77 research outputs found

    Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems

    Get PDF
    In this paper, a mixed finite element method combined with Crank-Nicolson scheme approximation of parabolic optimal control problems with control constraint is investigated. For the state and co-state, the order Raviart-Thomas mixed finite element spaces and Crank-Nicolson scheme are used for space and time discretization, respectively. The variational discretization technique is used for the control variable. We derive optimal priori error estimates for the control, state and co-state. Some numerical examples are presented to demonstrate the theoretical results

    Recovery methods for evolution and nonlinear problems

    Get PDF
    Functions in finite dimensional spaces are, in general, not smooth enough to be differentiable in the classical sense and ā€œrecoveredā€ versions of their first and second derivatives must be sought for certain applications. In this work we make use of recovered derivatives for applications in finite element schemes for two different purposes. We thus split this Thesis into two distinct parts. In the first part we derive energy-norm aposteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error for fully discrete schemes of the linear heat equation. To our knowledge this is the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique introduced as an aposteriori analog to the elliptic (Ritz) projection. Our theoretical results are backed up with extensive numerical experimentation aimed at (1) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (2) deriving an adaptive method based on our estimators. An extra novelty is an implementation of a coarsening error ā€œpreindicatorā€, with a complete implementation guide in ALBERTA (versions 1.0ā€“2.0). In the second part of this Thesis we propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of GalĆ«rkin type using conforming finite elements and applied directly to the nonvariational(or nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of the ā€œfinite element Hessianā€ based on a Hessian recovery and a Schur complement approach to solving the resulting linear algebra problem. The method is illustrated with computational experiments on linear PDEs in nonvariational form. We then use the nonvariational finite element method to build a numerical method for fully nonlinear elliptic equations. We linearise the problem via Newtonā€™s method resulting in a sequence of nonvariational elliptic problems which are then approximated with the nonvariational finite element method. This method is applicable to general fully nonlinear PDEs who admit a unique solution without constraint. We also study fully nonlinear PDEs when they are only uniformly elliptic on a certain class of functions. We construct a numerical method for the Mongeā€“AmpĆØre equation based on using ā€œfinite element convexityā€ as a constraint for the aforementioned nonvariational finite element method. This method is backed up with numerical experimentation

    Adaptive Numerical Methods for PDEs

    Get PDF
    This collection contains the extended abstracts of the talks given at the Oberwolfach Conference on ā€œAdaptive Numerical Methods for PDEsā€, June 10th - June 16th, 2007. These talks covered various aspects of a posteriori error estimation and mesh as well as model adaptation in solving partial differential equations. The topics ranged from the theoretical convergence analysis of self-adaptive methods, over the derivation of a posteriori error estimates for the finite element Galerkin discretization of various types of problems to the practical implementation and application of adaptive methods

    Pre- and postprocessing techniques for determining goodness of computational meshes

    Get PDF
    Research in error estimation, mesh conditioning, and solution enhancement for finite element, finite difference, and finite volume methods has been incorporated into AUDITOR, a modern, user-friendly code, which operates on 2D and 3D unstructured neutral files to improve the accuracy and reliability of computational results. Residual error estimation capabilities provide local and global estimates of solution error in the energy norm. Higher order results for derived quantities may be extracted from initial solutions. Within the X-MOTIF graphical user interface, extensive visualization capabilities support critical evaluation of results in linear elasticity, steady state heat transfer, and both compressible and incompressible fluid dynamics

    Schnelle Lƶser fĆ¼r partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle LoĢˆser fuĢˆr partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch(Leipzig), Gabriel Wittum (Heidelberg) was held May 22nd - May 28th, 2005. This meeting was well attended by 47 participants with broad geographic representation from 9 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds

    Schnelle Lƶser fĆ¼r Partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Lƶser fĆ¼r partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch (Leipzig), and Gabriel Wittum (Frankfurt am Main), was held May 22ndā€“May 28th, 2011. This meeting was well attended by 54 participants with broad geographic representation from 7 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds

    Computational Engineering

    Get PDF
    The focus of this Computational Engineering Workshop was on the mathematical foundation of state-of-the-art and emerging finite element methods in engineering analysis. The 52 participants included mathematicians and engineers with shared interest on discontinuous Galerkin or Petrov-Galerkin methods and other generalized nonconforming or mixed finite element methods

    A Computational Study of the Weak Galerkin Method for Second-Order Elliptic Equations

    Full text link
    The weak Galerkin finite element method is a novel numerical method that was first proposed and analyzed by Wang and Ye for general second order elliptic problems on triangular meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin method for various model problems with more general finite element partitions. The numerical results confirm the theory established by Wang and Ye. The results also indicate that the weak Galerkin method is efficient, robust, and reliable in scientific computing.Comment: 19 page
    • ā€¦
    corecore