhou map, and 2.4%, 1.79%, 1.36%, 1.19%, 0.83%, and 0.65% for the 458 

South Carolina map. 459 



 

 

22 

(a) 460 

 461 

(b) 462 

 463 

Fig. 13. Difference in PCC (in percentage) between PSA with α% points and PSA with (α-5) % points at four scales: 4, 6, 8, and 10 (0% 464 

means PSA without point data, namely, original PSA). (a) Xuzhou map. (b) South Carolina map. 465 

 466 

2) Impact of the scale factors s: For the same volume of point data, it can be found in Fig. 12 that the 467 

increased PCC is larger for a larger scale factor s. That is, as s increases, although the accuracy of SPM is 468 

smaller in general, the advantage of the proposed PSA with point constraints method is more apparent. For 469 

example, when 15% point data are available for the Xuzhou map, the PCC is increased by around 1% for s=6, 470 

but by above 5% for s=10. For the South Carolina map, when the volume of the point data is 30%, the increased 471 

PCC is around 3% and 8% for s=6 and 10, respectively. The error lines in Figs. 12 and 13 represent the standard 472 

deviation of the accuracies, while the bar represents the average of the accuracies. It shows that the standard 473 

deviation is within the range of increased PCC. Moreover, for the same s, when more point data are available, 474 

the standard deviation is smaller, suggesting the performance is more stable. 475 

3) Impact of spatial structure: As seen from the results in Figs. 12 and 13, the increased PCC for the South 476 

Carolina map is generally larger than for the Xuzhou map under the same scale factor s. To explain this 477 

phenomenon and explore the relationship between the effect of point constraints and the land cover class itself, 478 
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the increased accuracy of each class for s=8 is shown in Fig. 14. For the seven classes in the Xuzhou map, the 479 

gains of PCC become smaller in the order of shadow, tree, grass, road, roof, bare soil and water. For the four 480 

classes in the South Carolina map, the corresponding order is agriculture, urban, forest, and water. Checking 481 

the original reference maps of Xuzhou and South Carolina, it is obvious that the spatial distribution of the 482 

shadow and agriculture classes is the sparsest in the Xuzhou and South Carolina maps, respectively. On the 483 

contrary, the distribution of water is the most aggregated in both maps. 484 

The Moran‟s I has been used widely as a measure of spatial autocorrelation in spatial statistics (Anselin, 485 

2019; Overmars et al., 2003). Specifically, a lager Moran‟s I value means a larger spatial correlation and more 486 

aggregated spatial distribution. As listed in Table 1, the most aggregated water class in both maps has the 487 

largest Moran‟s I, which is consistent with visual inspection. The most dispersed class, that is, shadow in the 488 

Xuzhou map or agriculture in the South Carolina map, has the smallest Moran‟s I. Checking the order of 489 

Moran‟s I in Table Ⅰ and the order of increased PCC in Fig. 14, we can see the interesting phenomenon that the 490 

class with the larger Moran‟s I always has the smaller increase in PCC. This is because the hypothesis of 491 

maximizing spatial correlation is more suitable for restoring aggregated features (i.e., land cover classes with 492 

greater autocorrelation) and, thus, the space for enhancing SPM of such features is limited. For features such as 493 

elongated and small-size patches whose spatial autocorrelation is small, however, there exists great uncertainty 494 

in SPM (i.e., the PCC is relatively smaller) when only the spatial dependence assumption is applied. In this 495 

case, the additional point constraints will provide more valuable information for reproduction of these features 496 

and the increased accuracy will be more obvious. 497 

Inter-comparison between the two groups of Moran‟s I values for the two maps reveals that the values of the 498 

South Carolina map are generally smaller than whose for the Xuzhou map, suggesting the overall spatial 499 

autocorrelation is smaller for the former. Thus, the space for enhancing SPM is greater for the South Carolina 500 

map, as seen in Figs. 12 and 13. 501 

 502 
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(a)                                                                                    (b) 503 

  504 
Fig. 14. Difference in PCC for each land cover class between PSA with α% points and PSA with (α-5) % points (s=8, 0% means PSA 505 

without point data, that is, original PSA). (a) Xuzhou map. (b) South Carolina map. 506 

 507 

Table 1 Moran‟s I of each land cover class in the two original fine spatial resolution classification maps 508 

Xuzhou map 

Class Shadow Tree Grass Road Roof Bare soil Water 

Moran‟s I 0.6573 0.7226 0.7384 0.7832 0.7503 0.8836 0.9556 

Rank 1 2 3 5 4 6 7 

South Carolina map 

Class Agriculture Urban Forest Water    

Moran‟s I 0.6282 0.6644 0.6896 0.9096    

Rank 1 2 3 4    

 509 

4) Impact of attribute errors in point data: In the above experiments, it was assumed that the point data do 510 

not contain any uncertainty and the class labels are completely accurate for all informed pixels. In reality, 511 

however, errors exist commonly in such point data due to data source contamination (e.g., false registration 512 

data in social software) and interpretation processes (e.g., the point to be interpreted may contain more than one 513 

class in reality). To explore the impact of uncertainty of point data on SPM results, simulated incorrect data 514 

were used in this experiment. Specifically, part of the set of informed pixels was simulated incorrectly by 515 

artificially changing the original class labels to others. As illustrated in previous experiments, the maximum 516 

amount of point data accounts for 30% of the total number of sub-pixels. Thus, in this section, the error rate 517 

was increased from 5% to 30%, with a step of 5%. When the error rate is 30%, it means the input data are 518 

completely wrong. 519 
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 520 

 521 

PSA with 30% correct point data  PSA with errors in point data  PSA without point data 

Fig. 15. PCC of SPM results with errors in point data (excluding point data for PCC calculation). (Line 1) Xuzhou. (Line 2) South 522 

Carolina. 523 

 524 

The PCC of the proposed SPM method that considers point data containing errors is shown in Fig. 15. For 525 

clear comparison, the PCCs of the original PSA and PSA with completely correct point data are also provided. 526 

From this figure, we can observe clearly that as the error increases, the PCCs for both datasets decrease. 527 

Undoubtedly, the erroneous point data have a negative impact and the increased slope indicates a faster 528 

decrease in accuracy. Interestingly, the accuracy of PSA with errors is still greater than the original PSA 529 

method until the proportion of errors increases to a certain value, see the intersection of the red and black lines 530 

in Fig. 15. For example, for the Xuzhou results in line 1 of Fig. 15, when the proportion of error reaches 10% 531 

and 20% for s=8, the PCCs are 3.39% and 1.63% larger than for the original PSA method. The PCC is 532 

decreased to be smaller than original PSA when the proportion of error exceeds 25%. Therefore, although there 533 

exist unavoidable errors in the point data, the use of point data is still advantageous for SPM if the proportion of 534 

data in error is not very large. 535 

 536 
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(a)                                                                      (b) 537 

  538 

Fig. 16. PCC (in percentage) of the proposed PSA method with 15% point data for various registration errors (s=8). (a) Xuzhou map. 539 

(b) South Carolina map. 540 

 541 

5) Impact of geo-locational errors in point data: The experiments above assumed that the point data have a 542 

completely reliable spatial co-registration to the image. In reality, however, there always exists a 543 

geo-locational mismatch between data acquired from different sources (e.g., mismatch between remote sensing 544 

images and data from social software). To analyze the influence of point data with geo-locational errors, we 545 

simulated points that were mis-registered with the coarse proportion images. Specifically, the original real 546 

locations of points were changed by shifting n/s (n=0, 1…, n-1) coarse pixel both horizontally and vertically. In 547 

this section, the proposed PSA method was performed with 15% point data at s=8 for both Xuzhou and South 548 

Carolina datasets. The PCCs of SPM using points with geo-locational errors (i.e., registration errors) and the 549 

original PSA method are given in Fig. 16. It is worth mentioning that similarly to the previous experiments, the 550 

known points were excluded from the accuracy assessment. Obviously, the registration error imposes a 551 

negative effect on the performance of the proposed method (in both cases, the PCC for points with registration 552 

error is smaller than that without registration error), as incorrect spatial information is used. It should be noted 553 

that, however, when the error is not very large (e.g., below 0.5 coarse pixel in the South Carolina case), the 554 

PCC of PSA using point constraints is still larger than that of the original PSA method. Thus, the use of point 555 

data is helpful for SPM even when geo-locational errors exist in the point data in practice, under the condition 556 
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that the error is not large or necessary pre-processing has been performed to reduce the mismatch to a certain 557 

value (e.g., <0.5 coarse pixel in this case study). 558 

6) Comparison with other SPM methods: In this section, the proposed SPM with point constraints method 559 

was compared with the advanced RBF method (Wang et al., 2014a). The RBF method consists of the fine 560 

spatial resolution soft class attribute value and hard class label estimation. The same point data were used at the 561 

hard class label estimation stage for the RBF method. The PCCs of different methods for two datasets (s=8) are 562 

given in Fig.17. It can be seen that the PCCs of the RBF are larger than that of the original PSA, but much 563 

smaller than that of the proposed method. As the number of point data increases, the advantage of the proposed 564 

method is more evident. More explicitly, using 5%-30% (with an interval of 5%) point data, the PCC gains of 565 

the proposed method over RBF are 1.17%, 2.07%, 2.8%, 3.32%, 3.73%, and 4.08% for the Xuzhou map, and 566 

0.06%, 1.18%, 2.13%, 2.84%, 3.47%, and 3.92% for the South Carolina map. This is because in the RBF 567 

method, the spatial correlation is considered only at the coarse pixel scale, and the point data were not well 568 

utilized. As for the proposed PSA-based method, the spatial correlation is considered at the sub-pixel scale and 569 

the known points provide valuable spatial information for their surrounding sub-pixels during the spatial 570 

optimization process. 571 

(a)                                                                      (b) 572 

  573 

Fig. 17. PCC (in percentage) of the original PSA method, the RBF method and the PSA method incorporating point data (with 5%, 574 

10%, 15% 20%, 25%, and 30% point data, respectively) (s=8). (a) Xuzhou map. (b) South Carolina map. 575 
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7) Impact of errors in coarse proportions: In the experiments, it is assumed that coarse proportions (i.e., 576 

input of SPM) are estimated without error. However, spectral unmixing is still an open problem. Given that the 577 

quality of the estimated class proportions plays an important role in SPM, especially for methods such as PSA 578 

that fix the number of sub-pixels for each class according to the input coarse proportions, in this experiment, 579 

the performance of the proposed method was explored when errors exist in coarse proportions. Specifically, 580 

proportion images with different errors were simulated and the case of zoom factor s=8 and 25% point data was 581 

considered. Errors with a Gaussian distribution were added to the ideal proportions to generate the proportion 582 

images with errors. The accuracy of the simulated proportions was quantified by the root mean square error 583 

(RMSE) between the simulated proportions and the reference proportions. The proportion errors with RMSE= 584 

0.025, 0.05, 0.075 and 0.1 were simulated, and details of the simulation process can be found in Li et al. (2014). 585 

Fig. 18 shows that proportion errors cause a decrease in SPM accuracy for both the original PSA and the 586 

proposed method. However, the PCCs of the proposed method are still larger than that of the original PSA for 587 

both Xuzhou and South Carolina maps. Thus, the benefits of using point constraints are still noticeable when 588 

errors exist in the coarse proportions. 589 

 590 

(a)                                                                           (b) 591 

  592 

Fig. 18. PCC (in percentage) of the proposed PSA method with 25% point data and the original PSA method under proportion errors 593 

(s=8). (a) Xuzhou map. (b) South Carolina map. 594 

 595 
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3.3. Experiment for L-resolution Case 596 

The L-resolution case refers to pixels that are larger than the objects of interest (Atkinson, 2009). In the 597 

experiment, the Granada dataset was used. The coarse proportion images were synthesized by degrading the 598 

Granada land cover map with a factor of 9. Fig. 19(b) shows the coarse proportion image for the vegetation 599 

class, where the size of most of the vegetation patches is smaller than the pixels, that is, the vegetation falls 600 

within the mixed pixels. Visually, the object (i.e., vegetation) can hardly be identified accurately at such a 601 

coarse spatial resolution. The task of this experiment is to restore the land cover map that has the same spatial 602 

resolution as Fig. 19(a), based on the input of the image in Fig. 19(b) and the available point data. 603 

(a)                                            (b) 604 

  605 

Vegetation  Background 606 

Fig. 19. Granada land cover map and proportion image. (a) Reference map. (b) Proportion image of vegetation created by degrading 607 

(a) with a scale factor of 9 (28×28pixels). 608 

 609 

The SPM results produced with different number of point data are shown in Fig. 20. As demonstrated 610 

visually in Fig. 20, the original isolated patches of vegetation are incorrectly merged by the original PSA 611 

method: see the examples marked in red circles. This is because in L-resolution case, the targets smaller than 612 

pixels are connected as a whole based only on spatial dependence. When point data are available, the prediction 613 

is enhanced noticeably. For example, the results in Fig. 20(b) show that PSA with 6% point data can restore the 614 

vegetation class more accurately, where some small-sized vegetation patches can be separated. As the number 615 

of point data increases, the prediction becomes increasingly accurate, as shown in Fig. 20(c)-(f). When 30% 616 

point data were used, the prediction is visually highly similar to the reference. This is because the point data, 617 
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especially for those located at the boundaries of small-sized objects, can provide important guidance in 618 

sub-pixel class determination for their sub-pixel neighbors. Thus, small objects (i.e., smaller than a coarse pixel) 619 

can be correctly separated when sufficient point data are available. 620 

Quantitative assessments by PCC and increased PCC for the L-resolution case are provided in Fig. 21. 621 

Clearly, as the number of point data increases, the SPM accuracy increases, which is consistent with the visual 622 

results in Fig. 20. Furthermore, it is seen from Fig. 21(b) that when the volume of point data increases from 6% 623 

to 30% with a step of 6%, the increase in PCC is 7.98%, 13.79%, 16.26%, 18.05%, and 18.95%, respectively. 624 

Moreover, as the number of point data increases, the increased in PCC tends to decrease, but is still larger than 625 

zero. That is, the space for accuracy increase is limited when sufficient point data are available, which is 626 

consistent with the conclusion in the previous experiments for the H-resolution case. 627 

 628 

 629 

Fig. 20. SPM results of Granada map (s=9). (a) Original PSA. (b) PSA with 6% point data. (c) PSA with 12% point data. (d) PSA with 630 

18% point data. (e) PSA with 24% point data. (f) PSA with 30% point data. 631 

 632 

(a)                                           (b)                                           (c) 

(d)                                           (e)                                           (f) 

Reference map 



 

 

31 

(a)                                                        (b) 633 

  634 

Fig. 21. Accuracy of the SPM methods for the L-resolution case (s= 9) (Error lines represent the standard deviation). (a) PCC (in 635 

percentage) of the proposed method. (b) Difference in PCC between the proposed method (with 6%, 12% 18%, 24%, and 30% point 636 

data, respectively) and the original PSA method.  637 

 638 

4. Discussion 639 

 640 

This paper proposed to utilize point data to enhance SPM. The goal was realized based on the extension of 641 

PSA. The proposed method provides a new option for increasing the accuracy of SPM by using auxiliary 642 

information. This section opens discussions on both the data and algorithm. 643 

 644 

4.1. Alternatives to PSA 645 

Similar to many SPM methods, PSA is slavish to the predictions (i.e., coarse proportions) of the pre-spectral 646 

unmixing, which means the errors in proportions adversely affect the final SPM predictions directly (see the 647 

results in Fig. 18). This is a limitation of many existing methods including PSA. As mentioned earlier, it is a 648 

natural choice to consider SPM methods that characterize the spatial dependence between sub-pixels, as the 649 

known point data are at sub-pixel resolution. Methods falling into this type include PSA, HNN and MAP. Thus, 650 

it seems worthwhile to develop alternatives based on HNN and MAP. Different to the PSA method, MAP and 651 

HNN consider the spatial goal of maximizing spatial dependence and the coarse pixel proportion constraint 652 
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simultaneously in their models, see Eq. (1). Thus, the contribution of the proportion constraint term can be 653 

tuned to reduce the influence of proportion error theoretically. On the other hand, when the proportion 654 

constraint is less emphasized, MAP and HNN methods generally produce over-smooth predictions where the 655 

small patches and elongated features cannot be restored satisfactorily and even disappear in the predicted land 656 

cover map. This is not the case for PSA, where the small patches and elongated features can be retained to some 657 

extent. For potential solutions to incorporating point constraints in SPM by MAP and HNN, the key potential 658 

solutions to this issue may be to develop schemes that adaptively control the contributions of coarse proportion 659 

constraints. For example, for local areas with weak autocorrelation, greater proportion constraints should be 660 

considered to guarantee the reproduction of pixels for small patches and elongated features (i.e., in the general 661 

model in Eq. (1), the weight k2 should be set to a larger value). How to balance the contributions of point and 662 

coarse proportion constraints would be a critical issue (i.e., weights k2 and k3 in Eq. (2) should be set to 663 

appropriate values). 664 

It is also worth developing related methods to incorporate point data for another main type of SPM methods, 665 

namely the one that characterizes the spatial dependence between sub-pixel and neighboring coarse pixels. 666 

This type of method does not need an iteration-based optimization process and can realize SPM quickly. The 667 

challenge is that the coarse neighbors and point data are at different scales. In this paper, a preliminary attempt 668 

was made with RBF in the experiment, but the point data were not sufficiently integrated into the SPM process. 669 

It would be a key issue to develop models to characterize the spatial scale difference of data. The kriging-based 670 

SPM method (Verhoeye and De Wulf, 2002) considers the spatial relation between sub-pixel and pixels. In 671 

recent years, it has been extended to area-to-point kriging (Wang et al., 2015) to take the scale difference (also 672 

termed change of support in geostatistics) into account. It would be of great interest to develop area-to-point 673 

kriging-based models to incorporate point data in SPM, such as a co-kriging model. In this case, however, the 674 

kriging equation needs to be constructed locally for each pixel (rather than a single equation in area-to-point 675 

kriging-based image downscaling), as the spatial distribution of point data is not fixed and always varies in 676 

each local window. Moreover, since some locations may lack point data, for example, due to difficulties in data 677 
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acquisition, the size of local window needs to be determined adaptively to incorporate sufficient point data. 678 

Thus, the complexity and computational burden would probably increase when point data are considered. 679 

Multiple point statistics (MPS) (Mariethoz et al., 2010) is a relatively new branch of geostatistics. It 680 

considers the relation (both spatial distance and direction) between multiple points based on a pre-defined 681 

template, rather than the vector separation between only two points, as in kriging. Thus, MPS is particularly 682 

advantageous for restoration of spatially continuous patterns such as linear features, and it has been applied 683 

widely in geology (e.g., ground water flow mapping (Mariethoz et al., 2010)). MPS is implemented based on 684 

the availability of spatially sparse point data (also termed hard data) and fills in the data at other locations with 685 

the aid of available point data, which fits well with the case of this paper. However, MPS requires a training 686 

image at the spatial resolution of the point data to search for data events and find the appropriate data for filling, 687 

which hampers its application in SPM. Therefore, the proposed SPM method accounting for point data in this 688 

paper is advantageous in terms of implementation as it does not need any training image. Once such training 689 

data are available, however, it would be favorable to develop MPS models to incorporate point data in SPM. 690 

For the H- and L- resolution cases in the experiments, it needs to be clarified that the definition of H- and L- 691 

resolution was not in an absolute sense. More precisely, they are defined based on a relative flexible 692 

assumption according to the proportion of H- and L- resolution pixels in the entire image. In the H-resolution 693 

cases, in the coarse Xuzhou and South Carolina images, most (but not all) of the land cover patches occupy 694 

over one coarse pixel. In the L- resolution case, most of the land cover patches (i.e., vegetation of the Granada 695 

dataset in Fig. 19) fall within one coarse pixel. 696 

 697 

4.2. Uncertainties in Point Information 698 

To eliminate the influence of uncertainty in point information and concentrate on the performance of the 699 

proposed model itself, the point data were simulated by sampling randomly from the reference land cover map 700 

in the experiments. In real applications, there are several considerations about the uncertainties in point 701 

information, which are discussed as follows. 702 
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1) Uncertainties in data source: As mentioned earlier, there are various sources for point data and 703 

uncertainties always exist in the source data, that is, the issue of reliability of spatial data. For example, there 704 

may be false registration in social media data such as Weibo, Instagram, Twitter, etc.. Moreover, time 705 

inconsistencies may exist between the observed image for SPM and the acquired point data, where land cover 706 

changes may occur. The point data acquired from different sources may vary greatly. Pre-processing may be 707 

undertaken to harmonize them and blend them into a single SPM framework. Potential solutions may be to 708 

construct models (e.g., linear or non-linear regression such as machine learning-based models) to obtain the 709 

relation between the points of the same location but from different sources, which can be used to update the 710 

point data at other locations. 711 

2) Uncertainties in data sampling process: The spatial locations of simulated point data in the experiments 712 

are distributed randomly. However, in actual field collection, there may be some requirements and conditions 713 

when sampling the data. For example, equal interval sampling may be required in some applications. On the 714 

other hand, in some remote areas such as mountains, it may be more difficult to obtain sufficient data, while in 715 

areas with vehicular transport, such as cities, the acquisition of point data is likely to be simpler. That is, the 716 

number of point data in some areas may be large but in other areas the points may be spatially very sparse. It 717 

would be important to design appropriate sampling strategies. The impact of the spatial distribution of the 718 

obtained point data is also worthy of further study. 719 

3) Uncertainties in spatial support: In the experiments, the spatial coverage of the input points is assumed to 720 

be in agreement with the target sub-pixels. In reality, however, the point may not be strictly coincident with one 721 

sub-pixel spatially, that is, uncertainties exist in the spatial support of the point data itself. In an extreme case, 722 

suppose the sampling point covers a 1 m
2
 area and contains 0.5 m

2
 bare soil and 0.5 m

2
 grass. The sub-pixel 723 

size at the target fine spatial resolution is larger than the 1 m
2
 point. The question is which class should be 724 

assigned to this point? Aiming at the mismatch of spatial support between point data and target sub-pixel, a 725 

potential solution may be to upscale the point data to match the support of the sub-pixel. Another problem is the 726 

inconsistency of support size from different data sources. Specifically, the support size of social media data is 727 
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always difficult to define (assumed to be a small point in general), and the spatial coverage of field data can be 728 

extensive. How to match the size of points from different sources would be an interesting issue to address. 729 

4) Uncertainties in class attribute of point data: Influenced by the complex distribution of land cover class 730 

and the size of spatial support as discussed above in 3), it is difficult to assign the point to a single class as it 731 

may cover multiple classes. That is, the hard class attribute of point data always contains uncertainties. 732 

Confronted with this problem, it would be interesting to develop models that can take the uncertainty of the 733 

hard attribute into account to obtain more reliable SPM results. For example, the class attribute of point data 734 

can be expressed mathematically by a vector, with each element representing the proportion of a class. The 735 

effective model needs to consider the soft attributes (rather than the hard attributes or class indicators in this 736 

paper) together. 737 

5) Usage rate of point information: In practical applications, not all of the acquired point information may be 738 

valid or can be fully utilized. Point data located in pure pixels (such as the point data for the roof class in Fig. 739 

9(f)-(h)), conveys no useful information because the SPM process for pure pixels is very simple and does not 740 

require any additional information: all sub-pixels in pure pixels are allocated to the same class as the pixel. 741 

Nevertheless, point data located within mixed pixels are much more informative and are considered as 742 

effective points. Most of these points are located in boundary areas. To investigate the effective usage rate of 743 

point information in the experiments, the proportion of effective points to 20% known points is calculated in 744 

Fig. 22. Obviously, most points are effective and for each class, the number of effective points increases with 745 

the increase in zoom factor. On the other hand, since there may be multiple sources for point data, it is 746 

necessary to avoid repeated acquisition of point data in the same location. Moreover, if that occurs, there is a 747 

need to explore how to select the most appropriate sources. 748 

 749 
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(a)                                                                                    (b) 750 

  751 

Fig. 22. The proportion of effective points to 20% known points for each land cover class at four scales. (a)Xuzhou map. (b)South 752 

Carolina map. 753 

 754 

5. Conclusion 755 

 756 

SPM is an ill-posed problem and it is necessary to explore useful information from additional data for 757 

possible enhancement. In this paper, a novel type of supplementary data, namely, point data, was proposed for 758 

increasing the accuracy of SPM. The point data are incorporated in SPM by the PSA method, where the data 759 

can exert additional sub-pixel level constraints to reduce the uncertainty in SPM. The proposed method was 760 

tested with three datasets and the conclusions are summarized as follows. 761 

1) The proposed point constraints-based SPM method provides a satisfactory solution for enhancing SPM. 762 

From both visual and quantitative assessments, it was found that the point information can help to 763 

produce more accurate sub-pixel maps. The accuracy is also greater than the advanced RBF-based SPM 764 

method. 765 

2) As the number of point data increases, the accuracy increases correspondingly, but the accuracy gain 766 

becomes smaller. 767 

3) The advantages of using point data are more obvious for the case involving a large zoom factor. 768 

4) The point data are more beneficial for land cover classes with small spatial autocorrelation, and for 769 
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classes with large autocorrelation, the increase in accuracy is relatively smaller. 770 

5) Even when point data contain attribute or geo-locational errors, they can still be useful for enhancing 771 

SPM, but the proportion of errors cannot be very large. 772 

6) The proposed method accounting for point constraints is a general method suitable for both the H- and 773 

L-resolution cases. 774 

7)  When coarse proportions contain errors, the SPM accuracy is reduced, but the use of point constraints is 775 

still beneficial. 776 

 777 
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